1
|
Kouw IWK, Parr EB, Wheeler MJ, Radford BE, Hall RC, Senden JM, Goessens JPB, van Loon LJC, Hawley JA. Short-term intermittent fasting and energy restriction do not impair rates of muscle protein synthesis: A randomised, controlled dietary intervention. Clin Nutr 2024; 43:174-184. [PMID: 39418832 DOI: 10.1016/j.clnu.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Intermittent fasting (IF) is an effective energy restricted dietary strategy to reduce body and fat mass and improve metabolic health in individuals with either an overweight or obese status. However, dietary energy restriction may impair muscle protein synthesis (MPS) resulting in a concomitant decline in lean body mass. Due to periods of prolonged fasting combined with irregular meal intake, we hypothesised that IF would reduce rates of MPS compared to an energy balanced diet with regular meal patterns. AIMS We assessed the impact of a short-term, ten days, alternate day fasting or a continuous energy restricted diet to a control diet on integrated rates of skeletal MPS in middle-aged males with overweight or obesity. METHODS Twenty-seven middle-aged males with overweight or obesity (age: 44.6 ± 5.4 y; BMI: 30.3 ± 2.6 kg/m2) consumed a three-day lead-in diet, followed by a ten-day controlled dietary intervention matched for protein intake, as alternate day fasting (ADF: 62.5 energy (En)%, days of 25 En% alternated with days of 100 En% food ingestion), continuous energy restriction (CER: 62.5 En%), or an energy balanced, control diet (CON: 100 En%). Deuterated water (D2O) methodology with saliva, blood, and skeletal muscle sampling were used to assess integrated rates of MPS over the ten-day intervention period. Secondary measures included fasting plasma glucose, insulin, and gastrointestinal hormone concentrations, continuous glucose monitoring, and assessment of body composition. RESULTS There were no differences in daily rates of MPS between groups (ADF: 1.18 ± 0.13, CER: 1.13 ± 0.16, and CON: 1.18 ± 0.18 %/day, P > 0.05). The reductions in body mass were greater in ADF and CER compared to CON (P < 0.001). Lean and fat mass were decreased by a similar magnitude across groups (main time effect, P < 0.001; main group effect, P > 0.05). Fasting plasma leptin concentrations decreased in ADF and CER (P < 0.001), with no differences in fasting plasma glucose or insulin concentrations between groups. CONCLUSION Short-term alternate day fasting does not lower rates of MPS compared to continuous energy restriction or an energy balanced, control diet with matched protein intake. The prolonged effects of IF and periods of irregular energy and protein intake patterns on muscle mass maintenance remain to be investigated. This trial was registered under Australian New Zealand Clinical Trial Registry (https://www.anzctr.org.au), identifier no. ACTRN12619000757112.
Collapse
Affiliation(s)
- Imre W K Kouw
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael J Wheeler
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Bridget E Radford
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Rebecca C Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom
| |
Collapse
|
2
|
Han JF, Feng L, Jiang WD, Wu P, Liu Y, Tang L, Li SW, Zhong CB, Zhou XQ. Exploring the dietary strategies of phenylalanine: Improving muscle nutraceutical quality as well as muscle glycogen and protein deposition in adult grass carp ( Ctenopharyngodon idella). Food Chem X 2024; 22:101421. [PMID: 38756468 PMCID: PMC11096706 DOI: 10.1016/j.fochx.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Muscle is the main edible part of bony fish. The purpose of this study was to investigate the influences of phenylalanine (Phe) on muscle quality, amino acid composition, fatty acid composition, glucose metabolism, and protein deposition in adult grass carp. The diets at 2.30, 4.63, 7.51, 10.97, 13.53, and 17.07 g/kg Phe levels were fed for 9 weeks. The results manifested that Phe (10.97-13.53 g/kg) increased the pH of the fillets and decreased muscle cooking loss and lactic acid content; Phe (7.51-17.07 g/kg) improved the composition of the fillets in terms of flavor (free) amino acids, bound amino acids (especially EAA), and fatty acids (especially EPA and DHA); Phe (7.51-13.53 g/kg) increased muscle glycogen content (possibly related to the AMPK signaling pathway) and muscle protein deposition (possibly related to IGF-1/4EBP1/TOR and AKT/FOXOs signaling pathways). In conclusion, a diet with appropriate Phe levels could improve fillet quality.
Collapse
Affiliation(s)
- Jing-Feng Han
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| |
Collapse
|
3
|
Juhas U, Reczkowicz J, Kortas JA, Żychowska M, Pilis K, Ziemann E, Cytrych I, Antosiewicz J, Borkowska A. Eight-day fasting modulates serum kynurenines in healthy men at rest and after exercise. Front Endocrinol (Lausanne) 2024; 15:1403491. [PMID: 38933822 PMCID: PMC11199767 DOI: 10.3389/fendo.2024.1403491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Tryptophan's (Trp) metabolites are undervalued markers of human health. Their serum concentrations are modified by physical exercise and other factors, among which fasting has a well-documented role. Although this mechanism is hardly explored, thus, the study aimed to determine the effect of the 8-day fasting period and the impact of such a procedure on a single bout of an endurance exercise on the concentration of kynurenine pathway (KP) metabolites. Methods 10 participants fasted for 8 days, and 10 as a control group participated in the study. The exercise was performed at baseline after an overnight fast and repeated post 8 days. Results The 8 days of fasting increased the resting 3-hydroxy-L-kynurenine (3HK), picolinic acid (PA), kynurenic acid (KYNA), and xanthurenic acid (XA) serum concentration. Also elevated phenylalanine (Phe) and tyrosine (Tyr) levels were recorded, suggesting expanded proteolysis of muscle proteins. In turn, physical activity caused a decrease in the concentration of 3-hydroxyanthranilic acid (3HAA) and PA after fasting. The obtained results were not recorded in controls. Conclusion The results of this study show that the health-promoting effects of fasting are associated with changes in the KYN pathway. The increase in the concentration of PA and XA metabolites following fasting is capable of penetrating the blood-brain barrier, and KYNA, which initiates several beneficial changes, supports this assumption.
Collapse
Affiliation(s)
- Ulana Juhas
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Antoni Kortas
- Department of Health and Life Sciences, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Karol Pilis
- Department of Health Sciences, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznań, Poland
| | | | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Stouth DW, vanLieshout TL, Mikhail AI, Ng SY, Raziee R, Edgett BA, Vasam G, Webb EK, Gilotra KS, Markou M, Pineda HC, Bettencourt-Mora BG, Noor H, Moll Z, Bittner ME, Gurd BJ, Menzies KJ, Ljubicic V. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy. Autophagy 2024; 20:1247-1269. [PMID: 38018843 PMCID: PMC11210918 DOI: 10.1080/15548627.2023.2288528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.Abbreviation: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; H2O2: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
Collapse
Affiliation(s)
- Derek W. Stouth
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew I. Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y. Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Rozhin Raziee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Webb
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin S. Gilotra
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Markou
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hannah C. Pineda
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Haleema Noor
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Moll
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Megan E. Bittner
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Deans-Fielder K, Wu T, Nguyen T, To S, Huang YZ, Bark SJ, Mills JC, Shroyer NF. Mechanisms driving fasting-induced protection from genotoxic injury in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G504-G524. [PMID: 38349111 PMCID: PMC11376978 DOI: 10.1152/ajpgi.00126.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.
Collapse
Affiliation(s)
- Kali Deans-Fielder
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
| | - Timothy Wu
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Thanh Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah To
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Yang-Zhe Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Steven J Bark
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason C Mills
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Noah F Shroyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
6
|
Rejeki PS, Pranoto A, Widiatmaja DM, Utami DM, Izzatunnisa N, Sugiharto, Lesmana R, Halim S. Combined Aerobic Exercise with Intermittent Fasting Is Effective for Reducing mTOR and Bcl-2 Levels in Obese Females. Sports (Basel) 2024; 12:116. [PMID: 38786985 PMCID: PMC11126026 DOI: 10.3390/sports12050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The integration of combined aerobic exercise and intermittent fasting (IF) has emerged as a strategy for the prevention and management of obesity, including its associated health issues such as age-related metabolic diseases. This study aimed to examine the potential of combined aerobic exercise and IF as a preventative strategy against cellular senescence by targeting mTOR and Bcl-2 levels in obese females. A total of 30 obese women, aged 23.56 ± 1.83 years, body fat percentage (FAT) 45.21 ± 3.73% (very high category), BMI 30.09 ± 3.74 kg/m2 were recruited and participated in three different types of interventions: intermittent fasting (IF), exercise (EXG), and a combination of intermittent fasting and exercise (IFEXG). The intervention program was carried out 5x/week for 2 weeks. We examined mTOR and Bcl-2 levels using ELISA kits. Statistical analysis used the one-way ANOVA test and continued with Tukey's HSD post hoc test, with a significance level of 5%. The study results showed that a combination of aerobic exercise and IF significantly decreased mTOR levels (-1.26 ± 0.79 ng/mL) compared to the control group (-0.08 ± 1.33 ng/mL; p ≤ 0.05). However, combined aerobic exercise and IF did not affect Bcl-2 levels significantly (-0.07 ± 0.09 ng/mL) compared to the control group (0.01 ± 0.17 ng/mL, p ≥ 0.05). The IF-only group, exercise-only group, and combined group all showed a significant decrease in body weight and fat mass compared to the control group (p ≤ 0.05). However, the combined aerobic exercise and IF program had a significant effect in reducing the total percentage of body fat and fat mass compared to the IF-only group (p ≤ 0.05). Therefore, it was concluded that the combined intermittent fasting and exercise group (IFEXG) undertook the most effective intervention of the three in terms of preventing cellular senescence, as demonstrated by decreases in the mTOR level, body weight, and fat mass. However, the IFEXG did not present reduced Bcl-2 levels.
