1
|
Chetwynd SA, Ward RJ, Milligan G, Welch HCE. The GPCR adaptor protein Norbin controls the trafficking of C5aR1 and CXCR4 in mouse neutrophils. J Biol Chem 2024; 300:107940. [PMID: 39476960 DOI: 10.1016/j.jbc.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024] Open
Abstract
Norbin (Neurochondrin, NCDN) is a G protein-coupled receptor (GPCR) adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady-state trafficking and sometimes their agonist-induced internalization, as well as their signaling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity. Here, we identify C5aR1 and CXCR4 as direct Norbin interactors and used mice with myeloid-Norbin deficiency to investigate the role of Norbin in the trafficking of endogenous C5aR1 and CXCR4 in primary neutrophils by flow cytometry and cell fractionation. We show that Norbin mediates the agonist-induced internalization of C5aR1 through a β-arrestin-dependent mechanism and limits the recycling of internalized C5aR1 and CXCR4 back to the cell surface. Norbin does not control the constitutive internalization of C5aR1 and CXCR4 nor does it affect the agonist-induced internalization of CXCR4. Norbin suppresses C5aR1 signaling in mouse neutrophils by limiting the C5a-stimulated membrane translocation of Tiam1, Vav, and PKCδ, and activation of Erk and p38 Mapk pathways, as well as Gαi-dependent reactive oxygen species production. Our study demonstrates how Norbin suppresses C5aR1 and CXCR4 function in neutrophils and increases our understanding of the mechanisms through which Norbin regulates GPCR trafficking generally, by identifying its importance in β-arrestin recruitment, β-arrestin dependent agonist-induced receptor internalization, and receptor recycling.
Collapse
Affiliation(s)
- Stephen A Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Richard J Ward
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heidi C E Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
2
|
Riaz B, Sohn S. Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. Cells 2023; 12:2621. [PMID: 37998356 PMCID: PMC10670008 DOI: 10.3390/cells12222621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory diseases involve numerous disorders and medical conditions defined by an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process through which environmental variables play a crucial role in the emergence of aberrant innate and adaptive immunological responses. According to experimental data accumulated over the past decade, neutrophils play a significant role as effector cells in innate immunity. However, neutrophils are also involved in the progression of numerous diseases through participation in the onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally, neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional therapies due to their multifaceted role in a number of diseases. Several approaches have been developed to therapeutically target neutrophils, involving strategies to improve neutrophil function, with various compounds and inhibitors currently undergoing clinical trials, although challenges and contradictions in the field persist. This review outlines the current literature on roles of neutrophils, neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and inflammatory diseases with potential future therapeutic strategies.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
4
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
5
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
6
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
7
|
Krishnan R, Stapledon CJM, Mostafavi H, Freitas JR, Liu X, Mahalingam S, Zaid A. Anti-inflammatory actions of Pentosan polysulfate sodium in a mouse model of influenza virus A/PR8/34-induced pulmonary inflammation. Front Immunol 2023; 14:1030879. [PMID: 36845136 PMCID: PMC9947849 DOI: 10.3389/fimmu.2023.1030879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction There is an unmet medical need for effective anti-inflammatory agents for the treatment of acute and post-acute lung inflammation caused by respiratory viruses. The semi-synthetic polysaccharide, Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation, was investigated for its systemic and local anti-inflammatory effects in a mouse model of influenza virus A/PR8/1934 (PR8 strain) mediated infection. Methods Immunocompetent C57BL/6J mice were infected intranasally with a sublethal dose of PR8 and treated subcutaneously with 3 or 6 mg/kg PPS or vehicle. Disease was monitored and tissues were collected at the acute (8 days post-infection; dpi) or post-acute (21 dpi) phase of disease to assess the effect of PPS on PR8-induced pathology. Results In the acute phase of PR8 infection, PPS treatment was associated with a reduction in weight loss and improvement in oxygen saturation when compared to vehicle-treated mice. Associated with these clinical improvements, PPS treatment showed a significant retention in the numbers of protective SiglecF+ resident alveolar macrophages, despite uneventful changes in pulmonary leukocyte infiltrates assessed by flow cytometry. PPS treatment in PR8- infected mice showed significant reductions systemically but not locally of the inflammatory molecules, IL-6, IFN-g, TNF-a, IL-12p70 and CCL2. In the post-acute phase of infection, PPS demonstrated a reduction in the pulmonary fibrotic biomarkers, sICAM-1 and complement factor C5b9. Discussion The systemic and local anti-inflammatory actions of PPS may regulate acute and post-acute pulmonary inflammation and tissue remodeling mediated by PR8 infection, which warrants further investigation.
