1
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
2
|
Shi H, Xu X, Wang S, Chen Q, Zhang F, Guo H, Lu W, Qiao F. The relationship between CXCR6+CD8+T cells and clinicopathological parameters in patients with primary biliary cholangitis. Hepatol Int 2024; 18:1555-1565. [PMID: 39134906 DOI: 10.1007/s12072-024-10715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND CXCR6+CD8+T cells have been implicated in the pathogenesis of various liver and autoimmune diseases. However, their involvement in primary biliary cholangitis (PBC) has not been elucidated. METHODS We used immunohistochemistry and flow cytometry to quantify CXCR6+CD8+T cells in hepatic tissue and peripheral blood samples obtained from CXCR6+CD8+T cells obtained from PBC patients. Then, we performed comprehensive statistical analyses to access the correlation between the abundance of these cells and clinical as well as pathological data across different stages of PBC. RESULTS Our research revealed that CXCR6+ cell frequencies in CD3+CD8+T cells from PBC patients significantly exceeded that of healthy controls (HCs) (2.24 vs. 0.61%, p < 0.01). A similar pattern emerged for hepatic CXCR6+CD8+T cell counts, which were notably higher in the PBC cohort compared to HCs. Our cohort consisted of 118 PBC patients, categorized into 62 early-stage (E-PBC) and 56 late-stage (L-PBC) cases. Notably, significant disparities existed between these groups in terms of liver enzyme and lipid profile levels (p < 0.05), with no notable differences observed in gender, age, blood counts, cholesterol levels, or autoantibodies (p > 0.05). Intriguingly, the quantity of hepatic CXCR6+CD8+T cells per high power field (HPF) was significantly elevated in both E-PBC and L-PBC patients as opposed to normal liver samples, indicating a substantial increase in these cells across all stages of PBC (p = 0.000). Spearman's rank correlation analysis showed a positive correlation between CXCR6+CD8+T cell counts and serum levels of Alkaline Phosphatase (AKP) and Gamma-Glutamyl Transferase (GGT), ANA, IgG and IgM, while revealing a negligible correlation with Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST). Subsequent findings indicated significant variances in CXCR6+ cell numbers not only among different PBC stages but also across various degrees of inflammation and fibrosis (p ≤ 0.007). In a follow-up study post-Ursodeoxycholic Acid (UDCA) treatment, stark differences were identified in biochemical and immunohistochemical profiles between responder (31 patients) and non-responder (33 patients) groups (p < 0.05). A Wilcoxon rank-sum test further demonstrated a significant difference in the level of hepatic CXCR6+CD8+T cells between these two response groups (p = 0.002). CONCLUSION CXCR6+CD8+T cells play a vital role in the pathogenesis of PBC, exhibiting correlations with the extent of inflammation, staging of liver fibrosis, and response to pharmacological interventions in PBC patients.
Collapse
Affiliation(s)
- Huilian Shi
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Xiangtao Xu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Shuangshuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinlei Chen
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Fan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China
| | - Haiyan Guo
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Weiting Lu
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| | - Fei Qiao
- Department of Infectious Diseases, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai Avenue, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
3
|
Chia TY, Billingham LK, Boland L, Katz JL, Arrieta VA, Shireman J, Rosas AL, DeLay SL, Zillinger K, Geng Y, Kruger J, Silvers C, Wang H, Vazquez Cervantes GI, Hou D, Wang S, Wan H, Sonabend A, Zhang P, Lee-Chang C, Miska J. The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context. Front Immunol 2024; 14:1331287. [PMID: 38299146 PMCID: PMC10827847 DOI: 10.3389/fimmu.2023.1331287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.