Collapse
Affiliation(s)
- Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia
| | - Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Deandra Maharani Widiatmaja
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Dita Mega Utami
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Nabilah Izzatunnisa
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia; (D.M.W.); (D.M.U.); (N.I.)
| | - Sugiharto
- Department of Sport Science, Faculty of Sport Science, Universitas Negeri Malang, Malang 65145, East Java, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung 45363, West Java, Indonesia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Pulau Pinang, Malaysia;
| |
Collapse
|
7
|
Storoschuk KL, Lesiuk D, Nuttall J, LeBouedec M, Khansari A, Islam H, Gurd BJ. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: A systematic review. Metabolism 2024; 152:155768. [PMID: 38154612 DOI: 10.1016/j.metabol.2023.155768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Based primarily on evidence from rodent models fasting is currently believed to improve metabolic health via activation of the AMPK-PGC-1α axis in skeletal muscle. However, it is unclear whether the skeletal muscle AMPK-PGC-1α axis is activated by fasting in humans. The current systematic review examined the fasting response in skeletal muscle from 34 selected studies (7 human, 21 mouse, and 6 rat). From these studies, we gathered 38 unique data points related to AMPK and 47 related to PGC-1α. In human studies, fasting mediated activation of the AMPK-PGC-1α axis is largely absent. Although evidence does support fasting-induced activation of the AMPK-PGC-1α axis in rodent skeletal muscle, the evidence is less robust than anticipated. Our findings question the ability of fasting to activate the AMPK-PGC-1α axis in human skeletal muscle and suggest that the metabolic benefits of fasting in humans are associated with caloric restriction rather than the induction of mitochondrial biogenesis. Registration: https://doi.org/10.17605/OSF.IO/KWNQY.
Collapse
Affiliation(s)
- K L Storoschuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - D Lesiuk
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - J Nuttall
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - M LeBouedec
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - A Khansari
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - H Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - B J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
8
|
Yi C, Liang H, Xu G, Zhu J, Wang Y, Li S, Ren M, Chen X. Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:349-365. [PMID: 36367675 DOI: 10.1007/s10695-022-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was aimed to determine the appropriate level of dietary phenylalanine and explored the influences of phenylalanine on target rapamycin (TOR) signaling and glucose and lipid metabolism in largemouth bass. Six isonitrogenous/isoenergetic diets with graded phenylalanine levels (1.45% (control group), 1.69%, 1.98%, 2.21%, 2.48%, and 2.76%) were designed. Experimental feed was used to feed juvenile largemouth bass (initial body weight 19.5 ± 0.98 g) for 8 weeks. The final body weight, specific growth rate (SGR), feed efficiency ratio (FER), and weight gain (WG) reached their highest values in the 1.98% dietary phenylalanine group and then declined with increasing phenylalanine addition. No significant difference was found in the whole-body composition of largemouth bass between different dietary phenylalanine groups. Compared with the control group, 1.69% dietary phenylalanine significantly reduced the contents of plasma glucose (GLU) and total protein (TP), and total cholesterol (TC) contents increased significantly in the 1.98% dietary phenylalanine group (P < 0.05). The key gene expressions of TOR signaling pathway and lipid metabolism was significantly inhibited by 2.21% dietary phenylalanine (P < 0.05). The 1.98% dietary phenylalanine group showed significantly increased expression of genes related to insulin signaling pathway and factors involved in fatty acid synthesis (P < 0.05). Furthermore, 2.76% dietary phenylalanine group inhibited glucose metabolism by lowering the key gene expressions of glucose metabolism (P < 0.05). According to quadratic regression analyses based on the WG and FER, the appropriate level of dietary phenylalanine for largemouth bass were 2.00% and 2.02% of the diet (4.23% and 4.27% dietary protein), respectively, with a constant amount of tyrosine (1.33%). Hence, the total aromatic amino acid requirements were 3.33% and 3.35% of the diet (equivalent to 7.03% and 7.09% of the protein content), which may provide a theoretical basis for the development of largemouth bass feed formulas. Therefore, the growth and metabolism of largemouth bass could be promoted by controlling the content of phenylalanine in the diet, or the imbalance of phenylalanine can form a specific pathological model.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China.
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China.
| |
Collapse
|
9
|
Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. Greater plasma essential amino acids and lower 3-methylhistidine with higher protein intake during endurance training: a randomised control trial. Amino Acids 2023; 55:1285-1291. [PMID: 36477889 DOI: 10.1007/s00726-022-03210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
Endurance exercise alters amino acid (AA) metabolism that necessitates greater AA intake in the post exercise recovery period to support recovery. Thus, daily AA ingestion during a period of endurance training may affect the metabolically active plasma free AA pool, which is otherwise maintained during periods of inadequate protein intake by the breakdown of skeletal muscle proteins. Nine endurance-trained males completed a 4-day running protocol (20 km, 5 km, 10 km and 20 km on days 1-4, respectively) on three occasions with a controlled diet providing different protein intakes [0.94(LOW), 1.20(MOD) or 1.83gprotein kgbody mass-1 day-1 (HIGH)]. Urine collected over 24 h on day-4 and plasma collected after an overnight fast on day-5 were analyzed for free AA (plasma) and 3-methylhistidine (3MH; plasma and urine), a marker of myofibrillar protein breakdown. There was an effect of protein intake (HIGH > MOD/LOW; P < 0.05) on fasted plasma essential AA, branched chain AA and 3MH but no effect on 24-h urinary 3-MH excretion. Consuming a previously determined optimal daily protein intake of 1.83 g kg-1 day-1 during endurance training maintains fasted plasma free AA and may attenuate myofibrillar protein catabolism, although this latter effect was not detected in 24-h urinary excretion. The maintenance of the metabolically active free plasma AA pool may support greater recovery from exercise and contribute to the previously determined greater whole-body net protein balance in this athletic population. TRN: NCT02801344 (June 15, 2016).
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S2C9, Canada
| | - Hiroyuki Kato
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S2C9, Canada
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S2C9, Canada
| | - Katsuya Suzuki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S2C9, Canada.
| |
Collapse
|
10
|
Shabkhizan R, Haiaty S, Moslehian MS, Bazmani A, Sadeghsoltani F, Saghaei Bagheri H, Rahbarghazi R, Sakhinia E. The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv Nutr 2023; 14:1211-1225. [PMID: 37527766 PMCID: PMC10509423 DOI: 10.1016/j.advnut.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Each cell is equipped with a conserved housekeeping mechanism, known as autophagy, to recycle exhausted materials and dispose of injured organelles via lysosomal degradation. Autophagy is an early-stage cellular response to stress stimuli in both physiological and pathological situations. It is thought that the promotion of autophagy flux prevents host cells from subsequent injuries by removing damaged organelles and misfolded proteins. As a correlate, the modulation of autophagy is suggested as a therapeutic approach in diverse pathological conditions. Accumulated evidence suggests that intermittent fasting or calorie restriction can lead to the induction of adaptive autophagy and increase longevity of eukaryotic cells. However, prolonged calorie restriction with excessive autophagy response is harmful and can stimulate a type II autophagic cell death. Despite the existence of a close relationship between calorie deprivation and autophagic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible effects of prolonged and short-term calorie restriction on autophagic response and cell homeostasis.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Reczkowicz J, Kortas J, Juhas U, Zychowska M, Borkowska A, Pilis K, Ziemann E, Sobol Z, Antosiewicz J. Eight-Day Fast and a Single Bout of Exercise: The Effect on Serum Methylarginines and Amino Acids in Men. Nutrients 2023; 15:2981. [PMID: 37447307 PMCID: PMC10346826 DOI: 10.3390/nu15132981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Changes in serum concentration of methylarginines and amino acids after exercise are well documented, whereas the effects of exercise applied together with fasting are still debated and not thoroughly studied. Thus, we hypothesised that alterations in methylarginines such as ADMA, SDMA and L-NMMA might be responsible for decreased exercise performance after 8 days of fasting. Additionally, we propose that conditions in which the human body is exposed to prolonged fasting for more than a week elicit a distinctly different response to exercise than after overnight fasting. A group of 10 healthy men with previous fasting experience participated in the study. The exercise test was performed until exhaustion with a gradually increasing intensity before and after the 8-day fast. Blood samples were collected before and immediately after exercise. ADMA, SDMA, L-NMMA, dimethylamine and amino acids were analysed in serum samples by ID-LC-MS/MS. SDMA, L-NMMA and dimethylamine significantly decreased after 8 days of fasting, whereas ADMA did not change. BCAA, Phe, alanine and some other amino acids increased after fasting. Exercise-induced changes in amino acids were distinct after an 8-day fast compared to overnight fasting. A decrease in physical performance accompanied all of these alterations. In conclusion, our data indicate that neither methyl-arginine changes nor the Trp/BCAA ratio can explain exercise-induced fatigue after fasting. However, the observed decrease in hArg concentration suggests the limited synthesis of creatine, possibly contributing to reduced physical performance.
