1
|
Cardenas M, Seibert B, Cowan B, Caceres CJ, Gay LC, Cargnin Faccin F, Perez DR, Baker AL, Anderson TK, Rajao DS. Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket. Commun Biol 2024; 7:1230. [PMID: 39354058 PMCID: PMC11445579 DOI: 10.1038/s42003-024-06928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amy L Baker
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Andreev K, Jones JC, Seiler P, Kandeil A, Webby RJ, Govorkova EA. Genotypic and phenotypic susceptibility of emerging avian influenza A viruses to neuraminidase and cap-dependent endonuclease inhibitors. Antiviral Res 2024; 229:105959. [PMID: 38986873 PMCID: PMC11466321 DOI: 10.1016/j.antiviral.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Avian influenza outbreaks, including ones caused by highly pathogenic A(H5N1) clade 2.3.4.4b viruses, have devastated animal populations and remain a threat to humans. Risk elements assessed for emerging influenza viruses include their susceptibility to approved antivirals. Here, we screened >20,000 neuraminidase (NA) or polymerase acidic (PA) protein sequences of potentially pandemic A(H5Nx), A(H7Nx), and A(H9N2) viruses that circulated globally in 2010-2023. The frequencies of NA or PA substitutions associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NA inhibitors (NAIs) (oseltamivir, zanamivir) or a cap-dependent endonuclease inhibitor (baloxavir) were low: 0.60% (137/22,713) and 0.62% (126/20,347), respectively. All tested subtypes were susceptible to NAIs and baloxavir at sub-nanomolar concentrations. A(H9N2) viruses were the most susceptible to oseltamivir, with IC50s 3- to 4-fold lower than for other subtypes (median IC50: 0.18 nM; n = 22). NA-I222M conferred RI of A(H5N1) viruses by oseltamivir (with a 26-fold IC50 increase), but NA-S246N did not reduce inhibition. PA-E23G, PA-K34R, PA-I38M/T, and the previously unreported PA-A36T caused RI by baloxavir in all subtypes tested. Avian A(H9N2) viruses endemic in Egyptian poultry predominantly acquired PA-I38V, which causes only a <3-fold decrease in the baloxavir EC50 and fails to meet the RI criteria. PA-E199A/D in A(H7Nx) and A(H9N2) viruses caused a 2- to 4-fold decrease in EC50 (close to the borderline for RI) and should be closely monitored. Our data indicate antiviral susceptibility is high among avian influenza A viruses with pandemic potential and present novel markers of resistance to existing antiviral interventions.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremy C Jones
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Seiler
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Kandeil
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Erdelyan CNG, Kandeil A, Signore AV, Jones MEB, Vogel P, Andreev K, Bøe CA, Gjerset B, Alkie TN, Yason C, Hisanaga T, Sullivan D, Lung O, Bourque L, Ayilara I, Pama L, Jeevan T, Franks J, Jones JC, Seiler JP, Miller L, Mubareka S, Webby RJ, Berhane Y. Multiple transatlantic incursions of highly pathogenic avian influenza clade 2.3.4.4b A(H5N5) virus into North America and spillover to mammals. Cell Rep 2024; 43:114479. [PMID: 39003741 DOI: 10.1016/j.celrep.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds. Some of the Canadian A(H5N5) viruses from birds and mammals possessed the PB2-E627K substitution known to facilitate adaptation to mammals. Ferrets inoculated with A(H5N5) viruses showed rapid, severe disease onset, with some evidence of direct contact transmission. However, these viruses have maintained receptor binding traits of avian influenza viruses and were susceptible to oseltamivir and zanamivir. Understanding the factors influencing the virulence and transmission of A(H5N5) in migratory birds and mammals is critical to minimize impacts on wildlife and public health.
Collapse
Affiliation(s)
| | - Ahmed Kandeil
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Anthony V Signore
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Megan E B Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Peter Vogel
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Konstantin Andreev
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Daniel Sullivan
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, PEI C1A 4P3, Canada
| | - Ifeoluwa Ayilara
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Lemarie Pama
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | - Trushar Jeevan
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Franks
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy C Jones
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Seiler
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance Miller
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Richard J Webby
- Department of Pathology and Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, USA.
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
4
|
Tare DS, Pawar SD, Shil P, Atre NM. Structural and functional characterization of avian influenza H9N2 virus neuraminidase with a combination of five novel mutations. Arch Biochem Biophys 2024; 757:110041. [PMID: 38750923 DOI: 10.1016/j.abb.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The influenza virus neuraminidase (NA) protein is responsible for actively cleaving the sialic acid (SA) bound to the viral hemagglutinin. In the present study, we identified a combination of five novel amino acid substitutions in the NA, conferring increased substrate binding and altered surface characteristics to a low pathogenic avian influenza (LPAI) H9N2 virus strain. The H9N2 strain reported from India, A/Environmental/India/1726265/2017 (H9N2-1726265) showed the combination of amino acid substitutions T149I, R249W, G346A, W403R and G435R, which were in the vicinity of the enzyme active site cavity. The strain A/chicken/India/99321/2009 (H9N2-99321) did not show these substitutions and was used for comparison. Virus elution was studied using turkey red blood cells (tRBCs). NA enzyme kinetics assays were carried out using the MUNANA substrate, which is an SA analogue. Homology modelling and molecular docking were performed to determine alterations in the surface characteristics and substrate binding. H9N2-1726265 showed enhanced elution from tRBCs. Enzyme kinetics revealed a lower KM of H9N2-1726265 (111.5 μM) as compared to H9N2-99321 (135.2 μM), indicating higher substrate binding affinity of H9N2-1726265, due to which the NA enzyme cleaved the SA more efficiently, leading to faster elution. Molecular docking revealed a greater number of binding interactions of H9N2-1726265 to SA as compared to H9N2-99321 corroborating the greater substrate binding affinity. Changes in the surface charge, hydrophobicity, and contour, were observed in H9N2-1726265 NA due to the five substitutions. Thus, the novel combination of five amino acids near the sialic acid binding site of NA, resulted in altered surface characteristics, higher substrate binding affinity, and virus elution.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | - Pratip Shil
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Nitin M Atre
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
5
|
Lopez CE, Zacharias ZR, Ross KA, Narasimhan B, Waldschmidt TJ, Legge KL. Polyanhydride nanovaccine against H3N2 influenza A virus generates mucosal resident and systemic immunity promoting protection. NPJ Vaccines 2024; 9:96. [PMID: 38822003 PMCID: PMC11143372 DOI: 10.1038/s41541-024-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. The antigenic drift/shift of IAV continually gives rise to new strains and subtypes, aiding IAV in circumventing previously established immunity. As a result, there has been substantial interest in developing a broadly protective IAV vaccine that induces, durable immunity against multiple IAVs. Previously, a polyanhydride nanoparticle-based vaccine or nanovaccine (IAV-nanovax) encapsulating H1N1 IAV antigens was reported, which induced pulmonary B and T cell immunity and resulted in cross-strain protection against IAV. A key feature of IAV-nanovax is its ability to easily incorporate diverse proteins/payloads, potentially increasing its ability to provide broad protection against IAV and/or other pathogens. Due to human susceptibility to both H1N1 and H3N2 IAV, several H3N2 nanovaccines were formulated herein with multiple IAV antigens to examine the "plug-and-play" nature of the polyanhydride nanovaccine platform and determine their ability to induce humoral and cellular immunity and broad-based protection similar to IAV-nanovax. The H3N2-based IAV nanovaccine formulations induced systemic and mucosal B cell responses which were associated with antigen-specific antibodies. Additionally, systemic and lung-tissue resident CD4 and CD8 T cell responses were enhanced post-vaccination. These immune responses corresponded with protection against both homologous and heterosubtypic IAV infection. Overall, these results demonstrate the plug-and-play nature of the polyanhydride nanovaccine platform and its ability to generate immunity and protection against IAV utilizing diverse antigenic payloads.
Collapse
Affiliation(s)
- Christopher E Lopez
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Thomas J Waldschmidt
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Kevin L Legge
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA.
- Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Catani JPP, Smet A, Ysenbaert T, Vuylsteke M, Bottu G, Mathys J, Botzki A, Cortes-Garcia G, Strugnell T, Gomila R, Hamberger J, Catalan J, Ustyugova IV, Farrell T, Stegalkina S, Ray S, LaRue L, Saelens X, Vogel TU. The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017. eLife 2024; 12:RP90782. [PMID: 38805550 PMCID: PMC11132685 DOI: 10.7554/elife.90782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Anouk Smet
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Tine Ysenbaert
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | | | | | | | | | | - Tod Strugnell
- Sanofi, Research North AmericaCambridgeUnited States
| | - Raul Gomila
- Sanofi, Research North AmericaCambridgeUnited States
| | | | - John Catalan
- Sanofi, Research North AmericaCambridgeUnited States
| | | | | | | | - Satyajit Ray
- Sanofi, Research North AmericaCambridgeUnited States
| | - Lauren LaRue
- Sanofi, Research North AmericaCambridgeUnited States
| | - Xavier Saelens
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | |
Collapse
|
7
|
Cardenas M, Seibert B, Cowan B, Fraiha ALS, Carnaccini S, Gay LC, Faccin FC, Caceres CJ, Anderson TK, Vincent Baker AL, Perez DR, Rajao DS. Amino acid 138 in the HA of a H3N2 subtype influenza A virus increases affinity for the lower respiratory tract and alveolar macrophages in pigs. PLoS Pathog 2024; 20:e1012026. [PMID: 38377132 PMCID: PMC10906893 DOI: 10.1371/journal.ppat.1012026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-β. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Collapse
Affiliation(s)
- Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Brianna Cowan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ana Luiza S. Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Fischer K, Wacht M. Fluorimetric microplate assay for the determination of extracellular alkaline phosphatase kinetics and inhibition kinetics in activated sludge. MethodsX 2023; 11:102255. [PMID: 37448954 PMCID: PMC10336153 DOI: 10.1016/j.mex.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The microbial enzyme alkaline phosphatase contributes to the removal of organic phosphorus compounds from wastewaters. To cope with regulatory threshold values for permitted maximum phosphor concentrations in treated wastewaters, a high activity of this enzyme in the biological treatment stage, e.g., the activated sludge process, is required. To investigate the reaction dynamics of this enzyme, to analyze substrate selectivities, and to identify potential inhibitors, the determination of enzyme kinetics is necessary. A method based on the application of the synthetic fluorogenic substrate 4-methylumbelliferyl phosphate is proven for soils, but not for activated sludges. Here, we adapt this procedure to the latter. The adapted method offers the additional benefit to determine inhibition kinetics. In contrast to conventional photometric assays, no particle removal, e.g., of sludge pellets, is required enabling the analysis of the whole sludge suspension as well as of specific sludge fractions. The high sensitivity of fluorescence detection allows the selection of a wide substrate concentration range for sound modeling of kinetic functions.•Fluorescence array technique for fast and sensitive analysis of high sample numbers•No need for particle separation - analysis of the whole (diluted) sludge suspension•Simultaneous determination of standard and inhibition kinetics.
Collapse
|
9
|
Hasegawa T, Shibayama S, Osumi Y, Kato M. Optimizing virus inactivation methods for molecular detection techniques: Implications for viral protein and RNA measurements. J Virol Methods 2023; 321:114801. [PMID: 37625621 DOI: 10.1016/j.jviromet.2023.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
To facilitate the development of effective viral detection techniques, a positive control material is required for validating their quantitative performance. Inactivated viruses serve as viable control materials, as they can be handled without the constraints of biohazard safety facilities. However, inactivation alters the structure of viral component molecules, necessitating the selection of inactivation methods that have minimal effects on the target molecules relevant to molecular detection techniques. Only a limited number of studies have investigated inactivation methods to produce viral control materials. Therefore, the aim of this study was to investigate various virus inactivation methods and evaluate their impact on molecular detection techniques, with a specific focus on viral proteins and RNA. We evaluated the effects of ultraviolet (UV) irradiation, heat, beta-propiolactone (BPL), hydrogen peroxide (H2O2), and perchloric acid (HClO4) inactivation methods to identify the most effective technique and its optimal conditions. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-digital polymerase chain reaction (RT-dPCR) were employed as model assays to assess the effects of these treatments on protein and RNA measurements. Among the evaluated methods, UV and heat treatments demonstrated minimal interference with ELISA, while heat treatment had the least impact on RT-dPCR measurements. Consequently, our findings revealed that heat inactivation holds the potential for producing inactivated viruses that can be effectively used in molecular detection techniques targeting both viral protein and RNA.
Collapse
Affiliation(s)
- Takema Hasegawa
- Bio-medical standard group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Sachie Shibayama
- Bio-medical standard group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yukiko Osumi
- Bio-medical standard group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Megumi Kato
- Bio-medical standard group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Gattani A, Agrawal A, Khan MH, Gupta R, Singh P. Evaluation of catalytic activity of human and animal origin viral neuraminidase: Current prospect. Anal Biochem 2023; 671:115157. [PMID: 37061113 DOI: 10.1016/j.ab.2023.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
With the exception of plants, almost all living organisms synthesize neuraminidase/sialidase. It is a one among the crucial proteins that controls how virulent a microorganism is. An essential enzyme in orthomyxoviruses and paramyxoviruses that destroys receptors is neuraminidase. It plays a number of roles throughout the viral life cycle in addition to one that involves the release of progeny virus particles. This protein is an important target for therapeutic interventions and diagnostic assays. Neuraminidase inhibitors effectively prevent the spread of disease and viral infection. Sensitive, quick, and inexpensive high throughput assays are needed to screen for specific neuraminidase inhibitory chemicals. To characterize the neuraminidase catalytic activity, however, the traditional assays are still the most common in laboratories. This review gives a brief overview of these neuraminidase assays and recent, innovative developments, particularly those involving biosensors.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India.
| | - Aditya Agrawal
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Rewa, M.P, India
| | - M Hira Khan
- Department of Veterinary Biochemistry, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Rohini Gupta
- Department of Medicine, College of Veterinary Science & Animal Husbandry, Jabalpur, M.P, India
| | - Praveen Singh
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India; Biophysics Section, ICAR-Indian Veterinary Research Institute Izatnagar, 243122, Bareilly, UP, India
| |
Collapse
|
11
|
Klenow L, Elfageih R, Gao J, Wan H, Withers SG, de Gier JW, Daniels R. Influenza virus and pneumococcal neuraminidases enhance catalysis by similar yet distinct sialic acid-binding strategies. J Biol Chem 2023; 299:102891. [PMID: 36634846 PMCID: PMC9929470 DOI: 10.1016/j.jbc.2023.102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.
Collapse
Affiliation(s)
- Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
12
|
Antigua KJC, Baek YH, Choi WS, Jeong JH, Kim EH, Oh S, Yoon SW, Kim C, Kim EG, Choi SY, Hong SK, Choi YK, Song MS. Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence 2022; 13:990-1004. [PMID: 36560870 PMCID: PMC9176248 DOI: 10.1080/21505594.2022.2082672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Novel highly pathogenic avian influenza (HPAI) H5Nx viruses are predominantly circulating worldwide, with an increasing potential threat of an outbreak in humans. It remains largely unknown how the stably maintained HPAI H5N1 suddenly altered its neuraminidase (NA) to other NA subtypes, which resulted in the emergence and evolution of H5Nx viruses. Here, we found that a combination of four specific amino acid (AA) substitutions (S123P-T156A-D183N- S223 R) in the hemagglutinin (HA) protein consistently observed in the H5Nx markedly altered the NA preference of H5N1 viruses. These molecular changes in H5N1 impaired its fitness, particularly viral growth and the functional activities of the HA and NA proteins. Among the AA substitutions identified, the T156A substitution, which contributed to the NA shift, also dramatically altered the antigenicity of H5N1 viruses, suggesting an occurrence of antigenic drift triggered by selective pressure. Our study shows the importance of how HA and NA complement each other and that antigenic drift in HA can potentially cause a shift in the NA protein in influenza A virus evolution.
Collapse
Affiliation(s)
- Khristine Joy C. Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Changil Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - So-Young Choi
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Seung Kon Hong
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS)Center for Study of Emerging and Re-Emerging, Daejeon, Republic of Korea,Young Ki Choi
| | - Min Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea,CONTACT Min Suk Song
| |
Collapse
|
13
|
The Function of Sialidase Revealed by Sialidase Activity Imaging Probe. Int J Mol Sci 2021; 22:ijms22063187. [PMID: 33804798 PMCID: PMC8003999 DOI: 10.3390/ijms22063187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.