Collapse
Affiliation(s)
- Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah K. Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Aurora-Lopez Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kaylee Zillinger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeandre Kruger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gustavo Ignacio Vazquez Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Naidoo L, Arumugam T, Ramsuran V. Host Genetic Impact on Infectious Diseases among Different Ethnic Groups. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2300181. [PMID: 38099246 PMCID: PMC10716055 DOI: 10.1002/ggn2.202300181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Indexed: 12/17/2023]
Abstract
Infectious diseases such as malaria, tuberculosis (TB), human immunodeficiency virus (HIV), and the coronavirus disease of 2019 (COVID-19) are problematic globally, with high prevalence particularly in Africa, attributing to most of the death rates. There have been immense efforts toward developing effective preventative and therapeutic strategies for these pathogens globally, however, some remain uncured. Disease susceptibility and progression for malaria, TB, HIV, and COVID-19 vary among individuals and are attributed to precautionary measures, environment, host, and pathogen genetics. While studying individuals with similar attributes, it is suggested that host genetics contributes to most of an individual's susceptibility to disease. Several host genes are identified to associate with these pathogens. Interestingly, many of these genes and polymorphisms are common across diseases. This paper analyzes genes and genetic variations within host genes associated with HIV, TB, malaria, and COVID-19 among different ethnic groups. The differences in host-pathogen interaction among these groups, particularly of Caucasian and African descent, and which gene polymorphisms are prevalent in an African population that possesses protection or risk to disease are reviewed. The information in this review could potentially help develop personalized treatment that could effectively combat the high disease burden in Africa.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurban4041South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurban4041South Africa
| |
Collapse
|
5
|
Qin R, Mahal LK, Bojar D. Deep learning explains the biology of branched glycans from single-cell sequencing data. iScience 2022; 25:105163. [PMID: 36217547 PMCID: PMC9547197 DOI: 10.1016/j.isci.2022.105163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans, facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep learning model to predict the glycan phenotypes of cells (mouse T lymphocytes) from transcripts, with the example of predicting β1,6GlcNAc-branching across T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHapley Additive exPlanations) identified highly predictive genes, in part known to impact (i) branched glycan levels and (ii) the biology of branched glycans. These genes included physiologically relevant low-abundance genes that were not captured by conventional differential expression analysis. Our work shows that interpretable deep learning models are promising for uncovering novel functions and regulatory mechanisms of glycans from integrated transcriptomic and glycomic datasets.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Mabrouk N, Tran T, Sam I, Pourmir I, Gruel N, Granier C, Pineau J, Gey A, Kobold S, Fabre E, Tartour E. CXCR6 expressing T cells: Functions and role in the control of tumors. Front Immunol 2022; 13:1022136. [PMID: 36311728 PMCID: PMC9597613 DOI: 10.3389/fimmu.2022.1022136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
CXCR6 is a receptor for the chemokine CXCL16, which exists as a membrane or soluble form. CXCR6 is a marker for resident memory T (TRM) cells that plays a role in immunosurveillance through their interaction with epithelial cells. The interaction of CXCR6 with CXCL16 expressed at the membrane of certain subpopulations of intratumor dendritic cells (DC) called DC3, ideally positions these CXCR6+ T cells to receive a proliferation signal from IL-15 also presented by DC3. Mice deficient in cxcr6 or blocking the interaction of CXCR6 with its ligand, experience a poorer control of tumor proliferation by CD8+ T cells, but also by NKT cells especially in the liver. Intranasal vaccination induces CXCL16 production in the lungs and is associated with infiltration by TRM expressing CXCR6, which are then required for the efficacy of anti-tumor vaccination. Therapeutically, the addition of CXCR6 to specific CAR-T cells enhances their intratumoral accumulation and prolongs survival in animal models of pancreatic, ovarian and lung cancer. Finally, CXCR6 is part of immunological signatures that predict response to immunotherapy based on anti-PD-(L)1 in various cancers. In contrast, a protumoral role of CXCR6+T cells has also been reported mainly in Non-alcoholic steatohepatitis (NASH) due to a non-antigen specific mechanism. The targeting and amplification of antigen-specific TRM expressing CXCR6 and its potential use as a biomarker of response to immunotherapy opens new perspectives in cancer treatment.