Collapse
Affiliation(s)
- Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.R.); (U.J.); (A.B.)
| | - Jakub Kortas
- Department of Health and Life Sciences, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Ulana Juhas
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.R.); (U.J.); (A.B.)
| | - Malgorzata Zychowska
- Department of Biological Foundation of Physical Culture, Faculty of Health Science and Physical Culture, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland;
| | - Andzelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.R.); (U.J.); (A.B.)
| | - Karol Pilis
- Department of Health Sciences, Jan Długosz University in Czestochowa, 42-200 Czestochowa, Poland;
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Zuzanna Sobol
- Masdiag Sp. z o.o., 33 Stefana Żeromskiego St., 01-882 Warsaw, Poland;
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, 80-210 Gdansk, Poland; (J.R.); (U.J.); (A.B.)
| |
Collapse
|
12
|
Henderson TD, Choi J, Leonard SW, Head B, Tanguay RL, Barton CL, Traber MG. Chronic Vitamin E Deficiency Dysregulates Purine, Phospholipid, and Amino Acid Metabolism in Aging Zebrafish Skeletal Muscle. Antioxidants (Basel) 2023; 12:1160. [PMID: 37371890 PMCID: PMC10294951 DOI: 10.3390/antiox12061160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Muscle wasting occurs with aging and may be a result of oxidative stress damage and potentially inadequate protection by lipophilic antioxidants, such as vitamin E. Previous studies have shown muscular abnormalities and behavioral defects in vitamin E-deficient adult zebrafish. To test the hypothesis that there is an interaction between muscle degeneration caused by aging and oxidative damage caused by vitamin E deficiency, we evaluated long-term vitamin E deficiency in the skeletal muscle of aging zebrafish using metabolomics. Zebrafish (55 days old) were fed E+ and E- diets for 12 or 18 months. Then, skeletal muscle samples were analyzed using UPLC-MS/MS. Data were analyzed to highlight metabolite and pathway changes seen with either aging or vitamin E status or both. We found that aging altered purines, various amino acids, and DHA-containing phospholipids. Vitamin E deficiency at 18 months was associated with changes in amino acid metabolism, specifically tryptophan pathways, systemic changes in the regulation of purine metabolism, and DHA-containing phospholipids. In sum, while both aging and induced vitamin E deficiency did have some overlap in altered and potentially dysregulated metabolic pathways, each factor also presented unique alterations, which require further study with more confirmatory approaches.
Collapse
Affiliation(s)
- Trent D. Henderson
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Scott W. Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.C.); (S.W.L.); (B.H.)
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Carrie L. Barton
- Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; (R.L.T.)
| | - Maret G. Traber
- Linus Pauling Institute, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
13
|
Serum Metabolites Associated with Muscle Hypertrophy after 8 Weeks of High- and Low-Load Resistance Training. Metabolites 2023; 13:metabo13030335. [PMID: 36984775 PMCID: PMC10058868 DOI: 10.3390/metabo13030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
The mechanisms responsible for the similar muscle growth attained with high- and low-load resistance training (RT) have not yet been fully elucidated. One mechanism is related to the mechanical stimulus and the level of motor unit recruitment; another mechanism is related to the metabolic response. We investigated the electromyographic signal amplitude (sEMG) and the general metabolic response to high-load RT (HL) and low-load resistance training (LL). We measured muscle thickness by ultrasound, sEMG amplitude by electromyography, and analysis of metabolites expressed through metabolomics. No differences were observed between the HL and LL groups for metabolic response and muscle thickness. A greater amplitude of sEMG was observed in the HL group. In addition, a correlation was observed between changes in muscle thickness of the vastus lateralis muscle in the HL group and levels of the metabolites carnitine, creatine, 3-hydroxyisovalerate, phenylalanine, asparagine, creatine phosphate, and methionine. In the LL group, a correlation was observed between changes in muscle thickness of the vastus lateralis muscle and levels of the metabolites acetoacetate, creatine phosphate, and oxypurinol. These correlations seem to be related to the characteristics of activated muscle fibers, the metabolic demand of the training protocols used, and the process of protein synthesis.
Collapse
|
14
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Does Timing Matter? A Narrative Review of Intermittent Fasting Variants and Their Effects on Bodyweight and Body Composition. Nutrients 2022; 14:nu14235022. [PMID: 36501050 PMCID: PMC9736182 DOI: 10.3390/nu14235022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of fasting recently has been purported to have clinical benefits, particularly as an intervention against obesity and its related pathologies. Although a number of different temporal dietary restriction strategies have been employed in practice, they are generally classified under the umbrella term "intermittent fasting" (IF). IF can be stratified into two main categories: (1) intra-weekly fasting (alternate-day fasting/ADF, twice-weekly fasting/TWF) and (2) intra-daily fasting (early time-restricted eating/eTRE and delayed time-restricted eating/dTRE). A growing body of evidence indicates that IF is a viable alternative to daily caloric restriction (DCR), showing effectiveness as a weight loss intervention. This paper narratively reviews the literature on the effects of various commonly used IF strategies on body weight and body composition when compared to traditional DCR approaches, and draws conclusions for their practical application. A specific focus is provided as to the use of IF in combination with regimented exercise programs and the associated effects on fat mass and lean mass.
Collapse
|
16
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
17
|
Gosselin MRF, Mournetas V, Borczyk M, Verma S, Occhipinti A, Róg J, Bozycki L, Korostynski M, Robson SC, Angione C, Pinset C, Gorecki DC. Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts. eLife 2022; 11:e75521. [PMID: 36164827 PMCID: PMC9514850 DOI: 10.7554/elife.75521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-βgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.
Collapse
Affiliation(s)
- Maxime RF Gosselin
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | | | - Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | - Justyna Róg
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental BiologyWarsawPoland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology PASKrakowPoland
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
- Centre for Enzyme Innovation, University of PortsmouthPortsmouthUnited Kingdom
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside UniversityMiddlesbroughUnited Kingdom
| | | | - Dariusz C Gorecki
- School of Pharmacy and Biomedical Sciences, University of PortsmouthPortsmouthUnited Kingdom
| |
Collapse
|
18
|
Zou H, Huang C, Zhou L, Lu R, Zhang Y, Lin D. NMR-Based Metabolomic Analysis for the Effects of Trimethylamine N-Oxide Treatment on C2C12 Myoblasts under Oxidative Stress. Biomolecules 2022; 12:biom12091288. [PMID: 36139126 PMCID: PMC9496509 DOI: 10.3390/biom12091288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) has received increased attention due to its close relationship with cardiovascular disease and type 2 diabetes. In previous studies, TMAO has shown both harmful and beneficial effects on various tissues, but the underlying molecular mechanisms remain to be clarified. Here, we explored the effects of TMAO treatment on H2O2-impaired C2C12 myoblasts, analyzed metabolic changes and identified significantly altered metabolic pathways through nuclear magnetic resonance-based (NMR-based) metabolomic profiling. The results exhibit that TMAO treatment partly alleviated the H2O2-induced oxidative stress damage of cells and protected C2C12 myoblasts by improving cell viability, increasing cellular total superoxide dismutase capacity, improving the protein expression of catalase, and reducing the level of malondialdehyde. We further showed that H2O2 treatment decreased levels of branched-chain amino acids (isoleucine, leucine and valine) and several amino acids including alanine, glycine, threonine, phenylalanine and histidine, and increased the level of phosphocholine related to cell membrane structure, while the TMAO treatment partially reversed the changing trends of these metabolite levels by improving the integrity of the cell membranes. This study indicates that the TMAO treatment may be a promising strategy to alleviate oxidative stress damage in skeletal muscle.
Collapse
Affiliation(s)
- Hong Zou
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Lin Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education and Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| |
Collapse
|
19
|
Turknett J, Wood TR. Demand Coupling Drives Neurodegeneration: A Model of Age-Related Cognitive Decline and Dementia. Cells 2022; 11:2789. [PMID: 36139364 PMCID: PMC9496827 DOI: 10.3390/cells11182789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
The societal burden of Alzheimer's Disease (AD) and other major forms of dementia continues to grow, and multiple pharmacological agents directed towards modifying the pathological "hallmarks" of AD have yielded disappointing results. Though efforts continue towards broadening and deepening our knowledge and understanding of the mechanistic and neuropathological underpinnings of AD, our previous failures motivate a re-examination of how we conceptualize AD pathology and progression. In addition to not yielding effective treatments, the phenotypically heterogeneous biological processes that have been the primary area of focus to date have not been adequately shown to be necessary or sufficient to explain the risk and progression of AD. On the other hand, a growing body of evidence indicates that lifestyle and environment represent the ultimate level of causation for AD and age-related cognitive decline. Specifically, the decline in cognitive demands over the lifespan plays a central role in driving the structural and functional deteriorations of the brain. In the absence of adequate cognitive stimulus, physiological demand-function coupling leads to downregulation of growth, repair, and homeostatic processes, resulting in deteriorating brain tissue health, function, and capacity. In this setting, the heterogeneity of associated neuropathological tissue hallmarks then occurs as a consequence of an individual's genetic and environmental background and are best considered downstream markers of the disease process rather than specific targets for direct intervention. In this manuscript we outline the evidence for a demand-driven model of age-related cognitive decline and dementia and why it mandates a holistic approach to dementia treatment and prevention that incorporates the primary upstream role of cognitive demand.
