1
|
Wang N, Ma Q, Zhang J, Wang J, Li X, Liang Y, Wu X. Transcriptomics-based anti-tuberculous mechanism of traditional Chinese polyherbal preparation NiuBeiXiaoHe intermediates. Front Pharmacol 2024; 15:1415951. [PMID: 39364045 PMCID: PMC11446850 DOI: 10.3389/fphar.2024.1415951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Integrated traditional Chinese medicine and biomedicine is an effective method to treat tuberculosis (TB). In our previous research, traditional Chinese medicine preparation NiuBeiXiaoHe (NBXH) achieved obvious anti-TB effects in animal experiments and clinical practice. However, the action mechanism of NBXH has not been elucidated. Method Peripheral blood mononuclear cells (PBMCs) were collected to extract mRNA and differentially expressed (DE) genes were obtained using gene microarray technology. Finally, GEO databases and RT-qPCR were used to verify the results of expression profile. Result After MTB infection, most upregulated DE genes in mice were immune-related genes, including cxcl9, camp, cfb, c4b, serpina3g, and ngp. Downregulated DE genes included lrrc74b, sult1d1, cxxc4, and grip2. After treatment with NBXH, especially high-dose NBXH, the abnormal gene expression was significantly corrected. Some DE genes have been confirmed in multiple GEO datasets or in pulmonary TB patients through RT-qPCR. Conclusion MTB infection led to extensive changes in host gene expression and mainly caused the host's anti-TB immune responses. The treatment using high-dose NBXH partially repaired the abnormal gene expression, further enhanced the anti-TB immunity included autophagy and NK cell-mediated cytotoxicity, and had a certain inhibitory effect on overactivated immune responses.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xiaojun Li
- Graduate School, Hebei North University, Zhangjiakou, Hebei, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Kumar R, Kolloli A, Singh P, Shi L, Kupz A, Subbian S. The innate memory response of macrophages to Mycobacterium tuberculosis is shaped by the nature of the antigenic stimuli. Microbiol Spectr 2024; 12:e0047324. [PMID: 38980014 PMCID: PMC11302266 DOI: 10.1128/spectrum.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Afsal Kolloli
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Pooja Singh
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lanbo Shi
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns & Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600067. [PMID: 38948876 PMCID: PMC11212953 DOI: 10.1101/2024.06.21.600067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.
Collapse
|
4
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Krug S, Gupta M, Kumar P, Feller L, Ihms EA, Kang BG, Srikrishna G, Dawson TM, Dawson VL, Bishai WR. Inhibition of host PARP1 contributes to the anti-inflammatory and antitubercular activity of pyrazinamide. Nat Commun 2023; 14:8161. [PMID: 38071218 PMCID: PMC10710439 DOI: 10.1038/s41467-023-43937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manish Gupta
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laine Feller
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Ihms
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Kim H, Shin SJ. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cell Mol Life Sci 2023; 80:291. [PMID: 37704889 PMCID: PMC11072447 DOI: 10.1007/s00018-023-04914-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Lipid species play a critical role in the growth and virulence expression of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). During Mtb infection, foamy macrophages accumulate lipids in granulomas, providing metabolic adaptation and survival strategies for Mtb against multiple stresses. Host-derived lipid species, including triacylglycerol and cholesterol, can also contribute to the development of drug-tolerant Mtb, leading to reduced efficacy of antibiotics targeting the bacterial cell wall or transcription. Transcriptional and metabolic analyses indicate that lipid metabolism-associated factors of Mtb are highly regulated by antibiotics and ultimately affect treatment outcomes. Despite the well-known association between major antibiotics and lipid metabolites in TB treatment, a comprehensive understanding of how altered lipid metabolites in both host and Mtb influence treatment outcomes in a drug-specific manner is necessary to overcome drug tolerance. The current review explores the controversies and correlations between lipids and drug efficacy in various Mtb infection models and proposes novel approaches to enhance the efficacy of anti-TB drugs. Moreover, the review provides insights into the efficacious control of Mtb infection by elucidating the impact of lipids on drug efficacy. This review aims to improve the effectiveness of current anti-TB drugs and facilitate the development of innovative therapeutic strategies against Mtb infection by making reverse use of Mtb-favoring lipid species.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Dwivedi V, Gautam S, Beamer G, Stromberg PC, Headley CA, Turner J. IL-10 Modulation Increases Pyrazinamide's Antimycobacterial Efficacy against Mycobacterium tuberculosis Infection in Mice. Immunohorizons 2023; 7:412-420. [PMID: 37279084 PMCID: PMC10580111 DOI: 10.4049/immunohorizons.2200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
Mechanisms to shorten the duration of tuberculosis (TB) treatment include new drug formulations or schedules and the development of host-directed therapies (HDTs) that better enable the host immune system to eliminate Mycobacterium tuberculosis. Previous studies have shown that pyrazinamide, a first-line antibiotic, can also modulate immune function, making it an attractive target for combinatorial HDT/antibiotic therapy, with the goal to accelerate clearance of M. tuberculosis. In this study, we assessed the value of anti-IL-10R1 as an HDT along with pyrazinamide and show that short-term anti-IL-10R1 blockade during pyrazinamide treatment enhanced the antimycobacterial efficacy of pyrazinamide, resulting in faster clearance of M. tuberculosis in mice. Furthermore, 45 d of pyrazinamide treatment in a functionally IL-10-deficient environment resulted in sterilizing clearance of M. tuberculosis. Our data suggest that short-term IL-10 blockade with standard TB drugs has the potential to improve clinical outcome by reducing the treatment duration.
