1
|
An W, Wang G, Dou J, Zhang Y, Yang Q, He Y, Tang Z, Yu J. Protective mechanisms of exogenous melatonin on chlorophyll metabolism and photosynthesis in tomato seedlings under heat stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1519950. [PMID: 39967814 PMCID: PMC11833508 DOI: 10.3389/fpls.2025.1519950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Elevated temperatures severely affect plant growth, reducing yield and quality. Melatonin (MT), a plant biomolecule, is known to enhance stress tolerance, but its role in heat resistance and underlying mechanisms require further exploration. This study investigates MT's regulatory effects on chlorophyll metabolism and photosynthesis in tomato seedlings under high-temperature stress (40°C). Tomato seedlings treated with 100 μmol MT showed improved physiological and photosynthetic performance under heat stress. MT application increased osmolytes (proline and soluble sugar), enhanced antioxidant enzyme activities [catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX)], and reduced oxidative damage markers (H2O2, O2 -, malondialdehyde, and conductivity). Photosynthetic parameters, including key enzyme activities [sedoheptulose-1,7-bisphosphatase (SBPase), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH)], photochemical efficiency [Fv/Fm and Y(II)], and photochemical quenching (Qp), were significantly improved, restoring the OJIP curve and enhancing photosynthesis. MT also regulated chlorophyll metabolism by promoting synthesis [increasing chlorophyll a and b, 5-aminolevulinic acid (ALA), Mg-protoporphyrin (Mg Proto), and protochlorophyllide (Pchlide) levels] and upregulating synthesis genes (SlHEMA1, SlPORB, SlPORC, and SlCHLI) while inhibiting degradation genes (SlCLH1, SlCLH2, SlPAO, SlPPH, and SlRCCR). These findings demonstrate that MT enhances tomato heat tolerance by protecting chlorophyll metabolism and photosynthesis, offering a theoretical basis for improving crop resilience to heat stress.
Collapse
Affiliation(s)
- Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yonghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Qing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, China
| |
Collapse
|
2
|
Lu S, Xu X, Wu Y, Ye J, Wu L, Nie M, Sun S, Jing W, Cho HK, Rouached H, Zheng L. Unravelling OsPHT2;1 function in Chloroplast Phosphorus Homeostasis and Photosynthetic Efficiency under Low Phosphorus Stress in Rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70082. [PMID: 39868630 DOI: 10.1111/ppl.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency. Our findings show that the OsPHT2;1 mutation leads to a decrease in the plastoquinone (PQ) pool size. This change is associated with altered stomatal conductance and modifications in electron transport dynamics, including an increase in the transmembrane proton gradient and a shift from linear to cyclic electron transport. This disruption significantly impairs the transport of photosynthetic products, particularly triose phosphates, essential for sucrose synthesis in the cytoplasm. Additionally, the reduced PQ pool influences the expression of key genes involved in photostability, highlighting the interplay between P homeostasis and photosynthetic regulation. By elucidating the mechanisms underlying OsPHT2;1's role in chloroplast function, our research underscores its significance in optimizing rice adaptation to low P environments, thereby enhancing crop resilience and productivity.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Ye
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Linyan Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Nie
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shubin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui-Kyong Cho
- Plant Resilience Institute, Michigan State University, East Lansing, MI
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Dong Z, Zhao J, Ji W, Wei W, Men Y. Classification of tomato seedling chilling injury based on chlorophyll fluorescence imaging and DBO-BiLSTM. FRONTIERS IN PLANT SCIENCE 2024; 15:1409200. [PMID: 39354943 PMCID: PMC11443344 DOI: 10.3389/fpls.2024.1409200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/08/2024] [Indexed: 10/03/2024]
Abstract
Introduction Tomatoes are sensitive to low temperatures during their growth process, and low temperatures are one of the main environmental limitations affecting plant growth and development in Northeast China. Chlorophyll fluorescence imaging technology is a powerful tool for evaluating the efficiency of plant photosynthesis, which can detect and reflect the effects that plants are subjected to during the low temperature stress stage, including early chilling injury. Methods This article primarily utilizes the chlorophyll fluorescence image set of tomato seedlings, applying the dung beetle optimization (DBO) algorithm to enhance the deep learning bidirectional long short term memory (BiLSTM) model, thereby improving the accuracy of classification prediction for chilling injury in tomatoes. Firstly, the proportion of tomato chilling injury areas in chlorophyll fluorescence images was calculated using a threshold segmentation algorithm to classify tomato cold damage into four categories. Then, the features of each type of cold damage image were filtered using SRCC to extract the data with the highest correlation with cold damage. These data served as the training and testing sample set for the BiLSTM model. Finally, DBO algorithm was applied to enhance the deep learning BiLSTM model, and the DBO-BiLSTM model was proposed to improve the prediction performance of tomato seedling category labels. Results The results showed that the DBO-BiLSTM model optimized by DBO achieved an accuracy, precision, recall, and F1 score with an average of over 95%. Discussion Compared to the original BiLSTM model, these evaluation parameters improved by 9.09%, 7.02%, 9.16%, and 8.68%, respectively. When compared to the commonly used SVM classification model, the evaluation parameters showed an increase of 6.35%, 7.33%, 6.33%, and 6.5%, respectively. This study was expected to detect early chilling injury through chlorophyll fluorescence imaging, achieve automatic classification and labeling of cold damage data, and lay a research foundation for in-depth research on the cold damage resistance of plants themselves and exploring the application of deep learning classification methods in precision agriculture.
Collapse
Affiliation(s)
- Zhenfen Dong
- School of Arts and Sciences, Suqian University, Suqian, China
| | - Jing Zhao
- School of Arts and Sciences, Suqian University, Suqian, China
| | - Wenwen Ji
- School of Arts and Sciences, Suqian University, Suqian, China
| | - Wei Wei
- School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng, China
| | - Yuheng Men
- School of Arts and Sciences, Suqian University, Suqian, China
| |
Collapse
|
4
|
Zheng Y, Yu C, Xiao Y, Ye T, Wang S. The impact of utilizing oyster shell soil conditioner on the growth of tomato plants and the composition of inter-root soil bacterial communities in an acidic soil environment. Front Microbiol 2024; 14:1276656. [PMID: 38293555 PMCID: PMC10824944 DOI: 10.3389/fmicb.2023.1276656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The objective of this study is to examine the impact of various oyster shell soil conditioners, which are primarily composed of oyster shells, on the growth of tomatoes in acidic soil. Moreover, the aim of this investigation is to analyze the variety and structure of soil bacterial populations in close proximity to tomato roots while also contributing to the understanding of the physical, chemical, and biological mechanisms of oyster shell soil conditioners. Methods Tomato plants were grown in acidic red soil in three groups: a control group and a treatment group that used two types of oyster shell soil conditioners, OS (oyster shell powder) and OSF (oyster shell powder with organic microbial fertilizer). A range of soil physicochemical properties were measured to study differences in inter-soil physicochemical parameters and the growth of tomato plantings. In addition, this study utilized the CTAB (Cetyltrimethylammonium Bromide) technique to extract DNA from the soil in order to investigate the effects of oyster shell soil conditioner on the composition and diversity of bacterial populations. Utilizing high-throughput sequencing technologies and diversity index analysis, the composition and diversity of bacterial populations in the soil adjacent to plant roots were then evaluated. Ultimately, correlation analysis was used in this study to explore the relationship between environmental factors and the relative abundance of soil bacteria in the inter-root zone of tomato plants. Results The findings indicated that the oyster shell soil conditioners were capable of modifying the physicochemical characteristics of the soil. This was evidenced by significant increases in soil total nitrogen (16.2 and 59.9%), soil total carbon (25.8 and 27.7%), pH (56.9 and 55.8%), and electrical conductivity (377.5 and 311.7%) in the OS and OSF groups, respectively, compared to the control group (p < 0.05). Additionally, data pertaining to tomato seed germination and seedling growth biomass demonstrated that both oyster shell soil conditioners facilitated the germination of tomato seeds and the growth of seedlings in an acidic red clay soil (p < 0.05). On the other hand, the application of two oyster shell soil conditioners resulted in a modest reduction in the diversity of inter-root soil bacteria in tomato plants. Specifically, the group treated with OSF exhibited the most substantial fall in the diversity index, which was 13.6% lower compared to the control group. The investigation carried out on the soil between tomato plant roots yielded findings about the identification of the ten most abundant phyla. These phyla together represented 91.00-97.64% of the overall abundance. In the inter-root soil of tomatoes, a study identified four major phyla, namely Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, which collectively accounted for up to 85% of the total abundance. At the general level, the relative abundance of Massilia increased by 2.18 and 7.93%, Brevundimonas by 5.43 and 3.01%, and Lysobacter by 3.12 and 7.49% in the OS and OSF groups, respectively, compared to the control group. However, the pathogenic bacteria unidentified_Burkholderiaceae decreased by 5.76 and 5.05%, respectively. The correlation analysis yielded conclusive evidence indicating that, which involved the use of CCA (Canonical Correlation Analysis) graphs and Spearman correlation coefficients, pH exhibited a positive correlation (p < 0.05) with Shewanella and a negative correlation (p < 0.05) with Bradyrhizobium. The relative abundance of Lysobacter and Massilia exhibited a positive correlation with the levels of total soil nitrogen. Discussion The utilization of oyster shell soil conditioner on acidic red soil resulted in several positive effects. Firstly, it raised the pH level of the inter-root soil of tomato plants, which is typically acidic. This pH adjustment facilitated the germination of tomato seeds and promoted the growth of seedlings. In addition, the application of oyster shell soil conditioner resulted in changes in the structure of the bacterial community in the inter-root soil, leading to an increase in the relative abundance of Proteobacteria and Bacteroidetes and a decrease in the relative abundance of Acidobacteria. Furthermore, this treatment fostered the proliferation of genera of beneficial bacteria like Massilia, Brevundimonas, and Lysobacter, ultimately enhancing the fertility of the red soil.
