1
|
Moore WT, Luo J, Liu D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Furlan A, Corona A, Boyle S, Sharma R, Rubino R, Habel J, Gablenz EC, Giovanniello J, Beyaz S, Janowitz T, Shea SD, Li B. Neurotensin neurons in the extended amygdala control dietary choice and energy homeostasis. Nat Neurosci 2022; 25:1470-1480. [PMID: 36266470 PMCID: PMC9682790 DOI: 10.1038/s41593-022-01178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Obesity is a global pandemic that is causally linked to many life-threatening diseases. Apart from some rare genetic conditions, the biological drivers of overeating and reduced activity are unclear. Here, we show that neurotensin-expressing neurons in the mouse interstitial nucleus of the posterior limb of the anterior commissure (IPAC), a nucleus of the central extended amygdala, encode dietary preference for unhealthy energy-dense foods. Optogenetic activation of IPACNts neurons promotes obesogenic behaviors, such as hedonic eating, and modulates food preference. Conversely, acute inhibition of IPACNts neurons reduces feeding and decreases hedonic eating. Chronic inactivation of IPACNts neurons recapitulates these effects, reduces preference for sweet, non-caloric tastants and, furthermore, enhances locomotion and energy expenditure; as a result, mice display long-term weight loss and improved metabolic health and are protected from obesity. Thus, the activity of a single neuronal population bidirectionally regulates energy homeostasis. Our findings could lead to new therapeutic strategies to prevent and treat obesity.
Collapse
Affiliation(s)
- Alessandro Furlan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Corona
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sara Boyle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Rachel Rubino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jill Habel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Eva Carlotta Gablenz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Ruprecht Karls University Heidelberg, Heidelberg, Germany
| | - Jacqueline Giovanniello
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, USA
| | | | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Salomão R, Neto IVDS, Ramos GV, Tibana RA, Durigan JQ, Pereira GB, Franco OL, Royer C, Neves FDAR, de Carvalho ACA, Nóbrega OT, Haddad R, Prestes J, Marqueti RDC. Paternal Resistance Exercise Modulates Skeletal Muscle Remodeling Pathways in Fathers and Male Offspring Submitted to a High-Fat Diet. Front Physiol 2021; 12:706128. [PMID: 34646148 PMCID: PMC8503191 DOI: 10.3389/fphys.2021.706128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022] Open
Abstract
Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1β, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.
Collapse
Affiliation(s)
- Rebecca Salomão
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil
| | - Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| | | | - Ramires Alsamir Tibana
- Graduate Program in Health Sciences, Faculdade de Medicine, Universidade Federal do Mato Grosso (UFTM), Cuiabá, Brazil
| | | | - Guilherme Borges Pereira
- Interinstitutional Program of Post-Graduation in Physiological Sciences (UFSCar/UNESP), Department of Physiological Sciences, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Octávio Luiz Franco
- Graduate Program in Genomics Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Carine Royer
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Laboratory of Molecular Pharmacology, Faculty of Health Sciences, Universidade de Brasília, Brasília, Brazil
| | | | | | - Otávio Toledo Nóbrega
- Graduate Program of Medical Sciences, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Rodrigo Haddad
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Center for Tropical Medicine, Universidade de Brasília, Brasília, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasilia, Brasília, Brazil
| | - Rita de Cássia Marqueti
- Laboratory of Molecular Analysis, Faculty of Ceilândia, Universidade de Brasília, Brasília, Brazil.,Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Brasília, Brazil.,Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Rom O, Liu Y, Liu Z, Zhao Y, Wu J, Ghrayeb A, Villacorta L, Fan Y, Chang L, Wang L, Liu C, Yang D, Song J, Rech JC, Guo Y, Wang H, Zhao G, Liang W, Koike Y, Lu H, Koike T, Hayek T, Pennathur S, Xi C, Wen B, Sun D, Garcia-Barrio MT, Aviram M, Gottlieb E, Mor I, Liu W, Zhang J, Chen YE. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Sci Transl Med 2020; 12:eaaz2841. [PMID: 33268508 PMCID: PMC7982985 DOI: 10.1126/scitranslmed.aaz2841] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/11/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) has reached epidemic proportions with no pharmacological therapy approved. Lower circulating glycine is consistently reported in patients with NAFLD, but the causes for reduced glycine, its role as a causative factor, and its therapeutic potential remain unclear. We performed transcriptomics in livers from humans and mice with NAFLD and found suppression of glycine biosynthetic genes, primarily alanine-glyoxylate aminotransferase 1 (AGXT1). Genetic (Agxt1 -/- mice) and dietary approaches to limit glycine availability resulted in exacerbated diet-induced hyperlipidemia and steatohepatitis, with suppressed mitochondrial/peroxisomal fatty acid β-oxidation (FAO) and enhanced inflammation as the underlying pathways. We explored glycine-based compounds with dual lipid/glucose-lowering properties as potential therapies for NAFLD and identified a tripeptide (Gly-Gly-L-Leu, DT-109) that improved body composition and lowered circulating glucose, lipids, transaminases, proinflammatory cytokines, and steatohepatitis in mice with established NASH induced by a high-fat, cholesterol, and fructose diet. We applied metagenomics, transcriptomics, and metabolomics to explore the underlying mechanisms. The bacterial genus Clostridium sensu stricto was markedly increased in mice with NASH and decreased after DT-109 treatment. DT-109 induced hepatic FAO pathways, lowered lipotoxicity, and stimulated de novo glutathione synthesis. In turn, inflammatory infiltration and hepatic fibrosis were attenuated via suppression of NF-κB target genes and TGFβ/SMAD signaling. Unlike its effects on the gut microbiome, DT-109 stimulated FAO and glutathione synthesis independent of NASH. In conclusion, impaired glycine metabolism may play a causative role in NAFLD. Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic FAO and glutathione synthesis, thus warranting clinical evaluation.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuhao Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ying Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Alia Ghrayeb
