1
|
Li W, Li Y, Xu Y, Kumar S, Liu Y, Zhu G. Genome-wide identification, gene cloning, subcellular location and expression analysis of the OPR gene family under salt stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:1171. [PMID: 39643880 PMCID: PMC11622663 DOI: 10.1186/s12870-024-05887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The 12-oxo-phytodienoic acid reductase (OPR) enzyme is crucial for the synthesis of jasmonates (JAs), and is involved in the plant stress response. However, the OPR gene family in sweetpotato, an important horticultural crop, remains unidentified. RESULTS In this study, we employed bioinformatics techniques to identify nine IbOPR genes. Phylogenetic analysis revealed that these genes could be divided into Group I and Group II. Synteny analysis indicated that IbOPR evolution was driven by tandem duplication, whole-genome duplication (WGD), and segmental duplication events. The promoter sequences of IbOPRs were found to be associated with stress and hormonal responses. Additionally, we successfully cloned four IbOPRs from "Haida HD7791" and "Haida HD7798" using homologous cloning technology. These sequences were 1203 bp, 1200 bp, 1134 bp, and 1137 bp in length and encoded 400, 399, 377, and 378 amino acids, respectively. The protein sequence similarity between the salt-tolerant variety "Haida HD7791" and the salt-sensitive variety "Haida HD7798" was determined to be 96.75% for IbOPR2, 99.75% for IbOPR3, 92.06% for IbOPR6, and 98.68% for IbOPR7. Phylogenetic analysis categorized IbOPR2 and IbOPR3 proteins into Group II, while IbOPR6 and IbOPR7 proteins belonged to Group I. Subcellular localization experiments showed IbOPR2 protein present in the peroxisome, while IbOPR3, IbOPR6, and IbOPR7 proteins were found in the cytoplasm and nucleus. Salt stress induction experiments demonstrated that IbOPR2, IbOPR3, and IbOPR7 were significantly upregulated only in 'Haida HD7791' after 6 h. In contrast, IbOPR6 was induced in 'Haida HD7798' at 6 h but inhibited in 'Haida HD7791' at later time points (12, 24, 48, and 72 h), highlighting functional differences in salt stress responses. CONCLUSIONS Our findings suggest that IbOPR2 may play a crucial role in sweetpotato's response to salt stress by participating in JAs synthesis. These results provide a foundation for future functional analyses of OPR genes in sweetpotato.
Collapse
Affiliation(s)
- Wenxing Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yongping Li
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yuan Xu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Sunjeet Kumar
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yi Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Guopeng Zhu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
4
|
Proietti S, Falconieri GS, Bertini L, Pascale A, Bizzarri E, Morales-Sanfrutos J, Sabidó E, Ruocco M, Monti MM, Russo A, Dziurka K, Ceci M, Loreto F, Caruso C. Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4225-4243. [PMID: 37094092 PMCID: PMC10400115 DOI: 10.1093/jxb/erad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Alberto Pascale
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology (BIST), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Carrer Dr Aiguader 88, 08003 Barcelona, Spain
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Maurilia M Monti
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (IPSP-CNR), Piazzale Enrico Fermi, 1, 80055 Portici (NA), Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| | - Francesco Loreto
- Department of Biology, Via Cinthia, University of Naples Federico II, 80126, Naples, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Sapakhova Z, Raissova N, Daurov D, Zhapar K, Daurova A, Zhigailov A, Zhambakin K, Shamekova M. Sweet Potato as a Key Crop for Food Security under the Conditions of Global Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2516. [PMID: 37447081 DOI: 10.3390/plants12132516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Sweet potato is one of the most economically important crops for addressing global food security and climate change issues, especially under conditions of extensive agriculture, such as those found in developing countries. However, osmotic stress negatively impacts the agronomic and economic productivity of sweet potato cultivation by inducing several morphological, physiological, and biochemical changes. Plants employ many signaling pathways to respond to water stress by modifying their growth patterns, activating antioxidants, accumulating suitable solutes and chaperones, and making stress proteins. These physiological, metabolic, and genetic modifications can be employed as the best indicators for choosing drought-tolerant genotypes. The main objective of sweet potato breeding in many regions of the world, especially those affected by drought, is to obtain varieties that combine drought tolerance with high yields. In this regard, the study of the physiological and biochemical features of certain varieties is important for the implementation of drought resistance measures. Adapted genotypes can be selected and improved for particular growing conditions by using suitable tools and drought tolerance-related selection criteria. By regulating genetics in this way, the creation of drought-resistant varieties may become cost-effective for smallholder farmers. This review focuses on the drought tolerance mechanisms of sweet potato, the effects of drought stress on its productivity, its crop management strategies for drought mitigation, traditional and molecular sweet potato breeding methods for drought tolerance, and the use of biotechnological methods to increase the tolerance of sweet potato to drought.