Collapse
Affiliation(s)
- Ravi Krishnan
- Research and Development, Paradigm Biopharmaceuticals Ltd., Melbourne, VIC, Australia
| | | | - Helen Mostafavi
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Center for Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Tsai CL, Lai CC, Chen CY, Lee HS. The efficacy and safety of complement C5a inhibitors for patients with severe COVID-19: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21:77-86. [PMID: 36399686 DOI: 10.1080/14787210.2022.2150165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The clinical efficacy and safety of complement C5a inhibitors for patients with severe COVID-19 remains unclear. METHODS The PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases were searched from their inception to 27 September 2022. Only studies that assessed the usefulness of C5a inhibitors for the treatment of patients with severe COVID-19 patients were included. The primary outcome was the risk of 28-day mortality. RESULTS Six studies, including four randomized controlled trials (RCTs) and two non-RCTs, were included. The study group receiving C5a inhibitors had a significantly lower risk of mortality compared with the control group (23.6% [70/297] vs 39.2% [136/347]; odds ratio [OR], 0.53; 95% confidence interval [CI]: 0.37-0.76; P< 0.001), and no heterogeneity was detected (I2 = 0%; P= 0.58). Compared with control group, the study group was associated with a similar risk of serious adverse events (AEs) (OR, 0.84; 95% CI: 0.57-1.23; P0 = 0.37), infection (OR, 1.46; 95% CI: 0.77-2.79; P= 0.25) and acute kidney injury (OR, 0.89; 95% CI: 0.54-1.46; P= 0.64). CONCLUSION C5a inhibitors could help reduce the risk of mortality in patients with severe COVID-19 infection while being as safe as placebos. These findings support the promising role of C5a inhibitors in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Chi-Lun Tsai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Yi Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Ho-Sheng Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, E-Da Hospital, Kaohsiung City, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
10
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
11
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
12
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
13
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
14
|
Ostrycharz E, Hukowska-Szematowicz B. New Insights into the Role of the Complement System in Human Viral Diseases. Biomolecules 2022; 12:226. [PMID: 35204727 PMCID: PMC8961555 DOI: 10.3390/biom12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School of the University of Szczecin, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| |
Collapse
|
15
|
Campbell LK, Fleming-Canepa X, Webster RG, Magor KE. Tissue Specific Transcriptome Changes Upon Influenza A Virus Replication in the Duck. Front Immunol 2021; 12:786205. [PMID: 34804075 PMCID: PMC8602823 DOI: 10.3389/fimmu.2021.786205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | | | - Robert G Webster
- Division of Virology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Kim SJ, Carestia A, McDonald B, Zucoloto AZ, Grosjean H, Davis RP, Turk M, Naumenko V, Antoniak S, Mackman N, Abdul-Cader MS, Abdul-Careem MF, Hollenberg MD, Jenne CN. Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Front Immunol 2021; 12:772859. [PMID: 34858432 PMCID: PMC8632260 DOI: 10.3389/fimmu.2021.772859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/30/2023] Open
Abstract
The influenza A virus (IAV) causes a respiratory tract infection with approximately 10% of the population infected by the virus each year. Severe IAV infection is characterized by excessive inflammation and tissue pathology in the lungs. Platelet and neutrophil recruitment to the lung are involved in the pathogenesis of IAV, but the specific mechanisms involved have not been clarified. Using confocal intravital microscopy in a mouse model of IAV infection, we observed profound neutrophil recruitment, platelet aggregation, neutrophil extracellular trap (NET) production and thrombin activation within the lung microvasculature in vivo. Importantly, deficiency or antagonism of the protease-activated receptor 4 (PAR4) reduced platelet aggregation, NET production, and neutrophil recruitment. Critically, inhibition of thrombin or PAR4 protected mice from virus-induced lung tissue damage and edema. Together, these data imply thrombin-stimulated platelets play a critical role in the activation/recruitment of neutrophils, NET release and directly contribute to IAV pathogenesis in the lung.
Collapse
MESH Headings
- Animals
- Blood Coagulation Disorders/immunology
- Blood Coagulation Disorders/metabolism
- Blood Coagulation Disorders/virology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/virology
- Disease Models, Animal
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Extracellular Traps/virology
- Female
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Platelet Aggregation/immunology
- Mice
Collapse
Affiliation(s)
- Seok-Joo Kim
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Agostina Carestia
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Amanda Z. Zucoloto
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Heidi Grosjean
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Rachelle P. Davis
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Madison Turk
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Victor Naumenko
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | | - Morley D. Hollenberg
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Craig N. Jenne
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
18
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
21
|
Elevated Expression Levels of Lung Complement Anaphylatoxin, Neutrophil Chemoattractant Chemokine IL-8, and RANTES in MERS-CoV-Infected Patients: Predictive Biomarkers for Disease Severity and Mortality. J Clin Immunol 2021; 41:1607-1620. [PMID: 34232441 PMCID: PMC8260346 DOI: 10.1007/s10875-021-01061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein–protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.
Collapse
|
22
|
Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathog 2021; 17:e1009381. [PMID: 34197564 PMCID: PMC8248730 DOI: 10.1371/journal.ppat.1009381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions. Exacerbated complement activation and immune deregulation are at the basis of several pathologies induced by respiratory viruses. Here, we report that complement decay-accelerating factor (DAF), which inhibits complement activation in healthy cells, increases disease severity upon influenza A virus (IAV) infection. Remarkably, DAF interaction with IAV proteins, hemagglutinin (HA) and neuraminidase (NA), resulted in excessive complement activation and recruitment of innate and adaptive immune cells, without affecting viral loads. Furthermore, we observed that viral NA directly cleaves DAF and promotes complement activation, providing a possible link between IAV-DAF interaction and pathology. Therefore, our results unveil a novel pathway that could modulate disease severity, which may help to understand the increased pathogenicity of zoonotic and pandemic IAV infections.
Collapse
|
23
|
Complement inhibition does not impair the clinical antiviral capabilities of virus-specific T-cell therapy. Blood Adv 2021; 4:3252-3257. [PMID: 32697816 DOI: 10.1182/bloodadvances.2020002252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Key Points
The use of terminal complement blockade is compatible with virus-specific T-cell (VST) expansion and clinical effectiveness. VST and complement-blocking agent concurrent therapy may be safely used in patients with thrombotic microangiopathy and viral infections.
Collapse
|
24
|
Yan B, Freiwald T, Chauss D, Wang L, West E, Mirabelli C, Zhang CJ, Nichols EM, Malik N, Gregory R, Bantscheff M, Ghidelli-Disse S, Kolev M, Frum T, Spence JR, Sexton JZ, Alysandratos KD, Kotton DN, Pittaluga S, Bibby J, Niyonzima N, Olson MR, Kordasti S, Portilla D, Wobus CE, Laurence A, Lionakis MS, Kemper C, Afzali B, Kazemian M. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci Immunol 2021; 6:eabg0833. [PMID: 33827897 PMCID: PMC8139422 DOI: 10.1126/sciimmunol.abg0833] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.