Collapse
Affiliation(s)
- Yi Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Chaofan Yu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yujun Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Tinge Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Songgang Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Song X, Zhu L, Wang D, Liang L, Xiao J, Tang W, Xie M, Zhao Z, Lai Y, Sun B, Tang Y, Li H. Molecular Regulatory Mechanism of Exogenous Hydrogen Sulfide in Alleviating Low-Temperature Stress in Pepper Seedlings. Int J Mol Sci 2023; 24:16337. [PMID: 38003525 PMCID: PMC10671541 DOI: 10.3390/ijms242216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Pepper (Capsicum annuum L.) is sensitive to low temperatures, with low-temperature stress affecting its plant growth, yield, and quality. In this study, we analyzed the effects of exogenous hydrogen sulfide (H2S) on pepper seedlings subjected to low-temperature stress. Exogenous H2S increased the content of endogenous H2S and its synthetase activity, enhanced the antioxidant capacity of membrane lipids, and protected the integrity of the membrane system. Exogenous H2S also promoted the Calvin cycle to protect the integrity of photosynthetic organs; enhanced the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and photosynthesis; and reduced the intercellular CO2 concentration (Ci). Moreover, the activities of superoxide dismutase, peroxidase, catalase, and anti-cyclic glutathione (ASA-GSH) oxidase were improved to decompose excess reactive oxygen species (ROS), enhance the oxidative stress and detoxification ability of pepper seedlings, and improve the resistance to low-temperature chilling injury in 'Long Yun2' pepper seedlings. In addition, the H2S scavenger hypotaurine (HT) aggravated the ROS imbalance by reducing the endogenous H2S content, partially eliminating the beneficial effects of H2S on the oxidative stress and antioxidant defense system, indicating that H2S can effectively alleviate the damage of low temperature on pepper seedlings. The results of transcriptome analysis showed that H2S could induce the MAPK-signaling pathway and plant hormone signal transduction; upregulate the expression of transcription factors WRKY22 and PTI6; induce defense genes; and activate the ethylene and gibberellin synthesis receptors ERF1, GDI2, and DELLA, enhancing the resistance to low-temperature chilling injury of pepper seedlings. The plant-pathogen interaction was also significantly enriched, suggesting that exogenous H2S also promotes the expression of genes related to plant-pathogen interaction. The results of this study provide novel insights into the molecular mechanisms and genetic modifications of H2S that mitigate the hypothermic response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (L.Z.); (D.W.)
| |
Collapse
|
6
|
Malko MM, Peng X, Gao X, Cai J, Zhou Q, Wang X, Jiang D. Effect of Exogenous Calcium on Tolerance of Winter Wheat to Cold Stress during Stem Elongation Stage. PLANTS (BASEL, SWITZERLAND) 2023; 12:3784. [PMID: 37960140 PMCID: PMC10649948 DOI: 10.3390/plants12213784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Low-temperature stress during stem elongation is a major factor limiting wheat yield. While calcium (Ca2+) is known to enhance stress tolerance, it's potential as an alternative to cold priming and the underlying mechanisms in wheat remains unclear. The current study assessed the effects of exogenous Ca2+ and calcium inhibitors on wheat growth and related physiology mechanisms under low-temperature stress. The results revealed that exogenous Ca2+ increased photosynthesis and antioxidant capacity, lowered cell membrane damage, and ultimately enhanced tolerance to low-temperature stress during the stem elongation stage, compared with the non-exogenous Ca2+ treatment. Moreover, exogenous Ca2+ induced endogenous Ca2+ content and triggered the upregulation of Ca2+ signaling and cold-responsive related genes. This study highlights the significance of exogenous Ca2+ in enhancing stress tolerance and contributing to wheat yield improvement under low-temperature stress.
Collapse
Affiliation(s)
- Maguje Masa Malko
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
- Department of Plant Science, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Xinyue Peng
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| | - Xing Gao
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| | - Xiao Wang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production, Key Laboratory of Crop Ecophysiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (M.M.M.); (X.P.); (X.G.); (J.C.); (Q.Z.); (D.J.)
| |
Collapse
|
7
|
Lu M, Gao P, Hu J, Hou J, Wang D. A classification method of stress in plants using unsupervised learning algorithm and chlorophyll fluorescence technology. FRONTIERS IN PLANT SCIENCE 2023; 14:1202092. [PMID: 37936937 PMCID: PMC10626557 DOI: 10.3389/fpls.2023.1202092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Introduction Chilling injury is one of the most common meteorological disasters affecting cucumber production. For implementing remedial measures as soon as possible to minimize production loss, a timely and precise assessment of chilling injury is crucial. Methods To evaluate the possibility of detecting cucumber chilling injury using chlorophyll fluorescence (ChlF) technology, we investigated the continuous changes in ChlF parameters under various low-temperature conditions and created the criteria for evaluating chilling injury. The ChlF induction curves were first collected before low-temperature as unstressed samples and daily 1 to 5 days after low-temperature as chilling injury samples. Principal component analysis was employed to investigate the public information on ChlF parameters and evaluate the differences between samples with different degrees of chilling injury. The parameters (F v/F m, Y(NO), qP, and F o) accounted for a large proportion in the principal components and could characterize chilling injury. Uniform manifold approximation and projection method was employed to extract new features (Feature 1, Feature 2, Feature 3, and Feature 4) from ChlF parameters for subsequent classification model. Taking four features as input, a classification model based on the Fuzzy C-means clustering algorithm was constructed in order to identify the chilling injury classes of cucumber seedlings. The cucumber seedlings with different chilling injury classes were analyzed for ChlF images, rapid light curves, and malondialdehyde content. Results and discussion The results demonstrated that the variations in these indicators among the different chilling injury classes supported the validity of the classification model. Our findings provide a better understanding of the relationship between ChlF parameters and the impact of low-temperature treatment on cucumber seedlings. This finding offers an additional perspective that can be used to evaluate the responses and damage that plants experience under stress.
Collapse
Affiliation(s)
- Miao Lu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pan Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin Hu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Junying Hou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Dong Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Feng D, Wang X, Gao J, Zhang C, Liu H, Liu P, Sun X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1143963. [PMID: 37025147 PMCID: PMC10070993 DOI: 10.3389/fpls.2023.1143963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stresses are various environmental factors that inhibit a normal plant growth and limit the crop productivity. Plant scientists have been attempting for a long time to understand how plants respond to these stresses and find an effective and feasible solution in mitigating their adverse impacts. Exogenous calcium ion as an essential element for the plant growth, development and reproduction has proven to be effective in alleviating plant stresses through enhancing its resistance or tolerance against them. With a comprehensive review of most recent advances and the analysis by VOSviewer in the researches on this focus of "exogenous calcium" and "stress" for last decade, this paper summarizes the mechanisms of exogenous calcium that are involved in plant defensive responses to abiotic stresses and classifies them accordingly into six categories: I) stabilization of cell walls and membranes; II) regulation of Na+ and K+ ratios; III) regulation of hormone levels in plants; IV) maintenance of photosynthesis; V) regulation of plant respiratory metabolism and improvement of root activities; and VI) induction of gene expressions and protein transcriptions for the stress resistance. Also, the progress and advances from the updated researches on exogenous calcium to alleviate seven abiotic stresses such as drought, flooding, salinity, high temperature, low temperature, heavy metals, and acid rain are outlined. Finally, the future research perspectives in agricultural production are discussed.