Collapse
Affiliation(s)
- Zagipa Sapakhova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Nurgul Raissova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Dias Daurov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Kuanysh Zhapar
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Ainash Daurova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Andrey Zhigailov
- M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Kabyl Zhambakin
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Malika Shamekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| |
Collapse
|
6
|
Zhou Y, Zhao C, Du T, Li A, Qin Z, Zhang L, Dong S, Wang Q, Hou F. Overexpression of 9- cis-Epoxycarotenoid Dioxygenase Gene, IbNCED1, Negatively Regulates Plant Height in Transgenic Sweet Potato. Int J Mol Sci 2023; 24:10421. [PMID: 37445599 DOI: 10.3390/ijms241310421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Plant height is one of the key agronomic traits for improving the yield of sweet potato. Phytohormones, especially gibberellins (GAs), are crucial to regulate plant height. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme for abscisic acid (ABA) biosynthesis signalling in higher plants. However, its role in regulating plant height has not been reported to date. Here, we cloned a new NCED gene, IbNCED1, from the sweet potato cultivar Jishu26. This gene encoded the 587-amino acid polypeptide containing an NCED superfamily domain. The expression level of IbNCED1 was highest in the stem and the old tissues in the in vitro-grown and field-grown Jishu26, respectively. The expression of IbNCED1 was induced by ABA and GA3. Overexpression of IbNCED1 promoted the accumulation of ABA and inhibited the content of active GA3 and plant height and affected the expression levels of genes involved in the GA metabolic pathway. Exogenous application of GA3 could rescue the dwarf phenotype. In conclusion, we suggest that IbNCED1 regulates plant height and development by controlling the ABA and GA signalling pathways in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunling Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
7
|
Elakhdar A, Slaski JJ, Kubo T, Hamwieh A, Hernandez Ramirez G, Beattie AD, Capo-chichi LJ. Genome-wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1159016. [PMID: 37346141 PMCID: PMC10279893 DOI: 10.3389/fpls.2023.1159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Jan J. Slaski
- Bio Industrial Services Division, InnoTech Alberta Inc., Vegreville, AB, Canada
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Guillermo Hernandez Ramirez
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Aaron D. Beattie
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ludovic J.A. Capo-chichi
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Williams J, Xu S, Ferreira MAR. BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies. BMC Bioinformatics 2023; 24:194. [PMID: 37170185 PMCID: PMC10176706 DOI: 10.1186/s12859-023-05316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) seek to identify single nucleotide polymorphisms (SNPs) that cause observed phenotypes. However, with highly correlated SNPs, correlated observations, and the number of SNPs being two orders of magnitude larger than the number of observations, GWAS procedures often suffer from high false positive rates. RESULTS We propose BGWAS, a novel Bayesian variable selection method based on nonlocal priors for linear mixed models specifically tailored for genome-wide association studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed models (LMMs). BGWAS has two steps: screening and model selection. The screening step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian false discovery control to select a set of candidate SNPs. After that, a model selection step searches through the space of LMMs that may have any number of SNPs from the candidate set. A simulation study shows that, when compared to popular GWAS procedures, BGWAS greatly reduces false positives while maintaining the same ability to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case studies: a case study on salt stress in plants, and a case study on alcohol use disorder. CONCLUSIONS BGWAS maintains and in some cases increases the recall of true SNPs while drastically lowering the number of false positives compared to popular SMA procedures.
Collapse
Affiliation(s)
- Jacob Williams
- Department of Statistics, Virginia Tech, Blacksburg, 24061, USA.
| | - Shuangshuang Xu
- Department of Statistics, Virginia Tech, Blacksburg, 24061, USA
| | | |
Collapse
|
9
|
Williams J, Ferreira MAR, Ji T. BICOSS: Bayesian iterative conditional stochastic search for GWAS. BMC Bioinformatics 2022; 23:475. [DOI: 10.1186/s12859-022-05030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Single marker analysis (SMA) with linear mixed models for genome wide association studies has uncovered the contribution of genetic variants to many observed phenotypes. However, SMA has weak false discovery control. In addition, when a few variants have large effect sizes, SMA has low statistical power to detect small and medium effect sizes, leading to low recall of true causal single nucleotide polymorphisms (SNPs).
Results
We present the Bayesian Iterative Conditional Stochastic Search (BICOSS) method that controls false discovery rate and increases recall of variants with small and medium effect sizes. BICOSS iterates between a screening step and a Bayesian model selection step. A simulation study shows that, when compared to SMA, BICOSS dramatically reduces false discovery rate and allows for smaller effect sizes to be discovered. Finally, two real world applications show the utility and flexibility of BICOSS.
Conclusions
When compared to widely used SMA, BICOSS provides higher recall of true SNPs while dramatically reducing false discovery rate.
Collapse
|
10
|
Turchetti B, Buzzini P, Baeza M. A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps. Front Microbiol 2022; 13:1026102. [DOI: 10.3389/fmicb.2022.1026102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microorganisms including yeasts are responsible for mineralization of organic matter in cold regions, and their characterization is critical to elucidate the ecology of such environments on Earth. Strategies developed by yeasts to survive in cold environments have been increasingly studied in the last years and applied to different biotechnological applications, but their knowledge is still limited. Microbial adaptations to cold include the synthesis of cryoprotective compounds, as well as the presence of a high number of genes encoding the synthesis of proteins/enzymes characterized by a reduced proline content and highly flexible and large catalytic active sites. This study is a comparative genomic study on the adaptations of yeasts isolated from the Italian Alps, considering their growth kinetics. The optimal temperature for growth (OTG), growth rate (Gr), and draft genome sizes considerably varied (OTG, 10°C–20°C; Gr, 0.071–0.0726; genomes, 20.7–21.5 Mpb; %GC, 50.9–61.5). A direct relationship was observed between calculated protein flexibilities and OTG, but not for Gr. Putative genes encoding for cold stress response were found, as well as high numbers of genes encoding for general, oxidative, and osmotic stresses. The cold response genes found in the studied yeasts play roles in cell membrane adaptation, compatible solute accumulation, RNA structure changes, and protein folding, i.e., dihydrolipoamide dehydrogenase, glycogen synthase, omega-6 fatty acid, stearoyl-CoA desaturase, ATP-dependent RNA helicase, and elongation of very-long-chain fatty acids. A redundancy for several putative genes was found, higher for P-loop containing nucleoside triphosphate hydrolase, alpha/beta hydrolase, armadillo repeat-containing proteins, and the major facilitator superfamily protein. Hundreds of thousands of small open reading frames (SmORFs) were found in all studied yeasts, especially in Phenoliferia glacialis. Gene clusters encoding for the synthesis of secondary metabolites such as terpene, non-ribosomal peptide, and type III polyketide were predicted in four, three, and two studied yeasts, respectively.