Collapse
Affiliation(s)
- Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Erin West
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Charles J Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 1702118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 1702118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Jack Bibby
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shahram Kordasti
- CRUK-KHP Centre, Comprehensive Cancer Centre, King's College London, London, UK
- Haematology Department, Guy's Hospital, London, UK
| | - Didier Portilla
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, VA, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Arian Laurence
- Nuffield Department of Medicine, University of Oxford, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Zhang Y, Han K, Du C, Li R, Liu J, Zeng H, Zhu L, Li A. Carboxypeptidase B blocks ex vivo activation of the anaphylatoxin-neutrophil extracellular trap axis in neutrophils from COVID-19 patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:51. [PMID: 33557911 PMCID: PMC7868871 DOI: 10.1186/s13054-021-03482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Background Thrombosis and coagulopathy are highly prevalent in critically ill patients with COVID-19 and increase the risk of death. Immunothrombosis has recently been demonstrated to contribute to the thrombotic events in COVID-19 patients with coagulopathy. As the primary components of immunothrombosis, neutrophil extracellular traps (NETs) could be induced by complement cascade components and other proinflammatory mediators. We aimed to explore the clinical roles of NETs and the regulation of complement on the NET formation in COVID-19. Methods We recruited 135 COVID-19 patients and measured plasma levels of C5, C3, cell-free DNA and myeloperoxidase (MPO)-DNA. Besides, the formation of NETs was detected by immunofluorescent staining and the cytotoxicity to vascular endothelial HUVEC cells was evaluated by CCK-8 assay. Results We found that the plasma levels of complements C3 and MPO-DNA were positively related to coagulation indicator fibrin(-ogen) degradation products (C3: r = 0.300, p = 0.005; MPO-DNA: r = 0.316, p = 0.002) in COVID-19 patients. Besides, C3 was positively related to direct bilirubin (r = 0.303, p = 0.004) and total bilirubin (r = 0.304, p = 0.005), MPO-DNA was positively related to lactate dehydrogenase (r = 0.306, p = 0.003) and creatine kinase (r = 0.308, p = 0.004). By using anti-C3a and anti-C5a antibodies, we revealed that the complement component anaphylatoxins in the plasma of COVID-19 patients strongly induced NET formation. The pathological effect of the anaphylatoxin-NET axis on the damage of vascular endothelial cells could be relieved by recombinant carboxypeptidase B (CPB), a stable homolog of enzyme CPB2 which can degrade anaphylatoxins to inactive products. Conclusions Over-activation in anaphylatoxin-NET axis plays a pathological role in COVID-19. Early intervention in anaphylatoxins might help prevent thrombosis and disease progression in COVID-19 patients.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Kai Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
26
|
Ryabkova VA, Churilov LP, Shoenfeld Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm - The common denominator and the lessons to be learned. Clin Immunol 2021; 223:108652. [PMID: 33333256 PMCID: PMC7832378 DOI: 10.1016/j.clim.2020.108652] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of COVID-19 reminds us that the emerging and reemerging respiratory virus infections pose a continuing threat to human life. Cytokine storm syndromes of viral origin seem to have a common pathogenesis of the imbalanced immune response with the exaggerated inflammatory reaction combined with the reduction and functional exhaustion of T cells. Immunomodulatory therapy is gaining interest in COVID-19, but this strategy has received less attention in other respiratory viral infections than it deserved. In this review we suggest that based on the similarities of the immune dysfunction in the severe cases of different respiratory viral infections, some lessons from the immunomodulatory therapy of COVID-19 (particularly regarding the choice of an immunomodulatory drug, the selection of patients and optimal time window for this kind of therapy) could be applied for some cases of severe influenza infection and probably for some future outbreaks of novel severe respiratory viral infections.
Collapse
Affiliation(s)
- Varvara A Ryabkova
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Leonid P Churilov
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Yehuda Shoenfeld
- Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated to Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.
| |
Collapse
|
27
|
Adams W, Espicha T, Estipona J. Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung. Infect Immun 2021; 89:IAI.00659-20. [PMID: 33526562 DOI: 10.1128/iai.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil transepithelial migration is a fundamental process that facilitates the rapid trafficking of neutrophils to inflammatory foci and occurs across a diverse range of tissues. For decades there has been widespread interest in understanding the mechanisms that drive this migratory process in response to different pathogens and organ systems. This has led to the successful integration of key findings on neutrophil transepithelial migration from the intestines, lungs, liver, genitourinary tract, and other tissues into a single, cohesive model. However, recent studies have identified organ specific differences in neutrophil transepithelial migration. These findings support a model where the tissue in concert with the pro-inflammatory stimuli dictate a unique collection of signals that drive neutrophil trafficking. This review focuses on the mechanisms that drive neutrophil transepithelial migration in response to microbial infection of a single organ, the lung. Herein we provide a detailed analysis of the adhesion molecules and chemoattractants that contribute to the recruitment of neutrophil into the airways. We also highlight important advances in experimental models for studying neutrophil transepithelial migration in the lung over the last decade.
Collapse
Affiliation(s)
- Walter Adams
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Taylor Espicha
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Janine Estipona
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| |
Collapse
|
28
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
29
|
Dupont T, Caillat-Zucman S, Fremeaux-Bacchi V, Morin F, Lengliné E, Darmon M, Peffault de Latour R, Zafrani L, Azoulay E, Dumas G. Identification of Distinct Immunophenotypes in Critically Ill Coronavirus Disease 2019 Patients. Chest 2020; 159:1884-1893. [PMID: 33316234 PMCID: PMC7831685 DOI: 10.1016/j.chest.2020.11.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023] Open
Abstract
Background Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection causes direct lung damage, overwhelming endothelial activation, and inflammatory reaction, leading to acute respiratory failure and multi-organ dysfunction. Ongoing clinical trials are evaluating targeted therapies to hinder this exaggerated inflammatory response. Critically ill coronavirus disease 2019 (COVID-19) patients have shown heterogeneous severity trajectories, suggesting that response to therapies is likely to vary across patients. Research Question Are critically ill COVID-19 patients biologically and immunologically dissociable based on profiling of currently evaluated therapeutic targets? Study Design and Methods We did a single-center, prospective study in an ICU department in France. Ninety-six critically ill adult patients admitted with a documented SARS-CoV-2 infection were enrolled. We conducted principal components analysis and hierarchical clustering on a vast array of immunologic variables measured on the day of ICU admission. Results We found that patients were distributed in three clusters bearing distinct immunologic features and associated with different ICU outcomes. Cluster 1 had a “humoral immunodeficiency” phenotype with predominant B-lymphocyte defect, relative hypogammaglobulinemia, and moderate inflammation. Cluster 2 had a “hyperinflammatory” phenotype, with high cytokine levels (IL-6, IL-1β, IL-8, tumor necrosis factor-alpha [TNF⍺]) associated with CD4+ and CD8+ T-lymphocyte defects. Cluster 3 had a “complement-dependent” phenotype with terminal complement activation markers (elevated C3 and sC5b-9). Interpretation Patients with severe COVID-19 exhibiting cytokine release marks, complement activation, or B-lymphocyte defects are distinct from each other. Such immunologic variability argues in favor of targeting different mediators in different groups of patients and could serve as a basis for patient identification and clinical trial eligibility.