Collapse
Affiliation(s)
- Varun Dwivedi
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Shalini Gautam
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Gillian Beamer
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Paul C. Stromberg
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State Institute, Columbus, OH
| | - Colwyn A. Headley
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Joanne Turner
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
8
|
Thu VTA, Dat LD, Jayanti RP, Trinh HKT, Hung TM, Cho YS, Long NP, Shin JG. Advancing personalized medicine for tuberculosis through the application of immune profiling. Front Cell Infect Microbiol 2023; 13:1108155. [PMID: 36844400 PMCID: PMC9950414 DOI: 10.3389/fcimb.2023.1108155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
While early and precise diagnosis is the key to eliminating tuberculosis (TB), conventional methods using culture conversion or sputum smear microscopy have failed to meet demand. This is especially true in high-epidemic developing countries and during pandemic-associated social restrictions. Suboptimal biomarkers have restricted the improvement of TB management and eradication strategies. Therefore, the research and development of new affordable and accessible methods are required. Following the emergence of many high-throughput quantification TB studies, immunomics has the advantages of directly targeting responsive immune molecules and significantly simplifying workloads. In particular, immune profiling has been demonstrated to be a versatile tool that potentially unlocks many options for application in TB management. Herein, we review the current approaches for TB control with regard to the potentials and limitations of immunomics. Multiple directions are also proposed to hopefully unleash immunomics' potential in TB research, not least in revealing representative immune biomarkers to correctly diagnose TB. The immune profiles of patients can be valuable covariates for model-informed precision dosing-based treatment monitoring, prediction of outcome, and the optimal dose prediction of anti-TB drugs.
Collapse
Affiliation(s)
- Vo Thuy Anh Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Ly Da Dat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Rannissa Puspita Jayanti
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Hoang Kim Tu Trinh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City, Vietnam
| | - Tran Minh Hung
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong-Soon Cho
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea,*Correspondence: Jae-Gook Shin, ; Nguyen Phuoc Long,
| |
Collapse
|
9
|
Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis Infection. Int J Mol Sci 2023; 24:1772. [PMID: 36675296 PMCID: PMC9865913 DOI: 10.3390/ijms24021772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) causes tuberculosis infection in humans worldwide, especially among immunocompromised populations and areas of the world with insufficient funding for tuberculosis treatment. Specifically, M. tb is predominantly exhibited as a latent infection, which poses a greater risk of reactivation for infected individuals. It has been previously shown that M. tb infection requires pro-inflammatory and anti-inflammatory mediators to manage its associated granuloma formation via tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interferon-γ (IFN-γ), and caseum formation via IL-10, respectively. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) has been found to play a unique mediator role in providing a pro-inflammatory response to chronic inflammatory disease processes by promoting the activation of macrophages and the release of various cytokines such as IL-1, IL-6, IL-12, and TNF-α. NF-κB's role is especially interesting in its mechanism of assisting the immune system's defense against M. tb, wherein NF-κB induces IL-2 receptors (IL-2R) to decrease the immune response, but has also been shown to crucially assist in keeping a granuloma and bacterial load contained. In order to understand NF-κB's role in reducing M. tb infection, within this literature review we will discuss the dynamic interaction between M. tb and NF-κB, with a focus on the intracellular signaling pathways and the possible side effects of NF-κB inactivation on M. tb infection. Through a thorough review of these interactions, this review aims to highlight the role of NF-κB in M. tb infection for the purpose of better understanding the complex immune response to M. tb infection and to uncover further potential therapeutic methods.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armani K. Oganyan
- College of Osteopathic Medicine, Des Moines University, 3200 Grand Ave, Des Moines, IA 50312, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Prathosh Velpuri
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
10
|
Niu H, Bai C, Li F, Ma L, He J, Shi X, Han X, Zhu B, Zhang Y. Pyrazinamide enhances persistence of T-cell memory induced by tuberculosis subunit vaccine LT70. Tuberculosis (Edinb) 2022; 135:102220. [DOI: 10.1016/j.tube.2022.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
11
|
Mishra P, Verma VK, Barman L, Sharma J, Gupta P, Mohan A, Arya DS. Correlation of serum amyloid A1 and interleukin-1beta in response to anti-tubercular therapy. Am J Med Sci 2022; 364:316-326. [PMID: 35452629 DOI: 10.1016/j.amjms.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/28/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Host biomarkers are needed to monitor the response to anti-tubercular therapy (ATT) for ensuring effective therapy and preventing drug-resistant tuberculosis. We sought to find the correlation between the serum levels of SAA1 and IL-1beta in response to ATT in adult patients with pulmonary TB (PTB) or extra-pulmonary TB (EPTB). METHODS Blood samples of 32 patients with PTB and 28 patients with EPTB were analyzed. The blood samples were collected at baseline, two months and six months following treatment initiation. SAA1 and IL-1beta levels were measured by enzyme linked immunosorbent assay (ELISA). RESULTS In the PTB group, the mean levels of SAA1 decreased significantly (p <0.001) after the intensive phase (two months) and continuous phase (six months) of ATT in comparison with the baseline value. IL-1beta values also decreased significantly (p = 0.005) after the intensive phase (two months) compared with the baseline values. In the EPTB group, there was a significant reduction in the mean serum level of SAA1 (p <0.001) and IL-1beta (p = 0.001) after the intensive phase (two months) in comparison with the baseline value, whereas the reduction at six months was not significant. CONCLUSIONS SAA1 and IL-1beta may be useful potential treatment-monitoring biomarkers, especially in the intensive phase of therapy for both PTB and EPTB.
Collapse
Affiliation(s)
- Prashant Mishra
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lina Barman
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jatin Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
12
|
Park HE, Lee W, Shin MK, Shin SJ. Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis? Front Immunol 2021; 12:703060. [PMID: 34262571 PMCID: PMC8273550 DOI: 10.3389/fimmu.2021.703060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:84. [PMID: 33498555 PMCID: PMC7909539 DOI: 10.3390/medicina57020084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
The complement system orchestrates a multi-faceted immune response to the invading pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial cell surface proteins or secrete proteins, which activate the complement pathway. The classical pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative pathway is constitutively active and regulated by properdin, the direct interaction of properdin is capable of complement activation. The lectin-binding pathway is activated in response to bacterial cell surface carbohydrates such as mannose, fucose, and N-acetyl-d-glucosamine. All three pathways contribute to mounting an immune response for the clearance of mycobacteria. However, the bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages using a number of mechanisms. The immune system can compartmentalise the infection into a granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The granuloma consists of many types of immune cells, which aim to clear and contain the infection whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the complement system during infection.