Collapse
|
11
|
Leão AP, Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Braga ÍDO, Vieira LR, de Aquino Ribeiro JA, Abdelnur PV, de Sousa CAF, Souza Júnior MT. Insights from a Multi-Omics Integration (MOI) Study in Oil Palm ( Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part Two-Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202786. [PMID: 36297811 PMCID: PMC9611107 DOI: 10.3390/plants11202786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/09/2023]
Abstract
Drought and salinity are two of the most severe abiotic stresses affecting agriculture worldwide and bear some similarities regarding the responses of plants to them. The first is also known as osmotic stress and shows similarities mainly with the osmotic effect, the first phase of salinity stress. Multi-Omics Integration (MOI) offers a new opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity resistance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA) and MOI studies on the leaves of young oil palm plants submitted to water deprivation. After performing SOA, 1955 DE enzymes from transcriptomics analysis, 131 DE enzymes from proteomics analysis, and 269 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. Moreover, the similarities and dissimilarities in the molecular response of those plants to those two abiotic stresses underwent mapping. Cysteine and methionine metabolism (map00270) was the most affected pathway in all scenarios evaluated. The correlation analysis revealed that 91.55% of those enzymes expressed under both stresses had similar qualitative profiles, corroborating the already known fact that plant responses to drought and salinity show several similarities. At last, the results shed light on some candidate genes for engineering crop species resilient to both abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo de Oliveira Braga
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | | | | | | | - Manoel Teixeira Souza Júnior
- Embrapa Agroenergia, Brasília 70770-901, DF, Brazil
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| |
Collapse
|
12
|
You C, Li C, Ma M, Tang W, Kou M, Yan H, Song W, Gao R, Wang X, Zhang Y, Li Q. A C2-Domain Abscisic Acid-Related Gene, IbCAR1, Positively Enhances Salt Tolerance in Sweet Potato (Ipomoea batatas (L.) Lam.). Int J Mol Sci 2022; 23:ijms23179680. [PMID: 36077077 PMCID: PMC9456122 DOI: 10.3390/ijms23179680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Plant C2-domain abscisic acid-related (CAR) protein family plays an important role in plant growth, abiotic stress responses, and defense regulation. In this study, we cloned the IbCAR1 by homologous cloning method from the transcriptomic data of Xuzishu8, which is a sweet potato cultivar with dark-purple flesh. This gene was expressed in all tissues of sweet potato, with the highest expression level in leaf tissue, and it could be induced by NaCl and ABA. Subcellular localization analyses indicated that IbCAR1 was localized in the nucleus and plasma membrane. The PI staining experiment revealed the distinctive root cell membrane integrity of overexpressed transgenic lines upon salt stress. Salt stress significantly increased the contents of proline, ABA, and the activity of superoxide dismutase (SOD), whereas the content of malondialdehyde (MDA) was decreased in overexpressed lines. On the contrary, RNA interference plants showed sensitivity to salt stress. Overexpression of IbCAR1 in sweet potatoes could improve the salt tolerance of plants, while the RNAi of IbCAR1 significantly increased sensitivity to salt stress in sweet potatoes. Meanwhile, the genes involved in ABA biosynthesis, stress response, and reactive oxygen species (ROS)-scavenging system were upregulated in overexpressed lines under salt stress. Taken together, these results demonstrated that IbCAR1 plays a positive role in salt tolerance by relying on the ABA signal transduction pathway, activating the ROS-scavenging system in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiang Li
- Correspondence: ; Tel.: +86-0516-8218-9203
| |
Collapse
|
13
|
NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis. Sci Rep 2022; 12:11264. [PMID: 35787631 PMCID: PMC9253118 DOI: 10.1038/s41598-022-14429-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. ‘Thermomemory’ is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Arabidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like ataf1, anac055 mutants show improved thermomemory, revealing a potential co-control of both NAC TFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.
Collapse
|
14
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
15
|
Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, Farooq M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:55-69. [PMID: 35276596 DOI: 10.1016/j.plaphy.2022.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 05/24/2023]
Abstract
Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.
Collapse
Affiliation(s)
- Noreen Zahra
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Marwa Sulaiman Al Hinai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | | | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
16
|
Xing S, Zhu H, Zhou Y, Xue L, Wei Z, Wang Y, He S, Zhang H, Gao S, Zhao N, Zhai H, Liu Q. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111233. [PMID: 35351305 DOI: 10.1016/j.plantsci.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2-48.0%, 10.5-13.3%, 40.2-136% and 82.4-106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Mallu TS, Irafasha G, Mutinda S, Owuor E, Githiri SM, Odeny DA, Runo S. Mechanisms of pre-attachment Striga resistance in sorghum through genome-wide association studies. Mol Genet Genomics 2022; 297:751-762. [PMID: 35305146 DOI: 10.1007/s00438-022-01882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Witchweeds (Striga spp.) greatly limit production of Africa's most staple crops. These parasitic plants use strigolactones (SLs)-chemical germination stimulants, emitted from host's roots to germinate, and locate their hosts for invasion. This information exchange provides opportunities for controlling the parasite by either stimulating parasite seed germination without a host (suicidal germination) or by inhibiting parasite seed germination (pre-attachment resistance). We sought to determine genetic factors that underpin Striga pre-attachment resistance in sorghum using the genome wide association study (GWAS) approach. Results revealed that Striga germination was associated with genes encoding hormone signaling functions, e.g., the Novel interactor of jaz (NINJA) and, Abscisic acid-insensitive 5 (ABI5). This pointed toward abscisic acid (ABA) and gibberellic acid (GA) as probable determinants of Striga germination. To test this hypothesis, we conditioned Striga using: ABA, ABA + its inhibitor fluridone (FLU), GA or water. Unexpectedly, Striga conditioned with FLU germinated after 4 days without SL. Upon germination stimulation using sorghum root exudate or the synthetic SL GR24, we found that ABA conditioned seeds had above 20-fold reduction in germination. Conversely, FLU conditioned seeds recorded above 20-fold increase in germination. Conditioning with GA reduced Striga seed germination 1.5-fold only in the GR24 treatment. Germination assays using seeds of a related parasitic plant (Alectra vogelii) showed similar degrees of stimulation and reduction of germination by the hormones further affirming the hormonal crosstalk. Our findings have far-reaching implications in the control of some of the most noxious pathogens of crops in Africa.
Collapse
Affiliation(s)
- Tesfamichael S Mallu
- Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.,Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Gilles Irafasha
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Sylvia Mutinda
- Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.,Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
| | - Erick Owuor
- International Crops Research Institute for the Semi-Arid Tropics, P. O. Box 39063-00623, Nairobi, Kenya
| | - Stephen M Githiri
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, P. O. Box 39063-00623, Nairobi, Kenya.
