1
|
Xin Y, Liu Y, Liu L, Wang X, Wang D, Song Y, Shen L, Liu Y, Liu Y, Peng Y, Wang X, Zhou Y, Li H, Zhou Y, Huang P, Yuan M, Xiao Y, Yu K, Wang C. Dynamic changes in the real-time glomerular filtration rate and kidney injury markers in different acute kidney injury models. J Transl Med 2024; 22:857. [PMID: 39334187 PMCID: PMC11430329 DOI: 10.1186/s12967-024-05667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, we dynamically monitored the glomerular filtration rate and other assessment of renal function and markers of injury in various mice models of acute kidney injury. Male C57BL/6 mice were utilized to establish acute kidney injury models of sepsis, ischemia reperfusion, cisplatin, folic acid, aristolochic acid and antibiotic. In addition to the real time glomerular filtration rate, renal LCN-2 and HAVCR-1 mRNA expression levels, and serum creatinine, urea nitrogen and cystatin c levels were also used to evaluate renal function. In addition, the protein levels of LCN-2 and HAVCR-1 in renal, serum and urine were measured. Our results demonstrated that the changes in biomarkers always lagged the real time glomerular filtration rate during the progression and recovery of renal injury. Cystatin-c can reflect renal injury earlier than other markers, but it remains higher in the recovery stage. Perhaps the glomerular filtration rate does not reflect the greater injury caused by vancomycin plus piperacillin.
Collapse
Affiliation(s)
- Yu Xin
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yanqi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Linqiong Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Xinran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Dawei Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, No. 150 Haping Rd, Nangang District, Harbin, 150081, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yuchen Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Lifeng Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yuxi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yuhan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yahui Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Hongxu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Pengfei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Mengyao Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Yu Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China.
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China.
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150007, China.
- Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Heilongjiang provincial key laboratory of critical care medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
3
|
Siddiqui SH, Pitpitan R, Boychev B, Komnenov D, Rossi NF. Impact of inhibition of the renin-angiotensin system on early cardiac and renal abnormalities in Sprague Dawley rats fed short-term high fructose plus high salt diet. Front Nutr 2024; 11:1436958. [PMID: 39238563 PMCID: PMC11376227 DOI: 10.3389/fnut.2024.1436958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction The combination of a high fructose and high salt diet typical of western diet induces high blood pressure, aortic stiffening, left ventricular (LV) diastolic dysfunction and impaired renal function in rodents. Despite an activated renin-angiotensin system (RAS) in rats fed high fructose and high salt, acute inhibition of the RAS pathway does not improve cardiac and vascular parameters. It may well be that longer term treatment is required to permit remodeling and improve cardiovascular function. Thus, we hypothesized that chronic RAS inhibition fructose+high salt-fed rats to restore blood pressure (BP) to levels similar to glucose plus normal salt-fed controls will improve cardiorenal function and histopathology. Methods Male and female Sprague Dawley rats monitored by hemodynamic telemetry were fed 0.4% NaCl chow during baseline, then changed to chow containing either 20% glucose+0.4% NaCl (G) or 20% fructose+4% NaCl (F) and treated with vehicle, enalapril (Enal, 4 mg/kg/d) or losartan (Los, 8 mg/kg/d) by osmotic minipump for 25-26 days. Results BP was elevated in the fructose+high salt groups of both sexes (P < 0.05) and restored to control levels by Enal or Los. Pulse wave velocity (PWV) was lower in female F+Los rats and cardiac output higher in female F+Enal rats. GFR was not changed by diet or treatment. Fructose+high salt groups of both sexes displayed higher albuminuria that was decreased by Enal in male rats. Cardiac fibrosis and mesangial hypercellularity were greater in fructose+high salt-fed rats of both sexes and improved with either Los or Enal. Discussion Thus, inhibition of the RAS improves early changes in cardiac and renal histopathology in both sexes and albuminuria in male rats fed high fructose and high salt diet. Functional improvements in cardiorenal parameters may require longer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Noreen F. Rossi
- Department of Physiology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
4
|
Jordan CZ, Chen Y, Husain I, Dilts M, Fay OK, Privratsky J, Luo X, Tunbridge M. Murine kidney transplant outcome is best measured by transdermal glomerular filtration rate. Am J Transplant 2024:S1600-6135(24)00433-7. [PMID: 39098449 DOI: 10.1016/j.ajt.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
Mouse kidney transplantation provides a powerful preclinical model for the study of kidney transplant alloimmunity. However, accurate measurement of graft function is difficult because of the inaccuracy of traditional surrogate markers serum creatinine and urea. We report the use of transdermal glomerular filtration rate measurement under the experimental conditions of unilateral nephrectomy and allogeneic kidney transplantation. Our findings demonstrate that transdermal glomerular filtration rate measurement is easy to perform, reproducible, and has more interexperimental consistency than serum creatinine or urea measurements. Most importantly, it significantly reduces the numbers of experimental animals required to detect subtle and yet clinically relevant differences in kidney function as often is the case in experimental murine kidney transplantation models.
Collapse
Affiliation(s)
- Collin Z Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yanting Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Miriam Dilts
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olivia K Fay
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jamie Privratsky
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew Tunbridge
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Tao Y, Lacko AG, Sabnis NA, Das‐Earl P, Ibrahim D, Crowe N, Zhou Z, Cunningham M, Castillo A, Ma R. Reconstituted HDL ameliorated renal injury of diabetic kidney disease in mice. Physiol Rep 2024; 12:e16179. [PMID: 39107084 PMCID: PMC11303015 DOI: 10.14814/phy2.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024] Open
Abstract
Diabetic kidney disease (DKD) is a devastating kidney disease and lacks effective therapeutic interventions. The present study was aimed to determine whether reconstituted high-density lipoprotein (rHDL) ameliorated renal injury in eNOS-/- dbdb mice, a mouse model of DKD. Three groups of mice, wild type C57BLKS/J (non-diabetes), eNOS-/- dbdb (diabetes), and eNOS-/- dbdb treated with rHDL (diabetes+rHDL) with both males and females were used. The rHDL nanoparticles were administered to eNOS-/- dbdb mice at Week 16 at 5 μg/g body weight in ~100 μL of saline solution twice per week for 4 weeks via retroorbital injection. We found that rHDL treatment significantly blunted progression of albuminuria and GFR decline observed in DKD mice. Histological examinations showed that the rHDLs significantly alleviated glomerular injury and renal fibrosis, and inhibited podocyte loss. Western blots and immunohistochemical examinations showed that increased protein abundances of fibronectin and collagen IV in the renal cortex of eNOS-/- dbdb mice were significantly reduced by the rHDLs. Taken together, the present study suggests a renoprotective effect of rHDLs on DKD.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andras G. Lacko
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nirupama A. Sabnis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Paromita Das‐Earl
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Deena Ibrahim
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Nicole Crowe
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Zhengyang Zhou
- Department of Population and Community HealthUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Mark Cunningham
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Angie Castillo
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
6
|
Irsik DL, Chen JK, Bollag WB, Isales CM. Chronic infusion of the tryptophan metabolite kynurenine increases mean arterial pressure in male Sprague-Dawley rats. Am J Physiol Renal Physiol 2024; 327:F199-F207. [PMID: 38841747 DOI: 10.1152/ajprenal.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic kidney disease is the loss of renal function that can occur from aging or through a myriad of other disease states. Rising serum concentrations of kynurenine, a tryptophan metabolite, have been shown to correlate with increasing severity of chronic kidney disease. This study used chronic intravenous infusion in conscious male Sprague-Dawley rats to test the hypothesis that kynurenine can induce renal damage and promote alterations in blood pressure, heart rate, and decreased renal function. We found that kynurenine infusion increased mean arterial pressure, increased the maximum and minimum range of heart rate, decreased glomerular filtration rate, and induced kidney damage in a dose-dependent manner. This study shows that kynurenine infusion can promote kidney disease in healthy, young rats, implying that the increase in kynurenine levels associated with chronic kidney disease may establish a feed-forward mechanism that exacerbates the loss of renal function.NEW & NOTEWORTHY In humans, an elevated serum concentration of kynurenine has long been associated with negative outcomes in various disease states as well as in aging. However, it has been unknown whether these increased kynurenine levels are mediating the disorders or simply associated with them. This study shows that chronically infusing kynurenine can contribute to the development of hypertension and kidney impairment. The mechanism of this action remains to be determined in future studies.
Collapse
Affiliation(s)
- Debra L Irsik
- Research, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Jian-Kang Chen
- Department of Cell Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Wendy B Bollag
- Research, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
7
|
Reichardt C, Brandt S, Bernhardt A, Krause A, Lindquist JA, Weinert S, Geffers R, Franz T, Kahlfuss S, Dudeck A, Mathew A, Rana R, Isermann B, Mertens PR. DNA-binding protein-A promotes kidney ischemia/reperfusion injury and participates in mitochondrial function. Kidney Int 2024; 106:241-257. [PMID: 38821446 DOI: 10.1016/j.kint.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
DNA-binding protein-A (DbpA; gene: Ybx3) belongs to the cold shock protein family with known functions in cell cycling, transcription, translation, and tight junction communication. In chronic nephritis, DbpA is upregulated. However, its activities in acute injury models, such as kidney ischemia/reperfusion injury (IRI), are unclear. To study this, mice harboring Ybx3+/+, Ybx3+/- or the Ybx3-/- genotype were characterized over 24 months and following experimental kidney IRI. Mitochondrial function, number and integrity were analyzed by mitochondrial stress tests, MitoTracker staining and electron microscopy. Western Blot, immunohistochemistry and flow cytometry were performed to quantify tubular cell damage and immune cell infiltration. DbpA was found to be dispensable for kidney development and tissue homeostasis under healthy conditions. Furthermore, endogenous DbpA protein localizes within mitochondria in primary tubular epithelial cells. Genetic deletion of Ybx3 elevates the mitochondrial membrane potential, lipid uptake and metabolism, oxygen consumption rates and glycolytic activities of tubular epithelial cells. Ybx3-/- mice demonstrated protection from IRI with less immune cell infiltration, endoplasmic reticulum stress and tubular cell damage. A presumed protective mechanism was identified via upregulated antioxidant activities and reduced ferroptosis, when Ybx3 was deleted. Thus, our studies reveal DbpA acts as a mitochondrial protein with profound adverse effects on cell metabolism and highlights a protective effect against IRI when Ybx3 is genetically deleted. Hence, preemptive DbpA targeting in situations with expected IRI, such as kidney transplantation or cardiac surgery, may preserve post-procedure kidney function.