Collapse
|
14
|
Karhadkar TR, Meek TD, Gomer RH. Inhibiting Sialidase-Induced TGF- β1 Activation Attenuates Pulmonary Fibrosis in Mice. J Pharmacol Exp Ther 2020; 376:106-117. [PMID: 33144389 DOI: 10.1124/jpet.120.000258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The active form of transforming growth factor-β1 (TGF-β1) plays a key role in potentiating fibrosis. TGF-β1 is sequestered in an inactive state by a latency-associated glycopeptide (LAP). Sialidases (also called neuraminidases (NEU)) cleave terminal sialic acids from glycoconjugates. The sialidase NEU3 is upregulated in fibrosis, and mice lacking Neu3 show attenuated bleomycin-induced increases in active TGF-β1 in the lungs and attenuated pulmonary fibrosis. Here we observe that recombinant human NEU3 upregulates active human TGF-β1 by releasing active TGF-β1 from its latent inactive form by desialylating LAP. Based on the proposed mechanism of action of NEU3, we hypothesized that compounds with a ring structure resembling picolinic acid might be transition state analogs and thus possible NEU3 inhibitors. Some compounds in this class showed nanomolar IC50 for recombinant human NEU3 releasing active human TGF-β1 from the latent inactive form. The compounds given as daily 0.1-1-mg/kg injections starting at day 10 strongly attenuated lung inflammation, lung TGF-β1 upregulation, and pulmonary fibrosis at day 21 in a mouse bleomycin model of pulmonary fibrosis. These results suggest that NEU3 participates in fibrosis by desialylating LAP and releasing TGF-β1 and that the new class of NEU3 inhibitors are potential therapeutics for fibrosis. SIGNIFICANCE STATEMENT: The extracellular sialidase NEU3 appears to be a key driver of pulmonary fibrosis. The significance of this report is that 1) we show the mechanism (NEU3 desialylates the latency-associated glycopeptide protein that keeps the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in an inactive state, causing active TGF-β1 release), 2) we then use the predicted NEU3 mechanism to identify nM IC50 NEU3 inhibitors, and 3) these new NEU3 inhibitors are potent therapeutics in a mouse model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Tejas R Karhadkar
- Departments of Biology (T.R.K., R.H.G.) and Biochemistry and Biophysics (T.D.M.), Texas A&M University, College Station, Texas
| | - Thomas D Meek
- Departments of Biology (T.R.K., R.H.G.) and Biochemistry and Biophysics (T.D.M.), Texas A&M University, College Station, Texas
| | - Richard H Gomer
- Departments of Biology (T.R.K., R.H.G.) and Biochemistry and Biophysics (T.D.M.), Texas A&M University, College Station, Texas
| |
Collapse
|
15
|
Márquez-Domínguez L, Reyes-Leyva J, Herrera-Camacho I, Santos-López G, Scior T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020; 25:molecules25184248. [PMID: 32947893 PMCID: PMC7571124 DOI: 10.3390/molecules25184248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure–activity relationships studies have revealed which are the important functional groups for the receptor–ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2′-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.
Collapse
Affiliation(s)
- Luis Márquez-Domínguez
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
| | - Irma Herrera-Camacho
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| | - Thomas Scior
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| |
Collapse
|
16
|
H9N2 Influenza Virus Infections in Human Cells Require a Balance between Neuraminidase Sialidase Activity and Hemagglutinin Receptor Affinity. J Virol 2020; 94:JVI.01210-20. [PMID: 32641475 PMCID: PMC7459563 DOI: 10.1128/jvi.01210-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses. Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells. IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.
Collapse
|
17
|
Yuan L, Zhao Y, Sun XL. Sialidase substrates for Sialdiase assays - activity, specificity, quantification and inhibition. Glycoconj J 2020; 37:513-531. [PMID: 32813176 DOI: 10.1007/s10719-020-09940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/06/2020] [Indexed: 12/01/2022]
Abstract
Sialidases are glycosidases responsible for the removal of sialic acid (Sia) residues (desialylation) from glycan portions of either glycoproteins or glycolipids. By desialylation, sialidases are able to modulate the functionality and stability of the Sia-containing molecules and are involved in both physiological and pathological pathways. Therefore, evaluation of sialidase activity and specificity is important for understanding the biological significance of desialylation by sialidases and its function and the related molecular mechanisms of the physiological and pathological pathways. In addition, it is essential for developing novel mechanisms and approaches for disease treatment and diagnosis and pathogen detection as well. This review summarizes the most recent sialidase substrates for evaluating sialidase activity and specificity and screening sialidase inhibitors, including (i) general sialidase substrates, (ii) specific sialidase substrates, (iii) native sialidase substrates and (iv) cellular sialidase substrates. This review also provides a brief introduction of recent instrumental methods for quantifying the sialidase activity, such as UV, fluorescence, HPLC and LC-MS methods.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yu Zhao
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
| |
Collapse
|
18
|
Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrob Agents Chemother 2020; 64:AAC.00301-20. [PMID: 32393488 DOI: 10.1128/aac.00301-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.
Collapse
|
19
|
Powell H, Pekosz A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog 2020; 16:e1008411. [PMID: 32598381 PMCID: PMC7351227 DOI: 10.1371/journal.ppat.1008411] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/10/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
In the 2014-2015 influenza season a novel neuraminidase (NA) genotype was detected in global human influenza A surveillance. This novel genotype encoded an N-linked glycosylation site at position 245-247 in the NA protein from clade 3c.2a H3N2 viruses. In the years following the 2014-2015 season, this novel NA glycosylation genotype quickly dominated the human H3N2 population of viruses. To assess the effect this novel N-linked glycan has on virus fitness and antibody binding, recombinant viruses with (NA Gly+) or without (NA Gly-) the 245 NA glycan were created. Viruses with the 245 NA Gly+ genotype grew to a significantly lower infectious virus titer on primary, differentiated human nasal epithelial cells (hNEC) compared to viruses with the 245 NA Gly- genotype, but growth was similar on immortalized cells. The 245 NA Gly+ blocked human and rabbit monoclonal antibodies that target the enzymatic site from binding to their epitope. Additionally, viruses with the 245 NA Gly+ genotype had significantly lower enzymatic activity compared to viruses with the 245 NA Gly- genotype. Human monoclonal antibodies that target residues near the 245 NA glycan were less effective at inhibiting NA enzymatic activity and virus replication of viruses encoding an NA Gly+ protein compared to ones encoding NA Gly- protein. Additionally, a recombinant H6N2 virus with the 245 NA Gly+ protein was more resistant to enzymatic inhibition from convalescent serum from H3N2-infected humans compared to viruses with the 245 NA Gly- genotype. Finally, the 245 NA Gly+ protected from NA antibody mediated virus neutralization. These results suggest that while the 245 NA Gly+ decreases virus replication in hNECs and decreases enzymatic activity, the 245 NA glycan blocks the binding of monoclonal and human serum NA specific antibodies that would otherwise inhibit enzymatic activity and virus replication.
Collapse
Affiliation(s)
- Harrison Powell
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Pascua PNQ, Marathe BM, Bisen S, Webby RJ, Govorkova EA. Influenza B viruses from different genetic backgrounds are variably impaired by neuraminidase inhibitor resistance-associated substitutions. Antiviral Res 2020; 173:104669. [PMID: 31790712 PMCID: PMC11409462 DOI: 10.1016/j.antiviral.2019.104669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/23/2023]
Abstract
Identifying evolutionary routes to antiviral resistance among influenza viruses informs molecular-based resistance surveillance and clinical decisions. To improve antiviral management and understand whether clinically identified neuraminidase (NA) inhibitor (NAI) resistance-associated markers affect influenza B viruses of the Victoria- or Yamagata-lineages differentially, we generated a panel of NAI-resistant viruses (carrying E105K, G145E, R150K, D197N, I221 L/N/T/V, H273Y, N294S, or G407S substitutions; B numbering) in B/Brisbane/60/2008 (BR/08) and B/Phuket/3073/2013 (PH/13). In both backgrounds, I221 L/N/T/V resulted in reduced or highly reduced inhibition (HRI) by one to three currently available NAIs. D197N reduced inhibition by all NAIs in BR/08 but only by oseltamivir and peramivir in PH/13; R150K caused HRI by all NAIs in PH/13. Although PH/13 generally retained or enhanced NA activity in the presence of the substitutions, enzymatic activity in BR/08 was detrimentally affected. Similarly, substrate affinity and catalysis were relatively stable in PH/13, but not in the BR/08 variants. E105K, R150K, and D197N attenuated replication efficiency of BR/08 in vitro and in mice; only E105K had this effect in PH/13. Notably, the I221 L/N/T/V substitutions did not severely impair replication, particularly in PH/13. Overall, our data show differential effects of NA substitutions in representative Victoria- and Yamagata-lineage viruses, suggesting distinct evolution of these viruses caused variable fitness and NAI susceptibility profiles when similar key NA substitutions arise. Because the viruses harboring the I221 NA substitutions displayed undiminished fitness and are commonly reported, this position is likely to be the most clinically relevant marker for NAI resistance among contemporary influenza B viruses.
Collapse
Affiliation(s)
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivantika Bisen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Abed Y, Fage C, Lagüe P, Carbonneau J, Papenburg J, Vinh DC, Boivin G. Reduced Susceptibility to Neuraminidase Inhibitors in Influenza B Isolate, Canada. Emerg Infect Dis 2019; 25:838-840. [PMID: 30882323 PMCID: PMC6433030 DOI: 10.3201/eid2504.181554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified an influenza B isolate harboring a Gly407Ser neuraminidase substitution in an immunocompromised patient in Canada before antiviral therapy. This mutation mediated reduced susceptibility to oseltamivir, zanamivir, and peramivir, most likely by preventing interaction with the catalytic Arg374 residue. The potential emergence of such variants emphasizes the need for new antivirals.