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.
| |
Collapse
|
18
|
Kumar S, Yadav A, Bano N, Dubey AK, Verma R, Pandey A, Kumar A, Bag S, Srivastava S, Sanyal I. Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation. Funct Integr Genomics 2022; 22:153-170. [PMID: 34988675 DOI: 10.1007/s10142-021-00823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Drought, a major abiotic limiting factor, could be modulated with in-built reprogramming of plants at molecular level by regulating the activity of plant developmental processes, stress endurance and adaptation. The transgenic Arabidopsis thaliana over-expressing metallothionein 1 (MT1) gene of desi chickpea (Cicer arietinum L.) was subjected to transcriptome analysis. We evaluated drought tolerance of 7 days old plants of Arabidopsis thaliana in both wild-type (WT) as well as transgenic plants and performed transcriptome analysis. Our analysis revealed 24,737 transcripts representing 24,594 genes out of which 5,816 were differentially expressed genes (DEGs) under drought conditions and 841 genes were common in both genotypes. A total of 1251 DEGs in WT and 2099 in MT1 were identified in comparison with control. Out of the significant DEGs, 432 and 944 were upregulated, whereas 819 and 1155 were downregulated in WT and MT1 plants, respectively. The physiological and molecular parameters involving germination assay, root length measurements under different stress treatments and quantitative expression analysis of transgenic plants in comparison to wild-type were found to be enhanced. CarMT1 plants also demonstrated modulation of various other stress-responsive genes that reprogrammed themselves for stress adaptation. Amongst various drought-responsive genes, 24 DEGs showed similar quantitative expression as obtained through RNA sequencing data. Hence, these modulatory genes could be used as a genetic tool for understanding and delineating the mechanisms for fine-tuning of stress responses in crop plants.
Collapse
Affiliation(s)
- Sanoj Kumar
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Ankita Yadav
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nasreen Bano
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvind Kumar Dubey
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Be'er Sheva, Israel
| | - Rita Verma
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankesh Pandey
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anil Kumar
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, 263136, India
| | - Sumit Bag
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
20
|
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari M, Mohammadi SM, Daryani P. Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC PLANT BIOLOGY 2020; 20:452. [PMID: 33004003 PMCID: PMC7528482 DOI: 10.1186/s12870-020-02679-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 09/24/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salinity, as one of the main abiotic stresses, critically threatens growth and fertility of main food crops including rice in the world. To get insight into the molecular mechanisms by which tolerant genotypes responds to the salinity stress, we propose an integrative meta-analysis approach to find the key genes involved in salinity tolerance. Herein, a genome-wide meta-analysis, using microarray and RNA-seq data was conducted which resulted in the identification of differentially expressed genes (DEGs) under salinity stress at tolerant rice genotypes. DEGs were then confirmed by meta-QTL analysis and literature review. RESULTS A total of 3449 DEGs were detected in 46 meta-QTL positions, among which 1286, 86, 1729 and 348 DEGs were observed in root, shoot, seedling, and leaves tissues, respectively. Moreover, functional annotation of DEGs located in the meta-QTLs suggested some involved biological processes (e.g., ion transport, regulation of transcription, cell wall organization and modification as well as response to stress) and molecular function terms (e.g., transporter activity, transcription factor activity and oxidoreductase activity). Remarkably, 23 potential candidate genes were detected in Saltol and hotspot-regions overlying original QTLs for both yield components and ion homeostasis traits; among which, there were many unreported salinity-responsive genes. Some promising candidate genes were detected such as pectinesterase, peroxidase, transcription regulator, high-affinity potassium transporter, cell wall organization, protein serine/threonine phosphatase, and CBS domain cotaining protein. CONCLUSIONS The obtained results indicated that, the salt tolerant genotypes use qualified mechanisms particularly in sensing and signalling of the salt stress, regulation of transcription, ionic homeostasis, and Reactive Oxygen Species (ROS) scavenging in response to the salt stress.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
- Faculty of Crop Science, Department of Plant breeding and Biotechnology, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Nadali Babaeian Jelodar
- Faculty of Crop Science, Department of Plant breeding and Biotechnology, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mohammadreza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Seyed Mahdi Mohammadi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Parisa Daryani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
21
|
Yang Z, Zhu P, Kang H, Liu L, Cao Q, Sun J, Dong T, Zhu M, Li Z, Xu T. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics 2020; 21:164. [PMID: 32066373 PMCID: PMC7027035 DOI: 10.1186/s12864-020-6567-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of small regulatory RNAs, have been proven to play important roles in plant growth, development and stress responses. Sweet potato (Ipomoea batatas L.) is an important food and industrial crop that ranks seventh in staple food production. However, the regulatory mechanism of miRNA-mediated abiotic stress response in sweet potato remains unclear. RESULTS In this study, we employed deep sequencing to identify both conserved and novel miRNAs from salinity-exposed sweet potato cultivars and its untreated control. Twelve small non-coding RNA libraries from NaCl-free (CK) and NaCl-treated (Na150) sweet potato leaves and roots were constructed for salt-responsive miRNA identification in sweet potatoes. A total of 475 known miRNAs (belonging to 66 miRNA families) and 175 novel miRNAs were identified. Among them, 51 (22 known miRNAs and 29 novel miRNAs) were significantly up-regulated and 76 (61 known miRNAs and 15 novel miRNAs) were significantly down-regulated by salinity stress in sweet potato leaves; 13 (12 known miRNAs and 1 novel miRNAs) were significantly up-regulated and 9 (7 known miRNAs and 2 novel miRNAs) were significantly down-regulated in sweet potato roots. Furthermore, 636 target genes of 314 miRNAs were validated by degradome sequencing. Deep sequencing results confirmed by qRT-PCR experiments indicated that the expression of most miRNAs exhibit a negative correlation with the expression of their targets under salt stress. CONCLUSIONS This study provides insights into the regulatory mechanism of miRNA-mediated salt response and molecular breeding of sweet potatoes though miRNA manipulation.