Collapse
Affiliation(s)
- Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sönke Weinert
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Clinic of Cardiology and Angiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Leipzig, Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infectiology and Inflammation (GCI3), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
8
|
Burfeind KG, Funahashi Y, Munhall AC, Eiwaz M, Hutchens MP. Natural Killer Lymphocytes Mediate Renal Fibrosis Due to Acute Cardiorenal Syndrome. KIDNEY360 2024; 5:8-21. [PMID: 38037228 PMCID: PMC10833608 DOI: 10.34067/kid.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Key Points Natural killer cells infiltrate the kidney after cardiac arrest and medial renal fibrosis Granzyme A is produced by natural killer cells and causes mesenchymal cell expansion and fibrosis in type 1 cardiorenal syndrome Background The AKI to CKD transition presents an opportunity for intervention to prevent CKD. Our laboratory developed a novel murine model of AKI-CKD transition and cardiac arrest/cardiopulmonary resuscitation (CA/CPR), in which all animals develop CKD at 7 weeks. The purpose of this study was to identify potential immune drivers of fibrosis after CA/CPR. Methods Cardiac arrest was induced by potassium chloride, and mice were resuscitated with chest compressions and epinephrine. The kidney immune landscape after CA/CPR was profiled using 11-color flow cytometry analysis and immunofluorescence. Immune cell-derived mediators of fibrosis were identified by analyzing data from three previously published single-cell or single-nuclear RNA sequencing studies. NRK49F fibroblasts were treated with granzyme A (GzA) in vitro , and then cell proliferation was quantified using 5-ethynyl-2′-deoxyuridine. GzA was pharmacologically inhibited both in vitro and in vivo . Results Immune cells infiltrated the kidney after CA/CPR, consisting primarily of innate immune cells, including monocytes/macrophages, neutrophils, and natural killer (NK) cells. NK cell infiltration immediately preceded mesenchymal cell expansion, which occurred starting 7 days after CA/CPR. Immune cells colocalized with mesenchymal cells, accumulating in the areas of fibrosis. Analysis of previously published single-cell or single-nuclear RNA sequencing data revealed GzA as a potential mediator of immune to mesenchymal communication. GzA administration to fibroblasts in vitro induced cell growth and proliferation. Pharmacologic blockade of GzA signaling in vivo attenuated fibrosis and improved renal function after CA/CPR. Conclusions Renal inflammation occurs during cardiorenal syndrome, which correlates with mesenchymal cell expansion. GzA, produced by NK cells, presents a novel therapeutic target to prevent the transition to CKD after AKI.
Collapse
Affiliation(s)
- Kevin G. Burfeind
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | | | | | - Mahaba Eiwaz
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
- Portland VA Medical Center, Portland, Oregon
| | - Michael P. Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
- Portland VA Medical Center, Portland, Oregon
| |
Collapse
|
9
|
Teixido-Trujillo S, Luis-Lima S, López-Martínez M, Navarro-Díaz M, Díaz-Martín L, Escasany-Martínez E, Gaspari F, Rodríguez-Rodríguez AE. Measured GFR in murine animal models: review on methods, techniques, and procedures. Pflugers Arch 2023; 475:1241-1250. [PMID: 37552296 PMCID: PMC10567863 DOI: 10.1007/s00424-023-02841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common chronic diseases worldwide, with increasing rates of morbidity and mortality. Thus, early detection is essential to prevent severe adverse events and the progression of kidney disease to an end stage. Glomerular filtration rate (GFR) is the most appropriate index to evaluate renal function in both clinical practice and basic medical research. Several animal models have been developed to understand renal disease induction and progression. Specifically, murine models are useful to study the pathogenesis of renal damage, so a reliable determination of GFR is essential to evaluate the progression of CKD. However, as in clinical practise, the estimation of GFR in murine by levels of serum/urine creatinine or cystatin-C could not be accurate and needed other more reliable methods. As an alternative, the measurement of GFR by the clearance of exogenous markers like inulin, sinistrin, 51Cr-EDTA, 99mTc-DTPA, 125I-iothalamate, or iohexol could be performed. Nevertheless, both approaches-estimation or measurement of GFR-have their limitations and a standard method for the GFR determination has not been defined. Altogether, in this review, we aim to give an overview of the current methods for GFR assessment in murine models, describing each methodology and focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Silvia Teixido-Trujillo
- Universidad de La Laguna, Faculty of Medicine, San Cristóbal de La Laguna, Spain
- Research Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Sergio Luis-Lima
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | | | - Maruja Navarro-Díaz
- Department of Nephology, Hospital de Sant Joan Despí Moisès Broggi, Barcelona, Spain
| | - Laura Díaz-Martín
- Research Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Elia Escasany-Martínez
- Lipobeta group. Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Flavio Gaspari
- Instituto di Ricerche Farmacologiche Mario Negri (IRCCS), Clinical Research Center for Rare Diseases 'Aldo & Cele Daccò, Bergamo, Italy
| | - Ana Elena Rodríguez-Rodríguez
- Universidad de La Laguna, Faculty of Medicine, San Cristóbal de La Laguna, Spain.
- Research Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
10
|
Tiwari R, Sharma R, Rajendran G, Borkowski GS, An SY, Schonfeld M, O’Sullivan J, Schipma MJ, Zhou Y, Courbon G, David V, Quaggin SE, Thorp E, Chandel NS, Kapitsinou PP. Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560700. [PMID: 37873349 PMCID: PMC10592920 DOI: 10.1101/2023.10.03.560700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ischemic acute kidney injury (AKI) is common in hospitalized patients and increases the risk for chronic kidney disease (CKD). Impaired endothelial cell (EC) functions are thought to contribute in AKI to CKD transition, but the underlying mechanisms remain unclear. Here, we identify a critical role for endothelial oxygen sensing prolyl hydroxylase domain (PHD) enzymes 1-3 in regulating post-ischemic kidney repair. In renal endothelium, we observed compartment-specific differences in the expression of the three PHD isoforms in both mice and humans. We found that post-ischemic concurrent inactivation of endothelial PHD1, PHD2, and PHD3 but not PHD2 alone promoted maladaptive kidney repair characterized by exacerbated tissue injury, fibrosis, and inflammation. Single-cell RNA-seq analysis of the post-ischemic endothelial PHD1, PHD2 and PHD3 deficient (PHDTiEC) kidney revealed an endothelial glycolytic transcriptional signature, also observed in human kidneys with severe AKI. This metabolic program was coupled to upregulation of the SLC16A3 gene encoding the lactate exporter monocarboxylate transporter 4 (MCT4). Strikingly, treatment with the MCT4 inhibitor syrosingopine restored adaptive kidney repair in PHDTiEC mice. Mechanistically, MCT4 inhibition suppressed pro-inflammatory EC activation reducing monocyte-endothelial cell interaction. Our findings suggest avenues for halting AKI to CKD transition based on selectively targeting the endothelial hypoxia-driven glycolysis/MCT4 axis.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rajni Sharma
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ganeshkumar Rajendran
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gabriella S. Borkowski
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Si Young An
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schonfeld
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James O’Sullivan
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yalu Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guillaume Courbon
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentin David
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward Thorp
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S. Chandel
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
11
|
Chan G, Pino CJ, Johnston KA, Humes HD. Estimating Changes in Glomerular Filtration Rate With Fluorescein Isothiocyanate-Sinistrin During Renal Replacement Therapy. ASAIO J 2023; 69:810-815. [PMID: 37104481 DOI: 10.1097/mat.0000000000001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Excreted exclusively by the kidneys, fluorescein isothiocyanate (FITC)-sinistrin can be used to measure glomerular filtration rate (GFR) and is detectable transdermally. Determination of changes in native kidney GFR (NK-GFR) in patients with acute kidney injury, particularly during continuous renal replacement therapy, improves clinical decision-making capability. To test feasibility of measuring changes in NK-GFR during CRRT with FITC-sinistrin, in vitro circuits (n = 2) were utilized to simultaneously clear FITC-sinistrin by removal of ultrafiltrate at varying rates, simulating kidney function, and by dialysis at a constant rate. Clearance calculated by fluorescence-measuring devices on the circuit showed good agreement with clearance calculated from assay of fluid samples ( R2 = 0.949). In vivo feasibility was studied by dialyzing anesthetized pigs (n = 3) and measuring FITC-sinistrin clearance during progression from normal, to unilaterally, then bilaterally nephrectomized. FITC-sinistrin clearance was reduced in vitro , when ultrafiltrate was decreased or with successive nephrectomies in vivo . Transdermal readers showed 100% sensitivity in detecting a decrease in NK-GFR in pigs with a bias of 6.5 ± 13.4% between transdermal-derived GFR (tGFR) and plasma-measured methods determining proportional changes in clearance. Clearance of FITC-sinistrin by dialysis remained consistent. In patients receiving a constant dialysis prescription, transdermal measurement of FITC-sinistrin can detect relative changes in NK-GFR.