Collapse
Affiliation(s)
| | - Thi Tran
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ikuan Sam
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Ivan Pourmir
- Université ParisCité, INSERM, PARCC, Paris, France
| | - Nadège Gruel
- Institut Curie, PSL Research University, Department of Translational Research, Paris, France
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, Paris, France
| | - Clémence Granier
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Joséphine Pineau
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Alain Gey
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elizabeth Fabre
- Université ParisCité, INSERM, PARCC, Paris, France
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- Université ParisCité, INSERM, PARCC, Paris, France
- Immunology, APHP, Hôpital Europeen Georges Pompidou and Hôpital Necker, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- *Correspondence: Eric Tartour,
| |
Collapse
|
7
|
Altendorfer B, Unger MS, Poupardin R, Hoog A, Asslaber D, Gratz IK, Mrowetz H, Benedetti A, de Sousa DMB, Greil R, Egle A, Gate D, Wyss-Coray T, Aigner L. Transcriptomic Profiling Identifies CD8 + T Cells in the Brain of Aged and Alzheimer's Disease Transgenic Mice as Tissue-Resident Memory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1272-1285. [PMID: 36165202 PMCID: PMC9515311 DOI: 10.4049/jimmunol.2100737] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
Peripheral immune cell infiltration into the brain is a prominent feature in aging and various neurodegenerative diseases such as Alzheimer's disease (AD). As AD progresses, CD8+ T cells infiltrate into the brain parenchyma, where they tightly associate with neurons and microglia. The functional properties of CD8+ T cells in the brain are largely unknown. To gain further insights into the putative functions of CD8+ T cells in the brain, we explored and compared the transcriptomic profile of CD8+ T cells isolated from the brain and blood of transgenic AD (APPswe/PSEN1dE9, line 85 [APP-PS1]) and age-matched wild-type (WT) mice. Brain CD8+ T cells of APP-PS1 and WT animals had similar transcriptomic profiles and substantially differed from blood circulating CD8+ T cells. The gene signature of brain CD8+ T cells identified them as tissue-resident memory (Trm) T cells. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the significantly upregulated genes revealed overrepresentation of biological processes involved in IFN-β signaling and the response to viral infections. Furthermore, brain CD8+ T cells of APP-PS1 and aged WT mice showed similar differentially regulated genes as brain Trm CD8+ T cells in mouse models with acute virus infection, chronic parasite infection, and tumor growth. In conclusion, our profiling of brain CD8+ T cells suggests that in AD, these cells exhibit similar adaptive immune responses as in other inflammatory diseases of the CNS, potentially opening the door for immunotherapy in AD.
Collapse
Affiliation(s)
- Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michael Stefan Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Anna Hoog
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Daniela Asslaber
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Iris Karina Gratz
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ariane Benedetti
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Richard Greil
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Alexander Egle
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA; and
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA; and
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
8
|
Han Y, Zhou Y, Li H, Gong Z, Liu Z, Wang H, Wang B, Ye X, Liu Y. Identification of diagnostic mRNA biomarkers in whole blood for ankylosing spondylitis using WGCNA and machine learning feature selection. Front Immunol 2022; 13:956027. [PMID: 36172367 PMCID: PMC9510835 DOI: 10.3389/fimmu.2022.956027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common inflammatory spondyloarthritis affecting the spine and sacroiliac joint that finally results in sclerosis of the axial skeleton. Aside from human leukocyte antigen B27, transcriptomic biomarkers in blood for AS diagnosis still remain unknown. Hence, this study aimed to investigate credible AS-specific mRNA biomarkers from the whole blood of AS patients by analyzing an mRNA expression profile (GSE73754) downloaded Gene Expression Omnibus, which includes AS and healthy control blood samples. Weighted gene co-expression network analysis was performed and revealed three mRNA modules associated with AS. By performing gene set enrichment analysis, the functional annotations of these modules revealed immune biological processes that occur in AS. Several feature mRNAs were identified by analyzing the hubs of the protein-protein interaction network, which was based on the intersection between differentially expressed mRNAs and mRNA modules. A machine learning-based feature selection method, SVM-RFE, was used to further screen out 13 key feature mRNAs. After verifying by qPCR, IL17RA, Sqstm1, Picalm, Eif4e, Srrt, Lrrfip1, Synj1 and Cxcr6 were found to be significant for AS diagnosis. Among them, Cxcr6, IL17RA and Lrrfip1 were correlated with severity of AS symptoms. In conclusion, our findings provide a framework for identifying the key mRNAs in whole blood of AS that is conducive for the development of novel diagnostic markers for AS.