Collapse
Affiliation(s)
- Di Feng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xuejie Wang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Junping Gao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Chenxi Zhang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Hao Liu
- Key Laboratory of Crop Water Requirement and Regulation of the Ministry of Agriculture and Rural Afairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Ping Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Xiaoan Sun
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Shouguang, Shandong, China
| |
Collapse
|
9
|
Melatonin in Micro-Tom Tomato: Improved Drought Tolerance via the Regulation of the Photosynthetic Apparatus, Membrane Stability, Osmoprotectants, and Root System. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111922. [PMID: 36431057 PMCID: PMC9696799 DOI: 10.3390/life12111922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Environmental variations caused by global climate change significantly affect plant yield and productivity. Because water scarcity is one of the most significant risks to agriculture's future, improving the performance of plants to cope with water stress is critical. Our research scrutinized the impact of melatonin application on the photosynthetic machinery, photosynthetic physiology, root system, osmoprotectant accumulation, and oxidative stress in tomato plants during drought. The results showed that melatonin-treated tomato plants had remarkably higher water levels, gas exchange activities, root system morphological parameters (average diameter, root activity, root forks, projected area, root crossings, root volume, root surface area, root length, root tips, and root numbers), osmoprotectant (proline, trehalose, fructose, sucrose, and GB) accumulation, and transcript levels of the photosynthetic genes SlPsb28, SlPetF, SlPsbP, SlPsbQ, SlPetE, and SlPsbW. In addition, melatonin effectively maintained the plants' photosynthetic physiology. Moreover, melatonin treatment maintained the soluble protein content and antioxidant capacity during drought. Melatonin application also resulted in membrane stability, evidenced by less electrolyte leakage and lower H2O2, MDA, and O2- levels in the drought-stress environment. Additionally, melatonin application enhanced the antioxidant defense enzymes and antioxidant-stress-resistance-related gene (SlCAT1, SlAPX, SlGR, SlDHAR, SlPOD, and SOD) transcript levels in plants. These outcomes imply that the impacts of melatonin treatment on improving drought resistance could be ascribed to the mitigation of photosynthetic function inhibition, the enhancement of the water status, and the alleviation of oxidative stress in tomato plants. Our study findings reveal new and incredible aspects of the response of melatonin-treated tomato plants to drought stress and provide a list of candidate targets for increasing plant tolerance to the drought-stress environment.
Collapse
|
10
|
Wang Q, Bai H, Zada A, Jiao Q. DORN1 Is Involved in Drought Stress Tolerance through a Ca 2+-Dependent Pathway. Int J Mol Sci 2022; 23:ijms232214213. [PMID: 36430696 PMCID: PMC9694886 DOI: 10.3390/ijms232214213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Water shortages caused by climate change seriously threaten the survival and production of plants and are also one of the major environmental pressures faced by plants. DORN1 was the first identified purinoceptor for the plant response to extracellular ATP. It has been established that DORN1 could play key roles in a series of biological activities in plants. However, the biological roles of DORN1 and the mechanism remain unclear under drought stress conditions in plants. Here, DORN1 was targeted for knockout by using the CRISPR/Cas 9 system. It was found that the loss function of DORN1 resulted in a significant decrease in the effective quantum yield of PSII [Y(II)], the photochemical quenching coefficient (qP), and the rate of photosynthetic electron transport through PSII (ETR), which reflected plants' photochemical efficiency. Whereas Y(NO) values showed obvious enhancement under drought stress conditions. Further experimental results showed that the Y(II), qP, and ETR, which reflect plants' photochemical efficiency, increased significantly with CaCl2 treatment. These results indicated that the drought tolerance of the mutant was decreased, and the exogenous application of calcium ions could effectively promote the drought tolerance of the dorn1 mutant. Transpiration loss controlled by stomata is closely related to drought tolerance, further, we examined the transpirational water loss in dorn1 and found that it was greater than wild-type (WT). Besides, the dorn1 mutant's stomatal aperture significantly increased compared with the WT and the stomata of dorn1 mutant plants tend to close after CaCl2 treatment. Taken together, our results show that DORN1 plays a key role in drought stress tolerance in plants, which may depend on calcium and calcium-related signaling pathways.
Collapse
Affiliation(s)
- Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210046, China
| | - Hongbao Bai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
11
|
Liu P, Wu X, Gong B, Lü G, Li J, Gao H. Review of the Mechanisms by Which Transcription Factors and Exogenous Substances Regulate ROS Metabolism under Abiotic Stress. Antioxidants (Basel) 2022; 11:2106. [PMID: 36358478 PMCID: PMC9686556 DOI: 10.3390/antiox11112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaolei Wu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Binbin Gong
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Guiyun Lü
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jingrui Li
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
12
|
Integrated Physiological, Transcriptomic, and Proteomic Analyses Reveal the Regulatory Role of Melatonin in Tomato Plants’ Response to Low Night Temperature. Antioxidants (Basel) 2022; 11:antiox11102060. [PMID: 36290782 PMCID: PMC9598176 DOI: 10.3390/antiox11102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Melatonin is a direct free radical scavenger that has been demonstrated to increase plants’ resistance to a variety of stressors. Here, we sought to examine the effect of melatonin on tomato seedlings subjected to low night temperatures using an integrated physiological, transcriptomic, and proteomic approach. We found that a pretreatment with 100 μM melatonin increased photosynthetic and transpiration rates, stomatal apertures, and peroxidase activity, and reduced chloroplast damage of the tomato plant under a low night temperature. The melatonin pretreatment reduced the photoinhibition of photosystem I by regulating the balance of both donor- and acceptor-side restriction of PSI and by increasing electron transport. Furthermore, the melatonin pretreatment improved the photosynthetic performance of proton gradient regulation 5 (SlPGR5) and SlPGR5-like photosynthetic phenotype 1 (SlPGRL1)-suppressed transformants under a low night temperature stress. Transcriptomic and proteomic analyses found that the melatonin pretreatment resulted in the upregulation of genes and proteins related to transcription factors, signal transduction, environmental adaptation, and chloroplast integrity maintenance in low night temperature-stressed tomato plants. Collectively, our results suggest that melatonin can effectively improve the photosynthetic efficiency of tomato plants under a low night temperature and provide novel insights into the molecular mechanism of melatonin-mediated abiotic stress resistance.
Collapse
|
13
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
14
|
Yang X, Zou F, Zhang Y, Shi J, Qi M, Liu Y, Li T. NaCl Pretreatment Enhances the Low Temperature Tolerance of Tomato Through Photosynthetic Acclimation. FRONTIERS IN PLANT SCIENCE 2022; 13:891697. [PMID: 37435353 PMCID: PMC10332268 DOI: 10.3389/fpls.2022.891697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 07/13/2023]
Abstract
Plants often need to withstand multiple types of environmental stresses (e.g., salt and low temperature stress) because of their sessile nature. Although the physiological responses of plants to single stressor have been well-characterized, few studies have evaluated the extent to which pretreatment with non-lethal stressors can maintain the photosynthetic performance of plants in adverse environments (i.e., acclimation-induced cross-tolerance). Here, we studied the effects of sodium chloride (NaCl) pretreatment on the photosynthetic performance of tomato plants exposed to low temperature stress by measuring photosynthetic and chlorophyll fluorescence parameters, stomatal aperture, chloroplast quality, and the expression of stress signaling pathway-related genes. NaCl pretreatment significantly reduced the carbon dioxide assimilation rate, transpiration rate, and stomatal aperture of tomato leaves, but these physiological acclimations could mitigate the adverse effects of subsequent low temperatures compared with non-pretreated tomato plants. The content of photosynthetic pigments decreased and the ultra-microstructure of chloroplasts was damaged under low temperature stress, and the magnitude of these adverse effects was alleviated by NaCl pretreatment. The quantum yield of photosystem I (PSI) and photosystem II (PSII), the quantum yield of regulatory energy dissipation, and non-photochemical energy dissipation owing to donor-side limitation decreased following NaCl treatment; however, the opposite patterns were observed when NaCl-pretreated plants were exposed to low temperature stress. Similar results were obtained for the electron transfer rate of PSI, the electron transfer rate of PSII, and the estimated cyclic electron flow value (CEF). The production of reactive oxygen species induced by low temperature stress was also significantly alleviated by NaCl pretreatment. The expression of ion channel and tubulin-related genes affecting stomatal aperture, chlorophyll synthesis genes, antioxidant enzyme-related genes, and abscisic acid (ABA) and low temperature signaling-related genes was up-regulated in NaCl-pretreated plants under low temperature stress. Our findings indicated that CEF-mediated photoprotection, stomatal movement, the maintenance of chloroplast quality, and ABA and low temperature signaling pathways all play key roles in maintaining the photosynthetic capacity of NaCl-treated tomato plants under low temperature stress.