Collapse
Affiliation(s)
- Goldia Chan
- From the Department of Veterinary Medicine, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Pino
- Innovative BioTherapies, Inc., Ann Arbor, Michigan
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Kimberly A Johnston
- Innovative BioTherapies, Inc., Ann Arbor, Michigan
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - H David Humes
- Innovative BioTherapies, Inc., Ann Arbor, Michigan
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Calvert ND, Kirby A, Suchý M, Pallister P, Torrens AA, Burger D, Melkus G, Schieda N, Shuhendler AJ. Direct mapping of kidney function by DCE-MRI urography using a tetrazinanone organic radical contrast agent. Nat Commun 2023; 14:3965. [PMID: 37407664 DOI: 10.1038/s41467-023-39720-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are ongoing global health burdens. Glomerular filtration rate (GFR) is the gold standard measure of kidney function, with clinical estimates providing a global assessment of kidney health without spatial information of kidney- or region-specific dysfunction. The addition of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to the anatomical imaging already performed would yield a 'one-stop-shop' for renal assessment in cases of suspected AKI and CKD. Towards urography by DCE-MRI, we evaluated a class of nitrogen-centered organic radicals known as verdazyls, which are extremely stable even in highly reducing environments. A glucose-modified verdazyl, glucoverdazyl, provided contrast limited to kidney and bladder, affording functional kidney evaluation in mouse models of unilateral ureteral obstruction (UUO) and folic acid-induced nephropathy (FAN). Imaging outcomes correlated with histology and hematology assessing kidney dysfunction, and glucoverdazyl clearance rates were found to be a reliable surrogate measure of GFR.
Collapse
Affiliation(s)
- Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Alexia Kirby
- Department of Biology, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Mojmír Suchý
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Peter Pallister
- Department of Chemistry, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Aidan A Torrens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Burger
- Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Gerd Melkus
- Dept. Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
- Dept. Radiology, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Nicola Schieda
- Dept. Radiology, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario, K1H 8L6, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
- Department of Biology, University of Ottawa, 150 Louis Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada.
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, Ontario, K1Y 4W7, Canada.
| |
Collapse
|
13
|
Tao Y, Young‐Stubbs C, Yazdizadeh Shotorbani P, Su D, Mathis KW, Ma R. Sex and strain differences in renal hemodynamics in mice. Physiol Rep 2023; 11:e15644. [PMID: 36946063 PMCID: PMC10031302 DOI: 10.14814/phy2.15644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
The present study was to examine sex and strain differences in glomerular filtration rate (GFR) and renal blood flow (RBF) in C57BL6, 129/Sv, and C57BLKS/J mice, three commonly used mouse strains in renal research. GFR was measured by transdermal measurement of FITC-sinitrin clearance in conscious mice. RBF was measured by a flow probe placed in the renal artery under an anesthetic state. In C57BL6 mice, there were no sex differences in both GFR and RBF. In 129/Sv mice, females had significantly greater GFR than males at age of 24 weeks, but not at 8 weeks. However, males had higher RBF and lower renal vascular resistance (RVR). Similar to 129/Sv, female C57BLKS/J had significantly greater GFR at both 8 and 24 weeks, lower RBF, and higher RVR than males. Across strains, male 129/Sv had lower GFR and higher RBF than male C57BL6, but no significant difference in GFR and greater RBF than male C57BLKS/J. No significant difference in GFR or RBF was observed between C57BL6 and C57BLKS/J mice. Deletion of eNOS in C57BLKS/J mice reduced GFR in both sexes, but decreased RBF in males. Furthermore, there were no sex differences in the severity of renal injury in eNOS-/- dbdb mice. Taken together, our study suggests that sex differences in renal hemodynamics in mice are strain and age dependent. eNOS was not involved in the sex differences in GFR, but in RBF. Furthermore, the sexual dimorphism did not impact the severity of renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Cassandra Young‐Stubbs
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | | | - Dong‐Ming Su
- Department of Microbiology, Immunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Keisa W. Mathis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
14
|
Levanovich PE, Daugherty AM, Komnenov D, Rossi NF. Dietary fructose and high salt in young male Sprague Dawley rats induces salt-sensitive changes in renal function in later life. Physiol Rep 2022; 10:e15456. [PMID: 36117446 PMCID: PMC9483717 DOI: 10.14814/phy2.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023] Open
Abstract
Dietary fructose and salt are associated with hypertension and renal disease. Dietary input during critical postnatal periods may impact pathophysiology in maturity. The highest consumption of fructose occurs during adolescence. We hypothesized that a diet high in fructose with or without high salt in young male Sprague Dawley rats will lead to salt-sensitive hypertension, albuminuria, and decreased renal function in maturity. Four groups were studied from age 5 weeks: 20% glucose + 0.4% salt (GCS-GCS) or 20% fructose + 4% salt throughout (FHS-FHS). Two groups received 20% fructose + 0.4% salt or 20% fructose + 4% salt for 3 weeks (Phase I) followed by 20% glucose + 0.4% salt (Phase II). In Phase III (age 13-15 weeks), these two groups were challenged with 20% glucose + 4% salt, (FCS-GHS) and (FHS-GHS), respectively. Each group fed fructose in Phase I exhibited significantly higher MAP than GCS-GCS in Phase III. Net sodium balance, unadjusted, or adjusted for caloric intake and urine flow rate, and cumulative sodium balance were positive in FHS during Phase I and were significantly higher in FCS-GHS, FHS-GHS, and FHS-FHS vs GCS-GCS during Phase III. All three groups fed fructose during Phase I displayed significantly elevated albuminuria. GFR was significantly lower in FHS-FHS vs GCS-GCS at maturity. Qualitative histology showed mesangial expansion and hypercellularity in FHS-FHS rats. Thus, fructose ingestion during a critical period in rats, analogous to human preadolescence and adolescence, results in salt-sensitive hypertension and albuminuria in maturity. Prolonged dietary fructose and salt ingestion lead to a decline in renal function with evidence suggestive of mesangial hypercellularity.
Collapse
Affiliation(s)
| | - Ana M. Daugherty
- Department of Psychology and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Dragana Komnenov
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
| | - Noreen F. Rossi
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
- John D. Dingell VA Medical CenterDetroitMichiganUSA
| |
Collapse
|
15
|
Kaseda S, Sannomiya Y, Horizono J, Kuwazuru J, Suico MA, Ogi S, Sasaki R, Sunamoto H, Fukiya H, Nishiyama H, Kamura M, Niinou S, Koyama Y, Nara F, Shuto T, Onuma K, Kai H. Novel Keap1-Nrf2 Protein-Protein Interaction Inhibitor UBE-1099 Ameliorates Progressive Phenotype in Alport Syndrome Mouse Model. KIDNEY360 2022; 3:687-699. [PMID: 35721612 PMCID: PMC9136903 DOI: 10.34067/kid.0004572021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bardoxolone methyl activates nuclear factor erythroid 2-related factor 2 (Nrf2) via covalent binding and irreversible inhibition of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator of Nrf2. Ongoing clinical trials of bardoxolone methyl show promising effects for patients with CKD. However, the direct inhibition of Keap1-Nrf2 protein-protein interaction (PPI) as an approach to activate Nrf2 is less explored. METHODS We developed a noncovalent Nrf2 activator UBE-1099, which highly selectively inhibits Keap1-Nrf2 PPI, and evaluated its efficacy on the progressive phenotype in an Alport syndrome mouse model (Col4a5-G5X). RESULTS Similar to bardoxolone methyl, UBE-1099 transiently increased proteinuria and reduced plasma creatinine in Alport mice. Importantly, UBE-1099 improved the glomerulosclerosis, renal inflammation, and fibrosis, and prolonged the life span of Alport mice. UBE-1099 ameliorated the dysfunction of Nrf2 signaling in the renal tissue of Alport mice. Moreover, transcriptome analysis in the glomerulus showed that UBE-1099 induced the expression of genes associated with the cell cycle and cytoskeleton, which may explain its unique mechanism of improvement such as glomerular morphologic change. CONCLUSIONS UBE-1099 significantly ameliorates the progressive phenotype in Alport mice. Our results revealed the efficacy of Keap1-Nrf2 PPI inhibitor for glomerulosclerosis and present a potential therapeutic drug for CKD.