Collapse
|
22
|
Identification of Key Amino Acids in the PB2 and M1 Proteins of H7N9 Influenza Virus That Affect Its Transmission in Guinea Pigs. J Virol 2019; 94:JVI.01180-19. [PMID: 31597771 PMCID: PMC6912098 DOI: 10.1128/jvi.01180-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Efficient transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission remain poorly understood. H7N9 influenza viruses, which emerged in 2013 in China, have caused over 1,560 human infection cases, showing clear pandemic potential. Previous studies have shown that the H7N9 viruses differ in their transmissibility in animal models. In this study, we found two amino acids in PB2 (292V and 627K) and one in M1 (156D) that are extremely important for H7N9 virus transmission. Of note, PB2 292V and M1 156D appear in most H7N9 viruses, and the PB2 627K mutation could easily occur when the H7N9 virus replicates in humans. Our study thus identifies new amino acids that are important for influenza virus transmission and suggests that just a few key amino acid changes can render the H7N9 virus transmissible in mammals. Efficient human-to-human transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission are still not fully understood. In this study, we compared the respiratory droplet transmissibilities of four H7N9 viruses that are genetic closely related and found that these viruses have dissimilar transmissibilities in guinea pigs: A/Anhui/1/2013 (AH/1) transmitted efficiently, whereas the other three viruses did not transmit. The three nontransmissible viruses have one to eight amino acid differences compared with the AH/1 virus. To investigate which of these amino acids is important for transmission, we used reverse genetics to generate a series of reassortants and mutants in the AH/1 background and tested their transmissibility in guinea pigs. We found that the neuraminidase (NA) of the nontransmissible virus A/chicken/Shanghai/S1053/2013 had low enzymatic activity that impaired the transmission of AH/1 virus, and three amino acid mutations—V292I and K627E in PB2 and D156E in M1—independently abolished the transmission of the AH/1 virus. We further found that an NA reassortant and three single-amino-acid mutants replicated less efficiently than the AH/1 virus in A549 cells and that the amino acid at position 156 of M1 affected the morphology of H7N9 viruses. Our study identifies key amino acids in PB2 and M1 that play important roles in H7N9 influenza virus transmission and provides new insights into the transmissibility of influenza virus. IMPORTANCE Efficient transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission remain poorly understood. H7N9 influenza viruses, which emerged in 2013 in China, have caused over 1,560 human infection cases, showing clear pandemic potential. Previous studies have shown that the H7N9 viruses differ in their transmissibility in animal models. In this study, we found two amino acids in PB2 (292V and 627K) and one in M1 (156D) that are extremely important for H7N9 virus transmission. Of note, PB2 292V and M1 156D appear in most H7N9 viruses, and the PB2 627K mutation could easily occur when the H7N9 virus replicates in humans. Our study thus identifies new amino acids that are important for influenza virus transmission and suggests that just a few key amino acid changes can render the H7N9 virus transmissible in mammals.
Collapse
|
23
|
Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun 2019; 10:4816. [PMID: 31645552 PMCID: PMC6811678 DOI: 10.1038/s41467-019-12684-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Brønsted acid and Asp as a Brønsted base in a single-displacement mechanism. A predominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms.
Collapse
Affiliation(s)
- Pedro Bule
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Léa Chuzel
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Elena Blagova
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Melissa A Gray
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS, UMR7257), Institut National Agronomique (INRA, USC 1408) and Aix-Marseille Université (AMU), 13288 Marseille cedex 9, Marseille, France
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44-ZENIT, Magdeburg, Germany
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4404, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305-4404, USA
| | | | - Gideon J Davies
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
24
|
Oh DY, Panozzo J, Vitesnik S, Farrukee R, Piedrafita D, Mosse J, Hurt AC. Selection of multi-drug resistant influenza A and B viruses under zanamivir pressure and their replication fitness in ferrets. Antivir Ther 2019; 23:295-306. [PMID: 28195559 DOI: 10.3851/imp3135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intravenous zanamivir has been used to treat patients with severe influenza. Because the majority of cases (including immunocompromised patients) require the drug for an extended period of treatment, there is a higher risk that the virus will develop resistance. Therefore, knowing the possible amino acid substitutions that may arise in recently circulating influenza strains under prolonged zanamivir exposure and their impact on antiviral susceptibility is important. METHODS Influenza A(H1N1)pdm09, A(H3N2) and B virus were serially passaged under increasing zanamivir pressure in vitro. Neuraminidase (NA) mutations that arose were introduced into recombinant viruses and the susceptibility to oseltamivir, zanamivir, peramivir and laninamivir was determined. The replication fitness of the recombinant variants was assessed in the ferret. RESULTS NA mutations E119D (N1 numbering) and E117D (B numbering) were detected in A(H1N1)pdm09 and B (Victoria-lineage) viruses respectively and were associated with reduced susceptibility to all four NA inhibitors. No NA mutations were detected in the A(H3N2) or B (Yamagata-lineage) viruses. In ferrets, the A(H1N1)pdm09 E119D variant caused a lower degree of morbidity and the mutation was found to be unstable with E119 reverted virus detected 4 days post-infection of ferrets with the variant E119D virus. In contrast, the influenza B E117D variant was genetically stable in ferrets, caused a noticeable level of morbidity but had a significant reduction in replication fitness compared to wild-type virus. CONCLUSIONS The NA mutations E119D in influenza A(H1N1)pdm09 and E117D in influenza B viruses that arose under zanamivir pressure conferred resistance to multiple NA inhibitors but had compromised viral replication in ferrets compared to wild-type virus without antiviral drug pressure.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Jacqueline Panozzo
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Sophie Vitesnik
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rubaiyea Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Jennifer Mosse
- School of Applied and Biomedical Sciences, Federation University, Churchill, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Adams SE, Lee N, Lugovtsev VY, Kan A, Donnelly RP, Ilyushina NA. Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antiviral Res 2019; 169:104539. [PMID: 31228489 DOI: 10.1016/j.antiviral.2019.104539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
Neuraminidase inhibitors (NAIs) play a key role in the management of influenza. Given the limited number of FDA-approved anti-influenza drugs, evaluation of potential drug-resistant variants is of high priority. Two NA mutations, V116A and I117V, are found in ∼0.6% of human, avian, and swine N1 isolates. Using the A/California/04/09-like (CA/04, H1N1) background, we examined the impact of V116A and I117V NA mutations on NAI susceptibility, substrate specificity, and replicative capacity in normal human bronchial (NHBE) cells and a human respiratory epithelial cell line (Calu-3). We compared the impact of V116A and I117V on the functional properties of NA and compared these mutations with that of previously reported NAI-resistant mutations, E119A, H275Y, and N295S. All NA mutations were genetically stable. None of the viruses carrying NA mutations grew to significantly lower titers than CA/04 in Calu-3 cells. In contrast, V116A, I117V, E119A, and N295S substitutions resulted in significantly lower viral titers (1.2 logs) than the parental CA/04 virus in NHBE cells. V116A conferred reduced sensitivity to oseltamivir and zanamivir (13.7-fold). When MUNANA, 3'SL, and 6'SL substrates were applied, we observed that V116A reduced binding ability for all substrates (13.9-fold) and I117V led to the significantly decreased affinity for MUNANA and 6'SL (4.2-fold). Neither mutation altered the catalytic efficiency (kcat/KM) in catalyzing 3'SL, but the efficiency in catalyzing MUNANA and 6'SL was significantly decreased: only ∼34.7% compared to the wild-type NA. The efficiencies of NAs with E119A, H275Y, and N295S mutations to catalyze all substrates were ∼19.4% of the CA/04 NA. Our study demonstrates the direct effect of drug-resistant mutations located inside or adjacent to the NA active site on NA substrate specificity.