Collapse
Affiliation(s)
- Josh Turknett
- Brainjo Center for Neurology and Cognitive Enhancement, Atlanta, GA 30076, USA
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
20
|
Morales-Scholz MG, Wette SG, Stokie JR, Tepper BT, Swinton C, Hamilton DL, Dwyer KM, Murphy RM, Howlett KF, Shaw CS. Muscle fiber type-specific autophagy responses following an overnight fast and mixed meal ingestion in human skeletal muscle. Am J Physiol Endocrinol Metab 2022; 323:E242-E253. [PMID: 35793481 DOI: 10.1152/ajpendo.00015.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the present study was to investigate the fiber type-specific abundance of autophagy-related proteins after an overnight fast and following ingestion of a mixed meal in human skeletal muscle. Twelve overweight, healthy young male volunteers underwent a 3-h mixed meal tolerance test following an overnight fast. Blood samples were collected in the overnight-fasted state and throughout the 180-min postmeal period. Skeletal muscle biopsies were collected in the fasted state, and at 30 and 90 min after meal ingestion. Protein content of key autophagy markers and upstream signaling responses were measured in whole muscle and pooled single fibers using immunoblotting. In the fasted state, type I fibers displayed lower LC3B-I but higher LC3B-II abundance and higher LC3B-II/LC3B-I ratio compared with type II fibers (P < 0.05). However, there were no fiber type differences in p62/SQSTM1, unc-51 like autophagy activating kinase (ULK1), ATG5, or ATG12 (P > 0.05). Compared with the fasted state, there was a reduction in LC3B-II abundance, indicative of lower autophagosome content, in whole muscle and in both type I and type II fibers following meal ingestion (P < 0.05). This reduction in autophagosome content occurred alongside similar increases in p-AktS473 and p-mTORS2448 in both type I and type II muscle fibers (P < 0.05). In human skeletal muscle, type I fibers have a greater autophagosome content than type II fibers in the overnight-fasted state despite comparable abundance of other key upstream autophagy proteins. Autophagy is rapidly inhibited in both fiber types following the ingestion of a mixed meal.NEW & NOTEWORTHY This study examined the fiber type-specific content of key autophagy proteins in human muscle. We showed that markers of autophagosome content are higher in type I fibers in the overnight-fasted state, whereas autophagy is rapidly inhibited in both type I and type II fibers after the ingestion of a mixed meal.
Collapse
Affiliation(s)
- María G Morales-Scholz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - Stefan G Wette
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Australia
| | - Jayden R Stokie
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bianca T Tepper
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Courtney Swinton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - David L Hamilton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Karen M Dwyer
- School of Medicine, Deakin University, Geelong, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
21
|
Cangelosi AL, Puszynska AM, Roberts JM, Armani A, Nguyen TP, Spinelli JB, Kunchok T, Wang B, Chan SH, Lewis CA, Comb WC, Bell GW, Helman A, Sabatini DM. Zonated leucine sensing by Sestrin-mTORC1 in the liver controls the response to dietary leucine. Science 2022; 377:47-56. [PMID: 35771919 PMCID: PMC10049859 DOI: 10.1126/science.abi9547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.
Collapse
Affiliation(s)
- Andrew L. Cangelosi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M. Puszynska
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin M. Roberts
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Armani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Thao P. Nguyen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jessica B. Spinelli
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brianna Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - William C. Comb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Aharon Helman
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - David M. Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition 2022; 103-104:111686. [DOI: 10.1016/j.nut.2022.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
|
23
|
Stratton MT, Albracht-Schulte K, Harty PS, Siedler MR, Rodriguez C, Tinsley GM. Physiological responses to acute fasting: implications for intermittent fasting programs. Nutr Rev 2022; 80:439-452. [PMID: 35142356 DOI: 10.1093/nutrit/nuab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermittent fasting (IF) is a dietary strategy that involves alternating periods of abstention from calorie consumption with periods of ad libitum food intake. There is significant interest in the body of literature describing longitudinal adaptations to IF. Less attention has been given to the acute physiological responses that occur during the fasting durations that are commonly employed by IF practitioners. Thus, the purpose of this review was to examine the physiological responses - including alterations in substrate metabolism, systemic hormones, and autophagy - that occur throughout an acute fast. Literature searches were performed to locate relevant research describing physiological responses to acute fasting and short-term starvation. A single fast demonstrated the ability to alter glucose and lipid metabolism within the initial 24 hours, but variations in protein metabolism appeared to be minimal within this time frame. The ability of an acute fast to elicit significant increases in autophagy is still unknown. The information summarized in this review can be used to help contextualize existing research and better inform development of future IF interventions.
Collapse
Affiliation(s)
- Matthew T Stratton
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Kembra Albracht-Schulte
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Patrick S Harty
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Madelin R Siedler
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Christian Rodriguez
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Grant M Tinsley
- Energy Balance and Body Composition Laboratory; Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
24
|
López-Seoane J, Jiménez SL, Del Coso J, Pareja-Galeano H. Muscle hypertrophy induced by N-3 PUFA supplementation in absence of exercise: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:6536-6546. [PMID: 35112608 DOI: 10.1080/10408398.2022.2034734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of omega-3 polyunsaturated fatty acids (n-3 PUFA) has been studied in physically active population, however, there is a lack of information about the effects of n-3 PUFA supplementation on people with a sedentary behavior or who are undergoing a period of limb immobilization. This systematic review aims to examine the effect of n-3 PUFA on lean mass and muscle protein synthesis (MPS) in absence of physical training. The PubMed, Web of Science, MEDLINE, CINAHL and SPORTDiscus databases were searched following the PRISMA guidelines. Only randomized controlled trials, at least single blind, performed with sedentary humans were considered. Seven studies on a total of 192 individuals were included. Five of the six studies which measured changes in skeletal muscle volume and mass showed higher values with n-3 PUFA. Only two studies measured skeletal muscle protein expression. Both showed beneficial effects of supplementation in muscle protein fractional synthesis rate (FSR), while no effect of n-3 PUFA was observed for mechanistic target of rapamycin (mTOR) and kinase protein (Akt). In addition, ribosomal protein S6 kinase 1 (p70s6k) improved with n-3 PUFA only in one study. Finally, the two studies which measured the skeletal muscle gene expression observed no effect of supplementation.
Collapse
Affiliation(s)
- Jaime López-Seoane
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sports Sciences-INEF, Universidad Politécnica De Madrid, Madrid, Spain
- Red Española de Investigación en Ejercicio Físico y Salud (EXERNET), Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bonson D, Hengist A, Smith R, Creighton J, Clayton D, Varley I, Karagounis LG, Wilhelmsen A, Tsintzas K, Reeves S, Walhin JP, Gonzalez JT, Thompson D, Betts JA. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021; 13:13/598/eabd8034. [PMID: 34135111 DOI: 10.1126/scitranslmed.abd8034] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/22/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (-1.91 ± 0.99 kilograms) almost entirely due to fat loss (-1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (-1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (-0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (-0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (-0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health.
Collapse
Affiliation(s)
- Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Harry Alex Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Enhad Chowdhury
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Yung-Chih Chen
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK.,Department of Physical Education, National Taiwan Normal University, Taipei City 106, Taiwan
| | - Harriet Carroll
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK.,Cardiovascular Research-Hypertension, Clinical Research Centre, Lund University, Malmö 221 00, Sweden
| | - Drusus Johnson-Bonson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Aaron Hengist
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Rowan Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Jade Creighton
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK.,School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - David Clayton
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Ian Varley
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Leonidas Georgios Karagounis
- Nestlé Health Science, Translation Research, Avenue Nestlé 55, CH-1800 Vevey, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sue Reeves
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Javier Thomas Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK
| | - James Alexander Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
27
|
The effects of glucagon and the target of rapamycin (TOR) on skeletal muscle protein synthesis and age-dependent sarcopenia in humans. Clin Nutr ESPEN 2021; 44:15-25. [PMID: 34330459 DOI: 10.1016/j.clnesp.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Human target of rapamycin (TOR) is a kinase that stimulates protein synthesis in the skeletal muscle in response to amino acids and physical activity. METHODS A comprehensive literature search was conducted on the PubMed database from its inception up to May 2021 to retrieve information on the effects of TOR and glucagon on muscle function. Articles written in English regarding human subjects were included. RESULTS l-leucine activates TOR to initiate protein synthesis in the skeletal muscle. Glucagon has a crucial role suppressing skeletal muscle protein synthesis by increasing l-leucine oxidation and the irreversible loss of this amino acid. Glucagon-induced l-leucine oxidation suppresses TOR and attenuates the ability of skeletal muscle to synthesize proteins. Conditions associated with increased glucagon secretion typically feature reduced ability to synthesize proteins in the skeletal muscle that may evolve into sarcopenia. Animal protein ingestion, unlike vegetable protein, stimulates glucagon secretion. High intake of animal protein increases l-leucine oxidation and promotes the use of amino acids as fuel. Sarcopenia and arterial stiffness characteristically occur together in conditions featuring insulin resistance, such as aging. Insulin resistance mediates the relationship between aging and sarcopenia and arterial stiffness. The loss of skeletal muscle fibers that characterizes sarcopenia is followed by collagen and lipid accumulation. Likewise, insulin resistance is associated with arterial stiffness and intima-media thickening due to adaptive accretion of collagen and lipids in the arterial wall. CONCLUSIONS Human TOR participates in the pathogenesis of sarcopenia and arterial stiffness, although its effects remain to be fully elucidated.