Collapse
Affiliation(s)
- Yaguang Han
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yiqin Zhou
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haobo Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ziye Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| | - Yi Liu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Bo Wang, ; Xiaojian Ye, ; Yi Liu,
| |
Collapse
|
9
|
Mehta H, Lett MJ, Klenerman P, Filipowicz Sinnreich M. MAIT cells in liver inflammation and fibrosis. Semin Immunopathol 2022; 44:429-444. [PMID: 35641678 PMCID: PMC9256577 DOI: 10.1007/s00281-022-00949-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
Mucosal-associated invariant T cells or MAIT cells are an abundant cell type in humans and especially so in the liver. MAIT cells are a subset of T lymphocytes that sit at a bridge between innate and adaptive immunity, so-called innate-like or "unconventional" T cells. The specificity of their antigen receptor (T cell receptor or TCR) is for the conserved major histocompatibility complex (MHC)-related molecule MR1, which presents a modified bacterial metabolite from the vitamin B2 biosynthesis pathway - this allows them to respond in the presence of many bacteria or yeast. MAIT cells also possess an array of cytokine receptors, which allows triggering independently of the TCR. The combination of such signals drives their functionality - this means they can respond to a range of stimuli and likely play a role not only in infection or inflammation, but also under homeostatic conditions.In this review, we will look at the question of what MAIT cells are doing in the normal liver and how they behave in the setting of disease. These questions are of relevance because MAIT cells are such a distinctive cell type enriched in the liver under normal conditions, and their modulation could be of therapeutic benefit. The recent discovery that they appear to be involved in liver fibrosis is particularly of interest in this context.
Collapse
Affiliation(s)
- Hema Mehta
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK
| | - Martin Joseph Lett
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Magdalena Filipowicz Sinnreich
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
10
|
Neef T, Ifergan I, Beddow S, Penaloza-MacMaster P, Haskins K, Shea LD, Podojil JR, Miller SD. Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4 + and CD8 + T Cells. Cells 2021; 10:3445. [PMID: 34943952 PMCID: PMC8699785 DOI: 10.3390/cells10123445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Igal Ifergan
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Sara Beddow
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
- Research & Development, Cour Pharmaceuticals Development Company, Northbrook, IL 60062, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, 303 E. Chicago Avenue, Chicago, IL 60611, USA; (T.N.); (I.I.); (S.B.); (P.P.-M.); (J.R.P.)
| |
Collapse
|
11
|
CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathog 2021; 17:e1010004. [PMID: 34695149 PMCID: PMC8568161 DOI: 10.1371/journal.ppat.1010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
While Salmonella enterica is seen as an archetypal facultative intracellular bacterial pathogen where protection is mediated by CD4+ T cells, identifying circulating protective cells has proved very difficult, inhibiting steps to identify key antigen specificities. Exploiting a mouse model of vaccination, we show that the spleens of C57BL/6 mice vaccinated with live-attenuated Salmonella serovar Typhimurium (S. Typhimurium) strains carried a pool of IFN-γ+ CD4+ T cells that could adoptively transfer protection, but only transiently. Circulating Salmonella-reactive CD4+ T cells expressed the liver-homing chemokine receptor CXCR6, accumulated over time in the liver and assumed phenotypic characteristics associated with tissue-associated T cells. Liver memory CD4+ T cells showed TCR selection bias and their accumulation in the liver could be inhibited by blocking CXCL16. These data showed that the circulation of CD4+ T cells mediating immunity to Salmonella is limited to a brief window after which Salmonella-specific CD4+ T cells migrate to peripheral tissues. Our observations highlight the importance of triggering tissue-specific immunity against systemic infections. Helper T cells are essential for controlling infections by bacterial pathogens, such as Salmonella enterica var Typhimurium (S. Typhimurium). While it is well-established that this role is related to their provision of IFN-γ, when and where helper T cells elicit their protective function in vivo remains unresolved. We identified a protective helper T cell population in the circulation of mice early after inoculation with growth-attenuated S. Typhimurium strains; this population waned overtime. We observed that circulating helper T cell immunity can adoptively protect naïve recipient mice against lethal S. Typhimurium infection when harvested from a short time-window. In comparing helper T cell responses between spleen and liver in Salmonella-infected mice, we have observed a previously uncharacterized trafficking of helper T cells to the liver followed by the residence of S. Typhimurium-specific T cell memory in the organ. Taken together these findings identify that protective immunity to Salmonella infections is transient in the circulation and the liver as a preferential site of helper T memory cells.