Collapse
Affiliation(s)
- Heena Jagatia
- Department for Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Anthony G. Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University of London, Uxbridge UB8 3PN, UK;
| |
Collapse
|
14
|
Li G, Ruan S, Zhao X, Liu Q, Dou Y, Mao F. Transcriptomic signatures and repurposing drugs for COVID-19 patients: findings of bioinformatics analyses. Comput Struct Biotechnol J 2020; 19:1-15. [PMID: 33312453 PMCID: PMC7719282 DOI: 10.1016/j.csbj.2020.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 is damaging the world's social and economic fabrics seriously. Effective drugs are urgently needed to decrease the high mortality rate of COVID-19 patients. Unfortunately, effective antiviral drugs or vaccines are currently unavailable. Herein, we systematically evaluated the effect of SARS-CoV-2 on gene expression of both lung tissue and blood from COVID-19 patients using transcriptome profiling. Differential gene expression analysis revealed potential core mechanism of COVID-19-induced pneumonia in which IFN-α, IFN-β, IFN-γ, TNF and IL6 triggered cytokine storm mediated by neutrophil, macrophage, B and DC cells. Weighted gene correlation network analysis identified two gene modules that are highly correlated with clinical traits of COVID-19 patients, and confirmed that over-activation of immune system-mediated cytokine release syndrome is the underlying pathogenic mechanism for acute phase of COVID-19 infection. It suggested that anti-inflammatory therapies may be promising regimens for COVID-19 patients. Furthermore, drug repurposing analysis of thousands of drugs revealed that TNFα inhibitor etanercept and γ-aminobutyric acid-B receptor (GABABR) agonist baclofen showed most significant reversal power to COVID-19 gene signature, so we are highly optimistic about their clinical use for COVID-19 treatment. In addition, our results suggested that adalimumab, tocilizumab, rituximab and glucocorticoids may also have beneficial effects in restoring normal transcriptome, but not chloroquine, hydroxychloroquine or interferons. Controlled clinical trials of these candidate drugs are needed in search of effective COVID-19 treatment in current crisis.
Collapse
Affiliation(s)
- Guobing Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- The First Clinical College of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaolu Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Simmons JD, Peterson GJ, Campo M, Lohmiller J, Skerrett SJ, Tunaru S, Offermanns S, Sherman DR, Hawn TR. Nicotinamide Limits Replication of Mycobacterium tuberculosis and Bacille Calmette-Guérin Within Macrophages. J Infect Dis 2020; 221:989-999. [PMID: 31665359 PMCID: PMC7050990 DOI: 10.1093/infdis/jiz541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Novel antimicrobials for treatment of Mycobacterium tuberculosis are needed. We hypothesized that nicotinamide (NAM) and nicotinic acid (NA) modulate macrophage function to restrict M. tuberculosis replication in addition to their direct antimicrobial properties. Both compounds had modest activity in 7H9 broth, but only NAM inhibited replication in macrophages. Surprisingly, in macrophages NAM and the related compound pyrazinamide restricted growth of bacille Calmette-Guérin but not wild-type Mycobacterium bovis, which both lack a functional nicotinamidase/pyrazinamidase (PncA) rendering each strain resistant to these drugs in broth culture. Interestingly, NAM was not active in macrophages infected with a virulent M. tuberculosis mutant encoding a deletion in pncA. We conclude that the differential activity of NAM and nicotinic acid on infected macrophages suggests host-specific NAM targets rather than PncA-dependent direct antimicrobial properties. These activities are sufficient to restrict attenuated BCG, but not virulent wild-type M. bovis or M. tuberculosis.
Collapse
Affiliation(s)
- Jason D Simmons
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Glenna J Peterson
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Monica Campo
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jenny Lohmiller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shawn J Skerrett
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sorin Tunaru
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - David R Sherman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Thomas R Hawn
- TB Research & Training Center, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Giraud-Gatineau A, Coya JM, Maure A, Biton A, Thomson M, Bernard EM, Marrec J, Gutierrez MG, Larrouy-Maumus G, Brosch R, Gicquel B, Tailleux L. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. eLife 2020; 9:e55692. [PMID: 32369020 PMCID: PMC7200153 DOI: 10.7554/elife.55692] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely used in the treatment of bacterial infections. Although known for their microbicidal activity, antibiotics may also interfere with the host's immune system. Here, we analyzed the effects of bedaquiline (BDQ), an inhibitor of the mycobacterial ATP synthase, on human macrophages. Genome-wide gene expression analysis revealed that BDQ reprogramed cells into potent bactericidal phagocytes. We found that 579 and 1,495 genes were respectively differentially expressed in naive- and M. tuberculosis-infected macrophages incubated with the drug, with an over-representation of lysosome-associated genes. BDQ treatment triggered a variety of antimicrobial defense mechanisms, including phagosome-lysosome fusion, and autophagy. These effects were associated with activation of transcription factor EB, involved in the transcription of lysosomal genes, resulting in enhanced intracellular killing of different bacterial species that were naturally insensitive to BDQ. Thus, BDQ could be used as a host-directed therapy against a wide range of bacterial infections.
Collapse
Affiliation(s)
- Alexandre Giraud-Gatineau
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | | | - Alexandra Maure
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | - Anne Biton
- Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut PasteurParisFrance
| | - Michael Thomson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jade Marrec
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
| | - Brigitte Gicquel
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease ControlShenzhenChina
| | - Ludovic Tailleux
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| |
Collapse
|
17
|
Cho HJ, Lim YJ, Kim J, Koh WJ, Song CH, Kang MW. Different macrophage polarization between drug-susceptible and multidrug-resistant pulmonary tuberculosis. BMC Infect Dis 2020; 20:81. [PMID: 31996142 PMCID: PMC6988333 DOI: 10.1186/s12879-020-4802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Macrophages play a key role in the infection process, and alternatively activated macrophages (M2 polarization) play important roles in persistent infection via the immune escape of pathogens. This suggests that immune escape of pathogens from host immunity is an important factor to consider in treatment failure and multidrug-resistant tuberculosis (MDR-TB)/extensively drug-resistant tuberculosis (XDR-TB). In this study, we investigated the association between macrophage polarization and MDR-TB/XDR-TB and the association between macrophage polarization and the anti-TB drugs used. METHODS iNOS and arginase-1, a surface marker of polarized macrophages, were quantified by immunohistochemical staining and imaging analysis of lung tissues of patients who underwent surgical treatment for pulmonary TB. Drug susceptibility/resistance and the type and timing of anti-tuberculosis drugs used were investigated. RESULTS The M2-like polarization rate and the ratio of the M2-like polarization rate to the M1-like polarization rate were significantly higher in the MDR-TB/XDR-TB group than in the DS-TB group. The association between a high M2-like polarization rate and MDR-TB/XDR-TB was more pronounced in patients with a low M1-like polarization rate. Younger age and a higher M2-like polarization rate were independent associated factors for MDR-TB/XDR-TB. The M2-like polarization rate was significantly higher in patients who received anti-TB drugs containing pyrazinamide continuously for 4 or 6 weeks than in those who received anti-TB drugs not containing pyrazinamide. CONCLUSIONS The M2-like polarization of macrophages is associated with MDR-TB/XDR-TB and anti-TB drug regimens including pyrazinamide or a combination of pyrazinamide, prothionamide and cycloserine.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Yun-Ji Lim
- Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Hwa Song
- Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon, South Korea.