Collapse
|
28
|
Kotani T, Takegaki J, Tamura Y, Kouzaki K, Nakazato K, Ishii N. The effect of repeated bouts of electrical stimulation-induced muscle contractions on proteolytic signaling in rat skeletal muscle. Physiol Rep 2021; 9:e14842. [PMID: 33991444 PMCID: PMC8123562 DOI: 10.14814/phy2.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in muscle protein synthesis and repeated bouts of resistance exercise (RE) blunt mTORC1 activation. However, the changes in the proteolytic signaling when recurrent RE bouts attenuate mTORC1 activation are unclear. Using a RE model of electrically stimulated rat skeletal muscle, this study aimed to clarify the effect of repeated RE bouts on acute proteolytic signaling, particularly the calpain, autophagy‐lysosome, and ubiquitin‐proteasome pathway. p70S6K and rpS6 phosphorylation, indicators of mTORC1 activity, were attenuated by repeated RE bouts. Calpain 3 protein was decreased at 6 h post‐RE in all exercised groups regardless of the bout number. Microtubule‐associated protein 1 light chain 3 beta‐II, an indicator of autophagosome formation, was increased at 3 h and repeated RE bouts increased at 6 h, post‐RE. Ubiquitinated proteins were increased following RE, but these increases were independent of the number of RE bouts. These results suggest that the magnitude of autophagosome formation was increased following RE when mTORC1 activity was attenuated with repeated bouts of RE.
Collapse
Affiliation(s)
- Takaya Kotani
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Junya Takegaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021; 275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
AIMS The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand.
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
30
|
Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes. Nutrition 2020; 77:110794. [DOI: 10.1016/j.nut.2020.110794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
|
31
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
32
|
Ng GYQ, Kang SW, Kim J, Alli-Shaik A, Baik SH, Jo DG, Hande MP, Sobey CG, Gunaratne J, Fann DYW, Arumugam TV. Genome-Wide Transcriptome Analysis Reveals Intermittent Fasting-Induced Metabolic Rewiring in the Liver. Dose Response 2019; 17:1559325819876780. [PMID: 31598117 PMCID: PMC6764061 DOI: 10.1177/1559325819876780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Scope: Intermittent fasting (IF) has been extensively reported to promote improved energy homeostasis and metabolic switching. While IF may be a plausible strategy to ameliorate the epidemiological burden of disease in many societies, our understanding of the underlying molecular mechanisms behind such effects is still lacking. The present study has sought to investigate the relationship between IF and changes in gene expression. We focused on the liver, which is highly sensitive to metabolic changes due to energy status. Mice were randomly assigned to ad libitum feeding or IF for 16 hours per day or for 24 hours on alternate days for 3 months, after which genome-wide transcriptome analysis of the liver was performed using RNA sequencing. Our findings revealed that IF caused robust transcriptomic changes in the liver that led to a complex array of metabolic changes. We also observed that the IF regimen produced distinct profiles of transcriptomic changes, highlighting the significance of temporally different periods of energy restriction. Our results suggest that IF can regulate metabolism via transcriptomic mechanisms and provide insight into how genetic interactions within the liver might lead to the numerous metabolic benefits of IF.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sung-Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher G Sobey
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Kuo WK, Liu YC, Chu CM, Hua CC, Huang CY, Liu MH, Wang CH. Amino Acid-Based Metabolic Indexes Identify Patients With Chronic Obstructive Pulmonary Disease And Further Discriminates Patients In Advanced BODE Stages. Int J Chron Obstruct Pulmon Dis 2019; 14:2257-2266. [PMID: 31631995 PMCID: PMC6778323 DOI: 10.2147/copd.s220557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 01/13/2023] Open
Abstract
Background The BODE index is a multidimensional grading system for predicting the prognoses of patients with chronic obstructive pulmonary disease (COPD). This study investigated whether an amino acids-based metabolic profile developed for heart failure patients (including histidine, ornithine, phenylalanine, and leucine) could identify COPD patients and further discriminates COPD patients in advanced BODE stages. Methods Ultra-performance liquid chromatography was performed on 119 participants, including 75 COPD patients at different BODE stages and 44 normal controls. Albumin, pre-albumin, transferrin, high sensitivity C-reactive protein, and hand grip strength were also measured. Receiver operating characteristic curves and area under curves were used for estimation. Results The BODE points in our patients were 3.29 [95% confidence interval (CI) = 2.74-3.85]. Compared to normal controls, COPD patients had lower leucine but higher ornithine levels. A COPD score, developed based on leucine and ornithine, significantly discriminated COPD from normal controls [odds ratio (OR) = 2.71, 95% CI = 1.83-4.04, p <0.001]. A COPD score of ≥ 3.00 had an OR of 15.58 (95% CI = 5.96-40.73, p <0.001). In COPD patients from BODE 1 to BODE 4, the levels of histidine, ornithine and phenylalanine increased significantly. In multivariable analysis, histidine and phenylalanine were independently able to distinguish BODE stages 3 and 4 from BODE 1 and were adopted to develop a metabolic score. Metabolic scores identified patients at BODE 3 and 4 (OR = 2.74, 95% CI =1.41-5.29, p = 0.003) better than hand grip strength, high sensitive C-reactive protein, albumin, pre-albumin, and transferrin value. A metabolic score of ≥9.53 significantly discriminated BODE 3 and 4 from BODE 1 and 2 (OR = 8.56, 95% CI = 2.77-26.39, p <0.001). Conclusion Amino acid-based COPD score and metabolic score discriminate COPD patients from normal controls, and identify patients in advanced stages of COPD.
Collapse
Affiliation(s)
- Wei-Ke Kuo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Chih Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chien-Ming Chu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chung-Ching Hua
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chih-Yu Huang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Min-Hui Liu
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chao-Hung Wang
- Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
34
|
Møller AB, Vendelbo MH, Schjerling P, Couppé C, Møller N, Kjær M, Hansen M, Jessen N. Immobilization Decreases FOXO3a Phosphorylation and Increases Autophagy-Related Gene and Protein Expression in Human Skeletal Muscle. Front Physiol 2019; 10:736. [PMID: 31258486 PMCID: PMC6587099 DOI: 10.3389/fphys.2019.00736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/27/2019] [Indexed: 01/07/2023] Open
Abstract
Immobilization of the lower limbs promotes a catabolic state that reduces muscle mass, whereas physical training promotes an anabolic state that increases muscle mass. Understanding the molecular mechanisms underlying this is of clinical interest, as loss of muscle mass is a major complication to critical illness in humans. To determine the molecular regulation of protein synthesis and degradation during muscle loss and hypertrophy, we examined skeletal muscle biopsies from healthy human subjects after 2 weeks unilateral immobilization of a lower limb and during 6 weeks of physical rehabilitation. We have previously shown that cross-sectional area of the knee muscle-extensors decreased by ∼10% during immobilization and was completely restored during rehabilitation. Here we provide novel data to suggest that autophagy is an important underlying mechanism involved in regulation of muscle mass. Protein expression of MuRF1 and ATROGIN-1 did not change during the study, indicating that the recruitment of substrates to the proteasomes was unaltered. Phosphorylation of mTORat Ser2448 did not change during the study, and neither did phosphorylation of the mTORC1 substrates 4EBP1 Thr37/46 and p70S6K Thr389, suggesting that this pathway does not suppress protein synthesis during muscle wasting. Protein levels of p62 and ULK1 increased during immobilization and returned to baseline levels during rehabilitation. Same pattern was observed for FOXO3a phosphorylation at Ser318/321, suggesting transcriptional activation during immobilization and inactivation during rehabilitation. To investigate this further, we analyzed mRNA expression of seven autophagy-related genes controlled by FOXO3a. Five of these (p62, LC3B, BECLIN-1, ATG12, and BNIP3) increased during immobilization and returned to baseline during rehabilitation. In conclusion, immobilization of a lower limb increases autophagy-related gene and protein expression in human skeletal muscle in a pattern that mirrors FOXO3a phosphorylation. These findings could imply that FOXO3a dependent transcriptional regulation of autophagy is involved in the regulation of muscle mass in humans.