Collapse
Affiliation(s)
- Simone E Adams
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Nicolette Lee
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Vladimir Y Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Anastasia Kan
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Raymond P Donnelly
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA
| | - Natalia A Ilyushina
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, 20993, MD, USA.
| |
Collapse
|
26
|
In Vitro and In Vivo Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated In Vitro Selection. J Virol 2019; 93:JVI.01825-18. [PMID: 30602610 DOI: 10.1128/jvi.01825-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAIs) are widely used antiviral drugs for the treatment of humans with influenza virus infections. There have been widespread reports of NAI resistance among seasonal A(H1N1) viruses, and most have been identified in oseltamivir-exposed patients or those treated with other NAIs. Thus, monitoring and identifying NA markers conferring resistance to NAIs-particularly newly introduced treatments-are critical to the management of viral infections. Therefore, we screened and identified substitutions conferring resistance to laninamivir by enriching random mutations in the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus followed by deep sequencing of the laninamivir-selected variants. After the generation of single mutants possessing each identified mutation, two A(H1N1)pdm09 recombinants possessing novel NA gene substitutions (i.e., D199E and P458T) were shown to exhibit resistance to more than one NAI. Of note, mutants possessing P458T-which is located outside of the catalytic or framework residue of the NA active site-exhibited highly reduced inhibition by all four approved NAIs. Using MDCK cells, we observed that the in vitro viral replication of the two recombinants was lower than that of the wild type (WT). Additionally, in infected mice, decreased mortality and/or mean lung viral titers were observed in mutants compared with the WT. Reverse mutations to the WT were observed in lung homogenate samples from D199E-infected mice after 3 serial passages. Overall, the novel NA substitutions identified could possibly emerge in influenza A(H1N1)pdm09 viruses during laninamivir therapy and the viruses could have altered NAI susceptibility, but the compromised in vitro/in vivo viral fitness may limit viral spreading.IMPORTANCE With the widespread emergence of NAI-resistant influenza virus strains, continuous monitoring of mutations that confer antiviral resistance is needed. Laninamivir is the most recently approved NAI in several countries; few data exist related to the in vitro selection of viral mutations conferring resistance to laninamivir. Thus, we screened and identified substitutions conferring resistance to laninamivir by random mutagenesis of the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus strain followed by deep sequencing of the laninamivir-selected variants. We found several novel substitutions in NA (D199E and P458T) in an A(H1N1)pdm09 background which conferred resistance to NAIs and which had an impact on viral fitness. Our study highlights the importance of continued surveillance for potential antiviral-resistant variants and the development of alternative therapeutics.
Collapse
|
27
|
Kwon JJ, Choi WS, Jeong JH, Kim EH, Lee OJ, Yoon SW, Hwang J, Webby RJ, Govorkova EA, Choi YK, Baek YH, Song MS. An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. J Gen Virol 2019; 99:292-302. [PMID: 29493493 DOI: 10.1099/jgv.0.001029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resistance of influenza viruses to neuraminidase (NA) inhibitors (NAIs; i.e. oseltamivir, zanamivir, peramivir and laninamivir) can be associated with several NA substitutions, with differing effects on viral fitness. To identify novel molecular markers conferring multi-NAI resistance, the NA gene of oseltamivir-resistant (H275Y, N1 numbering) 2009 pandemic influenza [A(H1N1)pdm09] virus was enriched with random mutations. This randomly mutated viral library was propagated in Madin-Darby canine kidney (MDCK) cells under zanamivir pressure and gave rise to additional changes within NA, including an I436N substitution located outside the NA enzyme active site. We generated four recombinant A(H1N1)pdm09 viruses containing either wild-type NA or NA with single (I436N or H275Y) or double (H275Y-I436N) substitutions. The double H275Y-I436N mutation significantly reduced inhibition by oseltamivir and peramivir and reduced inhibition by zanamivir and laninamivir. I436N alone reduced inhibition by all NAIs, suggesting that it is a multi-NAI resistance marker. I436N did not affect viral fitness in vitro or in a murine model; however, H275Y and I436N together had a negative impact on viral fitness. Further, I436N alone did not have an appreciable impact on viral replication in the upper respiratory tract or transmissibility in ferrets. However, the rg-H275Y-I436N double mutant transmitted less efficiently than either single mutant via the direct contact and respiratory droplet routes in ferrets. Overall, these results highlight the usefulness of a random mutagenesis approach for identifying potential molecular markers of resistance and the importance of I436N NA substitution in A(H1N1)pdm09 virus as a marker for multi-NAI resistance.
Collapse
Affiliation(s)
- Jin Jung Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ok-Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jungwon Hwang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
28
|
Self-enzyme chemiluminescence immunoassay capable of rapidly diagnosing the infection of influenza A (H1N1) virus. Talanta 2019; 192:189-196. [DOI: 10.1016/j.talanta.2018.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022]
|
29
|
Hľasová Z, Košík I, Ondrejovič M, Miertuš S, Katrlík J. Methods and Current Trends in Determination of Neuraminidase Activity and Evaluation of Neuraminidase Inhibitors. Crit Rev Anal Chem 2018; 49:350-367. [DOI: 10.1080/10408347.2018.1531692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zuzana Hľasová
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Ivan Košík
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, Maryland, USA
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
30
|
Farrukee R, Zarebski AE, McCaw JM, Bloom JD, Reading PC, Hurt AC. Characterization of Influenza B Virus Variants with Reduced Neuraminidase Inhibitor Susceptibility. Antimicrob Agents Chemother 2018; 62:e01081-18. [PMID: 30201817 PMCID: PMC6201084 DOI: 10.1128/aac.01081-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
Treatment options for influenza B virus infections are limited to neuraminidase inhibitors (NAIs), which block the neuraminidase (NA) glycoprotein on the virion surface. The development of NAI resistance would therefore result in a loss of antiviral treatment options for influenza B virus infections. This study characterized two contemporary influenza B viruses with known resistance-conferring NA amino acid substitutions, D197N and H273Y, detected during routine surveillance. The D197N and H273Y variants were characterized in vitro by assessing NA enzyme activity and affinity, as well as replication in cell culture compared to those of NAI-sensitive wild-type viruses. In vivo studies were also performed in ferrets to assess the replication and transmissibility of each variant. Mathematical models were used to analyze within-host and between-host fitness of variants relative to wild-type viruses. The data revealed that the H273Y variant had NA enzyme function similar to that of its wild type but had slightly reduced replication and transmission efficiency in vivo The D197N variant had impaired NA enzyme function, but there was no evidence of reduction in replication or transmission efficiency in ferrets. Our data suggest that the influenza B virus variant with the H273Y NA substitution had a more notable reduction in fitness compared to wild-type viruses than the influenza B variant with the D197N NA substitution. Although a D197N variant is yet to become widespread, it is the most commonly detected NAI-resistant influenza B virus in surveillance studies. Our results highlight the need to carefully monitor circulating viruses for the spread of influenza B viruses with the D197N NA substitution.
Collapse
Affiliation(s)
- R Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A E Zarebski
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - J M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Infection and Immunity theme, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - J D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - P C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Huang SY, Lin MH, Chen YH, Lai CC, Lee MS, Hu AYC, Sung WC. Application of stable isotope dimethyl labeling for MRM based absolute antigen quantification of influenza vaccine. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:40-48. [PMID: 30428430 DOI: 10.1016/j.jchromb.2018.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Determining the precursor/product ion pair and optimal collision energy are the critical steps for developing a multiple reaction monitoring (MRM) assay using triple quadruple mass spectrometer for protein quantitation. In this study, a platform consisting of stable isotope dimethyl labeling coupled with triple-quadruple mass spectrometer was used to quantify the protein components of the influenza vaccines. Dimethyl labeling of both the peptide N-termini and the ϵ-amino group of lysine residues was achieved by reductive amination using formaldehyde and sodium cyanoborohydrate. Dimethylated peptides are known to exhibit dominant a1 ions under gas phase fragmentation in a mass spectrometer. These a1 ions can be predicted from the peptide N-terminal amino acids, and their signals do not vary significantly across a wide range of collision energies, which facilitates the determination of MRM transition settings for multiple protein targets. The intrinsic a1 ions provide sensitivity for acquiring MRM peaks that is superior to that of the typical b/y ions used for native peptides, and they also provided good linearity (R2 ≥ 0.99) at the detected concentration range for each peptide. These features allow for the simultaneous quantification of hemagglutinin and neuraminidase in vaccines derived from either embryo eggs or cell cultivation. Moreover, the low abundant ovalbumin residue originated from the manufacturing process can also be determined. The results demonstrate that the stable isotope dimethyl labeling coupled with MRM Mass spectrometry screening of a1 ions (i.e., SIDa-MS) can be used as a high-throughput platform for multiple protein quantification of vaccine products.
Collapse
Affiliation(s)
| | - Min-Han Lin
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Yo-Hsuan Chen
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Chia-Chun Lai
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Min-Shi Lee
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Alan Yung-Chih Hu
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan
| | - Wang-Chou Sung
- National Health Research Institutes, National Institute of Infectious Diseases and Vaccinology, Miaoli 350, Taiwan.
| |
Collapse
|
32
|
Desheva Y, Sychev I, Smolonogina T, Rekstin A, Ilyushina N, Lugovtsev V, Samsonova A, Go A, Lerner A. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals. PLoS One 2018; 13:e0196771. [PMID: 29742168 PMCID: PMC5942809 DOI: 10.1371/journal.pone.0196771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/19/2018] [Indexed: 01/27/2023] Open
Abstract
The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses.