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Luis Villacorta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yanbo Fan
- Department of Cancer Biology and Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lin Chang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cai Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jason C Rech
- Michigan Center for Therapeutic Innovation, University of Michigan, Ann Arbor 48109, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yui Koike
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomonari Koike
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tony Hayek
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 31096, Israel
| | | | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Eyal Gottlieb
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbal Mor
- The Cancer Metabolism Laboratory, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Ives SJ, Zaleski KS, Slocum C, Escudero D, Sheridan C, Legesse S, Vidal K, Lagalwar S, Reynolds TH. The effect of succinic acid on the metabolic profile in high-fat diet-induced obesity and insulin resistance. Physiol Rep 2020; 8:e14630. [PMID: 33185326 PMCID: PMC7663994 DOI: 10.14814/phy2.14630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity, insulin resistance, and poor metabolic profile are hallmarks of a high-fat diet (HFD), highlighting the need to understand underlying mechanisms. Therefore, we sought to determine the effect of succinic acid (SA) on metabolism in high-fat diet (HFD)-induced obesity. Animals were randomly assigned to either low-fat diet (LFD) or a high-fat diet (HFD). Mice consumed their respective diets for 4.5 months and then assigned to the following groups: (LFD)+vehicle, LFD + SA (0.75 mg/ml), HFD + vehicle, or HFD + SA. Body weight (BW), food, and water intake, were tracked weekly. After 6 weeks, insulin, glucose, and pyruvate tolerance tests were completed, and spontaneous physical activity was assessed. Epididymal white adipose tissue (EWAT) mass and in vitro measurements of oxidative skeletal muscle (soleus) respiration were obtained. Expectedly, the HFD increased BW and EWAT mass, and reduced glucose and insulin tolerance. SA significantly reduced EWAT mass, more so in HFD (p < .05), but had no effect on any in vivo measurements (BW, insulin, glucose, or pyruvate tolerance, nor physical activity, all p > .05). A significant (p < .05) interaction was observed between mitochondrial respiration and treatment, where SA increased respiration, likely owed to greater mitochondrial content, as assessed by complex IV activity in both LFD and HFD. In HFD-induced obesity, coupled with insulin desensitization, we found no favorable effect of succinic acid on glucose regulation, though adiposity was attenuated. In oxidative skeletal muscle, there was a tendency for increased respiratory capacity, likely owed to greater mitochondrial content, suggestive of a succinic acid-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stephen J. Ives
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kendall S. Zaleski
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Cheyanne Slocum
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Daniela Escudero
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Caty Sheridan
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Saada Legesse
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Kavey Vidal
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Sarita Lagalwar
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
6
|
Amorim NML, Kee A, Coster ACF, Lucas C, Bould S, Daniel S, Weir JM, Mellett NA, Barbour J, Meikle PJ, Cohn RJ, Turner N, Hardeman EC, Simar D. Irradiation impairs mitochondrial function and skeletal muscle oxidative capacity: significance for metabolic complications in cancer survivors. Metabolism 2020; 103:154025. [PMID: 31765667 DOI: 10.1016/j.metabol.2019.154025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic complications are highly prevalent in cancer survivors treated with irradiation but the underlying mechanisms remain unknown. METHODS Chow or high fat-fed C57Bl/6J mice were irradiated (6Gy) before investigating the impact on whole-body or skeletal muscle metabolism and profiling their lipidomic signature. Using a transgenic mouse model (Tg:Pax7-nGFP), we isolated muscle progenitor cells (satellite cells) and characterised their metabolic functions. We recruited childhood cancer survivors, grouped them based on the use of total body irradiation during their treatment and established their lipidomic profile. RESULTS In mice, irradiation delayed body weight gain and impaired fat pads and muscle weights. These changes were associated with impaired whole-body fat oxidation in chow-fed mice and altered ex vivo skeletal muscle fatty acid oxidation, potentially due to a reduction in oxidative fibres and reduced mitochondrial enzyme activity. Irradiation led to fasting hyperglycaemia and impaired glucose uptake in isolated skeletal muscles. Cultured satellite cells from irradiated mice showed decreased fatty acid oxidation and reduced glucose uptake, recapitulating the host metabolic phenotype. Irradiation resulted in a remodelling of lipid species in skeletal muscles, with the extensor digitorum longus muscle being particularly affected. A large number of lipid species were reduced, with several of these species showing a positive correlation with mitochondrial enzymes activity. In cancer survivors exposed to irradiation, we found a similar decrease in systemic levels of most lipid species, and lipid species that increased were positively correlated with insulin resistance (HOMA-IR). CONCLUSION Irradiation leads to long-term alterations in body composition, and lipid and carbohydrate metabolism in skeletal muscle, and affects muscle progenitor cells. Such changes result in persistent impairment of metabolic functions, providing a new mechanism for the increased prevalence of metabolic diseases reported in irradiated individuals. In this context, changes in the lipidomic signature in response to irradiation could be of diagnostic value.