Collapse
Affiliation(s)
- Xiaolong Yang
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Fengyu Zou
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Zhang
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiali Shi
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Jiuquan Academy of Agricultural Sciences, Jiuquan, China
| | - Mingfang Qi
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yufeng Liu
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- Key Laboratory of Protected Horticulture of Ministry of Education, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, Chen JW. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:796931. [PMID: 35242152 PMCID: PMC8885595 DOI: 10.3389/fpls.2022.796931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Luo Y, Xie Y, He D, Wang W, Yuan S. Exogenous trehalose protects photosystem II by promoting cyclic electron flow under heat and drought stresses in winter wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:770-776. [PMID: 33914400 DOI: 10.1111/plb.13277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Drought and rising global temperatures are important factors that reduce wheat production. Trehalose protects the reaction centres and improves photosystem II (PSII) activity under diverse stress conditions. However, the underlying mechanism remains unknown. Cyclic electron flow (CEF) plays an important role in protecting PSII under environmental stresses. Our study focused on the effects of exogenous trehalose on the activity of PSII, D1 protein content, plastoquinone (PQ) pool and ATP synthase activity in wheat seedlings under heat and drought stresses to explore the relationship between trehalose and CEF. The results indicated that heat and drought stresses decreased maximum photochemical efficiency of PSII (Fv /Fm ) and electron transport rate of PSII (EFR(II)), whereas the trehalose pretreatment improved photochemical efficiency and electron transport rate of PSII. The trehalose pretreatment stimulated CEF under heat and drought stresses. Furthermore, the proton gradient (ΔpH) across the thylakoid membrane and ATPase activity increased. The higher ΔpH and ATPase activity played a key role in protecting PSII under stresses. Trehalose pretreatment could reduce inhibition caused by heat and drought stresses on the PQ pool. Thus, our results indicated that photoinhibition in heat- and drought-stressed plants was alleviated by the trehalose pretreatment, which was mediated by CEF and the PQ pool.
Collapse
Affiliation(s)
- Y Luo
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Y Xie
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - D He
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shenyang University, Shenyang, 110044, China
| | - W Wang
- College of Life Sciences, Zaozhuang University, Zhaozhuang, 277000, China
| | - S Yuan
- Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
18
|
Li ZQ, Zhang Y, Li H, Su TT, Liu CG, Han ZC, Wang AY, Zhu JB. Genome-Wide Characterization and Expression Analysis Provide Basis to the Biological Function of Cotton FBA Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:696698. [PMID: 34490001 PMCID: PMC8416763 DOI: 10.3389/fpls.2021.696698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Fructose-1,6-biphosphate aldolase (FBA) is a multifunctional enzyme in plants, which participates in the process of Calvin-Benson cycle, glycolysis and gluconeogenesis. Despite the importance of FBA genes in regulating plant growth, development and abiotic stress responses, little is known about their roles in cotton. In the present study, we performed a genome-wide identification and characterization of FBAs in Gossypium hirsutum. Totally seventeen GhFBA genes were identified. According to the analysis of functional domain, phylogenetic relationship, and gene structure, GhFBA genes were classified into two subgroups. Furthermore, nine GhFBAs were predicted to be in chloroplast and eight were located in cytoplasm. Moreover, the promoter prediction showed a variety of abiotic stresses and phytohormone related cis-acting elements exist in the 2k up-stream region of GhFBA. And the evolutionary characteristics of cotton FBA genes were clearly presented by synteny analysis. Moreover, the results of transcriptome and qRT-PCR analysis showed that the expression of GhFBAs were related to the tissue distribution, and further analysis suggested that GhFBAs could respond to various abiotic stress and phytohormonal treatments. Overall, our systematic analysis of GhFBA genes would not only provide a basis for the understanding of the evolution of GhFBAs, but also found a foundation for the further function analysis of GhFBAs to improve cotton yield and environmental adaptability.
Collapse
|
19
|
Aslam S, Gul N, Mir MA, Asgher M, Al-Sulami N, Abulfaraj AA, Qari S. Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade. FRONTIERS IN PLANT SCIENCE 2021; 12:668029. [PMID: 34367199 PMCID: PMC8340019 DOI: 10.3389/fpls.2021.668029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Plant growth regulators have an important role in various developmental processes during the life cycle of plants. They are involved in abiotic stress responses and tolerance. They have very well-developed capabilities to sense the changes in their external milieu and initiate an appropriate signaling cascade that leads to the activation of plant defense mechanisms. The plant defense system activation causes build-up of plant defense hormones like jasmonic acid (JA) and antioxidant systems like glutathione (GSH). Moreover, calcium (Ca2+) transients are also seen during abiotic stress conditions depicting the role of Ca2+ in alleviating abiotic stress as well. Therefore, these growth regulators tend to control plant growth under varying abiotic stresses by regulating its oxidative defense and detoxification system. This review highlights the role of Jasmonates, Calcium, and glutathione in abiotic stress tolerance and activation of possible novel interlinked signaling cascade between them. Further, phyto-hormone crosstalk with jasmonates, calcium and glutathione under abiotic stress conditions followed by brief insights on omics approaches is also elucidated.
Collapse
Affiliation(s)
- Saima Aslam
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadia Gul
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mudasir A. Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Mohd. Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Department of Biological Sciences, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer Qari
- Genetics and Molecular Biology Central Laboratory (GMCL), Department of Biology, Aljumun University College, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
20
|
Liu W, Zhang R, Xiang C, Zhang R, Wang Q, Wang T, Li X, Lu X, Gao S, Liu Z, Liu M, Gao L, Zhang W. Transcriptomic and Physiological Analysis Reveal That α-Linolenic Acid Biosynthesis Responds to Early Chilling Tolerance in Pumpkin Rootstock Varieties. FRONTIERS IN PLANT SCIENCE 2021; 12:669565. [PMID: 33968120 PMCID: PMC8104029 DOI: 10.3389/fpls.2021.669565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/01/2023]
Abstract
Climate changes especially chilling stress affects cucurbit crops during winter seasonal production. Grafting to pumpkin rootstocks is widely used to improve the vigor of cucurbits, especially cucumber (Cucumis sativus L.) plants, in the face of chilling stress. In our study, multi-disciplinary aspect approaches were used to investigate growth changes of pumpkin under chilling stress. Firstly, the morphological and physiological characteristics of 14 pumpkin (Cucurbita moschata) varieties following different periods of chilling stress was analyzed by using physiological means. Mathematical results of principal component analysis (PCA) with chlorophyll-a, chlorophyll-b, carotenoid contents, chilling injury index and relative electrolyte permeability indicated that relative electrolyte permeability as the primary judgment index was best associated with the comparison of chilling tolerance in pumpkin rootstock varieties. Then, transcriptomic and DCMU (Diuron) application and chlorophyll fluorescence examination analysis of pumpkin leaves revealed that 390 Cucurbita moschata differentially expressed genes (CmoDEGs) that affect photosynthesis were upregulated in leaves. 127 CmoDEGs both in leaves and roots were enriched for genes involved in unsaturated fatty acid metabolism, suggesting that plasma membrane lipids are involved in chilling perception. The results of increased composition of unsaturated fatty acid in leaves and qRT-PCR analysis of relative mRNA abundance confirmed that α-linolenic acid biosynthesis was responding to pumpkin chilling tolerance. The integration of physiological, mathematical bioinformatical and biological analysis results contributes to our understanding of the molecular mechanisms underlying chilling tolerance and its improvement in cucumber grafted on pumpkin rootstocks. It provided an important theoretical basis and reference for further understanding on the impact of climate change on plant physiological changes.
Collapse
Affiliation(s)
- Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Ruoyan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Yunnan, China
| | - Ruiyun Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shunli Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Lu J, Guan P, Gu J, Yang X, Wang F, Qi M, Li T, Liu Y. Exogenous DA-6 Improves the Low Night Temperature Tolerance of Tomato Through Regulating Cytokinin. FRONTIERS IN PLANT SCIENCE 2021; 11:599111. [PMID: 33613581 PMCID: PMC7889814 DOI: 10.3389/fpls.2020.599111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 06/04/2023]
Abstract
Low night temperature (LNT) causes environmental stress and has a severe and negative impact on plant growth and productivity. Synthetic elicitors can regulate plant growth and induce defense mechanisms from this type of stress. Here, we evaluated the effect of the exogenous growth regulator diethyl aminoethyl hexanoate (DA-6) in tomato leaf response to LNT stress. Our results showed that exogenous DA-6 activates the expression of chlorophyll synthesis and photosystem-related genes, and results in higher photosynthetic activity and chlorophyll production. Furthermore, DA-6 can regulate the synthesis of endogenous cytokinin (CTK) and the expression of decomposition genes to stabilize chloroplast structure, reduce oxidative damage, and maintain the photochemical activity of tomato leaves under LNT stress. DA-6 maintains a high level of ABA content and induces the expression of CBF genes, indicating that DA-6 may participate in the cold response signaling pathway and induce the expression of downstream low temperature response genes and accumulation of compatible osmolytes. This study unravels a mode of action by which plant growth regulators can improve low temperature tolerance and provides important considerations for their application to alleviate the harmful effects of cold stress.