Collapse
Affiliation(s)
- Yulia Desheva
- Virology Department, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russian Federation
- Department of Fundamental Problems of Medicine and Medical Technologies, Saint Petersburg State University, Saint Petersburg, Russian Federation
- * E-mail:
| | - Ivan Sychev
- Virology Department, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russian Federation
| | - Tatiana Smolonogina
- Virology Department, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russian Federation
| | - Andrey Rekstin
- Virology Department, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russian Federation
| | - Natalia Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Aleksey Go
- Clinical and Diagnostic Center, Research Institute of Influenza, Saint Petersburg, Russian Federation
| | - Anna Lerner
- Medical Research Center, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russian Federation
| |
Collapse
|
33
|
Lee N, Khalenkov AM, Lugovtsev VY, Ireland DD, Samsonova AP, Bovin NV, Donnelly RP, Ilyushina NA. The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS One 2018; 13:e0195525. [PMID: 29630683 PMCID: PMC5891020 DOI: 10.1371/journal.pone.0195525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
We applied an in vitro selection approach using two different plant lectins that bind to α2,3- or α2,6-linked sialic acids to determine which genetic changes of the A/California/04/09 (H1N1) virus alter hemagglutinin (HA) receptor binding toward α2,3- or α2,6-linked glycans. Consecutive passages of the A/California/04/09 virus with or without lectins in human lung epithelial Calu-3 cells led to development of three HA1 amino acid substitutions, N129D, G155E, and S183P, and one mutation in the neuraminidase (NA), G201E. The S183P mutation significantly increased binding to several α2,6 SA-linked glycans, including YDS, 6'SL(N), and 6-Su-6'SLN, compared to the wild-type virus (↑3.6-fold, P < 0.05). Two other HA1 mutations, N129D and G155E, were sufficient to significantly increase binding to α2,6-linked glycans, 6'SLN and 6-Su-6'SLN, compared to S183P (↑4.1-fold, P < 0.05). These HA1 mutations also increased binding affinity for 3'SLN glycan compared to the wild-type virus as measured by Biacore surface plasmon resonance method. In addition, the HA1 N129D and HA1 G155E substitutions were identified as antigenic mutations. Furthermore, the G201E mutation in NA reduced the NA enzyme activity (↓2.3-fold). These findings demonstrate that the A/California/04/09 (H1N1) virus can acquire enhanced receptor affinity for both α2,3- and α2,6-linked sialic receptors under lectin-induced selective pressure. Such changes in binding affinity are conferred by selection of beneficial HA1 mutations that affect receptor specificity, antigenicity, and/or functional compatibility with the NA protein.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Cell Line
- Dogs
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Madin Darby Canine Kidney Cells
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Plant Lectins/metabolism
- Polysaccharides/chemistry
- Polysaccharides/genetics
- Polysaccharides/metabolism
- Protein Binding
- Receptors, Virus/physiology
- Selection, Genetic
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Nicolette Lee
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Alexey M. Khalenkov
- Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Derek D. Ireland
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia P. Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolai V. Bovin
- Carbohydrate Chemistry Laboratory, Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Raymond P. Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (NAI); (RPD)
| | - Natalia A. Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (NAI); (RPD)
| |
Collapse
|
34
|
Tewawong N, Marathe BM, Poovorawan Y, Vongpunsawad S, Webby RJ, Govorkova EA. Neuraminidase inhibitor susceptibility and neuraminidase enzyme kinetics of human influenza A and B viruses circulating in Thailand in 2010-2015. PLoS One 2018; 13:e0190877. [PMID: 29324781 PMCID: PMC5764337 DOI: 10.1371/journal.pone.0190877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Amino acid substitutions within or near the active site of the viral neuraminidase (NA) may affect influenza virus fitness. In influenza A(H3N2) and B viruses circulating in Thailand between 2010 and 2015, we identified several NA substitutions that were previously reported to be associated with reduced inhibition by NA inhibitors (NAIs). To study the effect of these substitutions on the enzymatic properties of NA and on virus characteristics, we generated recombinant influenza viruses possessing either a wild type (WT) NA or an NA with a single I222V, S331G, or S331R substitution [in influenza A(H3N2) viruses] or a single D342S, A395T, A395V, or A395D NA substitution (in influenza B viruses). We generated recombinant (7:1) influenza A and B viruses on the genetic background of A/Puerto Rico/8/1934 (A/PR/8, H1N1) or B/Yamanashi/166/1998 (B/YAM) viruses, respectively. In contrast to the expected phenotypes, all the recombinant influenza A(H3N2) and B viruses carrying putative NA resistance substitutions were susceptible to NAIs. The Km and Vmax for the NAs of A/PR8-S331G and A/PR8-S331R viruses were higher than for the NA of WT virus, and the corresponding values for the B/YAM-D342S virus were lower than for the NA of WT virus. Although there was initial variation in the kinetics of influenza A and B viruses' replication in MDCK cells, their titers were comparable to each other and to WT viruses at later time points. All introduced substitutions were stable except for B/YAM-D342S and B/YAM-A395V which reverted to WT sequences after three passages. Our data suggest that inferring susceptibility to NAIs based on sequence information alone should be cautioned. The impact of NA substitution on NAI resistance, viral growth, and enzymatic properties is viral context dependent and should be empirically determined.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antiviral Agents/pharmacology
- Dogs
- Drug Resistance, Viral/genetics
- Enzyme Inhibitors/pharmacology
- Enzyme Stability/genetics
- Genomic Instability
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A virus/drug effects
- Influenza A virus/enzymology
- Influenza A virus/genetics
- Influenza A virus/physiology
- Influenza, Human/virology
- Betainfluenzavirus/drug effects
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/physiology
- Kinetics
- Madin Darby Canine Kidney Cells
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Thailand
- Viral Proteins/antagonists & inhibitors
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/drug effects
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Nipaporn Tewawong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
35
|
Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus. Microbes Infect 2017; 19:635-640. [DOI: 10.1016/j.micinf.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
|
36
|
Ilyushina NA, Lugovtsev VY, Samsonova AP, Sheikh FG, Bovin NV, Donnelly RP. Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS One 2017; 12:e0181999. [PMID: 28750037 PMCID: PMC5531537 DOI: 10.1371/journal.pone.0181999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses pose a constant potential threat to human health. In view of the innate antiviral activity of interferons (IFNs) and their potential use as anti-influenza agents, it is important to know whether viral resistance to these antiviral proteins can arise. To examine the likelihood of emergence of IFN-λ1-resistant H1N1 variants, we serially passaged the A/California/04/09 (H1N1) strain in a human lung epithelial cell line (Calu-3) in the presence of increasing concentrations of recombinant IFN-λ1 protein. To monitor changes associated with adaptation of this virus to growth in Calu-3 cells, we also passaged the wild-type virus in the absence of IFN-λ1. Under IFN-λ1 selective pressure, the parental virus developed two neuraminidase (NA) mutations, S79L and K331N, which significantly reduced NA enzyme activity (↓1.4-fold) and sensitivity to IFN-λ1 (↓˃20-fold), respectively. These changes were not associated with a reduction in viral replication levels. Mutants carrying either K331N alone or S79L and K331N together induced weaker phosphorylation of IFN regulatory factor 3 (IRF3), and, as a consequence, much lower expression of the IFN genes (IFNB1, IFNL1 and IFNL2/3) and proteins (IFN-λ1 and IFN-λ2/3). The lower levels of IFN expression correlated with weaker induction of tyrosine-phosphorylated STAT1 and reduced RIG-I protein levels. Our findings demonstrate that influenza viruses can develop increased resistance to the antiviral activity of type III interferons.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- DEAD Box Protein 58/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Dogs
- Drug Resistance, Viral/drug effects
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H1N1 Subtype/physiology
- Interferon Regulatory Factor-3/metabolism
- Interferons
- Interleukins/pharmacology
- Mutation/genetics
- Neuraminidase/genetics
- Phosphorylation/drug effects
- Receptors, Immunologic
- Receptors, Virus/genetics
- Recombination, Genetic/genetics
- STAT1 Transcription Factor/metabolism
- Sequence Analysis, DNA
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Natalia A. Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia P. Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Faruk G. Sheikh
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolai V. Bovin
- Carbohydrate Chemistry Laboratory, Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Raymond P. Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
37
|
Hoffmann A, Richter M, von Grafenstein S, Walther E, Xu Z, Schumann L, Grienke U, Mair CE, Kramer C, Rollinger JM, Liedl KR, Schmidtke M, Kirchmair J. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Front Microbiol 2017; 8:205. [PMID: 28261167 PMCID: PMC5309245 DOI: 10.3389/fmicb.2017.00205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Viral neuraminidases are an established drug target to combat influenza. Severe complications observed in influenza patients are primarily caused by secondary infections with e.g., Streptococcus pneumoniae. These bacteria engage in a lethal synergism with influenza A viruses (IAVs) and also express neuraminidases. Therefore, inhibitors with dual activity on viral and bacterial neuraminidases are expected to be advantageous for the treatment of influenza infections. Here we report on the discovery and characterization of diazenylaryl sulfonic acids as dual inhibitors of viral and Streptococcus pneumoniae neuraminidase. The initial hit came from a virtual screening campaign for inhibitors of viral neuraminidases. For the most active compound, 7-[2-[4-[2-[4-[2-(2-hydroxy-3,6-disulfo-1-naphthalenyl)diazenyl]-2-methylphenyl]diazenyl]-2-methylphenyl]diazenyl]-1,3-naphthalenedisulfonic acid (NSC65847; 1), the Ki-values measured in a fluorescence-based assay were lower than 1.5 μM for both viral and pneumococcal neuraminidases. The compound also inhibited N1 virus variants containing neuraminidase inhibitor resistance-conferring substitutions. Via enzyme kinetics and nonlinear regression modeling, 1 was suggested to impair the viral neuraminidases and pneumococcal neuraminidase with a mixed-type inhibition mode. Given its antiviral and antipneumococcal activity, 1 was identified as a starting point for the development of novel, dual-acting anti-infectives.