Collapse
Affiliation(s)
- Thibault Dupont
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Immunology Laboratory, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Véronique Fremeaux-Bacchi
- Immunology Laboratory, European Hospital Georges Pompidou (HEGP), Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Florence Morin
- Immunology Laboratory, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Etienne Lengliné
- Hematology Department, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Michael Darmon
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Régis Peffault de Latour
- Bone Marrow Transplantation (BMT) Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Guillaume Dumas
- Medical Intensive Care Unit, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France.
| |
Collapse
|
30
|
Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of Rare Inflammatory Kidney Diseases: Drugs Targeting the Terminal Complement Pathway. Front Immunol 2020; 11:599417. [PMID: 33362783 PMCID: PMC7758461 DOI: 10.3389/fimmu.2020.599417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The complement system comprises the frontline of the innate immune system. Triggered by pathogenic surface patterns in different pathways, the cascade concludes with the formation of a membrane attack complex (MAC; complement components C5b to C9) and C5a, a potent anaphylatoxin that elicits various inflammatory signals through binding to C5a receptor 1 (C5aR1). Despite its important role in pathogen elimination, priming and recruitment of myeloid cells from the immune system, as well as crosstalk with other physiological systems, inadvertent activation of the complement system can result in self-attack and overreaction in autoinflammatory diseases. Consequently, it constitutes an interesting target for specialized therapies. The paradigm of safe and efficacious terminal complement pathway inhibition has been demonstrated by the approval of eculizumab in paroxysmal nocturnal hematuria. In addition, complement contribution in rare kidney diseases, such as lupus nephritis, IgA nephropathy, atypical hemolytic uremic syndrome, C3 glomerulopathy, or antineutrophil cytoplasmic antibody-associated vasculitis has been demonstrated. This review summarizes the involvement of the terminal effector agents of the complement system in these diseases and provides an overview of inhibitors for complement components C5, C5a, C5aR1, and MAC that are currently in clinical development. Furthermore, a link between increased complement activity and lung damage in severe COVID-19 patients is discussed and the potential for use of complement inhibitors in COVID-19 is presented.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - John van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.,Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, United States
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
31
|
Spanopoulou C, Kassimos D, Cassimos D. Potential Role of Anti-Complement Agents in the Treatment of COVID-19-Related ARDS. Mediterr J Rheumatol 2020; 31:304-305. [PMID: 33196010 PMCID: PMC7656134 DOI: 10.31138/mjr.31.3.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - Dimitrios Kassimos
- Paediatric Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Cassimos
- Paediatric Clinic, General University Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
32
|
Zrzavy T, Wimmer I, Rommer PS, Berger T. Immunology of COVID-19 and disease-modifying therapies: The good, the bad and the unknown. Eur J Neurol 2020; 28:3503-3516. [PMID: 33090599 PMCID: PMC7675490 DOI: 10.1111/ene.14578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/08/2023]
Abstract
Objective The outbreak of the SARS‐CoV‐2 pandemic, caused by a previously unknown infectious agent, posed unprecedented challenges to healthcare systems and unmasked their vulnerability and limitations worldwide. Patients with long‐term immunomodulatory/suppressive therapies, as well as their physicians, were and are concerned about balancing the risk of infection and effects of disease‐modifying therapy. Over the last few months, knowledge regarding SARS‐CoV‐2 has been growing tremendously, and the first experiences of infections in patients with multiple sclerosis (MS) have been reported. Methods This review summarizes the currently still limited knowledge about SARS‐CoV‐2 immunology and the commonly agreed modes of action of approved drugs in immune‐mediated diseases of the central nervous system (MS and neuromyelitis optica spectrum disorder). Specifically, we discuss whether immunosuppressive/immunomodulatory drugs may increase the risk of SARS‐CoV‐2 infection and, conversely, may decrease the severity of a COVID‐19 disease course. Results At present, it can be recommended in general that none of those therapies with a definite indication needs to be stopped per se. A possibly increased risk of infection for most medications is accompanied by the possibility to reduce the severity of COVID‐19. Conclusions Despite the knowledge gain over the last few months, current evidence remains limited, and, thus, further clinical vigilance and systematic documentation is essential.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Chauhan AJ, Wiffen LJ, Brown TP. COVID-19: A collision of complement, coagulation and inflammatory pathways. J Thromb Haemost 2020; 18:2110-2117. [PMID: 32608159 PMCID: PMC7361520 DOI: 10.1111/jth.14981] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is frequently accompanied by a hypercoagulable inflammatory state with microangiopathic pulmonary changes that can precede the diffuse alveolar damage characteristic of typical acute respiratory distress syndrome (ARDS) seen in other severe pathogenic infections. Parallels with systemic inflammatory disorders such as atypical hemolytic uremic syndrome (aHUS) have implicated the complement pathway in the pathogenesis of COVID-19, and particularly the anaphylatoxins C3a and C5a released from cleavage of C3 and C5, respectively. C5a is a potent cell signalling protein that activates a cytokine storm-a hyper-inflammatory phenomenon-within hours of infection and the innate immune response. However, excess C5a can result in a pro-inflammatory environment orchestrated through a plethora of mechanisms that propagate lung injury, lymphocyte exhaustion, and an immune paresis. Furthermore, disruption of the homeostatic interactions between complement and extrinsic and intrinsic coagulation pathways contributes to a net pro-coagulant state in the microvasculature of critical organs. Fatal COVID-19 has been associated with a systemic inflammatory response accompanied by a pro-coagulant state and organ damage, particularly microvascular thrombi in the lungs and kidneys. Pathologic studies report strong evidence of complement activation. C5 blockade reduces inflammatory cytokines and their manifestations in animal studies, and has shown benefits in patients with aHUS, prompting investigation of this approach in the treatment of COVID-19. This review describes the role of the complement pathway and particularly C5a and its aberrations in highly pathogenic virus infections, and therefore its potential as a therapeutic target in COVID-19.