Collapse
|
12
|
Vella JL, Molodtsov A, Angeles CV, Branchini BR, Turk MJ, Huang YH. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells. Life Sci Alliance 2021; 4:4/10/e202101056. [PMID: 34362825 PMCID: PMC8356251 DOI: 10.26508/lsa.202101056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory (TRM) T cells are emerging as critical components of the immune response to cancer; yet, requirements for their ongoing function and maintenance remain unclear. APCs promote TRM cell differentiation and re-activation but have not been implicated in sustaining TRM cell responses. Here, we identified a novel role for dendritic cells in supporting TRM to melanoma. We showed that CD8 TRM cells remain in close proximity to dendritic cells in the skin. Depletion of CD11c+ cells results in rapid disaggregation and eventual loss of melanoma-specific TRM cells. In addition, we determined that TRM migration and/or persistence requires chemotaxis and adhesion mediated by the CXCR6/CXCL16 axis. The interaction between CXCR6-expressing TRM cells and CXCL16-expressing APCs was found to be critical for sustaining TRM cell-mediated tumor protection. These findings substantially expand our knowledge of APC functions in TRM T-cell homeostasis and longevity.
Collapse
Affiliation(s)
- Jennifer L Vella
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aleksey Molodtsov
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina V Angeles
- Department of Surgery, University of Michigan, Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA .,Norris Cotton Cancer Center, Lebanon, NH, USA.,Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
13
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
14
|
Prosser A, Huang WH, Liu L, Dart S, Watson M, de Boer B, Kendrew P, Lucas A, Larma-Cornwall I, Gaudieri S, Jeffrey GP, Delriviere L, Kallies A, Lucas M. Dynamic changes to tissue-resident immunity after MHC-matched and MHC-mismatched solid organ transplantation. Cell Rep 2021; 35:109141. [PMID: 34010637 DOI: 10.1016/j.celrep.2021.109141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The heterogeneous pool of tissue-resident lymphocytes in solid organs mediates infection responses and supports tissue integrity and repair. Their vital functions in normal physiology suggest an important role in solid organ transplantation; however, their detailed examination in this context has not been performed. Here, we report the fate of multiple lymphocyte subsets, including T, B, and innate lymphoid cells, after murine liver and heart transplantation. In major histocompatibility complex (MHC)-matched transplantation, donor lymphocytes are retained in liver grafts and peripheral lymphoid organs of heart and liver transplant recipients. In MHC-mismatched transplantation, increased infiltration of the graft by recipient cells and depletion of donor lymphocytes occur, which can be prevented by removal of recipient T and B cells. Recipient lymphocytes fail to recreate the native organs' phenotypically diverse tissue-resident lymphocyte composition, even in MHC-matched models. These post-transplant changes may leave grafts vulnerable to infection and impair long-term graft function.
Collapse
Affiliation(s)
- Amy Prosser
- Medical School, University of Western Australia, Perth, WA 6009, Australia; School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Wen Hua Huang
- Medical School, University of Western Australia, Perth, WA 6009, Australia; Western Australian Liver and Kidney Transplant Service, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
| | - Liu Liu
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Sarah Dart
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Monalyssa Watson
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Bastiaan de Boer
- Department of Anatomical Pathology, Pathwest Laboratory Medicine, Perth, WA 6009, Australia
| | - Philip Kendrew
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Perth, WA 6009, Australia
| | - Andrew Lucas
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Irma Larma-Cornwall
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gary P Jeffrey
- Medical School, University of Western Australia, Perth, WA 6009, Australia; Western Australian Liver and Kidney Transplant Service, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia; Department of Gastroenterology, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
| | - Luc Delriviere
- Medical School, University of Western Australia, Perth, WA 6009, Australia; Western Australian Liver and Kidney Transplant Service, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA 6009, Australia; Department of Immunology, Sir Charles Gairdner Hospital and Pathwest Laboratory Medicine, Perth, WA 6009, Australia.