- Department of Microbiology, Chungnam National University College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
| | - Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
- Research Institute for Medical Sciences, Chungnam National University College of Medicine, Daejeon, South Korea.
| |
Collapse
|
18
|
Lamont EA, Baughn AD. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine 2019; 49:374-380. [PMID: 31669220 PMCID: PMC6945238 DOI: 10.1016/j.ebiom.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/05/2023] Open
Abstract
Pyrazinamide remains the only drug in the tuberculosis pharmacopeia to drastically shorten first-line therapy from nine to six months. Due to its unparalleled ability to sterilize non-replicating bacilli and reduce relapse rates, PZA is expected to be irreplaceable in future therapies against tuberculosis. While the molecular target of PZA is unclear, recent pharmacokinetic studies using small animal models and patient samples have highlighted the importance of host metabolism and immune responses in PZA efficacy. Delineating which host factors are important for PZA action will be integral to the design of next-generation therapies to shorten current TB drug regimens as well as to overcome treatment limitations in some patients. In this review, we discuss evidence for influence of the host environment on PZA activity, targets for PZA mechanism of action, recent studies in PZA pharmacokinetics, PZA antagonism and synergy with other first-line anti-TB drugs, and implications for future research.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
20
|
Desikan P, Rangnekar A. Host-targeted therapy for tuberculosis: Time to revisit the concept. Indian J Med Res 2018; 147:233-238. [PMID: 29923511 PMCID: PMC6022386 DOI: 10.4103/ijmr.ijmr_652_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Every year millions of people die due to TB. Drug resistance has been a major factor that has obstructed successful control and treatment of TB. As the rate of spread of drug-resistant TB outpaces the rate of discovery of new anti-tubercular drugs, targeted therapy may provide a new approach to TB cure. In a scenario where drug resistance is spreading rapidly, and existing drugs regimens seem to be dwindling away, this review summarizes the concept of host-targeted therapy which may be the ray of hope for the effective management and control of the rapidly spreading drug-resistant TB (multidrug resistant and extensively drug resistant).
Collapse
Affiliation(s)
- Prabha Desikan
- Department of Microbiology, National Reference Laboratory for Tuberculosis, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Aseem Rangnekar
- Department of Microbiology, National Reference Laboratory for Tuberculosis, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| |
Collapse
|
21
|
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front Microbiol 2018; 9:2603. [PMID: 30425706 PMCID: PMC6218626 DOI: 10.3389/fmicb.2018.02603] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Impaired lung function is common in people with a history of tuberculosis. Host-directed therapy added to tuberculosis treatment may reduce lung damage and result in improved lung function. An understanding of the pathogenesis of pulmonary damage in TB is fundamental to successfully predicting which interventions could be beneficial. In this review, we describe the different features of TB immunopathology that lead to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss the immunological processes that cause lung damage, focusing on studies performed in humans, and using chest radiograph abnormalities as a marker for pulmonary damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of HIV co-infection. Finally, we focus on various existing drugs that affect one or more of the immunological mediators of lung damage and could therefore play a role as host-directed therapy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Montgomery SA, Young EF, Durham PG, Zulauf KE, Rank L, Miller BK, Hayden JD, Lin FC, Welch JT, Hickey AJ, Braunstein M. Efficacy of pyrazinoic acid dry powder aerosols in resolving necrotic and non-necrotic granulomas in a guinea pig model of tuberculosis. PLoS One 2018; 13:e0204495. [PMID: 30261007 PMCID: PMC6160074 DOI: 10.1371/journal.pone.0204495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.
Collapse
MESH Headings
- Aerosols
- Animals
- Antitubercular Agents/administration & dosage
- Antitubercular Agents/pharmacokinetics
- Bacterial Load
- Disease Models, Animal
- Drug Therapy, Combination
- Dry Powder Inhalers
- Granuloma, Respiratory Tract/drug therapy
- Granuloma, Respiratory Tract/microbiology
- Granuloma, Respiratory Tract/pathology
- Guinea Pigs
- Male
- Mycobacterium tuberculosis/drug effects
- Necrosis
- Pyrazinamide/administration & dosage
- Pyrazinamide/analogs & derivatives
- Pyrazinamide/pharmacokinetics
- Respiratory Tract Absorption
- Rifampin/administration & dosage
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ellen F. Young
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Phillip G. Durham
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Katelyn E. Zulauf
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura Rank
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brittany K. Miller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jennifer D. Hayden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John T. Welch
- Department of Chemistry, University at Albany, Albany, New York, United States of America
| | - Anthony J. Hickey
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Tuberculosis (TB) has troubled mankind for millennia, but current treatment strategies are long and complicated and the disease remains a major global health problem. The risk of Mycobacterium tuberculosis (Mtb) infection or progression of active TB disease is elevated in individuals with vitamin D deficiency. High-dose vitamin D was used to treat TB in the preantibiotic era, and in vitro experimental data show that vitamin D supports innate immune responses that restrict growth of Mtb. Several randomized controlled trials have tested whether adjunctive vitamin D supplementation enhances the clinical and microbiological response to standard antimicrobial chemotherapy for pulmonary TB. The effects have been modest at best, and attention is turning to the question of whether vitamin D supplementation might have a role in preventing acquisition or reactivation of latent Mtb infection. In this article, we describe the effects of vitamin D on host immune responses to Mtb in vitro and in vivo and review the results of clinical trials in the field. We also reflect on the findings of clinical trials of vitamin D supplementation for the prevention of acute respiratory tract infections, and discuss how these findings might influence the design of future trials to evaluate the role of vitamin D in the prevention and treatment of TB.