Collapse
Affiliation(s)
- Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Yuya Sannomiya
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Horizono
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sayaka Ogi
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Ryoko Sasaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sunamoto
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirohiko Fukiya
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hayato Nishiyama
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Saki Niinou
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuimi Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Futoshi Nara
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Onuma
- Pharmaceuticals Research Laboratory, UBE Industries Ltd., Yamaguchi, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate School “HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program,” Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
17
|
Ramkumar N, Stuart D, Peterson CS, Hu C, Wheatley W, Cho JM, Symons JD, Kohan DE. Loss of Soluble (Pro)renin Receptor Attenuates Angiotensin-II Induced Hypertension and Renal Injury. Circ Res 2021; 129:50-62. [PMID: 33890822 PMCID: PMC8225587 DOI: 10.1161/circresaha.120.317532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Caitlin S. Peterson
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Chunyan Hu
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - William Wheatley
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| | - Jae Min Cho
- Nutrition and Integrative Physiology, University of Utah Health,Salt Lake City, UT
| | - J David Symons
- Nutrition and Integrative Physiology, University of Utah Health,Salt Lake City, UT
- Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, UT
| |
Collapse
|
18
|
Ahmad A, Shi J, Ansari S, Afaghani J, Molina J, Pollack A, Merscher S, Zeidan YH, Fornoni A, Marples B. Noninvasive assessment of radiation-induced renal injury in mice. Int J Radiat Biol 2021; 97:664-674. [PMID: 33464992 PMCID: PMC8352084 DOI: 10.1080/09553002.2021.1876950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE The kidney is a radiosensitive late-responding normal tissue. Injury is characterized by radiation nephropathy and decline of glomerular filtration rate (GFR). The current study aimed to compare two rapid and cost-effective methodologies of assessing GFR against more conventional biomarker measurements. METHODS C57BL/6 mice were treated with bilateral focal X-irradiation (1x14Gy or 5x6Gy). Functional measurements of kidney injury were assessed 20 weeks post-treatment. GFR was estimated using a transcutaneous measurement of fluorescein-isothiocyanate conjugated (FITC)-sinistrin renal excretion and also dynamic contrast-enhanced CT imaging with a contrast agent (ISOVUE-300 Iopamidol). RESULTS Hematoxylin and eosin (H&E) and Periodic acid-Schiff staining identified comparable radiation-induced glomerular atrophy and mesangial matrix accumulation after both radiation schedules, respectively, although the fractionated regimen resulted in less diffuse tubulointerstitial fibrosis. Albumin-to-creatinine ratios (ACR) increased after irradiation (1x14Gy: 100.4 ± 12.2 µg/mg; 6x5Gy: 80.4 ± 3.02 µg/mg) and were double that of nontreated controls (44.9 ± 3.64 µg/mg). GFR defined by both techniques was negatively correlated with BUN, mesangial expansion score, and serum creatinine. The FITC-sinistrin transcutaneous method was more rapid and can be used to assess GFR in conscious animals, dynamic contrast-enhanced CT imaging technique was equally safe and effective. CONCLUSION This study demonstrated that GFR measured by dynamic contrast-enhanced CT imaging is safe and effective compared to transcutaneous methodology to estimate kidney function.
Collapse
Affiliation(s)
- Anis Ahmad
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Junwei Shi
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Saba Ansari
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Jumana Afaghani
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Judith Molina
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Youssef H. Zeidan
- Department of Radiation Oncology, Anatomy, Cell Biology, and Physiology, American University of Beirut School of Medicine, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14642
- Peggy and Harold Katz Family Drug Discovery Center and Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
19
|
Iohexol plasma clearance simplified by Dried Blood Spot (DBS) sampling to measure renal function in conscious mice. Sci Rep 2021; 11:4591. [PMID: 33633207 PMCID: PMC7907335 DOI: 10.1038/s41598-021-83934-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
There is no simple method to measure glomerular filtration rate (GFR) in mice, which limits the use of mice in models of renal diseases. We aimed at simplifying the plasma clearance of iohexol in mice, using dried blood spot (DBS) sampling in order to reduce the amount of blood taken for analysis. GFR was measured simultaneously by a reference method in total blood—as described before—and tested method using DBS in fifteen male and six female C57BL/6J mice. Total blood extraction was 50 μL for the reference methods and 25μL for the tested methods, distributed in 5 samples. The agreement of GFR values between both methods was analyzed with the concordance correlation coefficient (CCC), total deviation index (TDI) and coverage probability (CP). The agreement between both methods was excellent, showing a TDI = 8.1%, which indicates that 90% of the GFR values obtained with DBS showed an error ranging from − 8 to + 8% of the reference method; a CCC of 0.996 (CI: 0.992), reflecting high precision and accuracy and a CP of 94 (CI: 83), indicating that 6% of the GFR values obtained with DBS had an error greater than 10% of the method in blood. So, both methods are interchangeable. DBS represent a major simplification of GFR measurement in mice. Also, DBS improves animal welfare by reducing the total blood required and refining the procedure.
Collapse
|
20
|
Boer GA, Hartmann B, Holst JJ. Pharmacokinetics of exogenous GIP(1-42) in C57Bl/6 mice; Extremely rapid degradation but marked variation between available assays. Peptides 2021; 136:170457. [PMID: 33245951 PMCID: PMC7883216 DOI: 10.1016/j.peptides.2020.170457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Like other peptide hormones, glucose-dependent insulinotropic polypeptide (GIP) is rapidly cleared from the circulation. Dipeptidyl peptidase-4 (DPP-4) is known to be involved. Information on the overall pharmacokinetics of GIP in rodents is, however, lacking. We investigated the pharmacokinetics of exogenous GIP after intravenous, subcutaneous and intraperitoneal injection with and without DPP-4 inhibition in conscious female C57Bl/6 mice. Secondly, we compared total and intact GIP levels measured by an in-house RIA and commercially available ELISA kits to determine the suitability of these methods for in vivo and in vitro measurements. GIP half-life following intravenous injection amounted to 93 ± 2 s, which was extended to 5 ± 0.6 min by inhibition of DPP-4. Intact GIP levels following subcutaneous and intraperitoneal GIP administration were approximately 15 % of total GIP. The area under the curve of intact GIP (GIP exposure) following GIP injection was significantly increased by DPP-4 inhibition, whereas total GIP levels remained unchanged. We found significant variation between measurements of total, but not intact GIP performed with our in-house RIA and ELISAs in samples obtained after in vivo administration of GIP. Different preanalytical sample preparation (EDTA plasma, heparin plasma, assay buffer and PBS) significantly influenced results for all ELISA kits used. Thus, in experiments involving exogenous GIP(1-42) administration in mice, it is important to consider that this will result in a very low ratio of intact:total peptide but co-administration of a DPP-4 inhibitor greatly elevates this ratio. Furthermore, for comparison of GIP levels, it is essential to maintain uniformity concerning assay methodology and sample preparation.
Collapse
Affiliation(s)
- Geke Aline Boer
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Pandya DN, Henry KE, Day CS, Graves SA, Nagle VL, Dilling TR, Sinha A, Ehrmann BM, Bhatt NB, Menda Y, Lewis JS, Wadas TJ. Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability. Inorg Chem 2020; 59:17473-17487. [PMID: 33169605 DOI: 10.1021/acs.inorgchem.0c02722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t1/2 = 78.4 h, β+: 22.8%, Eβ+max = 901 keV; EC: 77%, Eγ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2',2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2',2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.
Collapse
Affiliation(s)
- Darpan N Pandya
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Stephen A Graves
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Veronica L Nagle
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Akesh Sinha
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikunj B Bhatt
- Department of Radiology, Columbia University, New York, New York 10032, United States
| | - Yusuf Menda
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thaddeus J Wadas
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
22
|
Rush BM, Bondi CD, Stocker SD, Barry KM, Small SA, Ong J, Jobbagy S, Stolz DB, Bastacky SI, Chartoumpekis DV, Kensler TW, Tan RJ. Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice. Kidney Int 2020; 99:102-116. [PMID: 32818518 DOI: 10.1016/j.kint.2020.07.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway upregulates key cellular defenses. Clinical trials are utilizing pharmacologic Nrf2 inducers such as bardoxolone methyl to treat chronic kidney disease, but Nrf2 activation has been linked to a paradoxical increase in proteinuria. To understand this effect, we examined genetically engineered mice with elevated Nrf2 signaling due to reduced expression of the Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1). These Keap1FA/FA mice lacked baseline proteinuria but exhibited increased proteinuria in experimental models evoked by adriamycin, angiotensin II, or protein overload. After injury, Keap1FA/FA mice had increased glomerulosclerosis, nephrin disruption and shedding, podocyte injury, foot process effacement, and interstitial fibrosis. Keap1FA/FA mice also had higher daytime blood pressures and lower heart rates measured by radiotelemetry. Conversely, Nrf2 knockout mice were protected from proteinuria. We also examined the pharmacologic Nrf2 inducer CDDO-Im. Compared to angiotensin II alone, the combination of angiotensin II and CDDO-Im significantly increased proteinuria, a phenomenon not observed in Nrf2 knockout mice. This effect was not accompanied by additional increases in blood pressure. Finally, Nrf2 was found to be upregulated in the glomeruli of patients with focal segmental glomerulosclerosis, diabetic nephropathy, fibrillary glomerulonephritis, and membranous nephropathy. Thus, our studies demonstrate that Nrf2 induction in mice may exacerbate proteinuria in chronic kidney disease.