Collapse
Affiliation(s)
- Zhengmei Yang
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Panpan Zhu
- 0000 0001 0356 9399grid.14005.30Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 South Korea
| | - Hunseung Kang
- 0000 0001 0356 9399grid.14005.30Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 South Korea
| | - Lin Liu
- 0000 0001 0472 9649grid.263488.3Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Qinghe Cao
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, 221121 Jiangsu China
| | - Jian Sun
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Tingting Dong
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Mingku Zhu
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Zongyun Li
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Tao Xu
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| |
Collapse
|
22
|
Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A. Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley ( Hordeum vulgare L.). PLANTS 2020; 9:plants9020240. [PMID: 32069892 PMCID: PMC7076447 DOI: 10.3390/plants9020240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Collapse
Affiliation(s)
- Ana Borrego-Benjumea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Adam Carter
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - James R. Tucker
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Wayne Xu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada; (Z.Y.); (W.X.)
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, 2701 Grand Valley Road, Brandon, MB R7A 5Y3, Canada; (A.B.-B.); (A.C.); (J.R.T.)
- Correspondence: ; Tel.: +1-204-578-6573
| |
Collapse
|
23
|
Pradhan S, Babar MA, Robbins K, Bai G, Mason RE, Khan J, Shahi D, Avci M, Guo J, Maksud Hossain M, Bhatta M, Mergoum M, Asseng S, Amand PS, Gezan S, Baik BK, Blount A, Bernardo A. Understanding the Genetic Basis of Spike Fertility to Improve Grain Number, Harvest Index, and Grain Yield in Wheat Under High Temperature Stress Environments. FRONTIERS IN PLANT SCIENCE 2019; 10:1481. [PMID: 31850009 PMCID: PMC6895025 DOI: 10.3389/fpls.2019.01481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/25/2019] [Indexed: 05/22/2023]
Abstract
Moderate heat stress accompanied by short episodes of extreme heat during the post-anthesis stage is common in most US wheat growing areas and causes substantial yield losses. Sink strength (grain number) is a key yield limiting factor in modern wheat varieties. Increasing spike fertility (SF) and improving the partitioning of assimilates can optimize sink strength which is essential to improve wheat yield potential under a hot and humid environment. A genome-wide association study (GWAS) allows identification of novel quantitative trait loci (QTLs) associated with SF and other partitioning traits that can assist in marker assisted breeding. In this study, GWAS was performed on a soft wheat association mapping panel (SWAMP) comprised of 236 elite lines using 27,466 single nucleotide polymorphisms (SNPs). The panel was phenotyped in two heat stress locations over 3 years. GWAS identified 109 significant marker-trait associations (MTAs) (p ≤ 9.99 x 10-5) related to eight phenotypic traits including SF (a major component of grain number) and spike harvest index (SHI, a major component of grain weight). MTAs detected on chromosomes 1B, 3A, 3B, and 5A were associated with multiple traits and are potentially important targets for selection. More than half of the significant MTAs (60 out of 109) were found in genes encoding different types of proteins related to metabolism, disease, and abiotic stress including heat stress. These MTAs could be potential targets for further validation study and may be used in marker-assisted breeding for improving wheat grain yield under post-anthesis heat stress conditions. This is the first study to identify novel QTLs associated with SF and SHI which represent the major components of grain number and grain weight, respectively, in wheat.
Collapse
Affiliation(s)
- Sumit Pradhan
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Md Ali Babar
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Kelly Robbins
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | | | - Richard Esten Mason
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jahangir Khan
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Dipendra Shahi
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Muhsin Avci
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Jia Guo
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | | | - Madhav Bhatta
- Department of Agronomy, University of Wisconsin, Madison, WI, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Senthold Asseng
- Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United States
| | | | - Salvador Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | | | - Ann Blount
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Amy Bernardo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
24
|
Kang C, Zhai H, He S, Zhao N, Liu Q. A novel sweetpotato bZIP transcription factor gene, IbbZIP1, is involved in salt and drought tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2019; 38:1373-1382. [PMID: 31183509 PMCID: PMC6797668 DOI: 10.1007/s00299-019-02441-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 05/07/2023]
Abstract
The overexpression of IbbZIP1 leads to a significant upregulation of abiotic-related genes, suggesting that IbbZIP1 gene confers salt and drought tolerance in transgenic Arabidopsis. Basic region/leucine zipper motif (bZIP) transcription factors regulate flower development, seed maturation, pathogen defense, and stress signaling in plants. Here, we cloned a novel bZIP transcription factor gene, named IbbZIP1, from sweetpotato [Ipomoea batatas (L.) Lam.] line HVB-3. The full length of IbbZIP1 exhibited transactivation activity in yeast. The expression of IbbZIP1 in sweetpotato was strongly induced by NaCl, PEG6000, and abscisic acid (ABA). Its overexpression in Arabidopsis significantly enhanced salt and drought tolerance. Under salt and drought stresses, the transgenic Arabidopsis plants showed significant upregulation of the genes involved in ABA and proline biosynthesis and reactive oxygen species scavenging system, significant increase of ABA and proline contents and superoxide dismutase activity and significant decrease of H2O2 content. These results demonstrate that the IbbZIP1 gene confers salt and drought tolerance in transgenic Arabidopsis. This study provides a novel bZIP gene for improving the tolerance of sweetpotato and other plants to abiotic stresses.
Collapse
Affiliation(s)
- Chen Kang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Teshome A, Byrne SL, Didion T, De Vega J, Jensen CS, Klaas M, Barth S. Transcriptome sequencing of Festulolium accessions under salt stress. BMC Res Notes 2019; 12:311. [PMID: 31151479 PMCID: PMC6545024 DOI: 10.1186/s13104-019-4349-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives The objective of this study was to establish transcriptome assemblies of Festulolium hybrids under salt stress, and identify genes regulated across the hybrids in response to salt stress. The development of transcriptome assemblies for Festulolium hybrids and cataloguing of genes regulated under salt stress will facilitate further downstream studies. Results Plants were grown at three salt concentrations (0.5%, 1% and 1.5%) and phenotypic and transcriptomic data was collected. Salt stress was confirmed by progressive loss of green leaves as salt concentration increased from 0 to 1.5%. We generated de-novo transcriptome assemblies for two Festulolium pabulare festucoid genotypes, for a single Festulolium braunii genotype, and a single F. pabulare loloid genotype. We also identified 1555 transcripts that were up regulated and 1264 transcripts that were down regulated in response to salt stress in the Festulolium hybrids. Some of the identified transcripts showed significant sequence similarity with genes known to be regulated during salt and other abiotic stresses. Electronic supplementary material The online version of this article (10.1186/s13104-019-4349-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Teshome
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - S L Byrne
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - T Didion
- DLF, Research Division, Store Heddinge, Denmark
| | - J De Vega
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C S Jensen
- DLF, Research Division, Store Heddinge, Denmark
| | - M Klaas
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland
| | - S Barth
- Teagasc Crop Science Department, Oak Park, Carlow, R93XE12, Ireland.