Collapse
Affiliation(s)
- Nadia M L Amorim
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Anthony Kee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Sydney, Sydney, Australia
| | - Christine Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sarah Bould
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Jayne Barbour
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Nigel Turner
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
7
|
Elashry MI, Eldaey A, Glenske K, Matsakas A, Wenisch S, Arnhold S, Patel K. The effect of high-fat diet on the morphological properties of the forelimb musculature in hypertrophic myostatin null mice. J Anat 2019; 235:825-835. [PMID: 31198988 DOI: 10.1111/joa.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
Obesity is a worldwide nutritional disorder affecting body performance, including skeletal muscle. Inhibition of myostatin not only increases the muscle mass but also it reduces body fat accumulation. We examined the effect of high-fat diet on the phenotypic properties of forelimb muscles from myostatin null mice. Male wild-type and myostatin null mice were fed on either a normal diet or a high-fat diet (45% fat) for 10 weeks. Musculus triceps brachii Caput longum; M. triceps brachii Caput laterale; M. triceps brachii Caput mediale; M. extensor carpi ulnaris and M. flexor carpi ulnaris were processed for fiber type composition using immunohistochemistry and morphometric analysis. Although the muscle mass revealed no change under a high-fat diet, there were morphometric alterations in the absence of myostatin. We show that high-fat diet reduces the cross-sectional area of the fast (IIB and IIX) fibers in M. triceps brachii Caput longum and M. triceps brachii Caput laterale of both genotypes. In contrast, increases of fast fiber areas were observed in both M. extensor carpi ulnaris of wild-type and M. flexor carpi ulnaris of myostatin null mice. Meanwhile, a high-fat diet increased the area of the fast IIA fibers in wild-type mice; myostatin null mice display a muscle-dependent alteration in the area of the same fiber type. The combined high-fat diet and myostatin deletion shows no effect on the area of slow type I fibers. Although a high-fat diet causes a reduction in the area of the peripheral IIB fibers in both genotypes, only myostatin null mice show an increase in the area of the central IIB fibers. We provide evidence that a high-fat diet induces a muscle-dependent fast to slow myofiber shift in the absence of myostatin. The data suggest that the morphological alterations of muscle fibers under a combined high-fat diet and myostatin deletion reflect a functional adaptation of the muscle to utilize the high energy intake.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.,Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Asmaa Eldaey
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.,Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
8
|
Dapper C, Schuster F, Stölting I, Vogt F, Castro e Souza LA, Alenina N, Bader M, Raasch W. The antiobese effect of AT1 receptor blockade is augmented in mice lacking Mas. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:865-877. [DOI: 10.1007/s00210-019-01643-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
|
9
|
Rom O, Xu G, Guo Y, Zhu Y, Wang H, Zhang J, Fan Y, Liang W, Lu H, Liu Y, Aviram M, Liu Z, Kim S, Liu W, Wang X, Chen YE, Villacorta L. Nitro-fatty acids protect against steatosis and fibrosis during development of nonalcoholic fatty liver disease in mice. EBioMedicine 2019; 41:62-72. [PMID: 30772307 PMCID: PMC6444056 DOI: 10.1016/j.ebiom.2019.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and resulting nonalcoholic steatohepatitis (NASH) are reaching global epidemic proportions. Lack of non-invasive diagnostic tools and effective therapies constitute two of the major hurdles for a bona fide treatment and a reversal of NASH progression and/or regression of the disease. Nitro-oleic acid (OA-NO2) has been proven effective in multiple experimental models of inflammation and fibrosis. Thus, the potential benefit of in vivo administration of OA-NO2 to treat advanced NAFLD was tested herein in a model of long-term NASH diet-induced liver damage. METHODS Non-invasive imaging (e.g. photoacustic-ultrasound (PA-US)) was pursued to establish advanced experimental model of NASH in mice in which both steatosis and fibrosis were diagnosed prior experimental therapy with OA-NO2. Experimental controls included equimolar amounts of the non-nitrated oleic acid (OA). CLAMS and NMR-based analysis was used for energy metabolism. FINDINGS CLAMS and NMR-based analysis demonstrates that OA-NO2 improves body composition and energy metabolism and inhibits hepatic triglyceride (TG) accumulation. Photoacoustic-ultrasound imaging revealed a robust inhibition of liver steatosis and fibrosis by OA-NO2. RNA-sequencing analysis uncovered inflammation and fibrosis as major pathways suppressed by OA-NO2 administration, as well as regulation of lipogenesis and lipolysis pathways, with a robust inhibition of SREBP1 proteolytic activation and subsequent lipogenesis gene expression by OA-NO2. These results were further supported by histological analysis and quantification of lipid accumulation, lobular inflammation (F4/80 staining) and fibrosis (collagen deposition, αSMA staining) as well as established parameters of liver damage (ALT). In vitro studies indicate that OA-NO2 inhibits TG biosynthesis and accumulation in hepatocytes and inhibits fibrogenesis in human stellate cells. INTERPRETATION OA-NO2 improve steatohepatitis and fibrosis and may constitute an effective therapeutic approach against advanced NAFLD that warrants further clinical evaluation.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Guan Xu
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Yunhao Zhu
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Huilun Wang
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Yanbo Fan
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Wenying Liang
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Haocheng Lu
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Yuhao Liu
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Seongho Kim
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Pharmacology, Wayne State University, Detroit, MI, USA
| | - Xueding Wang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Luis Villacorta
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Investigating a dose-response relationship between high-fat diet consumption and the contractile performance of isolated mouse soleus, EDL and diaphragm muscles. Eur J Appl Physiol 2018; 119:213-226. [PMID: 30357516 DOI: 10.1007/s00421-018-4017-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Recent evidence has demonstrated an obesity-induced, skeletal muscle-specific reduction in contractile performance. The extent and magnitude of these changes in relation to total dose of high-fat diet consumption remains unclear. This study aimed to examine the dose-response relationship between a high-fat diet and isolated skeletal muscle contractility. METHODS 120 female CD1 mice were randomly assigned to either control group or groups receiving 2, 4, 8 or 12 weeks of a high-calorie diet (N = 24). At 20 weeks, soleus, EDL or diaphragm muscle was isolated (n = 8 in each case) and isometric force, work loop power output and fatigue resistance were measured. RESULTS When analysed with respect to feeding duration, there was no effect of diet on the measured parameters prior to 8 weeks of feeding. Compared to controls, 8-week feeding caused a reduction in normalised power of the soleus, and 8- and 12-week feeding caused reduced normalised isometric force, power and fatigue resistance of the EDL. Diaphragm from the 12-week group produced lower normalised power, whereas 8- and 12-week groups produced significantly lower normalised isometric force. Correlation statistics indicated that body fat accumulation and decline in contractility will be specific to the individual and independent of the feeding duration. CONCLUSION The data indicate that a high-fat diet causes a decline in muscle quality with specific contractile parameters being affected in each muscle. We also uniquely demonstrate that the amount of fat gain, irrespective of feeding duration, may be the main factor in reducing contractile performance.