Collapse
Affiliation(s)
- Jiazhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Pengxiao Guan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Jiamao Gu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Xiaolong Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, China
| |
Collapse
|
22
|
Mu J, Fu Y, Liu B, Zhang Y, Wang A, Li Y, Zhu J. SiFBA5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress. BMC PLANT BIOLOGY 2021; 21:75. [PMID: 33541285 PMCID: PMC7863501 DOI: 10.1186/s12870-021-02851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/24/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Saussurea involucrata survives in extreme arctic conditions and is very cold-resistant. This species grows in rocky, mountainous areas with elevations of 2400-4100 m, which are snow-covered year-round and are subject to freezing temperatures. S. involucrata's ability to survive in an extreme low-temperature environment suggests that it has particularly high photosynthetic efficiency, providing a magnificent model, and rich gene pool, for the analysis of plant cold stress response. Fructose-1, 6-bisphosphate aldolase (FBA) is a key enzyme in the photosynthesis process and also mediates the conversion of fructose 1, 6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and glycerol triphosphate (GAP) during glycolysis and gluconeogenesis. The molecular mechanisms underlying S. involucrata's cold tolerance are still unclear; therefore, our work aims to investigate the role of FBA in plant cold-stress response. RESULTS In this study, we identified a cold-responsive gene, SiFBA5, based on a preliminary low-temperature, genome-wide transcriptional profiling of S. involucrata. Expression analysis indicated that cold temperatures rapidly induced transcriptional expression of SiFBA5, suggesting that SiFBA5 participates in the initial stress response. Subcellular localization analysis revealed that SiFBA5 is localized to the chloroplast. Transgenic tomato plants that overexpressed SiFBA5 were generated using a CaMV 35S promoter. Phenotypic observation suggested that the transgenic plants displayed increased cold tolerance and photosynthetic efficiency in comparison with wild-type plants. CONCLUSION Cold stress has a detrimental impact on crop yield. Our results demonstrated that SiFBA5 positively regulates plant response to cold stress, which is of great significance for increasing crop yield under cold stress conditions.
Collapse
Affiliation(s)
- Jianqiang Mu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yajuan Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Bucang Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yao Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Aiying Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yuxia Li
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
23
|
The Effect of Foliar Selenium (Se) Treatment on Growth, Photosynthesis, and Oxidative-Nitrosative Signalling of Stevia rebaudiana Leaves. Antioxidants (Basel) 2021; 10:antiox10010072. [PMID: 33429850 PMCID: PMC7826996 DOI: 10.3390/antiox10010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) enrichment of Stevia rebaudiana Bertoni can serve a dual purpose, on the one hand to increase plant biomass and stress tolerance and on the other hand to produce Se fortified plant-based food. Foliar Se spraying (0, 6, 8, 10 mg/L selenate, 14 days) of Stevia plantlets resulted in slightly decreased stevioside and rebaudioside A concentrations, and it also caused significant increment in stem elongation, leaf number, and Se content, suggesting that foliar Se supplementation can be used as a biofortifying approach. Furthermore, Se slightly limited photosynthetic CO2 assimilation (AN, gsw, Ci/Ca), but exerted no significant effect on chlorophyll, carotenoid contents and on parameters associated with photosystem II (PSII) activity (FV/FM, F0, Y(NO)), indicating that Se causes no photodamage in PSII. Further results indicate that Se is able to activate PSI-cyclic electron flow independent protection mechanisms of the photosynthetic apparatus of Stevia plants. The applied Se activated superoxide dismutase (SOD) isoenzymes (MnSOD1, FeSOD1, FeSOD2, Cu/ZnSOD1, Cu/ZnSOD2) and down-regulated NADPH oxidase suggesting the Se-induced limitation of superoxide anion levels and consequent oxidative signalling in Stevia leaves. Additionally, the decrease in S-nitrosoglutathione reductase protein abundance and the intensification of protein tyrosine nitration indicate Se-triggered nitrosative signalling. Collectively, these results suggest that Se supplementation alters Stevia shoot morphology without significantly affecting biomass yield and photosynthesis, but increasing Se content and performing antioxidant effects, which indicates that foliar application of Se may be a promising method in Stevia cultivation.
Collapse
|
24
|
Abd Elbar OH, Elkelish A, Niedbała G, Farag R, Wojciechowski T, Mukherjee S, Abou-Hadid AF, El-Hennawy HM, Abou El-Yazied A, Abd El-Gawad HG, Azab E, Gobouri AA, El Nahhas N, El-Sawy AM, Bondok A, Ibrahim MFM. Protective Effect of γ-Aminobutyric Acid Against Chilling Stress During Reproductive Stage in Tomato Plants Through Modulation of Sugar Metabolism, Chloroplast Integrity, and Antioxidative Defense Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:663750. [PMID: 34733294 PMCID: PMC8559610 DOI: 10.3389/fpls.2021.663750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/13/2021] [Indexed: 05/13/2023]
Abstract
Despite the role of γ-aminobutyric acid (GABA) in plant tolerance to chilling stress having been widely discussed in the seedling stage, very little information is clear regarding its implication in chilling tolerance during the reproductive stage of the plant. Here, we investigated the influence of GABA (1 and 2mM) as a foliar application on tomato plants (Solanum lycopersicum L. cv. Super Marmande) subjected to chilling stress (5°C for 6h/day) for 5 successive days during the flowering stage. The results indicated that applied GABA differentially influenced leaf pigment composition by decreasing the chlorophyll a/b ratio and increasing the anthocyanin relative to total chlorophyll. However, carotenoids were not affected in both GABA-treated and non-treated stressed plants. Root tissues significantly exhibited an increase in thermo-tolerance in GABA-treated plants. Furthermore, applied GABA substantially alleviated the chilling-induced oxidative damage by protecting cell membrane integrity and reducing malondialdehyde (MDA) and H2O2. This positive effect of GABA was associated with enhancing the activity of phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Conversely, a downregulation of peroxidase (POX) and polyphenol oxidase (PPO) was observed under chilling stress which indicates its relevance in phenol metabolism. Interesting correlations were obtained between GABA-induced upregulation of sugar metabolism coinciding with altering secondary metabolism, activities of antioxidant enzymes, and maintaining the integrity of plastids' ultrastructure Eventually, applied GABA especially at 2mM improved the fruit yield and could be recommended to mitigate the damage of chilling stress in tomato plants.
Collapse
Affiliation(s)
- Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Amr Elkelish
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
| | - Ayman F. Abou-Hadid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hussien M. El-Hennawy
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Science, Taif University, Taif, Saudi Arabia
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. El-Sawy
- Department of Climate Modification, Central Laboratory for Agriculture Climate, Agriculture Research Center, Giza, Egypt
| | - Ahmed Bondok
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- *Correspondence: Mohamed F. M. Ibrahim,
| |
Collapse
|
25
|
Wu D, Liu Y, Pang J, Yong JWH, Chen Y, Bai C, Han X, Liu X, Sun Z, Zhang S, Sheng J, Li T, Siddique KH, Lambers H. Exogenous Calcium Alleviates Nocturnal Chilling-Induced Feedback Inhibition of Photosynthesis by Improving Sink Demand in Peanut ( Arachis hypogaea). FRONTIERS IN PLANT SCIENCE 2020; 11:607029. [PMID: 33408732 PMCID: PMC7779555 DOI: 10.3389/fpls.2020.607029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 05/23/2023]
Abstract
Arachis hypogaea (peanut) is a globally important oilseed crop with high nutritional value. However, upon exposure to overnight chilling stress, it shows poor growth and seedling necrosis in many cultivation areas worldwide. Calcium (Ca2+) enhances chilling resistance in various plant species. We undertook a pot experiment to investigate the effects of exogenous Ca2+ and a calmodulin (CaM) inhibitor on growth and photosynthetic characteristics of peanut exposed to low night temperature (LNT) stress following warm sunny days. The LNT stress reduced growth, leaf extension, biomass accumulation, gas exchange rates, and photosynthetic electron transport rates. Following LNT stress, we observed larger starch grains and a concomitant increase in nonstructural carbohydrates and hydrogen peroxide (H2O2) concentrations. The LNT stress further induced photoinhibition and caused structural damage to the chloroplast grana. Exogenous Ca2+ enhanced plant growth following LNT stress, possibly by allowing continued export of carbohydrates from leaves. Foliar Ca2+ likely alleviated the nocturnal chilling-dependent feedback limitation on photosynthesis in the daytime by increasing sink demand. The foliar Ca2+ pretreatment protected the photosystems from photoinhibition by facilitating cyclic electron flow (CEF) and decreasing the proton gradient (ΔpH) across thylakoid membranes during LNT stress. Foliar application of a CaM inhibitor increased the negative impact of LNT stress on photosynthetic processes, confirming that Ca2+-CaM played an important role in alleviating photosynthetic inhibition due to the overnight chilling-dependent feedback.