| |
Collapse
|
26
|
Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:19-30. [PMID: 30824052 DOI: 10.1016/j.plantsci.2019.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The manipulation of APETALA2/ethylene responsive factor (AP2/ERF) genes in plants makes great contributions on resistance to abiotic stresses. Here, we cloned an AP2/ERF gene from the salt-tolerant sweetpotato line ND98 and named IbRAP2-12. IbRAP2-12 protein expressed in nuclear revealed by transient expression in tobacco epidermal cells, and IbRAP2-12 exhibited transcriptional activation using heterologous expression assays in yeast. IbRAP2-12 was induced by NaCl (200 mM), 20% polyethylene glycol (PEG) 6000, 100 μM abscisic acid (ABA), 100 μM ethephon and 100 μM methyl jasmonate (MeJA). IbRAP2-12-overexpressing Arabidopsis lines were more tolerant to salt and drought stresses than wild type plants. Transcriptome analysis showed that genes involved in the ABA signalling, JA signalling, proline biosynthesis and reactive oxygen species (ROS) scavenging processes were up-regulated in IbRAP2-12 overexpression lines under salt and drought stresses. In comparing with WT, the contents of ABA, JA and proline were significantly increased, while hydrogen peroxide (H2O2) and the rate of water loss were significantly reduced in transgenic lines under salt and drought stresses. All these results demonstrated the roles of IbRAP2-12 in enhancing salt and drought tolerance in transgenic Arabidopsis lines. Thus, this IbRAP2-12 gene can be used to increase the tolerance ability during abiotic stresses in plants.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
27
|
Kim HS, Yoon UH, Lee CJ, Kim SE, Ji CY, Kwak SS. Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands. ACTA ACUST UNITED AC 2018. [DOI: 10.5010/jpb.2018.45.3.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Ung-Han Yoon
- Genomics Division, National Academy of Agricultural Science, Jeonju 54875, Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Chang Yoon Ji
- Research & Development Center, Korea Scientific Technique Industry Co., Ltd., 67, Saneop-ro 92, Gwonseon-gu, Suwon-si 16643, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
28
|
Rangasamy K, Athiappan M, Devarajan N, Parray JA, Shameem N, Aruljothi KN, Hashem A, Alqarawi AA, Abd_Allah EF. Cloning and Expression of the Organophosphate Pesticide-Degrading α- β Hydrolase Gene in Plasmid pMK-07 to Confer Cross-Resistance to Antibiotics. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1535209. [PMID: 29862253 PMCID: PMC5976953 DOI: 10.1155/2018/1535209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/08/2018] [Indexed: 11/17/2022]
Abstract
Pesticide residual persistence in agriculture soil selectively increases the pesticide-degrading population and transfers the pesticide-degrading gene to other populations, leading to cross-resistance to a wide range of antibiotics. The enzymes that degrade pesticides can also catabolize the antibiotics by inducing changes in the gene or protein structure through induced mutations. The present work focuses on the pesticide-degrading bacteria isolated from an agricultural field that develop cross-resistance to antibiotics. This cross-resistance is developed through catabolic gene clusters present in an extrachromosomal plasmid. A larger plasmid (236.7 Kbp) isolated from Bacillus sp. was sequenced by next-generation sequencing, and important features such as α-β hydrolase, DNA topoisomerase, DNA polymerase III subunit beta, reverse transcriptase, plasmid replication rep X, recombination U, transposase, and S-formylglutathione hydrolase were found in this plasmid. Among these, the α-β hydrolase enzyme is known for the degradation of organophosphate pesticides. The cloning and expression of the α-β hydrolase gene imply nonspecific cleavage of antibiotics through a cross-resistance phenomenon in the host. The docking of α-β hydrolase with a spectrum of antibiotics showed a high G-score against chloramphenicol (-3.793), streptomycin (-2.865), cefotaxime (-5.885), ampicillin (-4.316), and tetracycline (-3.972). This study concludes that continuous exposure to pesticide residues may lead to the emergence of multidrug-resistant strains among the wild microbial flora.
Collapse
Affiliation(s)
| | - Murugan Athiappan
- Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government SAM Degree College Budgam, Jammu & Kashmir 191111, India
| | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, Jammu & Kashmir 190001, India
| | - K. N. Aruljothi
- Department of Genetic Engineering, SRM University, Chennai, Tamil Nadu, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Shariatipour N, Heidari B. Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1875036201811010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The development of genome microarrays of the model plant;Arabidopsis thaliana, with increasing repositories of publicly available data and high-throughput data analysis tools, has opened new avenues to genome-wide systemic analysis of plant responses to environmental stresses.Objective:To identify differentially expressed genes and their regulatory networks inArabidopsis thalianaunder harsh environmental condition.Methods:Two replications of eight microarray data sets were derived from two different tissues (root and shoot) and two different time courses (control and 24 hours after the beginning of stress occurrence) for comparative data analysis through various bioinformatics tools.Results:Under drought stress, 2558 gene accessions in root and 3691 in shoot tissues had significantly differential expression with respect to control condition. Likewise, under salinity stress 9078 gene accessions in root and 5785 in shoot tissues were discriminated between stressed and non-stressed conditions. Furthermore, the transcription regulatory activity of differentially expressed genes was mainly due to hormone, light, circadian and stress responsivecis-acting regulatory elements among which ABRE, ERE, P-box, TATC-box, CGTCA-motif, GARE-motif, TGACG-motif, GAG-motif, GA-motif, GATA- motif, TCT-motif, GT1-motif, Box 4, G-Box, I-box, LAMP-element, Sp1, MBS, TC-rich repeats, TCA-element and HSE were the most important elements in the identified up-regulated genes.Conclusion:The results of the high-throughput comparative analyses in this study provide more options for plant breeders and give an insight into genes andcis-acting regulatory elements involved in plant response to drought and salinity stresses in strategic crops such as cereals.