Collapse
Affiliation(s)
- Anoop J Chauhan
- Research and Innovation, Queen Alexandra Hospital, Portsmouth, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Respiratory Medicine, Queen Alexandra Hospital, Portsmouth, UK
| | - Laura J Wiffen
- Research and Innovation, Queen Alexandra Hospital, Portsmouth, UK
- Respiratory Medicine, Queen Alexandra Hospital, Portsmouth, UK
| | - Thomas P Brown
- Research and Innovation, Queen Alexandra Hospital, Portsmouth, UK
- Respiratory Medicine, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|
34
|
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int 2020; 98:314-322. [PMID: 32461141 PMCID: PMC7246017 DOI: 10.1016/j.kint.2020.05.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease COVID-19 originates in the lungs, but it may extend to other organs, causing, in severe cases, multiorgan damage, including cardiac injury and acute kidney injury. In severe cases, the presence of kidney injury is associated with increased risk of death, highlighting the relevance of this organ as a target of SARS-CoV-2 infection. COVID-19-associated tissue injury is not primarily mediated by viral infection, but rather is a result of the inflammatory host immune response, which drives hypercytokinemia and aggressive inflammation that affect lung parenchymal cells, diminishing oxygen uptake, but also endothelial cells, resulting in endotheliitis and thrombotic events and intravascular coagulation. The complement system represents the first response of the host immune system to SARS-CoV-2 infection, but there is growing evidence that unrestrained activation of complement induced by the virus in the lungs and other organs plays a major role in acute and chronic inflammation, endothelial cell dysfunction, thrombus formation, and intravascular coagulation, and ultimately contributes to multiple organ failure and death. In this review, we discuss the relative role of the different complement activation products in the pathogenesis of COVID-19-associated tissue inflammation and thrombosis and propose the hypothesis that blockade of the terminal complement pathway may represent a potential therapeutic option for the prevention and treatment of lung and multiorgan damage.
Collapse
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò and Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| |
Collapse
|
35
|
Jodele S, Köhl J. Tackling COVID-19 infection through complement-targeted immunotherapy. Br J Pharmacol 2020; 178:2832-2848. [PMID: 32643798 PMCID: PMC7361469 DOI: 10.1111/bph.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The complement system is an ancient part of innate immunity sensing highly pathogenic coronaviruses by mannan‐binding lectin (MBL) resulting in lectin pathway activation and subsequent generation of the anaphylatoxins (ATs) C3a and C5a as important effector molecules. Complement deposition on endothelial cells and high blood C5a serum levels have been reported in COVID‐19 patients with severe illness, suggesting vigorous complement activation leading to systemic thrombotic microangiopathy (TMA). Complement regulator gene variants prevalent in African‐Americans have been associated with a higher risk for severe TMA and multi‐organ injury. Strikingly, severe acute respiratory syndrome Coronavirus 2 (SARS‐CoV‐2)‐infected African‐Americans suffer from high mortality. These findings allow us to apply our knowledge from other complement‐mediated diseases to COVID‐19 infection to better understand severe disease pathogenesis. Here, we discuss the multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID‐19 patients to halt disease progression and death.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R, Qian L, Ge W, Liu W, Liang S, Chen H, Zhang Y, Li J, Xu J, He Z, Chen B, Wang J, Yan H, Zheng Y, Wang D, Zhu J, Kong Z, Kang Z, Liang X, Ding X, Ruan G, Xiang N, Cai X, Gao H, Li L, Li S, Xiao Q, Lu T, Zhu Y, Liu H, Chen H, Guo T. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020. [PMID: 32492406 DOI: 10.2139/ssrn.3570565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.
Collapse
Affiliation(s)
- Bo Shen
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yaoting Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaojie Bi
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Juping Du
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Chao Zhang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Fangfei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Liujia Qian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Weigang Ge
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shuang Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hao Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ying Zhang
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Jun Li
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Jiaqin Xu
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Zebao He
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Baofu Chen
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Jing Wang
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Haixi Yan
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Yufen Zheng
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Donglian Wang
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Jiansheng Zhu
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Zhouyang Kang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Xiao Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xuan Ding
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Guan Ruan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Nan Xiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Sainan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qi Xiao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tian Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China.
| | - Haixiao Chen
- Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, Zhejiang Province, China.
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
37
|
Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020; 182:59-72.e15. [PMID: 32492406 PMCID: PMC7254001 DOI: 10.1016/j.cell.2020.05.032] [Citation(s) in RCA: 1062] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.
Collapse
|
38
|
Abstract
Platelets have a well-recognized role in hemostasis and thrombosis, and they are important amplifiers of inflammation and innate immune responses. The formation of DNA extracellular traps (ETs) is a complex cellular mechanism, which occurs in response to microbial infections and sterile inflammation, and results in the release of DNA complexed with histones and various granular proteins. ETs were first discovered in neutrophils (NETs); however, it is now accepted that other leukocytes, including eosinophils (EETs) and monocytes/macrophages (MoETs/METs), can also generate them. Moreover, several types of ETs have been described.Increasing evidence has demonstrated that platelets modulate the formation of ETs. This review summarizes recent findings about the physiopathological role of platelets in the formation of ETs during infection and future perspectives in the field.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina.,Global Viral Network, Baltimore, MD, USA
| | - Aída O López Ortiz
- Laboratorio De Virus Animales, Instituto De Biotecnología Y Biología Molecular, CONICET-UNLP, La Plata, Argentina.,Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratorio De Trombosis Experimental, Instituto De Medicina Experimental, CONICET-ANM, Buenos Aires, Argentina
| |
Collapse
|
39
|
A soft tick Ornithodoros moubata salivary protein OmCI is a potent inhibitor to prevent avian complement activation. Ticks Tick Borne Dis 2019; 11:101354. [PMID: 31866440 DOI: 10.1016/j.ttbdis.2019.101354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 01/15/2023]
Abstract
Complement is a key first line innate host defense system in the blood of vertebrates. Upon activation, this powerful defense mechanism can elicit inflammatory responses, lyse non-self-cells, or mark them for opsonophagocytic removal. Blood-feeding arthropods thus require the ability to block host complement activation in the bloodmeal to prevent undesired cell or tissue damage during feeding. The soft tick Ornithodoros moubata produces a complement inhibitory protein, OmCI. This protein binds to a mammalian complement protein C5 and blocks further activation of complement cascades, which results in the prevention of complement-mediated bacterial killing through membrane attack complex. Interestingly, the amino acids involved in OmCI binding are highly conserved among mammalian and avian C5, but the ability of this protein to inhibit the complement from birds remains unclear. Here we demonstrated that OmCI is capable of preventing quail complement-mediated erythrocyte lysis, inhibiting the capability of this animal's complement to eliminate a serum-sensitive Lyme disease bacterial strain. We also found that the ability of OmCI to inhibit quail complement-mediated killing of Lyme disease bacteria can be extended to different domestic and wild birds. Our results illustrate the utility of OmCI to block bird complement. These results provide the foundation for further use of this protein as a tool to study the molecular basis of avian complement and pathogen evasion to such a defense mechanism.