Collapse
Affiliation(s)
- Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corry D Bondi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kacie M Barry
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah A Small
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jason Ong
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Soma Jobbagy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dionysios V Chartoumpekis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Ullah MM, Ow CPC, Evans RG, Hilliard Krause LM. Impact of choice of kinetic model for the determination of transcutaneous FITC-sinistrin clearance in rats with streptozotocin-induced type 1 diabetes. Clin Exp Pharmacol Physiol 2020; 47:1158-1168. [PMID: 32160333 DOI: 10.1111/1440-1681.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Transcutaneous assessment of fluorescein isothiocyanate (FITC)-sinistrin clearance using an optical device was recently validated for determination of glomerular filtration rate (GFR) in conscious animals. In the current study, we compared four available kinetic models for calculating FITC-sinistrin clearance, to provide further insight into whether the choice of model might influence findings generated using this device. Specifically, we calculated the excretion half-life of FITC-sinistrin (minutes), rate constant (minute-1 ) and GFR indexed to bodyweight in control rats and rats with streptozotocin-induced diabetes across a 4-week experimental period using standard one-compartment (1-COM), two-compartment (2-COM) and three-compartment (3-COM) kinetic models (1-COM), and a three-compartment kinetic model with baseline correction (3-COMB). Glomerular hyperfiltration was detected in STZ-induced diabetic rats with the 2-COM or 3-COMB at day 14 and with the 3-COM at day 3 and 14 after induction of diabetes, but not at any time point using the 1-COM. From a theoretical perspective, we reasoned that the 3-COMB model provides a better estimate of t1/2 than the other models. Linear regression analysis of data generated using the 3-COMB showed a significant relationship between blood glucose and calculated GFR at the day 14 (P = .004) and day 28 (P = .01) time points, and a strong tendency for a relationship at the day 3 time point (P = .06). We conclude that hyperfiltration is an early and sustained characteristic of STZ-induced diabetes in rats. Furthermore, we propose that the 3-COMB model provides the most valid t1/2 for estimation of GFR via transcutaneous detection of FITC-sinistrin clearance.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Connie P C Ow
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Roger G Evans
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
24
|
Mullins TP, Tan WS, Carter DA, Gallo LA. Validation of non-invasive transcutaneous measurement for glomerular filtration rate in lean and obese C57BL/6J mice. Nephrology (Carlton) 2020; 25:575-581. [PMID: 32180312 DOI: 10.1111/nep.13713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
AIM The measurement of glomerular filtration rate (GFR) in experimental rodents is pivotal to understanding the progression of kidney disease and benefits of treatment strategies. A non-invasive clearance device has been developed, which measures transcutaneous decay of injected FITC-sinistrin in conscious rodents. The technique was validated against the well-established plasma clearance method in the same mice, but on consecutive days, using only models of uninephrectomy and polycystic kidney disease. We aimed to validate this widely used technique in the same lean or obese mice, at the same time. METHODS Five-week-old male C57BL/6J mice were randomised to a high fat diet (n = 12) or normal diet (n = 11) for 10 weeks. Transcutaneous and plasma clearance of FITC-sinistrin were measured simultaneously in each mouse. RESULTS In lean mice, there was a positive correlation between transcutaneous and plasma derived GFR (P < .01, R2 = .704), although there was an approximate 40% underestimation by the transcutaneous method (P < .0001). In obese mice, no correlation was observed between transcutaneous and plasma derived GFR, nor elimination half-life which removes any effect of the conversion factor and injected dose. The limits of agreement in a Bland-Altman plot were narrower when we used new conversion factors derived from mice in the current study and, in lean mice, a generic conversion factor which assumes 20% extracellular volume. CONCLUSION The non-invasive clearance device may be useful for serial GFR measurements in lean and healthy mice, provided validation studies have been carried out, but its utility in obesity requires further study.
Collapse
Affiliation(s)
- Thomas P Mullins
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Australia
| | - Wei Sheng Tan
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Duke-NUS Medical School, Singapore, Singapore
| | - David A Carter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.,Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
25
|
Shaver CM, Paul MG, Putz ND, Landstreet SR, Kuck JL, Scarfe L, Skrypnyk N, Yang H, Harrison FE, de Caestecker MP, Bastarache JA, Ware LB. Cell-free hemoglobin augments acute kidney injury during experimental sepsis. Am J Physiol Renal Physiol 2019; 317:F922-F929. [PMID: 31364379 PMCID: PMC6843044 DOI: 10.1152/ajprenal.00375.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.
Collapse
Affiliation(s)
- Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda G Paul
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamie L Kuck
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nataliya Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
The acute kidney injury to chronic kidney disease transition in a mouse model of acute cardiorenal syndrome emphasizes the role of inflammation. Kidney Int 2019; 97:95-105. [PMID: 31623859 DOI: 10.1016/j.kint.2019.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Acute cardiorenal syndrome is a common complication of acute cardiovascular disease. Studies of acute kidney injury (AKI) to chronic kidney disease (CKD) transition, including patients suffering acute cardiovascular disease, report high rates of CKD development. Therefore, acute cardiorenal syndrome associates with CKD, but no study has established causation. To define this we used a murine cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) model or sham procedure on male mice. CA was induced with potassium chloride while CPR consisted of chest compressions and epinephrine eight minutes later. Two weeks after AKI was induced by CA/CPR, the measured glomerular filtration rate (GFR) was not different from sham. However, after seven weeks the mice developed CKD, recapitulating clinical observations. One day, and one, two, and seven weeks after CA/CPR, the GFR was measured, and renal tissue sections were evaluated for various indices of injury and inflammation. One day after CA/CPR, acute cardiorenal syndrome was indicated by a significant reduction of the mean GFR (649 in sham, vs. 25 μL/min/100g in CA/CPR animals), KIM-1 positive tubules, and acute tubular necrosis. Renal inflammation developed, with F4/80 positive and CD3-positive cells infiltrating the kidney one day and one week after CA/CPR, respectively. Although there was functional recovery with normalization of GFR two weeks after CA/CPR, deposition of tubulointerstitial matrix proteins α-smooth muscle actin and fibrillin-1 progressed, along with a significantly reduced mean GFR (623 in sham vs. 409 μL/min/100g in CA/CPR animals), proteinuria, increased tissue transforming growth factor-β, and fibrosis establishing the development of CKD seven weeks after CA/CPR. Thus, murine CA/CPR, a model of acute cardiorenal syndrome, causes an AKI-CKD transition likely due to prolonged renal inflammation.
Collapse
|
27
|
Niculovic KM, Blume L, Wedekind H, Kats E, Albers I, Groos S, Abeln M, Schmitz J, Beuke E, Bräsen JH, Melk A, Schiffer M, Weinhold B, Münster-Kühnel AK. Podocyte-Specific Sialylation-Deficient Mice Serve as a Model for Human FSGS. J Am Soc Nephrol 2019; 30:1021-1035. [PMID: 31040189 DOI: 10.1681/asn.2018090951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The etiology of steroid-resistant nephrotic syndrome, which manifests as FSGS, is not completely understood. Aberrant glycosylation is an often underestimated factor for pathologic processes, and structural changes in the glomerular endothelial glycocalyx have been correlated with models of nephrotic syndrome. Glycans are frequently capped by sialic acid (Sia), and sialylation's crucial role for kidney function is well known. Human podocytes are highly sialylated; however, sialylation's role in podocyte homeostasis remains unclear. METHODS We generated a podocyte-specific sialylation-deficient mouse model (PCmas-/- ) by targeting CMP-Sia synthetase, and used histologic and ultrastructural analysis to decipher the phenotype. We applied CRISPR/Cas9 technology to generate immortalized sialylation-deficient podocytes (asialo-podocytes) for functional studies. RESULTS Progressive loss of sialylation in PCmas-/- mice resulted in onset of proteinuria around postnatal day 28, accompanied by foot process effacement and loss of slit diaphragms. Podocyte injury led to severe glomerular defects, including expanded capillary lumen, mesangial hypercellularity, synechiae formation, and podocyte loss. In vivo, loss of sialylation resulted in mislocalization of slit diaphragm components, whereas podocalyxin localization was preserved. In vitro, asialo-podocytes were viable, able to proliferate and differentiate, but showed impaired adhesion to collagen IV. CONCLUSIONS Loss of cell-surface sialylation in mice resulted in disturbance of podocyte homeostasis and FSGS development. Impaired podocyte adhesion to the glomerular basement membrane most likely contributed to disease development. Our data support the notion that loss of sialylation might be part of the complex process causing FSGS. Sialylation, such as through a Sia supplementation therapy, might provide a new therapeutic strategy to cure or delay FSGS and potentially other glomerulopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Esther Beuke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; and
| | - Jan H Bräsen
- Nephropathology Unit, Institute of Pathology, and
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; and
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
28
|
Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis. Sci Rep 2019; 9:4596. [PMID: 30872636 PMCID: PMC6418206 DOI: 10.1038/s41598-019-40795-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cullin 3 (CUL3) is part of the ubiquitin proteasomal system and controls several cellular processes critical for normal organ function including the cell cycle, and Keap1/Nrf2 signaling. Kidney tubule-specific Cul3 disruption causes tubulointerstitial fibrosis, but little is known about the mechanisms. Therefore, we tested the hypothesis that dysregulation of the cell cycle and Keap1/Nrf2 pathway play a role in initiating the kidney injury upon Cul3 disruption. Cul3 deletion increased expression of cyclin E and p21, associated with uncontrolled proliferation, DNA damage, and apoptosis, all of which preceded proximal tubule injury. The cdk2-cyclin E inhibitor roscovitine did not prevent the effects of Cul3 deletion, but instead exacerbated the kidney injury. Injury occurred despite accumulation and activation of CUL3 substrate Keap1/Nrf2, proposed to be protective in kidney injury. Cul3 disruption led to progressive interstitial inflammation, functionally relevant renal fibrosis and death. Finally, we observed reduced CUL3 expression in several AKI and CKD mouse models and in fibrotic human kidney tissue. These data establish CUL3 knockout mice as a novel genetic CKD model in which dysregulation of the cell cycle may play a primary role in initiating tubule injury, and that CUL3 dysregulation could contribute to acute and fibrotic kidney disease.