Collapse
Affiliation(s)
- Anja Hoffmann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Martina Richter
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Susanne von Grafenstein
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Elisabeth Walther
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Zhongli Xu
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Lilia Schumann
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christina E. Mair
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christian Kramer
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Klaus R. Liedl
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Johannes Kirchmair
- Centre for Chemistry and Biomedicine, Institute of General, Inorganic and Theoretical Chemistry, University of InnsbruckInnsbruck, Austria
- Center for Bioinformatics, University of HamburgHamburg, Germany
| |
Collapse
|
38
|
Hibino A, Kondo H, Masaki H, Tanabe Y, Sato I, Takemae N, Saito T, Zaraket H, Saito R. Community- and hospital-acquired infections with oseltamivir- and peramivir-resistant influenza A(H1N1)pdm09 viruses during the 2015-2016 season in Japan. Virus Genes 2017; 53:89-94. [PMID: 27714496 PMCID: PMC5306182 DOI: 10.1007/s11262-016-1396-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022]
Abstract
We report five cases of community- and hospital-acquired infections with oseltamivir- and peramivir-resistant A(H1N1)pdm09 viruses possessing the neuraminidase (NA) H275Y mutation during January-February 2016 in Japan. One case was hospitalized and was receiving oseltamivir for prophylaxis. The remaining four cases were not taking antiviral drugs at the time of sampling. These cases were geographically distant and epidemiologically unrelated. The five viruses showed ~300-fold rise in IC50 values against oseltamivir and peramivir, defined as highly reduced inhibition according to the WHO definition. Overall, the prevalence of the H275Y A(H1N1)pdm09 viruses was 1.8 % (5/282). The resistant viruses possessed the V241I, N369 K, and N386 K substitutions in the NA that have been previously reported among A(H1N1)pdm09 to alter transmission fitness. Analysis of Michaelis constant (Km) revealed that two of the isolates had reduced NA affinity to MUNANA, while the other three isolates displayed a slightly decreased affinity compared to the sensitive viruses. Further studies are needed to monitor the community spread of resistant viruses and to assess their transmissibility.
Collapse
Affiliation(s)
- Akinobu Hibino
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Hiroki Kondo
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | | | - Yoshinari Tanabe
- Infection Disease Control Section, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Isamu Sato
- Yoiko-no-Syounika Sato Clinic, Niigata, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hassan Zaraket
- Department Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| |
Collapse
|
39
|
Hoffmann A, Schade D, Kirchmair J, Clement B, Sauerbrei A, Schmidtke M. Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background. J Virol Methods 2016; 237:192-199. [PMID: 27659246 DOI: 10.1016/j.jviromet.2016.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Efforts to develop novel neuraminidase inhibitors (NAIs) for the treatment of influenza are ongoing. Novel NAIs should in particular be also effective against seasonal and/or pandemic N1 that carry a H274Y or N294S substitution (N2 numbering), which are most commonly linked to oseltamivir resistance. Here we report a platform for profiling the efficacy of novel NAIs in the N1 genetic background of influenza A virus. Employing reverse genetics, a set of influenza virus variants containing an amino acid substitution associated with oseltamivir resistance in N1 isolates (H274Y, N294S, Y155H or Q136L) was generated. In parallel, so far unreported mutations of I427 (I427Q and I427M) were investigated. These possibly interfere with the side chain orientation of R371 and alter the binding affinity of most relevant NAIs. The profiling platform was validated with both oseltamivir and zanamivir and exemplarily applied to three analogs with differing decorations at positions 4 and 5. Besides confirming the inhibition profile of zanamivir and oseltamivir, the distinct effect of I427Q/M on the activity of both NAIs was shown. For 5-amidino and 5-guanidino analogs of oseltamivir a significantly stronger inhibition of virus variants carrying a NA-H274Y was confirmed, and additionally shown for NA-N294S and NA-Y155H substitutions as compared to the parent compound. Hence, the herein presented profiling platform is a valid tool for defining the inhibition profile of novel NAIs in the N1 background.
Collapse
Affiliation(s)
- Anja Hoffmann
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Dennis Schade
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Johannes Kirchmair
- Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Bernd Clement
- Department of Pharmaceutical Chemistry, Pharmaceutical Institute, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Andreas Sauerbrei
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Michaela Schmidtke
- Jena University Hospital, Department of Virology and Antiviral Therapy, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
40
|
Antanasijevic A, Kingsley C, Basu A, Bowlin TL, Rong L, Caffrey M. Application of virus-like particles (VLP) to NMR characterization of viral membrane protein interactions. JOURNAL OF BIOMOLECULAR NMR 2016; 64:255-65. [PMID: 26921030 PMCID: PMC4826305 DOI: 10.1007/s10858-016-0025-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA
| | - Carolyn Kingsley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA
| | - Arnab Basu
- Microbiotix Inc., Worcester, MA, 01605, USA
| | | | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S Ashland, Chicago, IL, 60607, USA.
| |
Collapse
|
41
|
Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site. J Virol 2015; 89:10724-34. [PMID: 26246579 DOI: 10.1128/jvi.01238-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although a polybasic HA0 cleavage site is considered the dominant virulence determinant for highly pathogenic avian influenza (HPAI) H5 and H7 viruses, naturally occurring virus isolates possessing a polybasic HA0 cleavage site have been identified that are low pathogenic in chickens. In this study, we generated a reassortant H5N3 virus that possessed the hemagglutinin (HA) gene from H5N1 HPAI A/swan/Germany/R65/2006 and the remaining gene segments from low pathogenic A/chicken/British Columbia/CN0006/2004 (H7N3). Despite possessing the HA0 cleavage site GERRRKKR/GLF, this rH5N3 virus exhibited a low pathogenic phenotype in chickens. Although rH5N3-inoculated birds replicated and shed virus and seroconverted, transmission to naive contacts did not occur. To determine whether this virus could evolve into a HPAI form, it underwent six serial passages in chickens. A progressive increase in virulence was observed with the virus from passage number six being highly transmissible. Whole-genome sequencing demonstrated the fixation of 12 nonsynonymous mutations involving all eight gene segments during passaging. One of these involved the catalytic site of the neuraminidase (NA; R293K) and is associated with decreased neuraminidase activity and resistance to oseltamivir. Although introducing the R293K mutation into the original low-pathogenicity rH5N3 increased its virulence, transmission to naive contact birds was inefficient, suggesting that one or more of the remaining changes that had accumulated in the passage number six virus also play an important role in transmissibility. Our findings show that the functional linkage and balance between HA and NA proteins contributes to expression of the HPAI phenotype. IMPORTANCE To date, the contribution that hemagglutinin-neuraminidase balance can have on the expression of a highly pathogenic avian influenza virus phenotype has not been thoroughly examined. Reassortment, which can result in new hemagglutinin-neuraminidase combinations, may have unpredictable effects on virulence and transmission characteristics of a virus. Our data show the importance of the neuraminidase in complementing a polybasic HA0 cleavage site. Furthermore, it demonstrates that adaptive changes selected for during the course of virus evolution can result in unexpected traits such as antiviral drug resistance.
Collapse
|
42
|
Lu Y, Hardes K, Dahms SO, Böttcher-Friebertshäuser E, Steinmetzer T, Than ME, Klenk HD, Garten W. Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells. Antiviral Res 2015; 120:89-100. [PMID: 26022200 DOI: 10.1016/j.antiviral.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
Antiviral medication is used for the treatment of severe influenza infections, of which the neuraminidase inhibitors (NAIs) are the most effective drugs, approved so far. Here, we investigated the antiviral efficacy of the peptidomimetic furin inhibitor MI-701 in combination with oseltamivir carboxylate and ribavirin against the infection of highly pathogenic avian influenza viruses (HPAIV) that are activated by the host protease furin. Cell cultures infected with the strains A/Thailand/1(KAN-1)/2004 (H5N1) and A/FPV/Rostock/1934 (H7N1) were treated with each agent alone, or in double and triple combinations. MI-701 alone achieved a concentration-dependent reduction of virus propagation. Double treatment of MI-701 with oseltamivir carboxylate and triple combination with ribavirin showed synergistic inhibition and a pronounced delay of virus propagation. MI-701 resistant mutants were not observed. Emergence of NA mutation H275Y conferring high oseltamivir resistance was significantly delayed in the presence of MI-701. Our data indicate that combination with a potent furin inhibitor significantly enhances the therapeutic efficacy of conventional antivirals drugs against HPAIV infection.