Collapse
|
40
|
Jongerius I, Porcelijn L, van Beek AE, Semple JW, van der Schoot CE, Vlaar APJ, Kapur R. The Role of Complement in Transfusion-Related Acute Lung Injury. Transfus Med Rev 2019; 33:236-242. [PMID: 31676221 PMCID: PMC7127679 DOI: 10.1016/j.tmrv.2019.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023]
Abstract
Transfusion-related acute lung injury (TRALI) is a life-threatening complication of acute respiratory distress occurring within 6 hours of blood transfusion. TRALI is one of the leading causes of transfusion-related fatalities and specific therapies are unavailable. Neutrophils are recognized as the major pathogenic cells, whereas T regulatory cells and dendritic cells appear to be important for protection against TRALI. The pathogenesis, however, is complex and incompletely understood. It is frequently postulated that the complement system plays an important role in the TRALI pathogenesis. In this article, we assess the evidence regarding the involvement of complement in TRALI from both human and animal studies. We hypothesize about the potential connection between the complement system and neutrophils in TRALI. Additionally, we draw parallels between TRALI and other acute pulmonary disorders of acute lung injury and acute respiratory distress syndrome regarding the involvement of complement. We conclude that, even though a role for complement in the TRALI pathogenesis seems plausible, studies investigating the role of complement in TRALI are remarkably limited in number and also present conflicting findings. Different types of TRALI animal models, diverse experimental conditions, and the composition of the gastrointestinal microbiota may perhaps all be factors which contribute to these discrepancies. More systematic studies are warranted to shed light on the contribution of the complement cascade in TRALI. The underlying clinical condition of the patient, which influences the susceptibility to TRALI, as well as the transfusion factor (antibody-mediated vs non–antibody-mediated), will be important to take into consideration when researching the contribution of complement. This should significantly increase our understanding of the role of complement in TRALI and may potentially result in promising new treatment strategies. Studies investigating complement and TRALI are limited in number and present conflicting findings. Systematic investigation is needed to better understand the contribution of the complement cascade in TRALI. Future studies in this area should consider both the clinical susceptibility of the patient as well as the effect of transfusion factors.
Collapse
Affiliation(s)
- Ilse Jongerius
- Sanquin Research, Department of Immunopathology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Anna E van Beek
- Sanquin Research, Department of Immunopathology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - C Ellen van der Schoot
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, AMC, Amsterdam, the Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam UMC, AMC, Amsterdam, the Netherlands
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Franchi T, Eaton S, De Coppi P, Giuliani S. The emerging role of immunothrombosis in paediatric conditions. Pediatr Res 2019; 86:19-27. [PMID: 30808021 DOI: 10.1038/s41390-019-0343-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Immunothrombosis is a physiological process based on the release of neutrophil extracellular traps (NETs) to immobilise, contain and kill bacteria. This is an innate immune response in which the local activation of blood coagulation exerts the critical protective function during microbial infection. In recent years, there has been much interest in the adult literature about the key role of immunothrombosis in pathologic states including thrombosis, cancer, sepsis and trauma. Currently, little research has been done into its role in paediatric conditions. METHODS We conducted a literature search of the National Library of Medicine (MEDLINE/PubMed) from the years 2000 to May 2018 and qualitatively identified 24 relevant papers. References of articles included for full-text review were checked for relevant publications. RESULTS Our aim is to summarise the most relevant evidences regarding an excessive production or defective removal of NETs in paediatric conditions. In particular, we have divided the role of immunothrombosis into acute (sepsis, necrotising enterocolitis, otitis media, neonatal arterial ischaemic stroke, haemolytic anaemic diseases) and chronic (systemic lupus erythematous, type 1 diabetes mellitus, respiratory diseases, graft-versus-host disease) conditions to find important similarities in their pathophysiology. CONCLUSION The field of immunothrombosis in paediatric conditions is still in its infancy. We have presented multiple pathways of NET-induced disease together with possible areas of future research and treatments.