| |
Collapse
|
15
|
Karaki S, Blanc C, Tran T, Galy-Fauroux I, Mougel A, Dransart E, Anson M, Tanchot C, Paolini L, Gruel N, Gibault L, Lepimpec-Barhes F, Fabre E, Benhamouda N, Badoual C, Damotte D, Donnadieu E, Kobold S, Mami-Chouaib F, Golub R, Johannes L, Tartour E. CXCR6 deficiency impairs cancer vaccine efficacy and CD8 + resident memory T-cell recruitment in head and neck and lung tumors. J Immunother Cancer 2021; 9:e001948. [PMID: 33692218 PMCID: PMC7949477 DOI: 10.1136/jitc-2020-001948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Resident memory T lymphocytes (TRM) are located in tissues and play an important role in immunosurveillance against tumors. The presence of TRM prior to treatment or their induction is associated to the response to anti-Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1) immunotherapy and the efficacy of cancer vaccines. Previous work by our group and others has shown that the intranasal route of vaccination allows more efficient induction of these cells in head and neck and lung mucosa, resulting in better tumor protection. The mechanisms of in vivo migration of these cells remains largely unknown, apart from the fact that they express the chemokine receptor CXCR6. METHODS We used CXCR6-deficient mice and an intranasal tumor vaccination model targeting the Human Papillomavirus (HPV) E7 protein expressed by the TC-1 lung cancer epithelial cell line. The role of CXCR6 and its ligand, CXCL16, was analyzed using multiparametric cytometric techniques and Luminex assays.Human biopsies obtained from patients with lung cancer were also included in this study. RESULTS We showed that CXCR6 was preferentially expressed by CD8+ TRM after vaccination in mice and also on intratumoral CD8+ TRM derived from human lung cancer. We also demonstrate that vaccination of Cxcr6-deficient mice induces a defect in the lung recruitment of antigen-specific CD8+ T cells, preferentially in the TRM subsets. In addition, we found that intranasal vaccination with a cancer vaccine is less effective in these Cxcr6-deficient mice compared with wild-type mice, and this loss of efficacy is associated with decreased recruitment of local antitumor CD8+ TRM. Interestingly, intranasal, but not intramuscular vaccination induced higher and more sustained concentrations of CXCL16, compared with other chemokines, in the bronchoalveolar lavage fluid and pulmonary parenchyma. CONCLUSIONS This work demonstrates the in vivo role of CXCR6-CXCL16 axis in the migration of CD8+ resident memory T cells in lung mucosa after vaccination, resulting in the control of tumor growth. This work reinforces and explains why the intranasal route of vaccination is the most appropriate strategy for inducing these cells in the head and neck and pulmonary mucosa, which remains a major objective to overcome resistance to anti-PD-1/PD-L1, especially in cold tumors.
Collapse
Affiliation(s)
- Soumaya Karaki
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlotte Blanc
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Thi Tran
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Isabelle Galy-Fauroux
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alice Mougel
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 75248 Paris Cedex 05, France
| | - Marie Anson
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Corinne Tanchot
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lea Paolini
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Nadege Gruel
- INSERM U830, Equipe labellisée LNCC, Siredo Oncology Centre, Institut Curie, 75248 Paris Cedex 05, France
- Institut Curie, PSL Research University, Department of Translational Research, 75248 Paris Cedex 05, France
| | - Laure Gibault
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Francoise Lepimpec-Barhes
- Department of Thoracic Surgery, INSERM UMRS 1138, APHP, Hôpital Europeen Georges Pompidou, 75015 Paris, France
| | - Elizabeth Fabre
- Lung Oncology Unit, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | | | - Cecile Badoual
- Department of Pathology, APHP, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Diane Damotte
- Department of Pathology, APHP, Hôpital Cochin, 75014 Paris, Île-de-France, France
| | - Emmanuel Donnadieu
- Departement Immunologie, Inflammation et Infection, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, Île-de-France, France
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL), Munchen, Germany
- German Center for Translational Cancer Research (DKTK), partner site, Munchen, Germany
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Institut Gustave Roussy, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Rachel Golub
- Unit for Lymphopoiesis, Department of Immunology, Institut Pasteur, INSERM U1223, 75006 Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, 75248 Paris Cedex 05, France