Collapse
|
29
|
Cippà PE, Liu J, Sun B, Kumar S, Naesens M, McMahon AP. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat Commun 2019; 10:1157. [PMID: 30858375 PMCID: PMC6411919 DOI: 10.1038/s41467-019-09092-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanisms initiating late immune responses to an allograft are poorly understood. Here we show, via transcriptome analysis of serial protocol biopsies from kidney transplants, that the initial responses to kidney injury correlate with a late B lymphocyte signature relating to renal dysfunction and fibrosis. With a potential link between dysfunctional repair and immunoreactivity, we investigate the immunological consequences of dysfunctional repair examining chronic disease in mouse kidneys 18 months after a bilateral ischemia/reperfusion injury event. In the absence of foreign antigens, a sustained immune response involving both innate and adaptive immune systems accompanies a transition to chronic kidney damage. At late stages, B lymphocytes exhibite an antigen-driven proliferation, selection and maturation into broadly-reacting antibody-secreting cells. These findings reveal a previously unappreciated role for dysfunctional tissue repair in local immunomodulation that may have particular relevance to transplant-associated immunobiology.
Collapse
Affiliation(s)
- Pietro E Cippà
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
- Division of Nephrology, Regional Hospital Lugano, Lugano, 6900, Switzerland.
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Bo Sun
- Molecular and Computational Biology, University of Southern California, Los Angeles, 90089-2910, CA, USA
| | - Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
| |
Collapse
|
30
|
Wakasaki R, Matsushita K, Golgotiu K, Anderson S, Eiwaz MB, Orton DJ, Han SJ, Lee HT, Smith RD, Rodland KD, Piehowski PD, Hutchens MP. Glomerular filtrate proteins in acute cardiorenal syndrome. JCI Insight 2019; 4:122130. [PMID: 30829647 DOI: 10.1172/jci.insight.122130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Acute cardiorenal syndrome (CRS-1) is a morbid complication of acute cardiovascular disease. Heart-to-kidney signals transmitted by "cardiorenal connectors" have been postulated, but investigation into CRS-1 has been limited by technical limitations and a paucity of models. To address these limitations, we developed a translational model of CRS-1, cardiac arrest and cardiopulmonary resuscitation (CA/CPR), and now report findings from nanoscale mass spectrometry proteomic exploration of glomerular filtrate 2 hours after CA/CPR or sham procedure. Filtrate acquisition was confirmed by imaging, molecular weight and charge distribution, and exclusion of protein specific to surrounding cells. Filtration of proteins specific to the heart was detected following CA/CPR and confirmed with mass spectrometry performed using urine collections from mice with deficient tubular endocytosis. Cardiac LIM protein was a CA/CPR-specific filtrate component. Cardiac arrest induced plasma release of cardiac LIM protein in mice and critically ill human cardiac arrest survivors, and administration of recombinant cardiac LIM protein to mice altered renal function. These findings demonstrate that glomerular filtrate is accessible to nanoscale proteomics and elucidate the population of proteins filtered 2 hours after CA/CPR. The identification of cardiac-specific proteins in renal filtrate suggests a novel signaling mechanism in CRS-1. We expect these findings to advance understanding of CRS-1.
Collapse
Affiliation(s)
- Rumie Wakasaki
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Katsuyuki Matsushita
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsti Golgotiu
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Sharon Anderson
- Operative Care Division and Research and Development Division, Portland Veterans Affairs Medical Center, Portland, Oregon, USA.,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, Oregon, USA
| | - Mahaba B Eiwaz
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Environmental and Biological Services Division, Richland, Washington, USA
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Environmental and Biological Services Division, Richland, Washington, USA
| | - Karin D Rodland
- Pacific Northwest National Laboratory, Environmental and Biological Services Division, Richland, Washington, USA
| | - Paul D Piehowski
- Pacific Northwest National Laboratory, Environmental and Biological Services Division, Richland, Washington, USA
| | - Michael P Hutchens
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Operative Care Division and Research and Development Division, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
31
|
Gündel D, Pohle U, Prell E, Odparlik A, Thews O. Assessing Glomerular Filtration in Small Animals Using [ 68Ga]DTPA and [ 68Ga]EDTA with PET Imaging. Mol Imaging Biol 2019; 20:457-464. [PMID: 29063303 DOI: 10.1007/s11307-017-1135-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals. PROCEDURES Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals. RESULTS Both tracers did not bind to blood cells. [68Ga]DPTA but not [68Ga]EDTA showed strong binding to plasma proteins. For this reason, [68Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [68Ga]EDTA was 89 ± 1 %. The calculated GFR using [68Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [68Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR. CONCLUSIONS [68Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [68Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.
Collapse
Affiliation(s)
- Daniel Gündel
- Department of Nuclear Medicine, University Hospital, Halle (Saale), Germany.
| | - Ulrike Pohle
- Department of Nuclear Medicine, University Hospital, Halle (Saale), Germany
| | - Erik Prell
- Department of Nuclear Medicine, University Hospital, Halle (Saale), Germany
| | - Andreas Odparlik
- Department of Nuclear Medicine, University Hospital, Halle (Saale), Germany
| | - Oliver Thews
- Institute of Physiology, University Halle, Halle (Saale), Germany
| |
Collapse
|
32
|
Shepard BD, Koepsell H, Pluznick JL. Renal olfactory receptor 1393 contributes to the progression of type 2 diabetes in a diet-induced obesity model. Am J Physiol Renal Physiol 2018; 316:F372-F381. [PMID: 30484350 DOI: 10.1152/ajprenal.00069.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Olfactory receptors are G protein-coupled receptors that serve to detect odorants in the nose. Additionally, these receptors are expressed in other tissues, where they have functions outside the canonical smell response. Olfactory receptor 1393 (Olfr1393) was recently identified as a novel regulator of Na+-glucose cotransporter 1 (Sglt1) localization in the renal proximal tubule. Glucose reabsorption in the proximal tubule (via Sglt1 and Sglt2) has emerged as an important contributor to the development of diabetes. Inhibition of Sglt2 is accepted as a viable therapeutic treatment option for patients with type 2 diabetes and has been shown to delay development of diabetic kidney disease. We hypothesized that Olfr1393 may contribute to the progression of type 2 diabetes, particularly the development of hyperfiltration, which has been linked to increased Na+ reabsorption in the proximal tubule via the Sglts. To test this hypothesis, Olfr1393 wild-type (WT) and knockout (KO) mice were challenged with a high-fat diet to induce early-stage type 2 diabetes. After 16 wk on the high-fat diet, fasting blood glucose values were increased and glucose tolerance was impaired in the male WT mice. Both of these effects were significantly blunted in the male KO mice. In addition, male and female WT mice developed diabetes-induced hyperfiltration, which was attenuated in the Olfr1393 KO mice and corresponded with a reduction in luminal expression of Sglt2. Collectively, these data indicate that renal Olfr1393 can contribute to the progression of type 2 diabetes, likely as a regulator of Na+-glucose cotransport in the proximal tubule.
Collapse
Affiliation(s)
- Blythe D Shepard
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,Department of Human Science, Georgetown University , Washington, District of Columbia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von Sachs-Institute, University Wurzburg , Wurzburg , Germany
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
33
|
Scarfe L, Schock-Kusch D, Ressel L, Friedemann J, Shulhevich Y, Murray P, Wilm B, de Caestecker M. Transdermal Measurement of Glomerular Filtration Rate in Mice. J Vis Exp 2018. [PMID: 30394397 PMCID: PMC6235579 DOI: 10.3791/58520] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transdermal analysis of glomerular filtration rate (GFR) is an established technique that is used to assess renal function in mouse and rat models of acute kidney injury and chronic kidney disease. The measurement system consists of a miniaturized fluorescence detector that is directly attached to the skin on the back of conscious, freely moving animals, and measures the excretion kinetics of the exogenous GFR tracer, fluorescein-isothiocyanate (FITC) conjugated sinistrin (an inulin analog). This system has been described in detail in rats. However, because of their smaller size, measurement of transcutaneous GFR in mice presents additional technical challenges. In this paper we therefore provide the first detailed practical guide to the use of transdermal GFR monitors in mice based on the combined experience of three different investigators who have been performing this assay in mice over a number of years.
Collapse
Affiliation(s)
- Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center; Department of Cellular and Molecular Physiology, University of Liverpool
| | | | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool
| | | | | | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool;
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center;
| |
Collapse
|
34
|
The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int 2018; 94:49-59. [DOI: 10.1016/j.kint.2018.02.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 11/23/2022]
|
35
|
Weber GJ, Foster J, Pushpakumar SB, Sen U. Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation. Pharmacol Res 2018; 134:157-165. [PMID: 29909116 DOI: 10.1016/j.phrs.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023]
Abstract
Hypertension affects nearly one third of the adult US population and is a significant risk factor for chronic kidney disease (CKD). An expanding body of recent studies indicates that gut microbiome has crucial roles in regulating physiological processes through, among other mechanisms, one mode of short chain fatty acids (SCFA) and their target receptors. In addition, these SCFA receptors are potential targets of regulation by host miRNAs, however, the mechanisms through which this occurs is not clearly defined. Hydrogen sulfide (H2S) is an important gasotransmitter involved in multiple physiological processes and is known to alleviate adverse effects of hypertension such as reducing inflammation in the kidney. To determine the role of host microRNAs in regulating short chain fatty acid receptors in the kidney as well as the gut, C57BL/6J wild-type mice were treated with or without Ang-II and H2S donor GYY4137 (GYY) for 4 weeks to assess whether GYY would normalize adverse effects observed in hypertensive mice and whether this was in part due to altered gut microbiome composition. We observed several changes of SCFA receptors, including Olfr78, Gpr41/43 and predicted microRNA regulators in the kidney among the different treatments. Increased expression of inflammatory markers Il6 and Rorc2, along with Tgfβ, were found in the hypertensive kidney. The glomerular filtration rate (GFR) was improved in mice treated with Ang-II + GYY compared with Ang-II only, indicating improved kidney function. The Erysipelotrichia class of bacteria, linked with high fat diets, was enriched in hypertensive animals but reduced with GYY supplementation. These data point towards a role for miRNA regulation of SCFA receptors in hypertensive kidney and are normalized by H2S supplementation.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, 40202, United States
| | - Jaleyea Foster
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, 40202, United States
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, 40202, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, 40202, United States.
| |
Collapse
|
36
|
Street JM, Koritzinsky EH, Bellomo TR, Hu X, Yuen PST, Star RA. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am J Physiol Renal Physiol 2018; 314:F788-F797. [PMID: 29117994 PMCID: PMC6031909 DOI: 10.1152/ajprenal.00051.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.