Collapse
Affiliation(s)
- Thomas Franchi
- The Medical School, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | - Simon Eaton
- Stem Cells and Regenerative Medicine Section, University College London-Institute of Child Health, London, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London-Institute of Child Health, London, UK.,Specialist Neonatal and Paediatric Surgery Department, Great Ormond Street Hospital for Children, London, UK
| | - Stefano Giuliani
- Specialist Neonatal and Paediatric Surgery Department, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
42
|
Zhu L, Liu L, Zhang Y, Pu L, Liu J, Li X, Chen Z, Hao Y, Wang B, Han J, Li G, Liang S, Xiong H, Zheng H, Li A, Xu J, Zeng H. High Level of Neutrophil Extracellular Traps Correlates With Poor Prognosis of Severe Influenza A Infection. J Infect Dis 2019; 217:428-437. [PMID: 29325098 DOI: 10.1093/infdis/jix475] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
Background Most patients with severe infection with influenza A virus (IAV) progress to acute respiratory distress syndrome and even multiple organ dysfunction syndrome (MODS). Neutrophil extracellular traps (NETs) can be induced by pathogens and are responsible for immune tissue damage. We conducted a prospective study on the production and effects of NETs in H7N9 and H1N1 patients. Methods We investigated NET production in plasma and supernatant of cultured neutrophils by measuring cell-free deoxyribonucleic acid (DNA) and myeloperoxidase (MPO)-DNA complexes with PicoGreen dye and enzyme-linked immunosorbent assay methods, respectively. We also observed NET structure by immunofluorescence staining. Results We found that patients with severe influenza showed elevated plasma NET level on the day of admission. Neutrophils from these patients showed higher capacity to release MPO-DNA complex in response to interleukin-8 or lipopolysaccharide stimulation. We also found that NETs from H7N9 and H1N1 patients increased the permeability of alveolar epithelial cells, and, consequently, NET production was positively correlated with acute physiology and chronic health evaluation (APACHE) II score and MODS. Conclusions These data indicate that high level of NETs contributes to lung injury and is correlated with severity of disease. Thus, NETs might be a key factor to predict the poor prognosis in IAV patients.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Lu Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Yue Zhang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Lin Pu
- Intensive Care Unit, Capital Medical University, China
| | - Jingyuan Liu
- Intensive Care Unit, Capital Medical University, China
| | - Xingwang Li
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Zhihai Chen
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Yu Hao
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Beibei Wang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Junyan Han
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Guoli Li
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Shuntao Liang
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| | - Haofeng Xiong
- Intensive Care Unit, Capital Medical University, China
| | - Hong Zheng
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Ang Li
- Intensive Care Unit, Capital Medical University, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, China
| | - Hui Zeng
- Institute of Infectious Diseases, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, China
| |
Collapse
|
43
|
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 2019; 4:e124061. [PMID: 30674720 PMCID: PMC6413834 DOI: 10.1172/jci.insight.124061] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality and arises after lung infection or infection at extrapulmonary sites. An aberrant host response to infection leads to disruption of the pulmonary alveolar-capillary barrier, resulting in lung injury characterized by hypoxemia, inflammation, and noncardiogenic pulmonary edema. Despite increased understanding of the molecular biology underlying sepsis-induced ARDS, there are no targeted pharmacologic therapies for this devastating condition. Here, we review the molecular underpinnings of sepsis-induced ARDS with a focus on relevant clinical and translational studies that point toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Osteopontin protects against lung injury caused by extracellular histones. Mucosal Immunol 2019; 12:39-50. [PMID: 30115999 DOI: 10.1038/s41385-018-0079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/04/2023]
Abstract
Extracellular histones are present in the airways because of cell death occurring during inflammation. They promote inflammation and cause tissue damage due to their cationic nature. The anionic phosphoglycoprotein osteopontin (OPN) is expressed at high levels during airway inflammation and has been ascribed both pro- and anti-inflammatory roles. In this study, it was hypothesized that OPN may neutralize the harmful activities of extracellular histones at the airway mucosal surface. In a model of histone-induced acute lung injury, OPN-/- mice showed increased inflammation and tissue injury, and succumbed within 24 h, whereas wild-type mice showed lower degrees of inflammation and no mortality. In lipopolysaccharide-induced acute lung injury, wild-type mice showed less inflammation and tissue injury than OPN-/- mice. In bronchoalveolar lavage fluid from ARDS patients, high levels of OPN and also histone-OPN complexes were detected. In addition, OPN bound to histones with high affinity in vitro, resulting in less cytotoxicity and reduced formation of tissue-damaging neutrophil extracellular traps (NETs). The interaction between OPN and histones was dependent on posttranslational modification of OPN, i.e., phosphorylation. The findings demonstrate a novel role for OPN, modulating the pro-inflammatory and cytotoxic properties of free histones.
Collapse
|
45
|
Lu J, Duan X, Zhao W, Wang J, Wang H, Zhou K, Fang M. Aged Mice are More Resistant to Influenza Virus Infection due to Reduced Inflammation and Lung Pathology. Aging Dis 2018; 9:358-373. [PMID: 29896425 PMCID: PMC5988592 DOI: 10.14336/ad.2017.0701] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/01/2017] [Indexed: 12/24/2022] Open
Abstract
Immune responses are a double-edged sword. Effective and appropriate immune responses capable of controlling viral infection while also largely preserving tissue integrity, are critical for host survival. Too strong immune responses might result in immune pathology, while too weak immune responses might cause viral persistence. Physiologic ageing is accompanied with a decline in the normal functioning of the immune system, which is termed as "immunosenescence". We show that aged mice (16-19 months old) are more resistant to influenza A virus (IAV) infection than the young mice. Strong immune responses in the young mice after IAV infection result in faster clearance of virus, but also cause severe lung injury and higher mortality rate. While in the aged mice, the delayed and milder immune responses contribute to reduced pulmonary damage, and are still capable to clear the infection even with a slower kinetics, displaying a more resistant phenotype during IAV infection. Hence, our work demonstrates that moderate immune responses as a decline with ageing in the aged mice balance the immune pathology and viral clearance, might be beneficial for the host during certain circumstances. Our results provide important insight to our basic knowledge of immunosenescence and immune defenses to invading pathogens. Further, our results indicate that age factors should be considered when investigating the vaccination and therapeutic strategies for severe IAV infection.
Collapse
Affiliation(s)
- Jiao Lu
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,2University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Duan
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenming Zhao
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,2University of Chinese Academy of Sciences, Beijing, China
| | - Haoyu Wang
- 3Institute of Health Sciences, Anhui University, Hefei, China.,1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhou
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Fang
- 1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,4International College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Garcia CC, Tavares LP, Dias ACF, Kehdy F, Alvarado-Arnez LE, Queiroz-Junior CM, Galvão I, Lima BH, Matos AR, Gonçalves APF, Soriani FM, Moraes MO, Marques JT, Siqueira MM, Machado AMV, Sousa LP, Russo RC, Teixeira MM. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front Immunol 2018; 9:975. [PMID: 29867955 PMCID: PMC5962662 DOI: 10.3389/fimmu.2018.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.