| | - Eric Tartour
- Université de Paris, PARCC, INSERM U970, 75006 Paris, France
- Equipe Labellisée Ligue contre le Cancer, Paris, France
- Immunology, APHP,Hôpital Europeen Georges Pompidou, Paris, France
| |
Collapse
|
16
|
Chu KL, Batista NV, Girard M, Law JC, Watts TH. GITR differentially affects lung effector T cell subpopulations during influenza virus infection. J Leukoc Biol 2020; 107:953-970. [PMID: 32125017 DOI: 10.1002/jlb.4ab1219-254r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue resident memory T cells (Trm) are critical for local protection against reinfection. The accumulation of T cells in the tissues requires a post-priming signal from TNFR superfamily members, referred to as signal 4. Glucocorticoid-induced TNFR-related protein (GITR; TNFRSF18) signaling is important for this post-priming signal and for Trm formation during respiratory infection with influenza virus. As GITR signaling impacts both effector T cell accumulation and Trm formation, we asked if GITR differentially affects subsets of effector cells with different memory potential. Effector CD4+ T cells can be subdivided into 2 populations based on expression of lymphocyte antigen 6C (Ly6C), whereas effector CD8+ cells can be divided into 3 populations based on Ly6C and CX3CR1. The Ly6Chi and CX3CR1hi T cell populations represent the most differentiated effector T cells. Upon transfer, the Ly6Clo CD4+ effector T cells preferentially enter the lung parenchyma, compared to the Ly6Chi CD4+ T cells. We show that GITR had a similar effect on the accumulation of both the Ly6Chi and Ly6Clo CD4+ T cell subsets. In contrast, whereas GITR increased the accumulation of all three CD8+ T cell subsets defined by CX3CR1 and Ly6C expression, it had a more substantial effect on the least differentiated Ly6Clo CX3CR1lo subset. Moreover, GITR selectively up-regulated CXCR6 on the less differentiated CX3CR1lo CD8+ T cell subsets and induced a small but significant increase in CD127 selectively on the Ly6Clo CD4+ T cell subset. Thus, GITR contributes to accumulation of both differentiated effector cells as well as memory precursors, but with some differences between subsets.
Collapse
Affiliation(s)
- Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nathalia V Batista
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mélanie Girard
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Ashhurst AS, Flórido M, Lin LCW, Quan D, Armitage E, Stifter SA, Stambas J, Britton WJ. CXCR6-Deficiency Improves the Control of Pulmonary Mycobacterium tuberculosis and Influenza Infection Independent of T-Lymphocyte Recruitment to the Lungs. Front Immunol 2019; 10:339. [PMID: 30899256 PMCID: PMC6416161 DOI: 10.3389/fimmu.2019.00339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
T-lymphocytes are critical for protection against respiratory infections, such as Mycobacterium tuberculosis and influenza virus, with chemokine receptors playing an important role in directing these cells to the lungs. CXCR6 is expressed by activated T-lymphocytes and its ligand, CXCL16, is constitutively expressed by the bronchial epithelia, suggesting a role in T-lymphocyte recruitment and retention. However, it is unknown whether CXCR6 is required in responses to pulmonary infection, particularly on CD4+ T-lymphocytes. Analysis of CXCR6-reporter mice revealed that in naïve mice, lung leukocyte expression of CXCR6 was largely restricted to a small population of T-lymphocytes, but this population was highly upregulated after either infection. Nevertheless, pulmonary infection of CXCR6-deficient mice with M. tuberculosis or recombinant influenza A virus expressing P25 peptide (rIAV-P25), an I-Ab-restricted epitope from the immunodominant mycobacterial antigen, Ag85B, demonstrated that the receptor was redundant for recruitment of T-lymphocytes to the lungs. Interestingly, CXCR6-deficiency resulted in reduced bacterial burden in the lungs 6 weeks after M. tuberculosis infection, and reduced weight loss after rIAV-P25 infection compared to wild type controls. This was paradoxically associated with a decrease in Th1-cytokine responses in the lung parenchyma. Adoptive transfer of P25-specific CXCR6-deficient T-lymphocytes into WT mice revealed that this functional change in Th1-cytokine production was not due to a T-lymphocyte intrinsic mechanism. Moreover, there was no reduction in the number or function of CD4+ and CD8+ tissue resident memory cells in the lungs of CXCR6-deficient mice. Although CXCR6 was not required for T-lymphocyte recruitment or retention in the lungs, CXCR6 influenced the kinetics of the inflammatory response so that deficiency led to increased host control of M. tuberculosis and influenza virus.