Collapse
Affiliation(s)
- Yinghui Lu
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Sven O Dahms
- Protein Crystallography Group, Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | | | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Wolfgang Garten
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany.
| |
Collapse
|
43
|
Competitive fitness of influenza B viruses with neuraminidase inhibitor-resistant substitutions in a coinfection model of the human airway epithelium. J Virol 2015; 89:4575-87. [PMID: 25673705 DOI: 10.1128/jvi.02473-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Influenza A and B viruses are human pathogens that are regarded to cause almost equally significant disease burdens. Neuraminidase (NA) inhibitors (NAIs) are the only class of drugs available to treat influenza A and B virus infections, so the development of NAI-resistant viruses with superior fitness is a public health concern. The fitness of NAI-resistant influenza B viruses has not been widely studied. Here we examined the replicative capacity and relative fitness in normal human bronchial epithelial (NHBE) cells of recombinant influenza B/Yamanashi/166/1998 viruses containing a single amino acid substitution in NA generated by reverse genetics (rg) that is associated with NAI resistance. The replication in NHBE cells of viruses with reduced inhibition by oseltamivir (recombinant virus with the E119A mutation generated by reverse genetics [rg-E119A], rg-D198E, rg-I222T, rg-H274Y, rg-N294S, and rg-R371K, N2 numbering) or zanamivir (rg-E119A and rg-R371K) failed to be inhibited by the presence of the respective NAI. In a fluorescence-based assay, detection of rg-E119A was easily masked by the presence of NAI-susceptible virus. We coinfected NHBE cells with NAI-susceptible and -resistant viruses and used next-generation deep sequencing to reveal the order of relative fitness compared to that of recombinant wild-type (WT) virus generated by reverse genetics (rg-WT): rg-H274Y > rg-WT > rg-I222T > rg-N294S > rg-D198E > rg-E119A ≫ rg-R371K. Based on the lack of attenuated replication of rg-E119A in NHBE cells in the presence of oseltamivir or zanamivir and the fitness advantage of rg-H274Y over rg-WT, we emphasize the importance of these substitutions in the NA glycoprotein. Human infections with influenza B viruses carrying the E119A or H274Y substitution could limit the therapeutic options for those infected; the emergence of such viruses should be closely monitored. IMPORTANCE Influenza B viruses are important human respiratory pathogens contributing to a significant portion of seasonal influenza virus infections worldwide. The development of resistance to a single class of available antivirals, the neuraminidase (NA) inhibitors (NAIs), is a public health concern. Amino acid substitutions in the NA glycoprotein of influenza B virus not only can confer antiviral resistance but also can alter viral fitness. Here we used normal human bronchial epithelial (NHBE) cells, a model of the human upper respiratory tract, to examine the replicative capacities and fitness of NAI-resistant influenza B viruses. We show that virus with an E119A NA substitution can replicate efficiently in NHBE cells in the presence of oseltamivir or zanamivir and that virus with the H274Y NA substitution has a relative fitness greater than that of the wild-type NAI-susceptible virus. This study is the first to use NHBE cells to determine the fitness of NAI-resistant influenza B viruses.
Collapse
|
44
|
Profiling and characterization of influenza virus N1 strains potentially resistant to multiple neuraminidase inhibitors. J Virol 2014; 89:287-99. [PMID: 25320319 DOI: 10.1128/jvi.02485-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neuraminidase inhibitors (NAIs) have been widely used to control influenza virus infection, but their increased use could promote the global emergence of resistant variants. Although various mutations associated with NAI resistance have been identified, the amino acid substitutions that confer multidrug resistance with undiminished viral fitness remain poorly understood. We therefore screened a known mutation(s) that could confer multidrug resistance to the currently approved NAIs oseltamivir, zanamivir, and peramivir by assessing recombinant viruses with mutant NA-encoding genes (catalytic residues R152K and R292K, framework residues E119A/D/G, D198N, H274Y, and N294S) in the backbones of the 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza (HPAI) H5N1 viruses. Of the 14 single and double mutant viruses recovered in the backbone of pH1N1, four variants (E119D, E119A/D/G-H274Y) exhibited reduced inhibition by all of the NAIs and two variants (E119D and E119D-H274Y) retained the overall properties of gene stability, replicative efficiency, pathogenicity, and transmissibility in vitro and in vivo. Of the nine recombinant H5N1 viruses, four variants (E119D, E119A/D/G-H274Y) also showed reduced inhibition by all of the NAIs, though their overall viral fitness was impaired in vitro and/or in vivo. Thus, single mutations or certain combination of the established mutations could confer potential multidrug resistance on pH1N1 or HPAI H5N1 viruses. Our findings emphasize the urgency of developing alternative drugs against influenza virus infection. IMPORTANCE There has been a widespread emergence of influenza virus strains with reduced susceptibility to neuraminidase inhibitors (NAIs). We screened multidrug-resistant viruses by studying the viral fitness of neuraminidase mutants in vitro and in vivo. We found that recombinant E119D and E119A/D/G/-H274Y mutant viruses demonstrated reduced inhibition by all of the NAIs tested in both the backbone of the 2009 H1N1 pandemic (pH1N1) and highly pathogenic avian influenza H5N1 viruses. Furthermore, E119D and E119D-H274Y mutants in the pH1N1 background maintained overall fitness properties in vitro and in vivo. Our study highlights the importance of vigilance and continued surveillance of potential NAI multidrug-resistant influenza virus variants, as well as the development of alternative therapeutics.
Collapse
|
45
|
Imaging of influenza virus sialidase activity in living cells. Sci Rep 2014; 4:4877. [PMID: 24786761 PMCID: PMC4007088 DOI: 10.1038/srep04877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/15/2014] [Indexed: 11/08/2022] Open
Abstract
Influenza virus is rich in variation and mutations. It would be very convenient for virus detection and isolation to histochemically detect viral infection regardless of variation and mutations. Here, we established a histochemical imaging assay for influenza virus sialidase activity in living cells by using a new fluorescent sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac). The BTP3-Neu5Ac assay histochemically visualized influenza virus-infected cells regardless of viral hosts and subtypes. Influenza virus neuraminidase-expressed cells, viral focus formation, and virus-infected locations in mice lung tissues were easily, rapidly, and sensitively detected by the BTP3-Neu5Ac assay. Histochemical visualization with the BTP3-Neu5Ac assay is extremely useful for detection of influenza viruses without the need for fixation or a specific antibody. This novel assay should greatly improve the efficiency of detection, titration, and isolation of influenza viruses and might contribute to research on viral sialidase.
Collapse
|
46
|
Fitness costs for Influenza B viruses carrying neuraminidase inhibitor-resistant substitutions: underscoring the importance of E119A and H274Y. Antimicrob Agents Chemother 2014; 58:2718-30. [PMID: 24566185 DOI: 10.1128/aac.02628-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza B viruses cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated pediatric mortality. Neuraminidase (NA) inhibitors (NAIs) are the only available therapy for patients infected with influenza B viruses, and the potential emergence of NAI-resistant viruses is a public health concern. The NA substitutions located within the enzyme active site could not only reduce NAI susceptibility of influenza B virus but also affect virus fitness. In this study, we investigated the effect of single NA substitutions on the fitness of influenza B/Yamanashi/166/1998 viruses (Yamagata lineage). We generated recombinant viruses containing either wild-type (WT) NA or NA with a substitution in the catalytic (R371K) or framework (E119A, D198E, D198Y, I222T, H274Y, and N294S) residues. We assessed NAI susceptibility, NA biochemical properties, NA protein expression, and virus replication in vitro and in differentiated normal human bronchial epithelial (NHBE) cells. Our results showed that four NA substitutions (D198E, I222T, H274Y, and N294S) conferred reduced inhibition by oseltamivir and three (E119A, D198Y, and R371K) conferred highly reduced inhibition by oseltamivir, zanamivir, and peramivir. All NA substitutions, except for D198Y and R371K, were genetically stable after seven passages in MDCK cells. Cell surface NA protein expression was significantly increased by H274Y and N294S substitutions. Viruses with the E119A, I222T, H274Y, or N294S substitution were not attenuated in replication efficiency in vitro or in NHBE cells. Overall, viruses with the E119A or H274Y NA substitution possess fitness comparable to NAI-susceptible virus, and the acquisition of these substitutions by influenza B viruses should be closely monitored.
Collapse
|