Collapse
Affiliation(s)
- Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, Institute of Sports Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Couppé
- Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, Institute of Sports Medicine, University of Copenhagen, Copenhagen, Denmark.,Musculoskeletal Rehabilitation Research Unit, Department of Physical Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Niels Møller
- Medical Research Laboratory, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Kjær
- Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, Institute of Sports Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Center for Healthy Aging, Faculty of Health and Medical Sciences, Institute of Sports Medicine, University of Copenhagen, Copenhagen, Denmark.,Section of Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Abstract
Obesity remains a major public health concern and intermittent fasting is a popular strategy for weight loss, which may present independent health benefits. However, the number of diet books advising how fasting can be incorporated into our daily lives is several orders of magnitude greater than the number of trials examining whether fasting should be encouraged at all. This review will consider the state of current understanding regarding various forms of intermittent fasting (e.g. 5:2, time-restricted feeding and alternate-day fasting). The efficacy of these temporally defined approaches appears broadly equivalent to that of standard daily energy restriction, although many of these models of intermittent fasting do not involve fed-fasted cycles every other 24 h sleep-wake cycle and/or permit some limited energy intake outside of prescribed feeding times. Accordingly, the intervention period therefore may not regularly alternate, may not span all or even most of any given day, and may not even involve absolute fasting. This is important because potentially advantageous physiological mechanisms may only be initiated if a post-absorptive state is sustained by uninterrupted fasting for a more prolonged duration than applied in many trials. Indeed, promising effects on fat mass and insulin sensitivity have been reported when fasting duration is routinely extended beyond sixteen consecutive hours. Further progress will require such models to be tested with appropriate controls to isolate whether any possible health effects of intermittent fasting are primarily attributable to regularly protracted post-absorptive periods, or simply to the net negative energy balance indirectly elicited by any form of dietary restriction.
Collapse
|
36
|
McCormick JJ, King KE, Dokladny K, Mermier CM. Effect of Acute Aerobic Exercise and Rapamycin Treatment on Autophagy in Peripheral Blood Mononuclear Cells of Adults With Prediabetes. Can J Diabetes 2019; 43:457-463. [PMID: 31213408 DOI: 10.1016/j.jcjd.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Recently, a malfunction of the autophagic pathway has been implicated with impaired glucose metabolism and progression from prediabetes to type 2 diabetes. The aims of this study were to investigate the effect of exercise and rapamycin (RAPA) treatment on the autophagic process in peripheral blood mononuclear cells (PBMCs) from people with prediabetes compared with control subjects. METHODS Two groups matched for age and sex served as participants and included 6 participants with prediabetes (42.4±11.7 years) and 6 control subjects (44.4±11.9 years). Participants exercised at 50% of maximal oxygen consumption for 60 min with 5 min of rest interspersed every 20 min. PBMCs were isolated pre-exercise, immediately postexercise and 4 h after exercise recovery. Additional PBMCs were incubated for 24 h and either exposed to bafilomycin, rapamycin with bafilomycin (RAPA), or no treatment with vehicle (dimethyl sulfoxide). Proteins and mRNA were analyzed via western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS Exercise increased autophagy immediately postexercise and recovered 4 h after exercise in control participants but not in participants with prediabetes. Autophagy increased in PBMCs from people with prediabetes and control participants after RAPA treatment; however, a significantly impaired autophagic response was observed in people with prediabetes when compared with control subjects. CONCLUSIONS Our results indicate an impairment in autophagic flux in PBMCs from people with prediabetes when compared with control subjects in response to both exercise and RAPA treatment. Future methods of autophagic upregulation should be investigated to spare malfunctions in autophagy in people with prediabetes.
Collapse
Affiliation(s)
- James J McCormick
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States.
| | - Kelli E King
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
37
|
Møller AB, Lønbro S, Farup J, Voss TS, Rittig N, Wang J, Højris I, Mikkelsen UR, Jessen N. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol 2019; 145:1449-1460. [PMID: 30968255 DOI: 10.1007/s00432-019-02911-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing body of evidence suggests that exercise training has beneficial effects in cancer patients. The aim of the present study was to investigate the molecular basis underlying these beneficial effects in skeletal muscle from cancer patients. METHODS We investigated expression of selected proteins involved in cellular processes known to orchestrate adaptation to exercise training by western blot. Skeletal muscle biopsies were sampled from ten cancer patients before and after 4-7 weeks of ongoing chemotherapy, and subsequently after 10 weeks of continued chemotherapy in combination with exercise training. Biopsies from ten healthy matched subjects served as reference. RESULTS The expression of the insulin-regulated glucose transporter, GLUT4, increased during chemotherapy and continued to increase during exercise training. A similar trend was observed for ACC, a key enzyme in the biosynthesis and oxidation of fatty acids, but we did not observe any changes in other regulators of substrate metabolism (AMPK and PDH) or mitochondrial proteins (Cyt-C, COX-IV, SDHA, and VDAC). Markers of proteasomal proteolysis (MURF1 and ATROGIN-1) decreased during chemotherapy, but did not change further during chemotherapy combined with exercise training. A similar pattern was observed for autophagy-related proteins such as ATG5, p62, and pULK1 Ser757, but not ULK1 and LC3BII/LC3BI. Phosphorylation of FOXO3a at Ser318/321 did not change during chemotherapy, but decreased during exercise training. This could suggest that FOXO3a-mediated transcriptional regulation of MURF1 and ATROGIN-1 serves as a mechanism by which exercise training maintains proteolytic systems in skeletal muscle in cancer patients. Phosphorylation of proteins that regulate protein synthesis (mTOR at Ser2448 and 4EBP1 at Thr37/46) increased during chemotherapy and leveled off during exercise training. Finally, chemotherapy tended to increase the number of satellite cells in type 1 fibers, without any further change during chemotherapy and exercise training. Conversely, the number of satellite cells in type 2 fibers did not change during chemotherapy, but increased during chemotherapy combined with exercise training. CONCLUSIONS Molecular signaling cascades involved in exercise training are disturbed during cancer and chemotherapy, and exercise training may prevent further disruption of these pathways. TRIAL REGISTRATION The study was approved by the local Scientific Ethics Committee of the Central Denmark Region (Project ID: M-2014-15-14; date of approval: 01/27/2014) and the Danish Data Protection Agency (case number 2007-58-0010; date of approval: 01/28/2015). The trial was registered at http//www.clinicaltrials.gov (registration number: NCT02192216; date of registration 07/17-2014).
Collapse
Affiliation(s)
- Andreas Buch Møller
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, HEALTH, Aarhus University Hospital, Palle Juul-Jensen Blvd., 8200, Aarhus N, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lønbro
- Section of Sports Science, Department of Public Health, HEALTH, Aarhus University, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jean Farup
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, HEALTH, Aarhus University Hospital, Palle Juul-Jensen Blvd., 8200, Aarhus N, Denmark
| | - Thomas Schmidt Voss
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, HEALTH, Aarhus University, Aarhus, Denmark
| | - Jakob Wang
- Section of Sports Science, Department of Public Health, HEALTH, Aarhus University, Aarhus, Denmark
| | - Inger Højris
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Ramer Mikkelsen
- Section of Sports Science, Department of Public Health, HEALTH, Aarhus University, Aarhus, Denmark.,Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Institute of Sports Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, HEALTH, Aarhus University Hospital, Palle Juul-Jensen Blvd., 8200, Aarhus N, Denmark. .,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
38
|
β-Hydroxy β-methylbutyrate free acid alters cortisol responses, but not myofibrillar proteolysis, during a 24-h fast. Br J Nutr 2019; 119:517-526. [PMID: 29508695 DOI: 10.1017/s0007114517003907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was a randomised, double-blind, placebo-controlled cross-over trial examining the effects of β-hydroxy β-methylbutyrate free acid (HMB-FA) supplementation on muscle protein breakdown, cortisol, testosterone and resting energy expenditure (REE) during acute fasting. Conditions consisted of supplementation with 3 g/d HMB-FA or placebo during a 3-d meat-free diet followed by a 24-h fast. Urine was collected before and during the 24-h fast for analysis of 3-methylhistidine:creatinine ratio (3MH:CR). Salivary cortisol, testosterone, their ratio (T:C), and the cortisol awakening response were assessed. ANOVA was used to analyse all dependent variables, and linear mixed models were used to confirm the absence of carryover effects. Eleven participants (six females, five males) completed the study. Urinary HMB concentrations confirmed compliance with supplementation. 3MH:CR was unaffected by fasting and supplementation, but the cortisol awakening response differed between conditions. In both conditions, cortisol increased from awakening to 30 min post-awakening (P=0·01). Cortisol was reduced from 30 to 45 min post-awakening with HMB-FA (-32 %, d=-1·0, P=0·04), but not placebo (PL) (-6 %, d=-0·2, P=0·14). In males, T:C increased from 0 to 24 h of fasting with HMB-FA (+162 %, d=3·0, P=0·001), but not placebo (+13 %, d=0·4, P=0·60), due to reductions in cortisol. REE was higher at 24 h of fasting than 16 h of fasting independent of supplementation (+4·0 %, d=0·3, P=0·04). In conclusion, HMB-FA may affect cortisol responses, but not myofibrillar proteolysis, during acute 24-h fasting.