Collapse
Affiliation(s)
- Di Wu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Chunming Bai
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jing Sheng
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianlai Li
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Su L, Xie J, Wen W, Li J, Zhou P, An Y. Interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via promoting proton motive force and reducing proton gradient in alfalfa. BMC PLANT BIOLOGY 2020; 20:433. [PMID: 32948141 PMCID: PMC7501636 DOI: 10.1186/s12870-020-02643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In acidic soils, aluminum (Al) competing with Zn results in Zn deficiency in plants. Zn is essential for auxin biosynthesis. Zn-mediated alleviation of Al toxicity has been rarely studied, the mechanism of Zn alleviation on Al-induced photoinhibition in photosystems remains unclear. The objective of this study was to investigate the effects of Zn and IAA on photosystems of Al-stressed alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or100 μM AlCl3 combined with 0 or 50 μM ZnCl2, and then foliar spray with water or 6 mg L- 1 IAA. RESULTS Our results showed that Al stress significantly decreased plant growth rate, net photosynthetic rate (Pn), quantum yields and electron transfer rates of PSI and PSII. Exogenous application of Zn and IAA significantly alleviated the Al-induced negative effects on photosynthetic machinery, and an interaction of Zn and IAA played an important role in the alleviative effects. After removing apical buds of Al-stressed alfalfa seedlings, the values of pmf, gH+ and Y(II) under exogenous spraying IAA were significantly higher, and ΔpHpmf was significantly lower in Zn addition than Al treatment alone, but the changes did not occur under none spraying IAA. The interaction of Zn and IAA directly increased Y(I), Y(II), ETRI and ETRII, and decreased O2- content of Al-stressed seedlings. In addition, the transcriptome analysis showed that fourteen functionally noted genes classified into functional category of energy production and conversion were differentially expressed in leaves of alfalfa seedlings with and without apical buds. CONCLUSION Our results suggest that the interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via increasing pmf and decreasing ΔpHpmf between lumen and stroma.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianping Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| |
Collapse
|
27
|
Raven JA. Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. THE NEW PHYTOLOGIST 2020; 227:334-342. [PMID: 32170958 DOI: 10.1111/nph.16541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cl- has long been known as a micronutrient for oxygenic photosynthetic resulting from its role an essential cofactor for photosystem II (PSII). Evidence on the in vivo Cl- distribution in Spinacia oleracea leaves and chloroplasts shows that sufficient Cl- is present for the involvement in PSII function, as indicated by in vitro studies on, among other organisms, S. oleracea PsII. There is also sufficient Cl- to function, with K+ , in parsing the H+ electrochemical potential difference (proton motive force) across the illuminated thylakoid membrane into electrical potential difference and pH difference components. However, recent in vitro work on PSII from S. oleracea shows that oxygen evolving complex (OEC) synthesis, and resynthesis after photodamage, requires significantly higher Cl- concentrations than would satisfy the function of assembled PSII O2 evolution of the synthesised PSII with the OEC. The low Cl- affinity of OEC (re-)assembly could be a component limiting the rate of OEC (re-)assembly.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
28
|
Time-Dependent Effects of Bentazon Application on the Key Antioxidant Enzymes of Soybean and Common Ragweed. SUSTAINABILITY 2020. [DOI: 10.3390/su12093872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence or absence of light is one of the most significant environmental factors affecting plant growth and defence. Therefore, the selection of the most appropriate time of application may maximize the benefits of photosynthetic inhibitors. In this work, the concentration and daytime or night-time-dependent effects of bentazon were tested in soybean and common ragweed. The recommended dose (1440 g ha−1) and also half the recommended dose significantly reduced the maximum quantum yield (Fv/Fm) and increased H2O2 levels in common ragweed. Interestingly, bentazon did not change Fv/Fm in soybean. The activity of superoxide dismutase changed in a dose-dependent manner only in common ragweed. The activity of ascorbate peroxidase, catalase and glutathione S-transferase (GST), as well as the contents of ascorbate (AsA) and glutathione (GSH) did not change significantly in this plant species. In soybean, alterations in H2O2 levels were lower but GST and APX activity, as well as AsA and GSH levels were higher compared to common ragweed. At the same time, the rate of lipid peroxidation and ion leakage increased upon bentazon, and were higher in the light phase-treated leaves in the case of both plant species. These results can contribute to optimizing the effects and uses of herbicides in agriculture.
Collapse
|
29
|
Photosynthetic Response Mechanism of Soil Salinity-Induced Cross-Tolerance to Subsequent Drought Stress in Tomato Plants. PLANTS 2020; 9:plants9030363. [PMID: 32187994 PMCID: PMC7154942 DOI: 10.3390/plants9030363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Soil salinization and water shortage cause ion imbalance and hyperosmoticity in plant cells, adversely impairing photosynthesis efficiency. How soil salinity-induced photosynthetic acclimation influences the cross-tolerance to drought conditions represents a promising research topic. This study was to reveal the photosynthetic mechanism of soil salinity-induced resistance to the subsequent drought stress in tomato leaves through comprehensive photosynthesis-related spectroscopy analysis. We conducted soil salinity pretreatment and subsequent drought stress experiments, including irrigation with 100 mL water, 100 mL 100 mM NaCl solution (NaCl100), 50 mL water, and 50 mL 100 mM NaCl solution (NaCl50) for five days, followed by five-day drought stress. The results showed that soil salinity treatment by NaCl decreased the rate of photosynthetic gas exchange but enhanced CO2 assimilation, along with photosystem II [PS(II)] and photosystem I [PS(I)] activity and photochemical efficiency in tomato plants compared with water pretreatment after subsequent drought stress. NaCl100 and NaCl50 had the capacity to maintain non-photochemical quenching (NPQ) of chlorophyll fluorescence and the cyclic electron (CEF) flow around PSI in tomato leaves after being subjected to subsequent drought stress, thus avoiding the decrease of photosynthetic efficiency under drought conditions. NaCl100 and NaCl50 pretreatment induced a higher proton motive force (pmf) and also alleviated the damage to the thylakoid membrane and adenosine triphosphate (ATP) synthase of tomato leaves caused by subsequent drought stress. Overall, soil salinity treatment could enhance drought resistance in tomato plants by inducing NPQ, maintaining CEF and pmf that tradeoff between photoprotection and photochemistry reactions. This study also provides a photosynthetic perspective for salt and drought cross-tolerance.
Collapse
|
30
|
Joshi NC, Yadav D, Ratner K, Kamara I, Aviv-Sharon E, Irihimovitch V, Charuvi D. Sodium hydrosulfide priming improves the response of photosynthesis to overnight frost and day high light in avocado (Persea americana Mill, cv. 'Hass'). PHYSIOLOGIA PLANTARUM 2020; 168:394-405. [PMID: 31490553 DOI: 10.1111/ppl.13023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Radiation frost events, which have become more common in the Mediterranean Basin in recent years, inflict extensive damage to tropical/subtropical fruit crops. During radiation frost, sub-zero temperatures are encountered in the dark, followed by high light during the subsequent clear-sky day. One of the key processes affected by these conditions is photosynthesis, which, when significantly inhibited, leads to the enhanced accumulation of reactive oxygen species (ROS) and damage. The use of 'chemical priming' treatments that induce plants' endogenous stress responses is a possible strategy to improve their coping with stress conditions. Herein, we studied the effects of priming with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2 S), on the response of photosynthesis to overnight frost and day high-light conditions in 'Hass' avocado (Persea americana Mill). We found that priming with a single foliar application of NaHS had positive effects on the response of grafted 'Hass' plants. Primed plants exhibited significantly reduced inhibition of CO2 assimilation, a lower accumulation of hydrogen peroxide as well as lower photoinhibition, as compared to untreated plants. The ability to maintain a high CO2 assimilation capacity after the frost was attained on the background of considerable inhibition in stomatal conductance. Thus, it was likely related to the lower accumulation of ROS and photodamage observed in primed 'Hass' plants. This work contributes toward the understanding of the response of photosynthesis in a subtropical crop species to frost conditions and provides a prospect for chemical priming as a potential practice in orchards during cold winters.