Collapse
Affiliation(s)
- Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina F Dias
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Kehdy
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Coordinación Nacional de Investigación, UNIFRANZ, La Paz, Bolivia
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Braulio H Lima
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Inflamação e Dor, Departamento de Farmacologia, Prédio Central, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aline R Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Frederico M Soriani
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milton O Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - João T Marques
- Laboratório de RNA de Interferência, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Alexandre M V Machado
- Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
47
|
Bitzan M, Zieg J. Influenza-associated thrombotic microangiopathies. Pediatr Nephrol 2018; 33:2009-2025. [PMID: 28884355 PMCID: PMC6153504 DOI: 10.1007/s00467-017-3783-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
Thrombotic microangiopathy (TMA) refers to phenotypically similar disorders, including hemolytic uremic syndromes (HUS) and thrombotic thrombocytopenic purpura (TTP). This review explores the role of the influenza virus as trigger of HUS or TTP. We conducted a literature survey in PubMed and Google Scholar using HUS, TTP, TMA, and influenza as keywords, and extracted and analyzed reported epidemiological and clinical data. We identified 25 cases of influenza-associated TMA. Five additional cases were linked to influenza vaccination and analyzed separately. Influenza A was found in 83%, 10 out of 25 during the 2009 A(H1N1) pandemic. Two patients had bona fide TTP with ADAMTS13 activity <10%. Median age was 15 years (range 0.5-68 years), two thirds were male. Oligoanuria was documented in 81% and neurological involvement in 40% of patients. Serum C3 was reduced in 5 out of 14 patients (36%); Coombs test was negative in 7 out of 7 and elevated fibrin/fibrinogen degradation products were documented in 6 out of 8 patients. Pathogenic complement gene mutations were found in 7 out of 8 patients tested (C3, MCP, or MCP combined with CFB or clusterin). Twenty out of 24 patients recovered completely, but 3 died (12%). Ten of the surviving patients underwent plasma exchange (PLEX) therapy, 5 plasma infusions. Influenza-mediated HUS or TTP is rare. A sizable proportion of tested patients demonstrated mutations associated with alternative pathway of complement dysregulation that was uncovered by this infection. Further research is warranted targeting the roles of viral neuraminidase, enhanced virus-induced complement activation and/or ADAMTS13 antibodies, and rational treatment approaches.
Collapse
Affiliation(s)
- Martin Bitzan
- Division of Nephrology, The Montreal Children's Hospital, McGill University Health Centre, 1001, boul. Décarie-Room B RC.6651, Montréal, QC, H4A 3J1, Canada.
| | - Jakub Zieg
- 0000 0004 1937 116Xgrid.4491.8Department of Pediatric Nephrology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| |
Collapse
|
48
|
Oliveira LVN, Costa MC, Magalhães TFF, Bastos RW, Santos PC, Carneiro HCS, Ribeiro NQ, Ferreira GF, Ribeiro LS, Gonçalves APF, Fagundes CT, Pascoal-Xavier MA, Djordjevic JT, Sorrell TC, Souza DG, Machado AMV, Santos DA. Influenza A Virus as a Predisposing Factor for Cryptococcosis. Front Cell Infect Microbiol 2017; 7:419. [PMID: 29018774 PMCID: PMC5622999 DOI: 10.3389/fcimb.2017.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaís F F Magalhães
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W Bastos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia C Santos
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hellem C S Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Noelly Q Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Centro, Governador Valadares, Brazil
| | - Lucas S Ribeiro
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana P F Gonçalves
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo A Pascoal-Xavier
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Julianne T Djordjevic
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Daniele G Souza
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre M V Machado
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
49
|
Suber F, Kobzik L. Childhood tolerance of severe influenza: a mortality analysis in mice. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1087-L1095. [PMID: 28882815 DOI: 10.1152/ajplung.00364.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022] Open
Abstract
During the 1918 influenza pandemic, children experienced substantially lower mortality than adults, a striking but unexplained finding. Whether this was due to enhanced resistance (reduced virus load) or better tolerance (reduced impact of infection) has not been defined. We found that prepubertal mice infected with H1N1 influenza virus also showed greater survival than infected pubertal mice, despite similar virus loads. Transcriptome profiling of infected lungs identified estrogen as a regulator of susceptibility in both sexes and also linked better survival to late expression of IL-1β. Blocking puberty with gonadectomy or a gonadotropin-releasing hormone antagonist improved survival. Estrogen or testosterone (which can be converted to estrogen) restored susceptibility of gonadectomized pubertal mice to influenza mortality, but dihydrotestosterone (which cannot be converted to estrogen) did not. Estrogen receptor blockade with fulvestrant in both male and female pubertal mice resulted in improved survival, even when given 3 days after infection. Moreover, late, but not early, IL-1β neutralization after infection was also protective. These findings indicate that pubertal increases in estrogen in both sexes are associated with increased mortality during influenza. This helps explain the reduced mortality of children seen with influenza in 1918 and might also be relevant to childhood tolerance to many other infectious diseases.
Collapse
Affiliation(s)
- Freeman Suber
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
50
|
Gao R, Wang L, Bai T, Zhang Y, Bo H, Shu Y. C-Reactive Protein Mediating Immunopathological Lesions: A Potential Treatment Option for Severe Influenza A Diseases. EBioMedicine 2017; 22:133-142. [PMID: 28734805 PMCID: PMC5552218 DOI: 10.1016/j.ebiom.2017.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/14/2023] Open
Abstract
Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9 or H10N8) or during a pandemic. Respiratory distress, which is attributed to alveolar damage associated with immunopathological lesions, is the most common cause of death. There is a wealth of information on pathogenesis or treatment options. In this study, we showed that high levels of C-reactive protein (CRP) were induced and correlated with complement activation in patients infected with severe influenza A (H5N1, H7N9 or H10N8), and higher levels were induced in fatal patients than in survivors. CRP treatment enhanced the phagocytosis of monocytes THP-1 to H5N1 virus as well as the expression of proinflammatory cytokines or apoptosis-associated genes in THP-1 cells or pneumocytes A-549 respectively. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response in severe influenza infections. Compound 1,6-bis(phosphocholine)-hexane improved the severity and mortality of mice infected with lethal influenza virus significantly. These observations showed that CRP is involved in deterioration of severe influenza diseases, and indicated a substantial candidate molecule for immunotherapy of severe influenza diseases. CRP induces exacerbated immunoresponse toward overt pulmonary inflammation in severe influenza infections. CRP may link to proinflammatory mediators contributing to activation of complement and boosting inflammatory response. CRP stabilizer can alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus.
Severe influenza diseases with high mortality have been frequently reported, especially in those patients infected with avian influenza A (H5N1, H7N9, or H10N8) or during a pandemic. Respiratory distress associated with immunopathological lesions is the most common cause of death in patients infected by these viruses. In this study, we found that CRP may be linked to exacerbated immunoresponse toward overt pulmonary inflammation, which led to alveolar damage and respiratory failure in severe influenza infection. Our data identified that CRP stabilizer can be used to alleviate the immunopathological lesions and mortality in mice infected with lethal influenza virus.
Collapse
Affiliation(s)
- Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.
| | - Lijie Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China; School of Public Health(Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|