Collapse
|
11
|
Ren Y, Wang D, Lu F, Zou X, Xu L, Wang K, Huang W, Su H, Zhang C, Gao Y, Dong H. Coptidis Rhizoma inhibits NLRP3 inflammasome activation and alleviates renal damage in early obesity-related glomerulopathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:52-65. [PMID: 30217262 DOI: 10.1016/j.phymed.2018.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Obese subjects have been considered to be in a state of chronic, low-grade systemic inflammation. Excess fat accumulation and persistent inflammation may promote renal dysfunction, to cause chronic kidney disease (CKD) and even end-stage kidney failure. Coptidis Rhizoma is a classical traditional Chinese herb well known for its hypoglycemic and hypolipidemic properties. The mechanism is partially associated with its anti-inflammatory effect. However, this effect is rarely investigated in obesity and obesity-related glomerulopathy (ORG). PURPOSE The current study was designed to evaluate the effect of Coptidis Rhizoma on ORG. It also aimed to determine whether this renal protection effect of Coptidis Rhizoma was related to the inhibition of NLRP3 inflammasome in ORG. METHODS Coptidis Rhizoma concentrated granules were prepared and the main components were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The animal model of early stage ORG was established in obesity-prone (OP) rats by high protein and high fat diet feeding for 12 weeks. The treatment with Coptidis Rhizoma at different dosages was administered by intragastric infusion simultaneously. Then body weight, kidney weight, plasma lipid profiles, 24 h urine protein/albumin content and kidney histology were measured. Inflammatory biomarkers were examined both in the rat plasma and renal cortex. The gene expressions of NLRP3 inflammasome complex and NF-κB in renal tissues were also measured. RESULTS Coptidis Rhizoma alleviated dyslipidemia and reduced the renal weight of the rats with ORG. Meanwhile, urinary albumin to creatinine ratio and creatinine clearance rate were significantly improved. Coptidis Rhizoma also attenuated glomerular hypertrophy, mesangial hyperplasia, and effacement of podocyte foot in renal tissues of ORG rats. In addition, Coptidis Rhizoma intervention decreased the levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) both in plasma and renal tissue. The gene expression of NLRP3 inflammasome was down-regulated and NF-κB activity was also inhibited by Coptidis Rhizoma in renal tissues of ORG rats. CONCLUSION Coptidis Rhizoma can ameliorate early renal damage in ORG rats and the mechanisms appear to be related to the inhibition of NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Yanlin Ren
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenya Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., LTD, Beijing, PR China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
12
|
Saito Y, Kuwahara Y, Yamamoto Y, Suzuki M, Fukumoto M, Yamamoto F. ddY Mice Fed 10% Fat Diet Exhibit High p27KIP Expression and Delayed Hepatocyte DNA Synthesis During Liver Regeneration. Metab Syndr Relat Disord 2018; 16:305-313. [DOI: 10.1089/met.2017.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yohei Saito
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yumi Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Fumihiko Yamamoto
- Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Tallis J, James RS, Seebacher F. The effects of obesity on skeletal muscle contractile function. ACTA ACUST UNITED AC 2018; 221:221/13/jeb163840. [PMID: 29980597 DOI: 10.1242/jeb.163840] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.
Collapse
Affiliation(s)
- Jason Tallis
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Center for Sport, Exercise and Life Sciences, Science and Health Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, Heydon Laurence Building A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Schönke M, Massart J, Zierath JR. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J Lipid Res 2018; 59:1276-1282. [PMID: 29739863 DOI: 10.1194/jlr.d082370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Metabolic flexibility, the capacity to adapt to fuel availability for energy production, is crucial for maintaining whole-body energy homeostasis. An inability to adequately promote FA utilization is associated with lipid accumulation in peripheral tissues and contributes to the development of insulin resistance. In vivo assays to quantify whole-body lipid oxidation in mouse models of insulin resistance are lacking. We describe a method for assessing whole-body FA oxidation in vivo, as well as tissue-specific lipid uptake in conscious mice. The method relies on intravenous administration of [9,10-3H(N)]palmitic acid combined with a non-β-oxidizable palmitate analog, [1-14C]2-bromopalmitic acid. Pretreatment with etomoxir, a CPT1 inhibitor that prevents the shuttling of FAs into mitochondria, markedly reduced the appearance of the β-oxidation product 3H2O in circulation and reduced lipid uptake by oxidative tissues including heart and soleus muscle. Whole-body fatty oxidation was unaltered between chow- or high-fat-fed WT and transgenic mice expressing a mutant form of the AMPK γ3 subunit (AMPKγ3R225Q) in skeletal muscle. High-fat feeding increased lipid oxidation in WT and AMPKγ3R225Q transgenic mice. In conclusion, this technique allows for the assessment of the effect of pharmaceutical agents, as well as gene mutations, on whole-body FA oxidation in mice.
Collapse
Affiliation(s)
- Milena Schönke
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery Karolinska Institutet, Stockholm, Sweden .,Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Pinho RA, Sepa-Kishi DM, Bikopoulos G, Wu MV, Uthayakumar A, Mohasses A, Hughes MC, Perry CGR, Ceddia RB. High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent manner in rats. Free Radic Biol Med 2017; 110:381-389. [PMID: 28690197 DOI: 10.1016/j.freeradbiomed.2017.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023]
Abstract
This study investigated the effects of high-fat (HF) diet on parameters of oxidative stress among muscles with distinct fiber type composition and oxidative capacities. To accomplish that, male Wistar rats were fed either a low-fat standard chow (SC) or a HF diet for 8 weeks. Soleus, extensor digitorum longus (EDL), and epitrochlearis muscles were collected and mitochondrial H2O2 (mtH2O2) emission, palmitate oxidation, and gene expression and antioxidant system were measured. Chronic HF feeding enhanced fat oxidation in oxidative and glycolytic muscles. It also caused a significant reduction in mtH2O2 emission in the EDL muscle, although a tendency towards a reduction was also found in the soleus and epitrochlearis muscles. In the epitrochlearis, HF diet increased mRNA expression of the NADPH oxidase complex; however, this muscle also showed an increase in the expression of antioxidant proteins, suggesting a higher capacity to generate and buffer ROS. The soleus muscle, despite being highly oxidative, elicited H2O2 emission rates equivalent to only 20% and 35% of the values obtained for EDL and epitrochlearis muscles, respectively. Furthermore, the Epi muscle with the lowest oxidative capacity was the second highest in H2O2 emission. In conclusion, it appears that intrinsic differences related to the distribution of type I and type II fibers, rather than oxidative capacity, drove the activity of the anti- and pro-oxidant systems and determine ROS production in different skeletal muscles. This also suggests that the impact of potentially deleterious effects of ROS production on skeletal muscle metabolism/function under lipotoxic conditions is fiber type-specific.