Collapse
Affiliation(s)
- Naveen C Joshi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Deepanker Yadav
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Kira Ratner
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Itzhak Kamara
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vered Irihimovitch
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | - Dana Charuvi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| |
Collapse
|
31
|
Zhao W, Liu H, Zhang L, Hu Z, Liu J, Hua W, Xu S, Liu J. Genome-Wide Identification and Characterization of FBA Gene Family in Polyploid Crop Brassica napus. Int J Mol Sci 2019; 20:E5749. [PMID: 31731804 PMCID: PMC6888112 DOI: 10.3390/ijms20225749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) is a versatile metabolic enzyme involved in multiple important processes of glycolysis, gluconeogenesis, and Calvin cycle. Despite its significance in plant biology, the identity of this gene family in oil crops is lacking. Here, we performed genome-wide identification and characterization of FBAs in an allotetraploid species, oilseed rape Brassica napus. Twenty-two BnaFBA genes were identified and divided into two groups based on integrative analyses of functional domains, phylogenetic relationships, and gene structures. Twelve and ten B. napus FBAs (BnaFBAs) were predicted to be localized in the chloroplast and cytoplasm, respectively. Notably, synteny analysis revealed that Brassica-specific triplication contributed to the expansion of the BnaFBA gene family during the evolution of B. napus. Various cis-acting regulatory elements pertinent to abiotic and biotic stresses, as well as phytohormone responses, were detected. Intriguingly, each of the BnaFBA genes exhibited distinct sequence polymorphisms. Among them, six contained signatures of selection, likely having experienced breeding selection during adaptation and domestication. Importantly, BnaFBAs showed diverse expression patterns at different developmental stages and were preferentially highly expressed in photosynthetic tissues. Our data thus provided the foundation for further elucidating the functional roles of individual BnaFBA and also potential targets for engineering to improve photosynthetic productivity in B. napus.
Collapse
Affiliation(s)
- Wei Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Liang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Zhiyong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Jun Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| | - Shouming Xu
- Henan key laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (W.Z.); (H.L.); (L.Z.); (Z.H.); (J.L.); (W.H.)
| |
Collapse
|
32
|
Sitko K, Gieroń Ż, Szopiński M, Zieleźnik-Rusinowska P, Rusinowski S, Pogrzeba M, Daszkowska-Golec A, Kalaji HM, Małkowski E. Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Sci Rep 2019; 9:14181. [PMID: 31578358 PMCID: PMC6775257 DOI: 10.1038/s41598-019-50579-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 01/30/2023] Open
Abstract
The aim of the research was to compare the impact of short-term deprivation of selected macronutrients (Ca, K, Mg and P) on the photosynthetic characteristics, transpiration and pigment content in maize. The strongest inhibition of photosynthesis was caused by a deprivation of Mg, which was visible as a decrease in the photosynthetic and transpiration rates, stomatal conductance, photosystem II (PSII) performance, chlorophyll and flavonol content with a simultaneously increased content of anthocyanins. In the K-deprived plants, a decrease in the photosynthetic rate was observed. However, the transpiration rate and stomatal conductance did not differ significantly compared with the control. In the K-deprived plants, a decrease in chlorophyll and an increase in the anthocyanin content were also observed. We showed that Ca starvation resulted in a decrease in the photosynthetic and transpiration rates, stomatal conductance and PSII performance, while the pigment content was not significantly different compared with the control. In the case of P-deprived plants, we observed a decrease in the photosynthetic and transpiration rates. Interestingly, the inhibition of stomatal conductance was the strongest in the P-deprived plants compared with all of the investigated elements. However, the performance of PSII was not significantly affected by P starvation compared with the control. Our results present for the first time a comprehensive analysis of the effect of short-term macronutrient deprivation on photosynthesis and transpiration in maize plants.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland.
| | - Żaneta Gieroń
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
| | - Michał Szopiński
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland
| | | | | | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - Hazem M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Eugeniusz Małkowski
- Department of Plant Physiology, University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
33
|
Genome wide characterization, evolution and expression analysis of FBA gene family under salt stress in Gossypium species. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00296-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Lu T, Yu H, Li Q, Chai L, Jiang W. Improving Plant Growth and Alleviating Photosynthetic Inhibition and Oxidative Stress From Low-Light Stress With Exogenous GR24 in Tomato ( Solanum lycopersicum L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:490. [PMID: 31057589 PMCID: PMC6477451 DOI: 10.3389/fpls.2019.00490] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Low light (LL) is one of the main limiting factors that negatively affect tomato growth and yield. Techniques of chemical regulation are effective horticultural methods to improve stress resistance. Strigolactones (SLs), newly discovered phytohormones, are considered as important regulators of physiological responses. We investigated the effects of foliage spray of GR24, a synthesized SLs, on tomato seedlings grown under LL stress conditions. The results showed that application of GR24 effectively mitigated the inhibition of plant growth and increased the fresh and dry weight of tomato plants under LL. Additionally, GR24 also increased the chlorophyll content (Chla and Chlb), the net photosynthetic rate (Pn), the photochemical efficiency of photosystem (PS) II (Fv/Fm), and the effective quantum yield of PSII and I [Y(II) and Y(I)], but decreased the excitation pressure of PSII (1-qP), the non-regulatory quantum yield of energy dissipation [Y(NO)] and the donor side limitation of PSI [Y(ND)] under LL. Moreover, application of GR24 to LL-stressed tomato leaves increased the electron transport rate of PSII and PSI [ETR(II) and ETR(I)], the ratio of the quantum yield of cyclic electron flow (CEF) to Y(II) [Y(CEF)/Y(II)], the oxidized plastoquinone (PQ) pool size and the non-photochemical quenching. Besides, GR24 application increased the activity and gene expression of antioxidant enzymes, but it reduced malonaldehyde (MDA) and hydrogen peroxide (H2O2) content in LL-stressed plants. These results suggest that exogenous application of GR24 enhances plant tolerance to LL by promoting plant utilization of light energy to alleviate the photosystem injuries induced by excess light energy and ROS, and enhancing photosynthesis efficiency to improve plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Song Q, Liu Y, Pang J, Yong JWH, Chen Y, Bai C, Gille C, Shi Q, Wu D, Han X, Li T, Siddique KHM, Lambers H. Supplementary Calcium Restores Peanut ( Arachis hypogaea) Growth and Photosynthetic Capacity Under Low Nocturnal Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1637. [PMID: 32038667 PMCID: PMC6985363 DOI: 10.3389/fpls.2019.01637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 05/11/2023]
Abstract
Peanut (Arachis hypogaea L.) is a globally important oil crop, which often experiences poor growth and seedling necrosis under low nocturnal temperatures (LNT). This study assessed the effects of supplementary calcium (Ca2+) and a calmodulin inhibitor on peanut growth and photosynthetic characteristics of plants exposed to LNT, followed by recovery at a higher temperature. We monitored key growth and photosynthetic parameters in a climate-controlled chamber in pots containing soil. LNT reduced peanut growth and dry matter accumulation, enhanced leaf nonstructural carbohydrates concentrations and non-photochemical quenching, decreased the electron transport rate, increased the transmembrane proton gradient, and decreased gas exchange rates. In peanuts subjected to LNT, foliar application of Ca2+ restored growth, dry matter production and leaf photosynthetic capacity. In particular, the foliar Ca2+ application restored temperature-dependent photosynthesis feedback inhibition due to improved growth/sink demand. Foliar sprays of a calmodulin inhibitor further deteriorated the effects of LNT which validated the protective role of Ca2+ in facilitating LNT tolerance of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu,
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Clément Gille
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | | | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Li P, Weng J, Zhang Q, Yu L, Yao Q, Chang L, Niu Q. Physiological and Biochemical Responses of Cucumis melo L. Chloroplasts to Low-Phosphate Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1525. [PMID: 30405663 PMCID: PMC6204437 DOI: 10.3389/fpls.2018.01525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 05/02/2023]
Abstract
Phosphorus (P) is a limiting plant soil nutrient. Long-term low inorganic phosphate (Pi) irreversibly damages plant cells and hinders plant growth. Plants have evolved several adaptive biochemical, physiological, and developmental responses to low-Pi stress. However, little is known about chloroplast responses to low-Pi stress. In this study, we used physiological and biochemical analyses to investigate melon chloroplast responses to low-Pi stress. The results indicated that low-Pi stress impeded melon seedling growth and reduced its dry matter content by inhibiting the photosynthesis. Low-Pi stress reduced the P content in shoots, which inhibited ATP synthase (ATP-ase) activity, and disturbed the proton and electron transport efficiency on chloroplast photosynthetic electron transport chain. In addition, low-Pi stress induced reactive oxygen species (ROS) production in the leaves, which caused membrane peroxidation. Therefore, redox homeostasis was not maintained, and the melon leaves presented with symptoms of photooxidative stress. To mitigate photoinhibition, the melon plants initiated non-photochemical chlorophyll fluorescence quenching (NPQ) initiated by acidification of the thylakoid lumen to dissipate excess excitation energy, significantly improved ROS-scavenging enzyme activity. Based on these experimental results, we concluded that low Pi inhibited photosystem activity and caused photooxidative stress and photoinhibition. To alleviate these negative effects, the plant activated its NPQ mechanism, alternative electron transport pathways, and antioxidant system to protect its chloroplasts.