Collapse
|
30
|
Sen S, Rai S, Yadav S, Agrawal C, Rai R, Chatterjee A, Rai L. Dehydration and rehydration - induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Ji CY, Jin R, Xu Z, Kim HS, Lee CJ, Kang L, Kim SE, Lee HU, Lee JS, Kang CH, Chi YH, Lee SY, Xie Y, Li H, Ma D, Kwak SS. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC PLANT BIOLOGY 2017; 17:139. [PMID: 28806972 PMCID: PMC5557506 DOI: 10.1186/s12870-017-1087-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas [L.] Lam) is suitable for growth on marginal lands due to its abiotic stress tolerance. However, severe environmental conditions including low temperature pose a serious threat to the productivity and expanded cultivation of this crop. In this study, we aimed to develop sweetpotato plants with enhanced tolerance to temperature stress. RESULTS P3 proteins are plant-specific ribosomal P-proteins that act as both protein and RNA chaperones to increase heat and cold stress tolerance in Arabidopsis. Here, we generated transgenic sweetpotato plants expressing the Arabidopsis ribosomal P3 (AtP3B) gene under the control of the CaMV 35S promoter (referred to as OP plants). Three OP lines (OP1, OP30, and OP32) were selected based on AtP3B transcript levels. The OP plants displayed greater heat tolerance and higher photosynthesis efficiency than wild type (WT) plants. The OP plants also exhibited enhanced low temperature tolerance, with higher photosynthesis efficiency and less membrane permeability than WT plants. In addition, OP plants had lower levels of hydrogen peroxide and higher activities of antioxidant enzymes such as peroxidase and catalase than WT plants under low temperature stress. The yields of tuberous roots and aerial parts of plants did not significantly differ between OP and WT plants under field cultivation. However, the tuberous roots of OP transgenic sweetpotato showed improved storage ability under low temperature conditions. CONCLUSIONS The OP plants developed in this study exhibited increased tolerance to temperature stress and enhanced storage ability under low temperature compared to WT plants, suggesting that they could be used to enhance sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Rong Jin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
- Sweetpotato Research Center, Jiangsu Academy of Agricultural Science, Xuhuai Road, Xuzhou, Jiangsu, 221131, China
| | - Zhen Xu
- Sweetpotato Research Center, Jiangsu Academy of Agricultural Science, Xuhuai Road, Xuzhou, Jiangsu, 221131, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Chan-Ju Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Le Kang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - So-Eun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea
| | - Hyeong-Un Lee
- Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration, Muan, 58545, South Korea
| | - Joon Seol Lee
- Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration, Muan, 58545, South Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21 Plus program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Yong Hun Chi
- Division of Applied Life Science (BK21 Plus program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 52828, South Korea
| | - Yiping Xie
- Sweetpotato Research Center, Jiangsu Academy of Agricultural Science, Xuhuai Road, Xuzhou, Jiangsu, 221131, China
| | - Hongmin Li
- Sweetpotato Research Center, Jiangsu Academy of Agricultural Science, Xuhuai Road, Xuzhou, Jiangsu, 221131, China
| | - Daifu Ma
- Sweetpotato Research Center, Jiangsu Academy of Agricultural Science, Xuhuai Road, Xuzhou, Jiangsu, 221131, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea.
- Department of Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
32
|
Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci Rep 2017; 7:40819. [PMID: 28084460 PMCID: PMC5234020 DOI: 10.1038/srep40819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
Sweet potato is an important food and bio-energy crop, and investigating the mechanisms underlying salt tolerance will provide information for salt-tolerant breeding of this crop. Here, the root transcriptomes of the salt-sensitive variety Lizixiang and the salt-tolerant line ND98 were compared to identify the genes and pathways involved in salt stress responses. In total, 8,744 and 10,413 differentially expressed genes (DEGs) in Lizixiang and ND98, respectively, were involved in salt responses. A lower DNA methylation level was detected in ND98 than in Lizixiang. In both genotypes, the DEGs, which function in phytohormone synthesis and signalling and ion homeostasis, may underlie the different degrees of salt tolerance. Significant up-regulations of the genes involved in the jasmonic acid (JA) biosynthesis and signalling pathways and ion transport, more accumulation of JA, a higher degree of stomatal closure and a lower level of Na+ were found in ND98 compared to Lizixiang. This is the first report on transcriptome responses to salt tolerance in sweet potato. These results reveal that the JA signalling pathway plays important roles in the response of sweet potato to salt stress. This study provides insights into the mechanisms and genes involved in the salt tolerance of sweet potato.
Collapse
|
33
|
Liu Q. Improvement for agronomically important traits by gene engineering in sweetpotato. BREEDING SCIENCE 2017; 67:15-26. [PMID: 28465664 PMCID: PMC5407918 DOI: 10.1270/jsbbs.16126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/24/2016] [Indexed: 05/05/2023]
Abstract
Sweetpotato is the seventh most important food crop in the world. It is mainly used for human food, animal feed, and for manufacturing starch and alcohol. This crop, a highly heterozygous, generally self-incompatible, outcrossing polyploidy, poses numerous challenges for the conventional breeding. Its productivity and quality are often limited by abiotic and biotic stresses. Gene engineering has been shown to have the great potential for improving the resistance to these stresses as well as the nutritional quality of sweetpotato. To date, an Agrobacterium tumefaciens-mediated transformation system has been developed for a wide range of sweetpotato genotypes. Several genes associated with salinity and drought tolerance, diseases and pests resistance, and starch, carotenoids and anthocyanins biosynthesis have been isolated and characterized from sweetpotato. Gene engineering has been used to improve abiotic and biotic stresses resistance and quality of this crop. This review summarizes major research advances made so far in improving agronomically important traits by gene engineering in sweetpotato and suggests future prospects for research in this field.