Collapse
Affiliation(s)
- Ricardo A Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma (UNESC), Santa Catarina, Brazil.
| | - Diane M Sepa-Kishi
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - George Bikopoulos
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michelle V Wu
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Abinas Uthayakumar
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Arta Mohasses
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C Hughes
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Rolando B Ceddia
- School of Kinesiology and Health Science - Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Hua N, Takahashi H, Yee GM, Kitajima Y, Katagiri S, Kojima M, Anzai K, Eguchi Y, Hamilton JA. Influence of muscle fiber type composition on early fat accumulation under high-fat diet challenge. PLoS One 2017; 12:e0182430. [PMID: 28763507 PMCID: PMC5538743 DOI: 10.1371/journal.pone.0182430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/18/2017] [Indexed: 02/03/2023] Open
Abstract
Objective To investigate whether differences in muscle fiber types affect early-stage fat accumulation, under high fat diet challenge in mice. Methods Twelve healthy male C57BL/6 mice experienced with short-term (6 weeks) diet treatment for the evaluation of early pattern changes in muscular fat. The mice were randomly divided into two groups: high fat diet (n = 8) and normal control diet (n = 4). Extra- and intra-myocellular lipid (EMCL and IMCL) in lumbar muscles (type I fiber predominant) and tibialis anterior (TA) muscle (type II fiber predominant) were determined using magnetic resonance spectroscopy (MRS). Correlation of EMCL, IMCL and their ratio between TA and lumbar muscles was evaluated. Results EMCL increased greatly in both muscle types after high fat diet. IMCL in TA and lumbar muscles increased to a much lower extent, with a slightly greater increase in TA muscles. EMCLs in the 2 muscles were positively correlated (r = 0.84, p = 0.01), but IMCLs showed a negative relationship (r = -0.84, p = 0.01). In lumbar muscles, high fat diet significantly decreased type I fiber while it increased type II fiber (all p≤0.001). In TA muscle, there was no significant fiber type shifting (p>0.05). Conclusions Under short-time high fat diet challenge, lipid tends to initially accumulate extra-cellularly. In addition, compared to type II dominant muscle, Type I dominant muscle was less susceptible to IMCL accumulation but more to fiber type shifting. These phenomena might reflect compensative responses of skeletal muscle to dietary lipid overload in order to regulate metabolic homeostasis.
Collapse
Affiliation(s)
- Ning Hua
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States of America
| | - Hirokazu Takahashi
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Internal Medicine, Saga Medical School, Saga, Japan
| | - Grace M. Yee
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States of America
| | - Yoichiro Kitajima
- Division of Internal Medicine, Saga Medical School, Saga, Japan
- Clinical Gastroenterology, Eguchi Hospital, Saga, Japan
| | - Sayaka Katagiri
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Motoyasu Kojima
- Division of Internal Medicine, Saga Medical School, Saga, Japan
| | - Keizo Anzai
- Division of Internal Medicine, Saga Medical School, Saga, Japan
| | - Yuichiro Eguchi
- Division of Hepatology, Saga Medical School, Liver Center, Saga, Japan
| | - James A. Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Acevedo LM, Raya AI, Ríos R, Aguilera-Tejero E, Rivero JLL. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. J Appl Physiol (1985) 2017; 123:249-259. [PMID: 28522764 DOI: 10.1152/japplphysiol.00282.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
A clear picture of skeletal muscle adaptations to obesity and related comorbidities remains elusive. This study describes fiber-type characteristics (size, proportions, and oxidative enzyme activity) in two typical hindlimb muscles with opposite structure and function in an animal model of genetic obesity. Lesser fiber diameter, fiber-type composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of muscle fiber types were assessed in slow (soleus)- and fast (tibialis cranialis)-twitch muscles of obese Zucker rats and compared with age (16 wk)- and sex (females)-matched lean Zucker rats (n = 16/group). Muscle mass and lesser fiber diameter were lower in both muscle types of obese compared with lean animals even though body weights were increased in the obese cohort. A faster fiber-type phenotype also occurred in slow- and fast-twitch muscles of obese rats compared with lean rats. These adaptations were accompanied by a significant increment in histochemical succinic dehydrogenase activity of slow-twitch fibers in the soleus muscle and fast-twitch fiber types in the tibialis cranialis muscle. Obesity significantly increased plasma levels of proinflammatory cytokines but did not significantly affect protein levels of peroxisome proliferator-activated receptors PPARγ or PGC1α in either muscle. These data demonstrate that, in female Zucker rats, obesity induces a reduction of muscle mass in which skeletal muscles show a diminished fiber size and a faster and more oxidative phenotype. It was noteworthy that this discrepancy in muscle's contractile and metabolic features was of comparable nature and extent in muscles with different fiber-type composition and antagonist functions.NEW & NOTEWORTHY This study demonstrates a discrepancy between morphological (reduced muscle mass), contractile (shift toward a faster phenotype), and metabolic (increased mitochondrial oxidative enzyme activity) characteristics in skeletal muscles of female Zucker fatty rats. It is noteworthy that this inconsistency was comparable (in nature and extent) in muscles with different structure and function.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Departamento de Ciencias Biomédicas, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ana I Raya
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Rafael Ríos