Collapse
Affiliation(s)
- S Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - P Bergman
- Department of Laboratory Medicine (LABMED), Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A R Martineau
- Blizard Institute, Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Antibiotics induce polarization of pleural macrophages to M2-like phenotype in patients with tuberculous pleuritis. Sci Rep 2017; 7:14982. [PMID: 29101376 PMCID: PMC5670217 DOI: 10.1038/s41598-017-14808-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Pleural macrophages play critical roles in pathogenesis of tuberculous pleuritis, but very little is known about their response to anti-tuberculosis antibiotics treatment. Here, we examined whether and how pleural macrophages change in phenotype, transcription and function following antibiotics treatment in patients with tuberculous pleuritis. Results show pro-inflammatory cytokines were down-regulated significantly post antibiotic treatment in the pleural effusions and pleural macrophages up-regulated markers characteristic of M2 macrophages such as CD163 and CD206. Differential expression analysis of transcriptomes from four paired samples before and after treatment identified 230 treatment-specific responsive genes in pleural macrophages. Functional analysis identified interferon-related pathway to be the most responsive genes and further confirmed macrophage polarization to M2-like phenotype. We further demonstrate that expression of a significant fraction of responsive genes was modulated directly by antibiotics in pleural macrophages in vitro. Our results conclude that pleural macrophages polarize from M1-like to M2-like phenotype within a mean of 3.5 days post antibiotics treatment, which is dependent on both pleural cytokine environment and direct modulatory effects of antibiotics. The treatment-specific genes could be used to study the roles of pleural macrophages in the pathogenesis of tuberculous pleuritis and to monitor the response to antibiotics treatment.
Collapse
|
25
|
Bolívar BE, Welch JT. Studies of the Binding of Modest Modulators of the Human Enzyme, Sirtuin 6, by STD NMR. Chembiochem 2017; 18:931-940. [PMID: 28222243 DOI: 10.1002/cbic.201600655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA), an essential constituent of short-course tuberculosis chemotherapy, binds weakly but selectively to Sirtuin 6 (SIRT6). Despite the structural similarities between nicotinamide (NAM), PZA, and pyrazinoic acid (POA), these inhibitors modulate SIRT6 by different mechanisms and through different binding sites, as suggested by saturation transfer difference (STD) NMR. Available experimental evidence, such as that derived from crystal structures and kinetic experiments, has been of only limited utility in elucidation of the mechanistic details of sirtuin inhibition by NAM or other inhibitors. For instance, crystallographic structural analysis of sirtuin binding sites does not help us understand important differences in binding affinities among sirtuins or capture details of such dynamic process. Hence, STD NMR was utilized throughout this study. Our results not only agreed with the binding kinetics experiments but also gave a qualitative insight into the binding process. The data presented herein suggested some details about the geometry of the binding epitopes of the ligands in solution with the apo- and holoenzyme. Recognition that SIRT6 is affected selectively by PZA, an established clinical agent, suggests that the rational development of more potent and selective NAM surrogates might be possible. These derivatives might be accessible by employing the malleability of this scaffold to assist in the identification by STD NMR of the motifs that interact with the apo- and holoenzymes in solution.
Collapse
Affiliation(s)
- Beatriz E Bolívar
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY, 12205, USA
| | - John T Welch
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY, 12205, USA
| |
Collapse
|
26
|
Zhang Z, Ordonez AA, Smith-Jones P, Wang H, Gogarty KR, Daryaee F, Bambarger LE, Chang YS, Jain SK, Tonge PJ. The biodistribution of 5-[18F]fluoropyrazinamide in Mycobacterium tuberculosis-infected mice determined by positron emission tomography. PLoS One 2017; 12:e0170871. [PMID: 28151985 PMCID: PMC5289470 DOI: 10.1371/journal.pone.0170871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/11/2017] [Indexed: 02/03/2023] Open
Abstract
5-[18F]F-pyrazinamide (5-[18F]F-PZA), a radiotracer analog of the first-line tuberculosis drug pyrazinamide (PZA), was employed to determine the biodistribution of PZA using PET imaging and ex vivo analysis. 5-[18F]F-PZA was synthesized in 60 min using a halide exchange reaction. The overall decay-corrected yield of the reaction was 25% and average specific activity was 2.6 × 106 kBq (70 mCi)/μmol. The biodistribution of 5-[18F]F-PZA was examined in a pulmonary Mycobacterium tuberculosis mouse model, where rapid distribution of the tracer to the lung, heart, liver, kidney, muscle, and brain was observed. The concentration of 5-[18F]F-PZA was not significantly different between infected and uninfected lung tissue. Biochemical and microbiological studies revealed substantial differences between 5-F-PZA and PZA. 5-F-PZA was not a substrate for pyrazinamidase, the bacterial enzyme that activates PZA, and the minimum inhibitory concentration for 5-F-PZA against M. tuberculosis was more than 100-fold higher than that for PZA.