Collapse
Affiliation(s)
- Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University,
Beijing 100193,
China
| |
Collapse
|
34
|
Chien HJ, Chu YW, Chen CW, Juang YM, Chien MW, Liu CW, Wu CC, Tzen JT, Lai CC. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea. Food Chem 2016; 211:392-9. [DOI: 10.1016/j.foodchem.2016.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/01/2022]
|
35
|
Kim HS, Park SC, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS. Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:37-48. [PMID: 27404133 DOI: 10.1016/j.plaphy.2016.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 05/18/2023]
Abstract
Plants are continually exposed to numerous environmental stresses. To decrease damage caused by these potentially detrimental factors, various stress-related signaling cascades are activated in plants. One such stress-responsive signaling pathway, the mitogen-activated protein kinase (MAPK) module, plays a critical role in diverse plant stress responses. Here, we functionally characterized biotic and abiotic stress-responsive MAPK genes, IbMPK3 and IbMPK6, from sweetpotato. IbMPK3/6 contain totally 11 MAPK conserved subdomains and the phosphorylating motif TEY. Bacterially expressed IbMPK3/6 could be autophosphorylated in vitro, and these proteins phosphorylated universal kinase substrate, such as myelin basic protein. IbMPK3/6 transcripts were expressed in leaf, stem, and root of sweetpotato cultivars with storage roots of various colors. IbMPK3 and IbMPK6 were induced by various biotic/abiotic stress treatments. Furthermore, the kinase activity of IbMPK3/6 was induced during early NaCl, SA, H2O2, and ABA treatment. IbMPK3/6 were predominantly localized to the nucleus. To determine the biological functions of IbMPK3/6, we transiently expressed the IbMPK genes in tobacco (Nicotiana benthamiana) leaves, which resulted in enhanced tolerance to bacterial pathogen and increased expression of pathogenesis-related (PR) genes. These data demonstrate that IbMPK3 and IbMPK6 play significant roles in plant responses to environmental stress.
Collapse
Affiliation(s)
- Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Sung-Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Seyeon Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
36
|
Gharat SA, Parmar S, Tambat S, Vasudevan M, Shaw BP. Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes. PLoS One 2016; 11:e0163485. [PMID: 27682829 PMCID: PMC5040429 DOI: 10.1371/journal.pone.0163485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/10/2016] [Indexed: 01/02/2023] Open
Abstract
Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling.
Collapse
Affiliation(s)
- Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Shaifaly Parmar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Subodh Tambat
- Bionivid Technology Private Limited, 3rd Floor, 4C-209, 4th Cross, Near New Horizon College, Kasturi Nagar, Bangalore, 560043, Karnataka, India
| | - Madavan Vasudevan
- Bionivid Technology Private Limited, 3rd Floor, 4C-209, 4th Cross, Near New Horizon College, Kasturi Nagar, Bangalore, 560043, Karnataka, India
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
37
|
Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q. A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. PLANTA 2016; 243:783-97. [PMID: 26691387 DOI: 10.1007/s00425-015-2443-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/08/2015] [Indexed: 05/21/2023]
Abstract
IbZFP1, encoding a Cys 2/His 2 zinc finger protein gene from sweetpotato, enhances salt and drought tolerance in transgenic Arabidopsis by regulating ABA signaling pathway, proline biosynthesis, stress responses and ROS scavenging. In plants, Cys2/His2 zinc finger proteins play important roles in regulating the growth and development or responses to abiotic stresses. In this study, a novel Cys2/His2 zinc finger protein gene, named IbZFP1, was isolated from drought-tolerant sweetpotato [Ipomoea batatas (L.) Lam.] line Xu55-2. Subcellular localization analysis in onion epidermal cells indicated that IbZFP1 was localized to the nucleus. Expression analysis in yeast showed that the full length of IbZFP1 exhibited transcriptional activation. Expression of IbZFP1 was induced by NaCl, polyethylene glycol and abscisic acid (ABA). Overexpression of IbZFP1 significantly enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of IbZFP1 up-regulated the genes involved in ABA signaling pathway, proline biosynthesis, stress responses, and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of 9-cis-epoxycarotenoid dioxygenase, pyrroline-5-carboxylate synthase, superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase were also increased. Further component analyses indicated that the significant increase of ABA, proline, soluble sugar and total chlorophyll content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. The overall results demonstrate the explicit role of IbZFP1 in conferring salt and drought tolerance in transgenic Arabidopsis plants. The IbZFP1 gene has the potential to be used to enhance the tolerance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Feibing Wang
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wenjie Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Hong Zhu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Weili Kong
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
38
|
Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q. A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. PLANTA 2016; 243:783-797. [PMID: 26691387 DOI: 10.1007/s00425-015-2443-2449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/08/2015] [Indexed: 05/23/2023]
Abstract
IbZFP1, encoding a Cys 2/His 2 zinc finger protein gene from sweetpotato, enhances salt and drought tolerance in transgenic Arabidopsis by regulating ABA signaling pathway, proline biosynthesis, stress responses and ROS scavenging. In plants, Cys2/His2 zinc finger proteins play important roles in regulating the growth and development or responses to abiotic stresses. In this study, a novel Cys2/His2 zinc finger protein gene, named IbZFP1, was isolated from drought-tolerant sweetpotato [Ipomoea batatas (L.) Lam.] line Xu55-2. Subcellular localization analysis in onion epidermal cells indicated that IbZFP1 was localized to the nucleus. Expression analysis in yeast showed that the full length of IbZFP1 exhibited transcriptional activation. Expression of IbZFP1 was induced by NaCl, polyethylene glycol and abscisic acid (ABA). Overexpression of IbZFP1 significantly enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of IbZFP1 up-regulated the genes involved in ABA signaling pathway, proline biosynthesis, stress responses, and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of 9-cis-epoxycarotenoid dioxygenase, pyrroline-5-carboxylate synthase, superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase were also increased. Further component analyses indicated that the significant increase of ABA, proline, soluble sugar and total chlorophyll content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. The overall results demonstrate the explicit role of IbZFP1 in conferring salt and drought tolerance in transgenic Arabidopsis plants. The IbZFP1 gene has the potential to be used to enhance the tolerance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Feibing Wang
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wenjie Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Hong Zhu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Weili Kong
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
39
|
Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:592-602. [PMID: 26011089 PMCID: PMC11389020 DOI: 10.1111/pbi.12402] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 05/06/2023]
Abstract
Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Feibing Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zengzhi Si
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jinxi Huo
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lei Xing
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanyan An
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|