Collapse
|
39
|
Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev 2018; 47:183-197. [PMID: 30172870 DOI: 10.1016/j.arr.2018.08.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal degradation process and protective housekeeping mechanism to eliminate damaged organelles, long-lived misfolded proteins and invading pathogens. Autophagy functions to recycle building blocks and energy for cellular renovation and homeostasis, allowing cells to adapt to stress. Modulation of autophagy is a potential therapeutic target for a diverse range of diseases, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. Traditionally, food deprivation and calorie restriction (CR) have been considered to slow aging and increase longevity. Since autophagy inhibition attenuates the anti-aging effects of CR, it has been proposed that autophagy plays a substantive role in CR-mediated longevity. Among several stress stimuli inducers of autophagy, fasting and CR are the most potent non-genetic autophagy stimulators, and lack the undesirable side effects associated with alternative interventions. Despite the importance of autophagy, the evidence connecting fasting or CR with autophagy promotion has not previously been reviewed. Therefore, our objective was to weigh the evidence relating the effect of CR or fasting on autophagy promotion. We conclude that both fasting and CR have a role in the upregulation of autophagy, the evidence overwhelmingly suggesting that autophagy is induced in a wide variety of tissues and organs in response to food deprivation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
40
|
Dethlefsen MM, Bertholdt L, Gudiksen A, Stankiewicz T, Bangsbo J, van Hall G, Plomgaard P, Pilegaard H. Training state and skeletal muscle autophagy in response to 36 h of fasting. J Appl Physiol (1985) 2018; 125:1609-1619. [DOI: 10.1152/japplphysiol.01146.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The present study aimed at investigating fasting-induced responses in regulators and markers of autophagy in vastus lateralis muscle from untrained and trained human subjects. Untrained and trained subjects (based on maximum oxygen uptake, muscle citrate synthase activity, and oxidative phosphorylation protein level) fasted for 36 h with vastus lateralis muscle biopsies obtained at 2, 12, 24, and 36 h after a standardized meal. Fasting reduced ( P < 0.05) skeletal muscle microtubule-associated protein-1A/1B light chain 3 (LC3)I, LC3II, and adaptor protein sequestosome 1/p62 protein content in untrained subjects only. Moreover, skeletal muscle RAC-alpha serine/threonine-protein kinase (AKT)Thr308, AMP-activated protein kinase (AMPK)Thr172, and Unc-51-like autophagy-activating kinase-1 (ULK1)Ser555 phosphorylation state, as well as Bcl-2-interacting coiled-coil protein-1 (Beclin1) and ULK1Ser757 phosphorylation, was lower ( P < 0.05) in trained than untrained subjects during fasting. In addition, the plasma concentrations of several amino acids were higher ( P < 0.05) in trained than untrained subjects, and the plasma concentration profile of several amino acids was different in untrained and trained subjects during fasting. Taken together, these findings suggest that 36-h fasting has effects on some mediators of autophagy in untrained human skeletal muscle and that training state influences the effect of fasting on autophagy signaling and on mediators of autophagy in skeletal muscle. NEW & NOTEWORTHY This study showed that skeletal muscle autophagy was only modestly affected in humans by 36 h of fasting. Hence, 36-h fasting has effects on some mediators of autophagy in untrained human skeletal muscle, and training state influences the effect of fasting on autophagy signaling and on mediators of autophagy in skeletal muscle.
Collapse
Affiliation(s)
- Maja Munk Dethlefsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Stankiewicz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Centre of Inflammation and Metabolism, and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One 2018; 13:e0203630. [PMID: 30212583 PMCID: PMC6136752 DOI: 10.1371/journal.pone.0203630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/23/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypoxemia in humans may occur during high altitude mountaineering and in patients suffering from ventilatory insufficiencies such as cardiovascular- or respiratory disease including Chronic Obstructive Pulmonary Disease (COPD). In these conditions, hypoxemia has been correlated to reduced appetite and decreased food intake. Since hypoxemia and reduced food intake intersect in various physiological and pathological conditions and both induce loss of muscle mass, we investigated whether hypoxia aggravates fasting-induced skeletal muscle atrophy and evaluated underlying protein turnover signaling. METHODS Mice were kept under hypoxic (8% oxygen) or normoxic conditions (21% oxygen), or were pair-fed to the hypoxia group for 12 days. Following an additional 24 hours of fasting, muscle weight and protein turnover signaling were assessed in the gastrocnemius muscle by RT-qPCR and Western blotting. RESULTS Loss of gastrocnemius muscle mass in response to fasting in the hypoxic group was increased compared to the normoxic group, but not to the pair-fed normoxic control group. Conversely, the fasting-induced increase in poly-ubiquitin conjugation, and expression of the ubiquitin 26S-proteasome E3 ligases, autophagy-lysosomal degradation-related mRNA transcripts and proteins, and markers of the integrated stress response (ISR), were attenuated in the hypoxia group compared to the pair-fed group. Mammalian target of rapamycin complex 1 (mTORC1) downstream signaling was reduced by fasting under normoxic conditions, but sustained under hypoxic conditions. Activation of AMP-activated protein kinase (AMPK) / tuberous sclerosis complex 2 (TSC2) signaling by fasting was absent, in line with retained mTORC1 activity under hypoxic conditions. Similarly, hypoxia suppressed AMPK-mediated glucocorticoid receptor (GR) signaling following fasting, which corresponded with blunted proteolytic signaling responses. CONCLUSIONS Hypoxia aggravates fasting-induced muscle wasting, and suppresses AMPK and ISR activation. Altered AMPK-mediated regulation of mTORC1 and GR may underlie aberrant protein turnover signaling and affect muscle atrophy responses in hypoxic skeletal muscle.
Collapse
|
42
|
Møller AB, Voss TS, Vendelbo MH, Pedersen SB, Møller N, Jessen N. Insulin inhibits autophagy signaling independent of counter-regulatory hormone levels, but does not affect the effects of exercise. J Appl Physiol (1985) 2018; 125:1204-1209. [PMID: 30070610 DOI: 10.1152/japplphysiol.00490.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute exercise increases autophagic signaling through ULK1 in human skeletal muscle during both anabolic and catabolic conditions. The aim of the present study was to investigate if changes in ULK1 Ser555 phosphorylation during exercise are reflected by changes in phosphorylation of a newly identified ULK1 substrate (ATG14 Ser29), and to elucidate the involvement of circulatory hormones in regulation of autophagy in human skeletal muscle. We show that one hour of cycling exercise increases ATG14 Ser29 phosphorylation during both hyperinsulinemic euglycemic and euinsulinemic euglycemic conditions. This could suggest that counter-regulatory hormones stimulate autophagy in skeletal muscle, as circulating concentrations of these hormones are highly elevated during exercise. Furthermore, ATG14 Ser29 correlated positively with ULK1 phosphorylation, suggesting that ULK1 Ser555 (activating site) phosphorylation reflects ULK1 kinase activity. In a separate series of experiments, we show that insulin stimulates ULK1 phosphorylation at Ser757 (inhibitory site) in both hypoglycemic and euglycemic conditions, suggesting that counter-regulatory hormones (such as epinephrine, norepinephrine, growth hormone and glucagon) have limited effects on autophagy signaling in human skeletal muscle. In conclusion, one hour of cycling exercise increases phosphorylation of ATG14 at Ser29 in a pattern that mirrors ULK1 phosphorylation at Ser555. Moreover, insulin effects on autophagy signaling in human skeletal muscle are independent of hypoglycemic and euglycemic conditions.
Collapse
Affiliation(s)
- Andreas Buch Møller
- Research Laboratory for Biochemical PathologyDepartment of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Moberg M, Hendo G, Jakobsson M, Mattsson CM, Ekblom-Bak E, Flockhart M, Pontén M, Söderlund K, Ekblom B. Increased autophagy signaling but not proteasome activity in human skeletal muscle after prolonged low-intensity exercise with negative energy balance. Physiol Rep 2018; 5. [PMID: 29208687 PMCID: PMC5727276 DOI: 10.14814/phy2.13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Little is known about the molecular regulation of skeletal muscle protein turnover during exercise in field conditions where energy is intake inadequate. Here, 17 male and 7 female soldiers performed an 8 days long field-based military operation. Vastus lateralis muscle biopsies, in which autophagy, the ubiquitin-proteasome system, and the mTORC1 signaling pathway were studied, were collected before and after the operation. The 187 h long operation resulted in a 15% and 29% negative energy balance as well as a 4.1% and 4.6% loss of body mass in women and men, respectively. After the operation protein levels of ULK1 as well as the phosphorylation of ULK1Ser317 and ULK1Ser555 had increased by 11%, 39%, and 13%, respectively, and this was supported by a 17% increased phosphorylation of AMPKThr172 (P < 0.05). The LC3b-I/II ratio was threefold higher after compared to before the operation (P < 0.05), whereas protein levels of p62/SQSTM1 were unchanged. The β1, β2, and β5 activity of the proteasome and protein levels of MAFbx did not change, whereas levels of MuRF-1 were slightly reduced (6%, P < 0.05). Protein levels and phosphorylation status of key components in the mTORC1 signaling pathway remained at basal levels after the operation. Muscle levels of glycogen decreased from 269 ± 12 to 181 ± 9 mmol·kg dry·muscle-1 after the exercise period (P < 0.05). In conclusion, the 8 days of field-based exercise resulted in induction of autophagy without any increase in proteasome activity or protein ubiquitination. Simultaneously, the regulation of protein synthesis through the mTORC1 signaling pathway was maintained.