Collapse
Affiliation(s)
- Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
37
|
Steiger S, Grill JF, Ma Q, Bäuerle T, Jordan J, Smolle M, Böhland C, Lech M, Anders HJ. Anti-Transforming Growth Factor β IgG Elicits a Dual Effect on Calcium Oxalate Crystallization and Progressive Nephrocalcinosis-Related Chronic Kidney Disease. Front Immunol 2018; 9:619. [PMID: 29651290 PMCID: PMC5884871 DOI: 10.3389/fimmu.2018.00619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Crystallopathies are a heterogeneous group of diseases caused by intrinsic or environmental microparticles or crystals, promoting tissue inflammation and scarring. Certain proteins interfere with crystal formation and growth, e.g., with intrarenal calcium oxalate (CaOx) crystal formation, a common cause of kidney stone disease or nephrocalcinosis-related chronic kidney disease (CKD). We hypothesized that immunoglobulins can modulate CaOx microcrystal formation and crystal growth and that therefore, biological IgG-based drugs designed to specifically target disease modifying proteins would elicit a dual effect on the outcome of CaOx-related crystallopathies. Indeed, both the anti-transforming growth factor (TGF)β IgG and control IgG1 antibody impaired CaOx crystallization in vitro, and decreased intrarenal CaOx crystal deposition and subsequent CKD in mice on an oxalate-rich diet compared to oxalate-fed control mice. However, the TGFβ-specific IgG antibody showed nephroprotective effects beyond those of control IgG1 and substantially reduced interstitial fibrosis as indicated by magnetic resonance imaging, silver and α-smooth muscle actin staining, RT-qPCR, and flow cytometry for pro-fibrotic macrophages. Suppressing interstitial fibrosis slowed the decline of glomerular filtration rate (GFR) compared to treatment with control IgG1 [slope of m = −8.9 vs. m = −14.5 μl/min/100 g body weight (BW)/day, Δ = 38.3%], an increased GFR at the end of the study (120.4 vs. 42.6 μl/min/100 g BW, Δ = 64.6%), and prolonged end stage renal disease (ESRD)-free renal survival by 10 days (Δ = 38.5%). Delayed onset of anti-TGFβ IgG from day 7 was no longer effective. Our results suggest that biological drugs can elicit dual therapeutic effects on intrinsic crystallopathies, such as anti-TGFβ IgG antibody treatment inhibits CaOx crystallization as well as interstitial fibrosis in nephrocalcinosis-related CKD.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julia Felicitas Grill
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Qiuyue Ma
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jutta Jordan
- Preclinical Imaging Platform Erlangen, Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Smolle
- Ludwig-Maximilians Universität München, Biomedizinisches Centrum, Munich, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Maciej Lech
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
38
|
Halperin Kuhns VL, Pluznick JL. Novel differences in renal gene expression in a diet-induced obesity model. Am J Physiol Renal Physiol 2017; 314:F517-F530. [PMID: 29141937 DOI: 10.1152/ajprenal.00345.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Obesity is a significant risk factor for both chronic kidney disease and end-stage renal disease. To better understand disease development, we sought to identify novel genes differentially expressed early in disease progression. We first confirmed that mice fed a high-fat (HF) diet exhibit early signs of renal injury including hyperfiltration. We then performed RNA-Seq using renal cortex RNA from C57BL6/J male mice fed either HF or control (Ctrl) diet. We identified 1,134 genes differentially expressed in the cortex on HF vs. Ctrl, of which 31 genes were selected for follow-up analysis. This included the 9 most upregulated, the 11 most downregulated, and 11 genes of interest (primarily sensory receptors and G proteins). Quantitative (q)RT-PCR for these 31 genes was performed on additional male renal cortex and medulla samples, and 11 genes (including all 9 upregulated genes) were selected for further study based on qRT-PCR. We then examined expression of these 11 genes in Ctrl and HF male heart and liver samples, which demonstrated that these changes are relatively specific to the renal cortex. These 11 genes were also examined in female renal cortex, where we found that the expression changes seen in males on a HF diet are not replicated in females, even when the females are started on the diet sooner to match weight gain of the males. In sum, these data demonstrate that in a HF-diet model of early disease, novel transcriptional changes occur that are both sex specific and specific to the renal cortex.
Collapse
Affiliation(s)
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
39
|
Geraci S, Chacon-Caldera J, Cullen-McEwen L, Schad LR, Sticht C, Puelles VG, Bertram JF, Gretz N. Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit. Am J Physiol Renal Physiol 2017; 313:F576-F584. [PMID: 28490528 DOI: 10.1152/ajprenal.00329.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life (t1/2) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes.
Collapse
Affiliation(s)
- Stefania Geraci
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Luise Cullen-McEwen
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Carsten Sticht
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Victor G Puelles
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - John F Bertram
- Cardiovascular Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany;
| |
Collapse
|
40
|
Schmitt R, Melk A. Molecular mechanisms of renal aging. Kidney Int 2017; 92:569-579. [DOI: 10.1016/j.kint.2017.02.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
|
41
|
Huang J, Gretz N. Light-Emitting Agents for Noninvasive Assessment of Kidney Function. ChemistryOpen 2017; 6:456-471. [PMID: 28794936 PMCID: PMC5542756 DOI: 10.1002/open.201700065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 02/03/2023] Open
Abstract
The noninvasive assessment of kidney function and diagnosis of kidney disease have long been challenges. Traditional methods are not routinely available, because the existing protocols are cumbersome, time consuming, and invasive. In the past few years, significant progress in the area of diagnosing kidney function and disease on the basis of light-emitting agents has been made. Herein, we briefly review light-emitting agents, including organic fluorescent agents and inorganic renal clearable luminescent nanoparticles for the noninvasive and real-time monitoring of kidney function and disease. Moreover, some significant requirements and strategies regarding the design of ideal glomerular filtration rate agents and renal clearable nanoparticles are discussed. Finally, we discuss future challenges in expediting clinical translation of these developed light-emitting agents, along with considerations of the efforts that need to be made to develop new agents and diagnosing kidney disease.
Collapse
Affiliation(s)
- Jiaguo Huang
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty MannheimUniversity of HeidelbergTheodor-Kutzer-Ufer 1–368167MannheimGermany
| |
Collapse
|
42
|
Moggio A, Geraci S, Boido A, Sticht C, Gretz N, Bussolati B. Assessment of acute kidney injury in rhabdomyolytic mice by transcutaneous measurement of sinistrin excretion. Nephrol Dial Transplant 2017; 32:1167-1175. [DOI: 10.1093/ndt/gfw438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
43
|
Newsome AD, Davis GK, Ojeda NB, Alexander BT. Complications during pregnancy and fetal development: implications for the occurrence of chronic kidney disease. Expert Rev Cardiovasc Ther 2017; 15:211-220. [PMID: 28256177 PMCID: PMC5543771 DOI: 10.1080/14779072.2017.1294066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Numerous epidemiological studies indicate an inverse association between birth weight and the risk for chronic kidney disease. Areas covered: Historically, the first studies to address the developmental origins of chronic disease focused on the inverse relationship between birth weight and blood pressure. A reduction in nephron number was a consistent finding in low birth weight individuals and experimental models of developmental insult. Recent studies indicate that a congenital reduction in renal reserve in conjunction with an increase in blood pressure that has its origins in fetal life increases vulnerability to renal injury and disease. Expert commentary: Limited experimental studies have investigated the mechanisms that contribute to the developmental origins of kidney disease. Several studies suggest that enhanced susceptibility to renal injury following a developmental insult is altered by sex and age. More in-depth studies are needed to clarify how low birth weight contributes to enhanced renal risk, and how sex and age influence this adverse relationship.
Collapse
Affiliation(s)
- Ashley D. Newsome
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Gwendolyn K. Davis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Norma B. Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
44
|
Ikeda M, Wakasaki R, Schenning KJ, Swide T, Lee JH, Miller MB, Choi HS, Anderson S, Hutchens MP. Determination of renal function and injury using near-infrared fluorimetry in experimental cardiorenal syndrome. Am J Physiol Renal Physiol 2017; 312:F629-F639. [PMID: 28077373 DOI: 10.1152/ajprenal.00573.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 02/08/2023] Open
Abstract
Cardiorenal syndrome type 1 causes acute kidney injury but is poorly understood; animal models and diagnostic aids are lacking. Robust noninvasive measurements of glomerular filtration rate are required for injury models and clinical use. Several have been described but are untested in translational models and suffer from biologic interference. We developed a mouse model of cardiorenal syndrome and tested the novel near-infrared fluorophore ZW800-1 to assess renal and cardiac function. We performed murine cardiac arrest and cardiopulmonary resuscitation followed by transthoracic echocardiography, 2 and 24 h later. Transcutaneous fluorescence of ZW800-1 bolus dispersion and clearance was assessed with whole animal imaging and compared with glomerular filtration rate (GFR; inulin clearance), tubular cell death (using unbiased stereology), and serum creatinine. Correlation, Bland-Altman, and polar analyses were used to compare GFR with ZW800-1 clearance. Cardiac arrest and cardiopulmonary resuscitation caused reversible cardiac failure, halving fractional shortening of the left ventricle (n = 12, P = 0.03). Acute kidney injury resulted with near-zero GFR and sixfold increase in serum creatinine 24 h later (n = 16, P < 0.01). ZW800-1 biodistribution and clearance were exclusively renal. ZW800-1 t1/2 and clearance correlated with GFR (r = 0.92, n = 31, P < 0.0001). ZW800-1 fluorescence was reduced in cardiac arrest, and cardiopulmonary resuscitation-treated mice compared with sham animals 810 s after injection (P < 0.01) and bolus time-dispersion curves demonstrated that ZW800-1 fluorescence dispersion correlated with left ventricular function (r = 0.74, P < 0.01). Cardiac arrest and cardiopulmonary resuscitation lead to experimental cardiorenal syndrome type 1. ZW800-1, a small near-infrared fluorophore being developed for clinical intraoperative imaging, is favorable for evaluating cardiac and renal function noninvasively.