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Escolástico Aguilera-Tejero
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain;
| |
Collapse
|
18
|
Dietary supplementation with bovine-derived milk fat globule membrane lipids promotes neuromuscular development in growing rats. Nutr Metab (Lond) 2017; 14:9. [PMID: 28127382 PMCID: PMC5259894 DOI: 10.1186/s12986-017-0161-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 01/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) is primarily composed of polar phospho- and sphingolipids, which have established biological effects on neuroplasticity. The present study aimed to investigate the effect of dietary MFGM supplementation on the neuromuscular system during post-natal development. Methods Growing rats received dietary supplementation with bovine-derived MFGM mixtures consisting of complex milk lipids (CML), beta serum concentrate (BSC) or a complex milk lipid concentrate (CMLc) (which lacks MFGM proteins) from post-natal day 10 to day 70. Results Supplementation with MFGM mixtures enriched in polar lipids (BSC and CMLc, but not CML) increased the plasma phosphatidylcholine (PC) concentration, with no effect on plasma phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatidylserine (PS) or sphingomyelin (SM). In contrast, muscle PC was reduced in rats receiving supplementation with both BSC and CMLc, whereas muscle PI, PE, PS and SM remained unchanged. Rats receiving BSC and CMLc (but not CML) displayed a slow-to-fast muscle fibre type profile shift (MyHCI → MyHCIIa) that was associated with elevated expression of genes involved in myogenic differentiation (myogenic regulatory factors) and relatively fast fibre type specialisation (Myh2 and Nfatc4). Expression of neuromuscular development genes, including nerve cell markers, components of the synaptogenic agrin–LRP4 pathway and acetylcholine receptor subunits, was also increased in muscle of rats supplemented with BSC and CMLc (but not CML). Conclusions These findings demonstrate that dietary supplementation with bovine-derived MFGM mixtures enriched in polar lipids can promote neuromuscular development during post-natal growth in rats, leading to shifts in adult muscle phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0161-y) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Tallis J, Hill C, James RS, Cox VM, Seebacher F. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles. J Appl Physiol (1985) 2016; 122:170-181. [PMID: 27856719 DOI: 10.1152/japplphysiol.00836.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. NEW & NOTEWORTHY The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle-specific profile of mechanical changes in relation to underpinning mechanisms. These findings may be important to understanding the negative cycle of obesity and in designing interventions for improving weight status.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and
| | - Cameron Hill
- Centre for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and
| | - Rob S James
- Centre for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and
| | - Val M Cox
- Centre for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Bozec A, Hannemann N. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis. J Vis Exp 2016. [PMID: 27284940 PMCID: PMC4927764 DOI: 10.3791/53822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes.
Collapse
Affiliation(s)
- Aline Bozec
- Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen;
| | - Nicole Hannemann
- Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen
| |
Collapse
|
21
|
Ferreira PS, Spolidorio LC, Manthey JA, Cesar TB. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food Funct 2016; 7:2675-81. [PMID: 27182608 DOI: 10.1039/c5fo01541c] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.
Collapse
Affiliation(s)
- Paula S Ferreira
- Faculdade de Ciências Farmacêuticas, UNESP Univ Estadual Paulista, Campus Araraquara, Departamento de Alimentos e Nutrição, Rodovia Araraquara - Jau, km 1, Araraquara, SP 14802-901, Brazil.
| | | | | | | |
Collapse
|
22
|
Frias FDT, de Mendonça M, Martins AR, Gindro AF, Cogliati B, Curi R, Rodrigues AC. MyomiRs as Markers of Insulin Resistance and Decreased Myogenesis in Skeletal Muscle of Diet-Induced Obese Mice. Front Endocrinol (Lausanne) 2016; 7:76. [PMID: 27445979 PMCID: PMC4921801 DOI: 10.3389/fendo.2016.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
High-fat diet (HFD) feeding causes insulin resistance (IR) in skeletal muscle of mice, which affects skeletal muscle metabolism and function. The involvement of muscle-specific microRNAs in the evolution of skeletal muscle IR during 4, 8, and 12 weeks in HFD-induced obese mice was investigated. After 4 weeks in HFD, mice were obese, hyperglycemic, and hyperinsulinemic; however, their muscles were responsive to insulin stimuli. Expressions of MyomiRs (miR-1, miR-133a, and miR-206) measured in soleus muscles were not different from those found in control mice. After 8 weeks of HFD feeding, glucose uptake was lower in skeletal muscle from obese mice compared to control mice, and we observed a significant decrease in miR-1a in soleus muscle when compared to HFD for 4 weeks. miR-1a expression continued to decay within time. After 12 weeks of HFD, miR-133a expression was upregulated when compared to the control group. Expression of miR-1a was negatively correlated with glycemia and positively correlated with the constant rate of plasma glucose disappearance. Pioglitazone treatment could not reverse decreases of miR-1a levels induced by HFD. Targets of myomiRs involved in insulin-growth factor (IGF)-1 pathway, such as Igf-1, Irs-1, Rheb, and follistatin, were reduced after 12 weeks in HFD and Mtor increased, when compared to the control or HFD for 4 or 8 weeks. These findings suggest for the first time that miR-1 may be a marker of the development of IR in skeletal muscle. Evidence was also presented that impairment in myomiRs expression contributes to decreased myogenesis and skeletal muscle growth reported in diabetes.