Collapse
Affiliation(s)
- Zhuo Zhang
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Department of Radiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research, Center for Tuberculosis Research and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Peter Smith-Jones
- The Facility for Experimental Radiopharmaceutical Manufacturing, Department of Psychiatry, Stony Brook University, Stony Brook, New York, United States of America
| | - Hui Wang
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Department of Radiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kayla R. Gogarty
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Department of Radiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Fereidoon Daryaee
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Department of Radiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lauren E. Bambarger
- Center for Infection and Inflammation Imaging Research, Center for Tuberculosis Research and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yong S. Chang
- Center for Infection and Inflammation Imaging Research, Center for Tuberculosis Research and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Center for Tuberculosis Research and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SKJ); (PJT)
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry and Department of Radiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (SKJ); (PJT)
| |
Collapse
|
27
|
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect Dis 2016; 2:616-626. [PMID: 27759369 DOI: 10.1021/acsinfecdis.6b00070] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jickky Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian Liang Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jansy P. Sarathy
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Martin Gengenbacher
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
28
|
The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol 2016; 17:1167-75. [PMID: 27548433 DOI: 10.1038/ni.3535] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
CD8α(+) dendritic cells (DCs) are specialized at cross-presenting extracellular antigens on major histocompatibility complex (MHC) class I molecules to initiate cytotoxic T lymphocyte (CTL) responses; however, details of the mechanisms that regulate cross-presentation remain unknown. We found lower expression of the lectin family member Siglec-G in CD8α(+) DCs, and Siglec-G deficient (Siglecg(-/-)) mice generated more antigen-specific CTLs to inhibit intracellular bacterial infection and tumor growth. MHC class I-peptide complexes were more abundant on Siglecg(-/-) CD8α(+) DCs than on Siglecg(+/+) CD8α(+) DCs. Mechanistically, phagosome-expressed Siglec-G recruited the phosphatase SHP-1, which dephosphorylated the NADPH oxidase component p47(phox) and inhibited the activation of NOX2 on phagosomes. This resulted in excessive hydrolysis of exogenous antigens, which led to diminished formation of MHC class I-peptide complexes for cross-presentation. Therefore, Siglec-G inhibited DC cross-presentation by impairing such complex formation, and our results add insight into the regulation of cross-presentation in adaptive immunity.
Collapse
|
29
|
Young EF, Perkowski E, Malik S, Hayden JD, Durham PG, Zhong L, Welch JT, Braunstein MS, Hickey AJ. Inhaled Pyrazinoic Acid Esters for the Treatment of Tuberculosis. Pharm Res 2016; 33:2495-505. [PMID: 27351427 DOI: 10.1007/s11095-016-1974-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Analog development of existing drugs and direct drug delivery to the lungs by inhalation as treatments for multiple and extensively drug resistant (MDR and XDR) tuberculosis (TB) represent new therapeutic strategies. Pyrazinamide (PZA) is critical to drug sensitive TB therapy and is included in regimens for MDR TB. However, PZA-resistant Mycobacterium tuberculosis (Mtb) strains threaten its use. Pyrazinoic acid esters (PAEs) are PZA analogs effective against Mtb in vitro, including against the most common PZA resistant strains. However, PAEs require testing for TB efficacy in animal models. METHODS PAEs were delivered daily as aqueous dispersions from a vibrating mesh nebulizer to Mtb infected guinea pigs for 4 weeks in a regimen including orally administered first-line TB drugs. RESULTS PAEs tested as a supplement to oral therapy significantly reduced the organ bacterial burden in comparison to infected, untreated control animals. Thus, PAE aerosol therapy is a potentially significant addition to the regimen for PZA resistant MDR-TB and XDR-TB treatment. Interestingly, low dose oral PZA treatment combined with standard therapy also reduced bacterial burden. This observation may be important for PZA susceptible disease treatment. CONCLUSION The present study justifies further evaluation of PZA analogs and their lung delivery to treat TB.
Collapse
Affiliation(s)
- E F Young
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - E Perkowski
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - S Malik
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - J D Hayden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - P G Durham
- RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina, 27709, USA
| | - L Zhong
- Department of Chemistry, University of Albany, State University of New York, Albany, New York, 12222, USA
| | - J T Welch
- Department of Chemistry, University of Albany, State University of New York, Albany, New York, 12222, USA
| | - Miriam S Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA. .,School of Medicine, University of North Carolina at Chapel Hill, 6211 Marsico Hall, Chapel Hill, North Carolina, 27599-7290, USA.
| | - Anthony J Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
30
|
A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine 2016; 6:126-138. [PMID: 27211555 PMCID: PMC4856747 DOI: 10.1016/j.ebiom.2016.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Treatment of disseminated tuberculosis in children ≤ 6 years has not been optimized. The pyrazinamide-containing combination regimen used to treat disseminated tuberculosis in babies and toddlers was extrapolated from adult pulmonary tuberculosis. Due to hepatotoxicity worries, there are no dose–response studies in children. We designed a hollow fiber system model of disseminated intracellular tuberculosis with co-perfused three-dimensional organotypic liver modules to simultaneously test for efficacy and toxicity. We utilized pediatric pharmacokinetics of pyrazinamide and acetaminophen to determine dose-dependent pyrazinamide efficacy and hepatotoxicity. Acetaminophen concentrations that cause hepatotoxicity in children led to elevated liver function tests, while 100 mg/kg pyrazinamide did not. Surprisingly, pyrazinamide did not kill intracellular Mycobacterium tuberculosis up to fourfold the standard dose as monotherapy or as combination therapy, despite achieving high intracellular concentrations. Host-pathogen RNA-sequencing revealed lack of a pyrazinamide exposure transcript signature in intracellular bacteria or of phagolysosome acidification on pH imaging. Artificial intelligence algorithms confirmed that pyrazinamide was not predictive of good clinical outcomes in children ≤ 6 years who had extrapulmonary tuberculosis. Thus, adding a drug that works inside macrophages could benefit children with disseminated tuberculosis. Our in vitro model can be used to identify such new regimens that could accelerate cure while minimizing toxicity. We designed a pre-clinical of disseminated for simultaneous identification of toxicity and efficacy in children. The system is a co-culture of infected monocytes and 3 dimensional organotypic liver recapitulating children pharmacokinetics. Pyrazinamide, central drug in treatment regimen, had no effect as monotherapy or contribute to the combination therapy.
Due to fear of toxicity children are often not involved in clinical trials, and as a result the optimal treatment regimens are often lacking. As an example, toddlers and babies develop disseminated tuberculosis but are treated with regimens designed for adults with lung cavity disease. We designed a “glass-mouse” model of disseminated tuberculosis that simultaneously tests for the efficacy and toxicity of the anti-tuberculosis drugs for children with disseminated disease. We found that while not causing dose-dependent liver toxicity, one of the central drugs used to treat this children is likely not efficacious.
Collapse
|
31
|
Abstract
In this chapter we review the molecular mechanisms of drug resistance to the major first- and second-line antibiotics used to treat tuberculosis.