Collapse
Affiliation(s)
- Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyang Weng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- Planting Management Station, Ningbo, China
| | - Liyao Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Lu T, Shi JW, Sun ZP, Qi MF, Liu YF, Li TL. Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. J Zhejiang Univ Sci B 2018; 18:635-648. [PMID: 28681588 DOI: 10.1631/jzus.b1600286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. METHODS Six-leaf-stage tomato seedlings ("Liaoyuanduoli", n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 µmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 µmol/(m2·s) (HH); Part 3, spayed with 100 µmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 µmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. RESULTS HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (Fv/Fm), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and YI) significantly decreased whereas acceptor and donor side limitation of PSI (YNA and YND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy YNPQ and YNO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. CONCLUSIONS The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Jie-Wei Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Zhou-Ping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| |
Collapse
|
38
|
Da Q, Sun T, Wang M, Jin H, Li M, Feng D, Wang J, Wang HB, Liu B. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. PLANT CELL REPORTS 2018; 37:279-291. [PMID: 29080907 DOI: 10.1007/s00299-017-2229-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.
Collapse
Affiliation(s)
- Qingen Da
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Ting Sun
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Menglong Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Honglei Jin
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Mengshu Li
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Dongru Feng
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
| |
Collapse
|
39
|
Yi XP, Zhang YL, Yao HS, Han JM, Chow WS, Fan DY, Zhang WF. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:74-82. [PMID: 29156245 DOI: 10.1016/j.jplph.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 05/26/2023]
Abstract
To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO2 assimilation rate (AN) and stomatal conductance (gs) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (Fv/Fm) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition.
Collapse
Affiliation(s)
- Xiao-Ping Yi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Ya-Li Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - He-Sheng Yao
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Ji-Mei Han
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Da-Yong Fan
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Wang-Feng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China.
| |
Collapse
|
40
|
Zeng L, Zhu T, Gao Y, Wang Y, Ning C, Björn LO, Chen D, Li S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:228-237. [PMID: 28152404 DOI: 10.1016/j.ecoenv.2017.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) pollution poses a risk to human health for its accumulation in soil and crops, but this can be alleviated by calcium (Ca) addition. However, its mechanism remains unclear yet. In this study, Arabidopsis thaliana was used to explore the alleviating effects of Ca on Cd toxicity and its specific function during uptake, upward-translocation, and distribution of Cd. Supplementing plants with 5mM CaCl2 alleviated the intoxication symptoms caused by 50μM CdCl2, such as smaller leaves, early bolting and root browning. Ca addition decreased uptake of Cd, possibly by reducing the physical adsorption of Cd since the root cell membrane was well maintained and lignin deposition was decreased as well, and by decreasing symplastic Cd transport. Expression of the genes involved (AtZIP2 and AtZIP4) was also decreased. In addition, Ca accumulated in the plant shoot to help facilitating the upward-translocation of Cd, with evidence of higher translocation factor and expression of genes that were involved in Ca transport (AtPCR1) and Cd xylem loading (AtHMA2 and AtHMA4). Dithizone-staining of Cd in leaves showed that in Cd+Ca-treated plants, Ca addition initially protected the leaf stomata by preventing Cd from entering guard cells, but with prolonged Cd treatment facilitated the Cd accumulation around trichomes and maybe its excretion. We conclude that Ca promotes the upward-translocation of Cd and changes its distribution in leaves. The results may have relevance for bioremediation.
Collapse
Affiliation(s)
- Lihua Zeng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ting Zhu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ya Gao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yutao Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chanjuan Ning
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Lars Olof Björn
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; Department of Biology, Molecular Cell Biology, Lund University, Lund 22467, Sweden
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
41
|
Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T. Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:365. [PMID: 28360922 PMCID: PMC5352666 DOI: 10.3389/fpls.2017.00365] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m-2⋅s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared with control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhaojuan Meng
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Guoxian Zhang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| |
Collapse
|
42
|
Lv GY, Guo XG, Xie LP, Xie CG, Zhang XH, Yang Y, Xiao L, Tang YY, Pan XL, Guo AG, Xu H. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1030. [PMID: 28659962 PMCID: PMC5470051 DOI: 10.3389/fpls.2017.01030] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 05/17/2023]
Abstract
Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4-9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions.
Collapse
Affiliation(s)
- Geng-Yin Lv
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Xiao-Guang Guo
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Li-Ping Xie
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Chang-Gen Xie
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Xiao-Hong Zhang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Yuan Yang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Lei Xiao
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Yu-Ying Tang
- College of Life Sciences, Northwest A & F UniversityYangling, China
| | - Xing-Lai Pan
- Department of Food Crop Science, Cotton Research Institute, Shanxi Academy of Agricultural Sciences (CAAS)Yuncheng, China
| | - Ai-Guang Guo
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A & F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid AreasYangling, China
- *Correspondence: Hong Xu
| |
Collapse
|
43
|
Jing P, Wang D, Zhu C, Chen J. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types. FRONTIERS IN PLANT SCIENCE 2016; 7:1774. [PMID: 27933085 PMCID: PMC5121221 DOI: 10.3389/fpls.2016.01774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 05/12/2023]
Abstract
Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for obtaining credible predictions of the changes in crop production, plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when asymmetric night temperature change continues.
Collapse
Affiliation(s)
- Panpan Jing
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science and TechnologyNanjing, China
| | - Dan Wang
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science and TechnologyNanjing, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Jiquan Chen
- CGCEO/Geography, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
44
|
Cai B, Li Q, Xu Y, Yang L, Bi H, Ai X. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:251-265. [PMID: 27474933 DOI: 10.1016/j.plaphy.2016.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 05/01/2023]
Abstract
Fructose 1,6-bisphosphate aldolase (FBA) is a key enzyme in plants that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. FBA genes play significant roles in biotic and abiotic stress responses and also regulate growth and development. Despite the importance of FBA genes, little is known about it in tomato. In this study, we identified 8 FBA genes in tomato and classified them into 2 subgroups based on a phylogenetic tree, gene structures, and conserved motifs. Five (SlFBA1, 2, 3, 4 and 5) and three (SlFBA6, 7, and 8) SlFBA proteins were predicted to be localized in chloroplasts and cytoplasm, respectively. The phylogenetic analysis of FBAs from tomato, Arabidopsis, rice, and other organisms suggested that SlFBA shared the highest protein homology with FBAs from other plants. Synteny analysis indicated that segmental duplication events contributed to the expansion of the tomato FBA family. The expression profiles revealed that all SlFBAs were involved in the response to low and high temperature stresses. SlFBA7 overexpression increased the expression and activities of other main enzymes in Calvin cycle, net photosynthetic rate (Pn), seed size and stem diameter. SlFBA7 overexpression enhanced tolerances in seed germination under suboptimal temperature stresses. Taken together, comprehensive analyses of SlFBAs would provide a basis for understanding of evolution and function of SlFBA family.
Collapse
Affiliation(s)
- Bingbing Cai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Qiang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yongchao Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Huangai Bi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xizhen Ai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
45
|
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS One 2016; 11:e0154235. [PMID: 27137770 PMCID: PMC4854468 DOI: 10.1371/journal.pone.0154235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness.
Collapse
Affiliation(s)
- Jing Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
| | - Qingbo Yu
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Haibo Xiong
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Jun Wang
- Department of Mathematics, College of Mathematics and Science, Shanghai Normal University, Shanghai, P.R. China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States of America
| | - Zhongnan Yang
- Institute of Plant Gene Function, Shanghai Normal University, Shanghai, P.R. China
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Shaojun Dai
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, P.R. China
| |
Collapse
|