Collapse
Affiliation(s)
- Flávia de Toledo Frias
- Laboratory of Pharmacogenomics, Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana de Mendonça
- Laboratory of Pharmacogenomics, Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
| | - Amanda Roque Martins
- Laboratory of Cellular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Flávia Gindro
- Laboratory of Cellular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Rui Curi
- Laboratory of Cellular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alice Cristina Rodrigues
- Laboratory of Pharmacogenomics, Department of Pharmacology, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Alice Cristina Rodrigues,
| |
Collapse
|
23
|
Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity. Eur J Nutr 2015; 56:705-713. [PMID: 26621632 DOI: 10.1007/s00394-015-1114-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022]
|
24
|
D'Souza DM, Trajcevski KE, Al-Sajee D, Wang DC, Thomas M, Anderson JE, Hawke TJ. Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol Rep 2015; 3:3/8/e12506. [PMID: 26296771 PMCID: PMC4562589 DOI: 10.14814/phy2.12506] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A healthy skeletal muscle mass is essential in attenuating the complications of obesity. Importantly, healthy muscle function is maintained through adequate repair following overuse and injury. The purpose of this study was to investigate the impact of diet-induced obesity (DIO) on skeletal muscle repair and the functionality of the muscle satellite cell (SC) population. Male C57BL/6J mice were fed a standard chow or high-fat diet (60% kcal fat; DIO) for 8 weeks. Muscles from DIO mice subjected to cardiotoxin injury displayed attenuated muscle regeneration, as indicated by prolonged necrosis, delayed expression of MyoD and Myogenin, elevated collagen content, and persistent embryonic myosin heavy chain expression. While no significant differences in SC content were observed, SCs from DIO muscles did not activate normally nor did they respond to exogenous hepatocyte growth factor (HGF) despite similar receptor (cMet) density. Furthermore, HGF release from crushed muscle was significantly less than that from muscles of chow fed mice. This study demonstrates that deficits in muscle repair are present in DIO, and the impairments in the functionality of the muscle SC population as a result of altered HGF/c-met signaling are contributors to the delayed regeneration.
Collapse
Affiliation(s)
- Donna M D'Souza
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karin E Trajcevski
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dhuha Al-Sajee
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David C Wang
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Thomas
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas J Hawke
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24:28-36. [PMID: 25470014 DOI: 10.1097/mnh.0000000000000087] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To provide a perspective by investigating the potential cross-talk between the adipose tissue and the kidney during obesity. RECENT FINDINGS It is well established that excessive caloric intake contributes to organ injury. The associated increased adiposity initiates a cascade of cellular events that leads to progressive obesity-associated diseases such as kidney disease. Recent evidence has indicated that adipose tissue produces bioactive substances that contribute to obesity-related kidney disease, altering the renal function and structure. In parallel, proinflammatory processes within the adipose tissue can also lead to pathophysiological changes in the kidney during the obese state. SUMMARY Despite considerable efforts to better characterize the pathophysiology of obesity-related metabolic disease, there are still a lack of efficient therapeutic strategies. New strategies focused on regulating adipose function with respect to AMP-activated protein kinase activation, NADPH oxidase function, and TGF-β may contribute to reducing adipose inflammation that may also provide renoprotection.
Collapse
|
26
|
Li X, Luo J, Anandh Babu PV, Zhang W, Gilbert E, Cline M, McMillan R, Hulver M, Alkhalidy H, Zhen W, Zhang H, Liu D. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice. J Med Food 2015; 17:1287-97. [PMID: 25076190 DOI: 10.1089/jmf.2014.0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.
Collapse
Affiliation(s)
- Xiaoxiao Li
- 1 Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences , Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alkhalidy H, Moore W, Zhang Y, McMillan R, Wang A, Ali M, Suh KS, Zhen W, Cheng Z, Jia Z, Hulver M, Liu D. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice. J Diabetes Res 2015; 2015:532984. [PMID: 26064984 PMCID: PMC4439495 DOI: 10.1155/2015/532984] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - William Moore
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yanling Zhang
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan McMillan
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- The Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aihua Wang
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mostafa Ali
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kyung-Shin Suh
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wei Zhen
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Matthew Hulver
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods & Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- *Dongmin Liu:
| |
Collapse
|
28
|
Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 2014; 63:3626-36. [PMID: 24848064 PMCID: PMC4207399 DOI: 10.2337/db14-0006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects.
Collapse
Affiliation(s)
- Pasha Apontes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Zhongbo Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Kai Su
- Department of Paediatrics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Dou Y Youn
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Xisong Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Wei Li
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Raihan H Mirza
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Claire C Bastie
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Linda A Jelicks
- Department of Physiology & Biophysics and Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Radhika H Muzumdar
- Department of Paediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
29
|
Thomas MM, Trajcevski KE, Coleman SK, Jiang M, Di Michele J, O'Neill HM, Lally JS, Steinberg GR, Hawke TJ. Early oxidative shifts in mouse skeletal muscle morphology with high-fat diet consumption do not lead to functional improvements. Physiol Rep 2014; 2:2/9/e12149. [PMID: 25247768 PMCID: PMC4270228 DOI: 10.14814/phy2.12149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Short‐term consumption of a high‐fat diet (HFD) can result in an oxidative shift in adult skeletal muscle. However, the impact of HFD on young, growing muscle is largely unknown. Thus, 4‐week‐old mice were randomly divided into sedentary HFD (60% kcal from fat), sedentary standard chow (control), or exercise‐trained standard chow. Tibialis anterior (TA) and soleus muscles were examined for morphological and functional changes after 3 weeks. HFD consumption increased body and epididymal fat mass and induced whole body glucose intolerance versus control mice. Compared to controls, both HFD and exercise‐trained TA muscles displayed a greater proportion of oxidative fibers and a trend for an increased succinate dehydrogenase (SDH) content. The soleus also displayed an oxidative shift with increased SDH content in HFD mice. Despite the aforementioned changes, palmitate oxidation rates were not different between groups. To determine if the adaptive changes with HFD manifest as a functional improvement, all groups performed pre‐ and postexperiment aerobic exercise tests. As expected, exercise‐trained mice improved significantly compared to controls, however, no improvement was observed in HFD mice. Interestingly, capillary density was lower in HFD muscles; a finding which may contribute to the lack of functional differences seen with HFD despite the oxidative shift in skeletal muscle morphology. Taken together, our data demonstrate that young, growing muscle exhibits early oxidative shifts in response to a HFD, but these changes do not translate to functional benefits in palmitate oxidation, muscle fatigue resistance, or whole body exercise capacity. Young, growing animals consuming a short‐term high‐fat diet (HFD) exhibit morphological and metabolic changes akin to that of exercise‐trained mice. We hypothesized that these changes may manifest in a functional outcome that was similar to the exercise‐trained mice. Despite these muscle adaptations with HFD consumption, no improvement in exercise or in situ muscle performance was observed, suggesting other limiting factors (e.g., decreased capillary density) in the HFD mice.