Collapse
Affiliation(s)
- Mizuko Ikeda
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Rumie Wakasaki
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Katie J Schenning
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas Swide
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jeong Heon Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts; and
| | - M Bernie Miller
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts; and
| | - Sharon Anderson
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Michael P Hutchens
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon;
| |
Collapse
|
45
|
Hokke S, Arias N, Armitage JA, Puelles VG, Fong K, Geraci S, Gretz N, Bertram JF, Cullen-McEwen LA. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes Metab Res Rev 2016; 32:816-826. [PMID: 27037899 DOI: 10.1002/dmrr.2805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Leprdb /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney. METHODS Nephron endowment was assessed in offspring of C57BKS/J Leprdb /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Leprdb /+ dams were analysed. RESULTS Compared with +/+ dams, Leprdb /+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Leprdb /+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Leprdb /+ dams than in +/+ offspring. CONCLUSIONS IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Nicole Arias
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - James A Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Stefania Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
46
|
Hokke S, Puelles VG, Armitage JA, Fong K, Bertram JF, Cullen-McEwen LA. Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice. PLoS One 2016; 11:e0161578. [PMID: 27547968 PMCID: PMC4993378 DOI: 10.1371/journal.pone.0161578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Increasing consumption of a high fat 'Western' diet has led to a growing number of pregnancies complicated by maternal obesity. Maternal overnutrition and obesity have health implications for offspring, yet little is known about their effects on offspring kidney development and renal function. Female C57Bl6 mice were fed a high fat diet (HFD, 21% fat) or matched normal fat diet (NFD, 6% fat) for 6 weeks prior to pregnancy and throughout gestation and lactation. HFD dams were overweight and glucose intolerant prior to mating but not in late gestation. Offspring of NFD and HFD dams had similar body weights at embryonic day (E)15.5, E18.5 and at postnatal day (PN)21. HFD offspring had normal ureteric tree development and nephron number at E15.5. However, using unbiased stereology, kidneys of HFD offspring were found to have 20-25% more nephrons than offspring of NFD dams at E18.5 and PN21. Offspring of HFD dams with body weight and glucose profiles similar to NFD dams prior to pregnancy also had an elevated nephron endowment. At 9 months of age, adult offspring of HFD dams displayed mild fasting hyperglycaemia but similar body weights to NFD offspring. Renal function and morphology, measured by transcutaneous clearance of FITC-sinistrin and stereology respectively, were normal. This study demonstrates that maternal fat feeding augments offspring nephron endowment with no long-term consequences for offspring renal health. Future studies assessing the effects of a chronic stressor on adult mice with augmented nephron number are warranted, as are studies investigating the molecular mechanisms that result in high nephron endowment.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Victor G. Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - James A. Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - John F. Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Luise A. Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Herrera Pérez Z, Weinfurter S, Gretz N. Transcutaneous Assessment of Renal Function in Conscious Rodents. J Vis Exp 2016:e53767. [PMID: 27078159 PMCID: PMC4841314 DOI: 10.3791/53767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glomerular filtration rate (GFR) is the gold standard to assess overall kidney function. However, traditional methods to evaluate GFR are cumbersome and time-consuming. In addition, serial blood or urine samples are required, with the associated stress for the experimental animals. A recent technique significantly reduces the investment in time and resources, minimizing the invasiveness and the animal stress, but being equally valid as the traditional approaches. The method measures transcutaneously renal function. Using an optical device and the exogenous renal marker fluorescein isothiocyanate (FITC)-sinistrin, this technique is capable of measuring the elimination kinetics of the marker through the skin. With neither blood nor urine samples nor the associated laboratory assays needed, the results of the transcutaneous measurement are almost instantaneously available. The method has been already validated in different species and successfully applied in several models of renal pathology. Moreover, due to its minimally invasive characteristics, it is suitable for sequential measurements within the same animal. Here is provided a detailed protocol to carry out the transcutaneous assessment of renal function in rodents.
Collapse
Affiliation(s)
| | | | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg;
| |
Collapse
|
48
|
Urine/Plasma Neutrophil Gelatinase Associated Lipocalin Ratio Is a Sensitive and Specific Marker of Subclinical Acute Kidney Injury in Mice. PLoS One 2016; 11:e0148043. [PMID: 26824608 PMCID: PMC4732663 DOI: 10.1371/journal.pone.0148043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney function are within reference range. We studied the sensitivity and specificity of NGAL as an AKI marker at different degrees of renal ischemia. METHODS Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to control operation or no operation, and AKI was evaluated 1 day later by histology, immunohistochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA expression. RESULTS A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control operation, while it was similar in the non and control-operated groups. CONCLUSIONS These results suggest that urinary NGAL excretion and especially ratio of urine to plasma NGAL are sensitive and specific markers of subclinical acute kidney injury in mice.
Collapse
|
49
|
Li X, Knight J, Fargue S, Buchalski B, Guan Z, Inscho EW, Liebow A, Fitzgerald K, Querbes W, Todd Lowther W, Holmes RP. Metabolism of (13)C5-hydroxyproline in mouse models of Primary Hyperoxaluria and its inhibition by RNAi therapeutics targeting liver glycolate oxidase and hydroxyproline dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2015; 1862:233-9. [PMID: 26655602 DOI: 10.1016/j.bbadis.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Excessive endogenous oxalate synthesis can result in calcium oxalate kidney stone formation and renal failure. Hydroxyproline catabolism in the liver and kidney contributes to endogenous oxalate production in mammals. To quantify this contribution we have infused Wt mice, Agxt KO mice deficient in liver alanine:glyoxylate aminotransferase, and Grhpr KO mice deficient in glyoxylate reductase, with (13)C5-hydroxyproline. The contribution of hydroxyproline metabolism to urinary oxalate excretion in Wt mice was 22±2%, 42±8% in Agxt KO mice, and 36%±9% in Grhpr KO mice. To determine if blocking steps in hydroxyproline and glycolate metabolism would decrease urinary oxalate excretion, mice were injected with siRNA targeting the liver enzymes glycolate oxidase and hydroxyproline dehydrogenase. These siRNAs decreased the expression of both enzymes and reduced urinary oxalate excretion in Agxt KO mice, when compared to mice infused with a luciferase control preparation. These results suggest that siRNA approaches could be useful for decreasing the oxalate burden on the kidney in individuals with Primary Hyperoxaluria.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Sonia Fargue
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Brianna Buchalski
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | | | | - W Todd Lowther
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
50
|
Shmarlouski A, Schock-Kusch D, Shulhevich Y, Buschmann V, Rohlicke T, Herdt D, Radle M, Hesser J, Stsepankou D. A Novel Analysis Technique for Transcutaneous Measurement of Glomerular Filtration Rate With Ultralow Dose Marker Concentrations. IEEE Trans Biomed Eng 2015; 63:1742-50. [PMID: 26595905 DOI: 10.1109/tbme.2015.2501544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A novel high-precision approach [lifetime-decomposition measurement (LTDM)] for the assessment of the glomerular filtration rate (GFR) based on clearance measurements of exogenous filtration marker. METHODS The time-correlated single photon counting (TCSPC) acquisition in combination with a new decomposition method allows the separation of signal and background from transcutaneous measurements of GFR. RESULTS The performance of LTDM is compared versus the commercially available NIC-kidney patch-based system for transcutaneous GFR measurement. Measurements are performed in awake Sprague Dawley (SD) rats. Using the standard concentration required for the NIC-kidney system [7-mg/100-g body weight (b.w.) FITC-Sinistrin] as reference, the mean difference (bias) of the elimination curves GFR between LTDM and NIC-kidney was 4.8%. On the same animal and same day, the capability of LTDM to measure GFR with a FITC-Sinistrin dose reduced by a factor of 200 (35-μg/100-g b.w.) was tested as well. The mean differences (half lives with low dose using LTDM compared with those using first, the NIC-Kidney system and its standard concentration, and second, LTDM with the same concentration as for the NIC-Kidney system) were 3.4% and 4.5%, respectively. CONCLUSION We demonstrate that with the LTDM strategy substantial reductions in marker concentrations are possible at the same level of accuracy. SIGNIFICANCE LTDM aims to resolve the issue of the currently necessary large doses of fluorescence tracer required for transcutaneous GFR measurement. Due to substantially less influences from autofluorescence and artifacts, the proposed method outperforms other existing techniques for accurate percutaneous organ function measurement.
Collapse
|