Collapse
Affiliation(s)
- Anneliese S Ashhurst
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Manuela Flórido
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Leon C W Lin
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Diana Quan
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ellis Armitage
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sebastian A Stifter
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Central Clinical School Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Central Clinical School Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Fan DX, Zhou WJ, Jin LP, Li MQ, Xu XH, Xu CJ. Trophoblast-Derived CXCL16 Decreased Granzyme B Production of Decidual γδ T Cells and Promoted Bcl-xL Expression of Trophoblasts. Reprod Sci 2018; 26:532-542. [PMID: 29909746 DOI: 10.1177/1933719118777638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Decidual γδ T cells are known to regulate the function of trophoblasts at the maternal-fetal interface; however, little is known about the molecular mechanisms of cross talk between trophoblast cells and decidual γδ T cells. METHODS Expression of chemokine C-X-C motif ligand 6 (CXCL16) and its receptor CXCR6 was evaluated in first-trimester human villus and decidual tissues by immunohistochemistry. γδ T cells were isolated from first-trimester human deciduae and cocultured with JEG3 trophoblast cells. Cell proliferation and apoptosis-related molecules, together with cytotoxicity factor and cytokine production, were measured by flow cytometry analysis. RESULTS Expression of CXCL16 and CXCR6 was reduced at the maternal-fetal interface in patients who experienced unexplained recurrent spontaneous abortion as compared to healthy pregnancy women. With the administration of pregnancy-related hormones or coculture with JEG3 cells, CXCR6 expression was upregulated on decidual γδ T cells. CXCL16 derived from JEG3 cells caused a decrease in granzyme B production of decidual γδ T cells. In addition, decidual γδ T cells educated by JEG3-derived CXCL16 upregulated the expression of Bcl-xL in JEG3 cells. CONCLUSION This study suggested that the CXCL16/CXCR6 axis may contribute to maintaining normal pregnancy by reducing the secretion of cytotoxic factor granzyme B of decidual γδ T cells and promoting the expression of antiapoptotic marker Bcl-xL of trophoblasts.
Collapse
Affiliation(s)
- Deng-Xuan Fan
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wen-Jie Zhou
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li-Ping Jin
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ming-Qing Li
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiang-Hong Xu
- 2 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Cong-Jian Xu
- 1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.,3 Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.,4 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Pichyangkul S, Spring MD, Yongvanitchit K, Kum-Arb U, Limsalakpetch A, Im-Erbsin R, Ubalee R, Vanachayangkul P, Remarque EJ, Angov E, Smith PL, Saunders DL. Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver. PLoS One 2017; 12:e0171826. [PMID: 28182750 PMCID: PMC5300246 DOI: 10.1371/journal.pone.0171826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites.
Collapse
Affiliation(s)
- Sathit Pichyangkul
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- * E-mail:
| | - Michele D. Spring
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Kosol Yongvanitchit
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Utaiwan Kum-Arb
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Rawiwan Im-Erbsin
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Evelina Angov
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Philip L. Smith
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
20
|
The Roles of CXCL16 and CXCR6 in Liver Inflammation and Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Radtke AJ, Tse SW, Zavala F. From the draining lymph node to the liver: the induction and effector mechanisms of malaria-specific CD8+ T cells. Semin Immunopathol 2015; 37:211-20. [PMID: 25917387 PMCID: PMC5600878 DOI: 10.1007/s00281-015-0479-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Parasitic protozoa cause considerable disease in humans and, due to their intracellular life cycle, induce robust CD8(+) T cell responses. A greater understanding of the factors that promote and maintain CD8(+) T cell-mediated immunity against these pathogens is likely needed for the development of effective vaccines. Immunization with radiation-attenuated sporozoites, the infectious stage of the malaria parasite transmitted by mosquitoes, is an excellent model to study these questions as CD8(+) T cells specific for a single epitope can completely eliminate parasite infection in the liver. Furthermore, live, radiation-attenuated parasites represent the "gold standard" for malaria vaccination. Here, we will highlight recent studies aimed at understanding the factors required for the induction, recruitment, and maintenance of effector and memory CD8(+) T cells against malaria liver stages.
Collapse
Affiliation(s)
- Andrea J. Radtke
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sze-Wah Tse
- Program in Cellular and Molecular Medicine of Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|