Collapse
Affiliation(s)
- Melissa M Thomas
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karin E Trajcevski
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Samantha K Coleman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maggie Jiang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Di Michele
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hayley M O'Neill
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James S Lally
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, Kozlowska G, Bibik-Malinowska K, Vallejo M, García A, Barbas C, Ramos MP. Metabolic fingerprint of Gestational Diabetes Mellitus. J Proteomics 2014; 103:57-71. [PMID: 24698665 DOI: 10.1016/j.jprot.2014.03.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/28/2014] [Accepted: 03/22/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Gestational Diabetes (GDM) is causing severe short- and long-term complications for mother, fetus or neonate. As yet, the metabolic alterations that are specific for the development of GDM have not been fully determined, which also precludes the early diagnosis and prognosis of this pathology. In this pilot study, we determine the metabolic fingerprint, using a multiplatform LC-QTOF/MS, GC-Q/MS and CE-TOF/MS system, of plasma and urine samples of 20 women with GDM and 20 with normal glucose tolerance in the second trimester of pregnancy. Plasma fingerprints allowed for the discrimination of GDM pregnant women from controls. In particular, lysoglycerophospholipids showed a close association with the glycemic state of the women. In addition, we identified some metabolites with a strong discriminative power, such as LPE(20:1), (20:2), (22:4); LPC(18:2), (20:4), (20:5); LPI(18:2), (20:4); LPS(20:0) and LPA(18:2), as well as taurine-bile acids and long-chain polyunsaturated fatty acid derivatives. Finally, we provide evidence for the implication of these compounds in metabolic routes, indicative of low-grade inflammation and altered redox-balance, that may be related with the specific pathophysiological context of the genesis of GDM. This highlights their potential use as prognostic markers for the identification of women at risk to develop severe glucose intolerance during pregnancy. BIOLOGICAL SIGNIFICANCE Gestational Diabetes Mellitus (GDM) is increasing worldwide and, although diabetes usually remits after pregnancy, women with GDM have a high risk of developing postpartum type 2-diabetes, particularly when accompanied by obesity. Therefore, understanding the pathophysiology of GDM, as well as the identification of potentially modifiable risk factors and early diagnostic markers for GDM are relevant issues. In the present study, we devised a multiplatform metabolic fingerprinting approach to obtain a comprehensive picture of the early metabolic alternations that occur in GDM, and may reflect on the specific pathophysiological context of the disease. Future studies at later stages of gestation will allow us to validate the discriminant power of the identified metabolites.
Collapse
Affiliation(s)
- Danuta Dudzik
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain; Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Zorawski
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Skotnicki
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Wieslaw Zarzycki
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Gabryela Kozlowska
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Bibik-Malinowska
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - María Vallejo
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Antonia García
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - M Pilar Ramos
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.
| |
Collapse
|
31
|
Denies MS, Johnson J, Maliphol AB, Bruno M, Kim A, Rizvi A, Rustici K, Medler S. Diet-induced obesity alters skeletal muscle fiber types of male but not female mice. Physiol Rep 2014; 2:e00204. [PMID: 24744883 PMCID: PMC3967687 DOI: 10.1002/phy2.204] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/21/2013] [Accepted: 01/06/2014] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles are highly plastic tissues capable dramatic remodeling in response to use, disuse, disease, and other factors. Growing evidence suggests that adipose tissues exert significant effects on the basic fiber‐type composition of skeletal muscles. In the current study, we investigated the long‐term effects of a high‐fat diet and subsequent obesity on the muscle fiber types in C57 BLK/6J mice. Litters of mice were randomly assigned to either a high‐fat diet or a control group at the time of weaning, and were maintained on this diet for approximately 1 year. Single fibers were harvested from the soleus and plantaris muscles, and fiber types were determined using SDS‐PAGE. The high‐fat diet mice were significantly heavier than the control mice (39.17 ± 2.7 g vs. 56.87 ± 3.4 g; P < 0.0003), but muscle masses were not different. In male mice, the high‐fat diet was associated with a significantly lower proportion of slow, type I fibers in the soleus muscle (40.4 ± 3.5% vs. 29.33 ± 2.6%; P < 0.0165). Moreover, the proportion of type I fibers in the soleus of male mice was inversely proportional to the relative fatness of the male mice (P < 0.003; r2 = 0.65), but no association was observed in female mice. In male mice, the decline in type I fibers was correlated with an increase in type I/IIA hybrid fibers, suggesting that the type I fibers were transformed primarily into these hybrids. The reported trends indicate that type I fibers are most susceptible to the effects of obesity, and that these fiber‐type changes can be sex specific. Mice were fed a high‐fat diet and subsequently became obese. Obese male mice exhibited a significant decline in slow type I fibers in the soleus muscles, compared with controls. The loss of type I fibers was directly proportional to measures of body fat, suggesting a “dose”‐dependent effect on muscle phenotype.
Collapse
Affiliation(s)
- Maxwell S Denies
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Jordan Johnson
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Amanda B Maliphol
- Department of Biological Sciences, University at Buffalo, Buffalo, 14260, New York
| | - Michael Bruno
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Annabelle Kim
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Abbas Rizvi
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Kevyn Rustici
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| | - Scott Medler
- Department of Biology, State University of New York at Fredonia, Fredonia, 14063, New York
| |
Collapse
|