Collapse
|
32
|
Maiga M, Ahidjo BA, Maiga MC, Cheung L, Pelly S, Lun S, Bougoudogo F, Bishai WR. Efficacy of Adjunctive Tofacitinib Therapy in Mouse Models of Tuberculosis. EBioMedicine 2015; 2:868-73. [PMID: 26425693 PMCID: PMC4563140 DOI: 10.1016/j.ebiom.2015.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
The global tuberculosis (TB) epidemic and the spread of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis (M.tb) have been fueled by low adherence to following lengthy treatment protocols, and the rapid spread of HIV (Human Immunodeficiency Virus). Persistence of the infection in immunocompetent individuals follows from the ability of M.tb to subvert host immune responses in favor of survival within macrophages. Alternative host-directed strategies are therefore being currently sought to improve treatment efficacy and duration. In this study, we evaluated tofacitinib, a new oral Janus kinase (JAK) blocker with anti-inflammatory properties, in shortening tuberculosis treatment. BALB/c mice, which are immunocompetent, showed acceleration of M.tb clearance achieving apparent sterilization after 16 weeks of adjunctive tofacitinib therapy at average exposures higher than recommended in humans, while mice receiving standard treatment alone did not achieve clearance until 24 weeks. True sterilization with tofacitinib was not achieved until five months. C3HeB/FeJ mice, which show reduced pro-inflammatory cytokines during M.tb infection, did not show improved clearance with adjunctive tofacitinib therapy, indicating that the nature of granulomatous lesions and host immunity may influence responsiveness to tofacitinib. Our findings suggest that the JAK pathway could be explored further for host-directed therapy in immunocompetent individuals.
Collapse
Affiliation(s)
- Mamoudou Maiga
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Bintou Ahmadou Ahidjo
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Mariama C Maiga
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laurene Cheung
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shaaretha Pelly
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flabou Bougoudogo
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
33
|
Rayasam GV, Balganesh TS. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci 2015; 36:506-13. [PMID: 26073420 DOI: 10.1016/j.tips.2015.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 01/02/2023]
Abstract
A critical unmet need for treatment of drug-resistant tuberculosis (TB) is to find novel therapies that are efficacious, safe, and shorten the duration of treatment. Drug discovery approaches for TB primarily target essential genes of the pathogen Mycobacterium tuberculosis (Mtb) but novel strategies such as host-directed therapies and nonmicrobicidal targets are necessary to bring about a paradigm shift in treatment. Drugs targeting the host pathways and nonmicrobicidal proteins can be used only in conjunction with existing drugs as adjunct therapies. Significantly, host-directed adjunct therapies have the potential to decrease duration of treatment, as they are less prone to drug resistance, target the immune responses, and act via novel mechanism of action. Recent advances in targeting host-pathogen interactions have implicated pathways such as eicosanoid regulation and angiogenesis. Furthermore, several approved drugs such as metformin and verapamil have been identified that appear suitable for repurposing for the treatment of TB. These findings and the challenges in the area of host- and/or pathogen-directed adjunct therapies and their implications for TB therapy are discussed.
Collapse
Affiliation(s)
- Geetha Vani Rayasam
- CSIR-Open Source Drug Discovery (OSDD) Unit, Council for Scientific and Industrial Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi, India.
| | | |
Collapse
|
34
|
Via LE, Savic R, Weiner DM, Zimmerman MD, Prideaux B, Irwin SM, Lyon E, O’Brien P, Gopal P, Eum S, Lee M, Lanoix JP, Dutta NK, Shim T, Cho JS, Kim W, Karakousis PC, Lenaerts A, Nuermberger E, Barry CE, Dartois V. Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infect Dis 2015; 1:203-214. [PMID: 26086040 DOI: 10.1021/id500028m] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrazinamide has played a critical role in shortening therapy against drug-sensitive, drug-resistant, active, and latent tuberculosis (TB). Despite widespread recognition of its therapeutic importance, the sterilizing properties of this 60-year-old drug remain an enigma given its rather poor activity in vitro. Here we revisit longstanding paradigms and offer pharmacokinetic explanations for the apparent disconnect between in vitro activity and clinical impact. We show substantial host-mediated conversion of prodrug pyrazinamide (PZA) to the active form, pyrazinoic acid (POA), in TB patients and in animal models. We demonstrate favorable penetration of this pool of circulating POA from plasma into lung tissue and granulomas, where the pathogen resides. In standardized growth inhibition experiments, we show that POA exhibits superior in vitro potency compared to PZA, indicating that the vascular supply of host-derived POA may contribute to the in vivo efficacy of PZA, thereby reducing the apparent discrepancy between in vitro and in vivo activity. However, the results also raise the possibility that subinhibitory concentrations of POA generated by the host could fuel the emergence of resistance to both PZA and POA. In contrast to widespread expectations, we demonstrate good oral bioavailability and exposure in preclinical species in pharmacokinetic studies of oral POA. Baseline exposure of oral POA can be further increased by the xanthine oxidase inhibitor and approved gout drug allopurinol. These promising results pave the way for clinical investigations of oral POA as a therapeutic alternative or an add-on to overcome PZA resistance and salvage this essential TB drug.
Collapse
Affiliation(s)
- Laura E. Via
- Tuberculosis Research
Section, Laboratory of Clinical Infectious Diseases, NIH-NIAID, 33 North
Drive, Bethesda, Maryland 20892-3206, United States
| | - Rada Savic
- Department of Bioengineering and Therapeutic Sciences, Schools of
Pharmacy and Medicine, University of California at San Francisco, 1550
Fourth Street, San Francisco, California 94143-2911, United States
| | - Danielle M. Weiner
- Tuberculosis Research
Section, Laboratory of Clinical Infectious Diseases, NIH-NIAID, 33 North
Drive, Bethesda, Maryland 20892-3206, United States
| | - Matthew D. Zimmerman
- Public Health Research Institute, New Jersey
Medical School, Rutgers, The State University of New Jersey, 225 Warren
Street, Newark, New Jersey 07103, United States
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey
Medical School, Rutgers, The State University of New Jersey, 225 Warren
Street, Newark, New Jersey 07103, United States
| | - Scott M. Irwin
- Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Ft.
Collins, Colorado 80523-4629, United States
| | - Eddie Lyon
- Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Ft.