Collapse
Affiliation(s)
- Marcus Moberg
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gina Hendo
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Madelene Jakobsson
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - C Mikael Mattsson
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Elin Ekblom-Bak
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Mikael Flockhart
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Karin Söderlund
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
44
|
Liu Z, Huang C, Liu Y, Lin D, Zhao Y. NMR-based metabolomic analysis of the effects of alanyl-glutamine supplementation on C2C12 myoblasts injured by energy deprivation. RSC Adv 2018; 8:16114-16125. [PMID: 35542200 PMCID: PMC9080260 DOI: 10.1039/c8ra00819a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
The dipeptide alanyl-glutamine (Ala-Gln) is a well-known parenteral nutritional supplement. The Ala-Gln supplementation is a potential treatment for muscle-related diseases and injuries. However, molecular mechanisms underlying the polyphenic effects of Ala-Gln supplementation remain elusive. Here, we performed NMR-based metabolomic profiling to analyze the effects of Ala-Gln, and the free alanine (Ala) and glutamine (Gln) supplementations on the mouse myoblast cell line C2C12 injured by glucose and glutamine deprivation. All the three supplementations can promote the differentiation ability of the injured C2C12 cells, while only Ala-Gln supplementation can facilitate the proliferation of the injured cells. Ala-Gln supplementation can partially restore the metabolic profile of C2C12 myoblasts disturbed by glucose and glutamine deprivation, and exhibits more significant effects than Ala and Gln supplementations. Our results suggest that Ala-Gln supplementation can promote MyoD1 protein synthesis, upregulate the muscle ATP-storage phosphocreatine (PCr), maintain TCA cycle anaplerosis, enhance the antioxidant capacity through promoting GSH biosynthesis, and stabilize lipid membranes by suppressing glycerophospholipids metabolism. This work provides new insight into mechanistic understanding of the polyphenic effects of Ala-Gln supplementation on muscle cells injured by energy deprivation.
Collapse
Affiliation(s)
- Zhiqing Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Caihua Huang
- Exercise and Health Laboratory, Xiamen University of Technology Xiamen 361024 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| | - Yufen Zhao
- College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University Xiamen 361005 China +86-592-218-6078 +86-592-218-5610
| |
Collapse
|
45
|
Gerlinger-Romero F, Guimarães-Ferreira L, Yonamine CY, Salgueiro RB, Nunes MT. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats. J Physiol Sci 2018; 68:165-174. [PMID: 28083734 PMCID: PMC10717962 DOI: 10.1007/s12576-016-0520-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022]
Abstract
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
Collapse
Affiliation(s)
- Frederico Gerlinger-Romero
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil.
- Prédio Biomédicas I-Cidade Universitária-Butantã, Av. Prof. Lineu Prestes 1524, São Paulo, SP, CEP 05508-900, Brazil.
| | - Lucas Guimarães-Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
- Exercise Metabolism Research Group, Department of Sports, Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, Brazil
| | - Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
46
|
Phenylalanine regulates initiation of digestive enzyme mRNA translation in pancreatic acinar cells and tissue segments in dairy calves. Biosci Rep 2018; 38:BSR20171189. [PMID: 29263147 PMCID: PMC5784178 DOI: 10.1042/bsr20171189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023] Open
Abstract
As new nutritional strategies for ruminant are designed to change production efficiency by improving the supply of rumen protect protein, lipid, and even starch, the digestive system must fit to utilize these increased nutrient supplies, especially the pancreas. The objective of this study was to investigate the effects of phenylalanine (Phe) on digestive enzymes synthesis or secretion and cellular signaling in pancreatic acinar (PA) cells of dairy calves. The PA cells isolated from fresh pancreas of dairy calves, and cultured in completed RIPA 1640 medium with no fetal serum but 0, 0.15 and 0.45 mM Phe at 37°C in CO2 incubator for 120 min. The pancreatic tissue segments (PTS) was cut approximately 2 × 2 mm from the fresh pancreas, and incubated in oxygenated Krebs-Ringer bicarbonate (KRB) buffer containing 0 or 0.35 mM Phe at 39°C for 180 min, and the samples were collected every 60 min after incubation. In PA cells, Phe increased (P < 0.05) the α-amylase secretion and mRNA expression, the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4EBP1). In PTS, the Phe increased (P < 0.05) α-amylase and trypsin synthesis, secretion and mRNA expression, as well as the phosphorylation of S6K1 and 4EBP1. Conclusively, these results suggested that Phe regulates the synthesis or secretion of α-amylase, trypsin and lipase through mRNA translation initiation factors – S6K1 and 4EBP1.
Collapse
|
47
|
de Theije CC, Schols AMWJ, Lamers WH, Ceelen JJM, van Gorp RH, Hermans JJR, Köhler SE, Langen RCJ. Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology 2018; 159:519-534. [PMID: 29069356 DOI: 10.1210/en.2017-00603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Hypoxemia may contribute to muscle wasting in conditions such as chronic obstructive pulmonary disease. Muscle wasting develops when muscle proteolysis exceeds protein synthesis. Hypoxia induces skeletal muscle atrophy in mice, which can in part be attributed to reduced food intake. We hypothesized that hypoxia elevates circulating corticosterone concentrations by reduced food intake and enhances glucocorticoid receptor (GR) signaling in muscle, which causes elevated protein degradation signaling and dysregulates protein synthesis signaling during hypoxia-induced muscle atrophy. Muscle-specific GR knockout and control mice were subjected to normoxia, normobaric hypoxia (8% oxygen), or pair-feeding to the hypoxia group for 4 days. Plasma corticosterone and muscle GR signaling increased after hypoxia and pair-feeding. GR deficiency prevented muscle atrophy by pair-feeding but not by hypoxia. GR deficiency differentially affected activation of ubiquitin 26S-proteasome and autophagy proteolytic systems by pair-feeding and hypoxia. Reduced food intake suppressed mammalian target of rapamycin complex 1 (mTORC1) activity under normoxic but not hypoxic conditions, and this retained mTORC1 activity was mediated by GR. We conclude that GR signaling is required for muscle atrophy and increased expression of proteolysis-associated genes induced by decreased food intake under normoxic conditions. Under hypoxic conditions, muscle atrophy and elevated gene expression of the ubiquitin proteasomal system-associated E3 ligases Murf1 and Atrogin-1 are mostly independent of GR signaling. Furthermore, impaired inhibition of mTORC1 activity is GR-dependent in hypoxia-induced muscle atrophy.
Collapse
MESH Headings
- Animals
- Autophagy
- Cell Size
- Corticosterone/blood
- Corticosterone/metabolism
- Crosses, Genetic
- Gene Expression Regulation, Enzymologic
- Glucocorticoids/metabolism
- Hypoxia/blood
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Random Allocation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chiel C de Theije
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter H Lamers
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith J M Ceelen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - J J Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - S Elonore Köhler
- Department of Anatomy and Embryology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
48
|
Zhou Y, Hambly BD, McLachlan CS. FTO associations with obesity and telomere length. J Biomed Sci 2017; 24:65. [PMID: 28859657 PMCID: PMC5580219 DOI: 10.1186/s12929-017-0372-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1 and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation. Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain some of the non-consistent relationship between weight phenotype and telomere length that is observed in population studies investigating obesity.
Collapse
Affiliation(s)
- Yuling Zhou
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Craig S McLachlan
- Rural Clinical School, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
49
|
Rittig N, Bach E, Thomsen HH, Møller AB, Hansen J, Johannsen M, Jensen E, Serena A, Jørgensen JO, Richelsen B, Jessen N, Møller N. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without β-hydroxy-β-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial. Clin Nutr 2017; 36:697-705. [DOI: 10.1016/j.clnu.2016.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 12/13/2022]
|
50
|
Hutchison AT, Wittert GA, Heilbronn LK. Matching Meals to Body Clocks-Impact on Weight and Glucose Metabolism. Nutrients 2017; 9:nu9030222. [PMID: 28257081 PMCID: PMC5372885 DOI: 10.3390/nu9030222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
The prevalence of type 2 diabetes continues to rise worldwide and is reaching pandemic proportions. The notion that this is due to obesity, resulting from excessive energy consumption and reduced physical activity, is overly simplistic. Circadian de-synchrony, which occurs when physiological processes are at odds with timing imposed by internal clocks, also promotes obesity and impairs glucose tolerance in mouse models, and is a feature of modern human lifestyles. The purpose of this review is to highlight what is known about glucose metabolism in animal and human models of circadian de-synchrony and examine the evidence as to whether shifts in meal timing contribute to impairments in glucose metabolism, gut hormone secretion and the risk of type 2 diabetes. Lastly, we examine whether restricting food intake to discrete time periods, will prevent or reverse abnormalities in glucose metabolism with the view to improving metabolic health in shift workers and in those more generally at risk of chronic diseases such as type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Amy T Hutchison
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide SA 5005, Australia.
| | - Gary A Wittert
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide SA 5005, Australia.
| | - Leonie K Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide SA 5005, Australia.
- Robinson Research Institute, The University of Adelaide, North Adelaide SA 5006, Australia.
| |
Collapse
|