Collins, Colorado 80523-4629, United States
| | - Paul O’Brien
- Public Health Research Institute, New Jersey
Medical School, Rutgers, The State University of New Jersey, 225 Warren
Street, Newark, New Jersey 07103, United States
| | - Pooja Gopal
- Department
of Microbiology, Yong Loo Lin School of Medicine, National University
Health System, National University of Singapore, MD4A #05-01, 5 Science Drive 2, Singapore 117597
| | - Seokyong Eum
- International Tuberculosis
Research Center, 475-1 Gapo-dong, Masan, Kyeungsangnam-do 631-710, Republic of Korea
| | - Myungsun Lee
- International Tuberculosis
Research Center, 475-1 Gapo-dong, Masan, Kyeungsangnam-do 631-710, Republic of Korea
| | - Jean-Philippe Lanoix
- Department
of Medicine, Johns Hopkins University School of Medicine, 1550 Orleans
Street, Baltimore, Maryland 21287, United States
| | - Noton K. Dutta
- Department
of Medicine, Johns Hopkins University School of Medicine, 1550 Orleans
Street, Baltimore, Maryland 21287, United States
| | - TaeSun Shim
- Asan Medical
Center, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Jeong Su Cho
- Pusan National University Hospital, 305 Gudeok-Ro, Seo-Gu, Busan 602-739, Republic of Korea
| | - Wooshik Kim
- National Medical Center, 245 Euljiro, Jung-gu, Seoul 100-799, Republic of Korea
| | - Petros C. Karakousis
- Department
of Medicine, Johns Hopkins University School of Medicine, 1550 Orleans
Street, Baltimore, Maryland 21287, United States
| | - Anne Lenaerts
- Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Ft.
Collins, Colorado 80523-4629, United States
| | - Eric Nuermberger
- Department
of Medicine, Johns Hopkins University School of Medicine, 1550 Orleans
Street, Baltimore, Maryland 21287, United States
| | - Clifton E. Barry
- Tuberculosis Research
Section, Laboratory of Clinical Infectious Diseases, NIH-NIAID, 33 North
Drive, Bethesda, Maryland 20892-3206, United States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey
Medical School, Rutgers, The State University of New Jersey, 225 Warren
Street, Newark, New Jersey 07103, United States
| |
Collapse
|
35
|
Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, Axelsson-Robertsson R, Doherty M, Andersson J, Maeurer M. Inflammation and tuberculosis: host-directed therapies. J Intern Med 2015; 277:373-87. [PMID: 24717092 DOI: 10.1111/joim.12256] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease that kills almost two million individuals every year. Multidrug-resistant (MDR) TB is caused by strains of Mycobacterium tuberculosis (M. tb) resistant to isoniazid and rifampin, the backbone of first-line antitubercular treatment. MDR TB affects an estimated 500,000 new patients annually. Genetic analysis of drug-resistant MDR-TB showed that airborne transmission of undetected and untreated strains played a major role in disease outbreaks. The need for new TB vaccines and faster diagnostics, as well as the development of new drugs, has recently been highlighted. The major problem in terms of current TB research and clinical demands is the increasing number of cases of extensively drug-resistant and 'treatment-refractory' TB. An emerging scenario of adjunct host-directed therapies is intended to target pulmonary TB where inflammatory processes can be deleterious and lead to immune exhaustion. 'Target-organ-saving' strategies may be warranted to prevent damage to infected tissues and achieve focused, clinically relevant and long-lasting anti-M. tb cellular immune responses. Candidates for such interventions may be biological agents or already approved drugs that can be 're-purposed' to interfere with biologically relevant cellular checkpoints. Here, we review current concepts of inflammation in TB disease and discuss candidate pathways for host-directed therapies to achieve better clinical outcomes.
Collapse
Affiliation(s)
- A Zumla
- University College London, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD. Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:2491-503. [PMID: 24614376 PMCID: PMC3993223 DOI: 10.1128/aac.02293-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.
Collapse
Affiliation(s)
- Philippa A. Black
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Gail E. Louw
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Thomas C. Victor
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Bavesh D. Kana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
37
|
New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. THE LANCET. INFECTIOUS DISEASES 2014; 14:327-40. [DOI: 10.1016/s1473-3099(13)70328-1] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Progress in tuberculosis vaccine development and host-directed therapies--a state of the art review. THE LANCET RESPIRATORY MEDICINE 2014; 2:301-20. [PMID: 24717627 DOI: 10.1016/s2213-2600(14)70033-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tuberculosis continues to kill 1·4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.
Collapse
|
39
|
Almeida DV, Tyagi S, Li SY, Wallengren K, Pym AS, Ammerman NC, Bishai WR, Grosset JH. Revisiting Anti-tuberculosis Activity of Pyrazinamide in Mice. ACTA ACUST UNITED AC 2014; 4:145. [PMID: 25525563 PMCID: PMC4267256 DOI: 10.4172/2161-1068.1000145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanism of action of pyrazinamide, a key sterilizing drug in the treatment of tuberculosis, remains elusive; pyrazinamide is a pro-drug that requires activation by a bacterial-encoded enzyme, and its activity is most apparent on non-replicating Mycobacterium tuberculosis. Recently, it has been suggested that pyrazinamide might exert also some host-directed effect in addition to its antimicrobial activity. To address this possibility, three sequential experiments were conducted in immune-competent BALB/c and in immune-deficient, athymic nude mice. In the first experiment, BALB/c mice infected with M. bovis, which is naturally resistant to pyrazinamide because it is unable to activate the drug, were treated with standard drug regimens with and without pyrazinamide to specifically detect a host-directed effect. As no effect was observed, pyrazinamide activity was compared in M. tuberculosis-infected BALB/c and nude mice to determine whether the effect of pyrazinamide would be reduced in the immune deficient mice. As pyrazinamide did not appear to have any affect in the nude mice, a third experiment was performed in which rifampin was replaced with rifapentine (a similar drug with a longer half-life) to permanently suppress mycobacterial growth. In these experimental conditions, the antimicrobial effect of pyrazinamide was clear. Therefore, the results of our studies rule out a significant host-directed effect of pyrazinamide in the TB infected host.
Collapse
Affiliation(s)
- Deepak V Almeida
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | - Sandeep Tyagi
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Si-Yang Li
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristina Wallengren
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | - Alexander S Pym
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | - Nicole C Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| | - Jacques H Grosset
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
| |
Collapse
|