1
|
Zambella E, Peruffo B, Guarano A, Inversetti A, Di Simone N. The Hidden Relationship between Intestinal Microbiota and Immunological Modifications in Preeclampsia Pathogenesis. Int J Mol Sci 2024; 25:10099. [PMID: 39337584 PMCID: PMC11432041 DOI: 10.3390/ijms251810099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Preeclampsia is a multifactorial gestational syndrome characterized by increased blood pressure during pregnancy associated with multiorgan involvement. The impact of this disease on maternal and neonatal health is significant, as it can lead to various fetal comorbidities and contribute to the development of maternal comorbidities later in life. Consistent evidence has shown that the microbiota acts as a regulator of the immune system, and it may, therefore, influence the development of preeclampsia by modulating immune factors. This narrative review aims to investigate the role of the immune system in the pathogenesis of preeclampsia and to summarize the most recent literature on the possible link between preeclampsia and alterations in the intestinal microbiota. To this end, we conducted a literature search, aiming to perform a narrative review, on PubMed and Embase from January 1990 to March 2024, focusing on the latest studies that highlight the main differences in microbial composition between patients with and without preeclampsia, as well as the effects of microbial metabolites on the immune system. From the review of 28 studies assessing the intestinal microbiota in preeclamptic women, preeclampsia could be associated with a state of dysbiosis. Moreover, these patients showed higher plasmatic levels of endotoxin, pro-inflammatory cytokines, and T helper 17 cells; however, the findings on specific microbes and metabolites that could cause immune imbalances in preeclampsia are still preliminary.
Collapse
Affiliation(s)
- Enrica Zambella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
| | - Beatrice Peruffo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
| | - Alice Guarano
- Humanitas San Pio X, Via Francesco Nava 31, 20159 Milan, Italy;
| | - Annalisa Inversetti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; (E.Z.); (B.P.); (A.I.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
2
|
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11:1333005. [PMID: 38993521 PMCID: PMC11236727 DOI: 10.3389/fcvm.2024.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and has become a global public health concern. Although hypertension results from a combination of factors, the specific mechanism is still unclear. However, increasing evidence suggests that gut microbiota is closely associated with the development of hypertension. We provide a summary of the composition and physiological role of gut microbiota. We then delve into the mechanism of gut microbiota and its metabolites involved in the occurrence and development of hypertension. Finally, we review various regimens for better-controlling hypertension from the diet, exercise, drugs, antibiotics, probiotics, and fecal transplantation perspectives.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Su W, Yang Y, Zhao X, Cheng J, Li Y, Wu S, Wu C. Potential efficacy and mechanism of eight mild-natured and bitter-flavored TCMs based on gut microbiota: A review. CHINESE HERBAL MEDICINES 2024; 16:42-55. [PMID: 38375054 PMCID: PMC10874767 DOI: 10.1016/j.chmed.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 08/04/2023] [Indexed: 02/21/2024] Open
Abstract
The mild-natured and bitter-flavored traditional Chinese medicines (MB-TCMs) are an important class of TCMs that have been widely used in clinical practice and recognized as safe long-term treatments for chronic diseases. However, as an important class of TCMs, the panorama of pharmacological effects and the mechanisms of MB-TCMs have not been systemically reviewed. Compelling studies have shown that gut microbiota can mediate the therapeutic activity of TCMs and help to elucidate the core principles of TCM medicinal theory. In this systematic review, we found that MB-TCMs commonly participated in the modulation of metabolic syndrome, intestinal inflammation, nervous system disease and cardiovascular system disease in association with promoting the growth of beneficial bacteria Bacteroides, Akkermansia, Lactobacillus, Bifidobacterium, Roseburia as well as inhibiting the proliferation of harmful bacteria Helicobacter, Enterococcus, Desulfovibrio and Escherichia-Shigella. These alterations, correspondingly, enhance the generation of protective metabolites, mainly including short-chain fatty acids (SCFAs), bile acid (BAs), 5-hydroxytryptamine (5-HT), indole and gamma-aminobutyric acid (GABA), and inhibit the generation of harmful metabolites, such as proinflammatory factors trimethylamine oxide (TAMO) and lipopolysaccharide (LPS), to further exert multiplicative effects for the maintenance of human health through several different signaling pathways. Altogether, this present review has attempted to comprehensively summarize the relationship between MB-TCMs and gut microbiota by establishing the TCMs-gut microbiota-metabolite-signaling pathway-diseases axis, which may provide new insight into the study of TCM medicinal theories and their clinical applications.
Collapse
Affiliation(s)
- Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiale Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Guo Q, Zou Y, Chang Y, Zhong Y, Cheng L, Jia L, Zhai L, Bai Y, Sun Q, Wei W. Transcriptomic Evidence of Hypothalamus for Maternal Fructose Exposure Induced Offspring Hypertension through AT1R/TLR4 Pathway. J Nutr Biochem 2023:109373. [PMID: 37178812 DOI: 10.1016/j.jnutbio.2023.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Maternal fructose exposure during pregnancy and lactation has been shown to contribute to hypertension in offspring, with long-term effects on hypothalamus development. However, the underlying mechanisms remain unclear. In this study, we used the tail-cuff method to evaluate the effects of maternal fructose drinking exposure on offspring blood pressure levels at postpartum day 21 (PND21) and postpartum day 60 (PND60). We employed Oxford Nanopore Technologies (ONT) full-length RNA sequencing to investigate the developmental programming of the PND60 offspring's hypothalamus and confirmed the presence of the AT1R/TLR4 pathway using western blot and immunofluorescence. Our findings demonstrated that maternal fructose exposure significantly increased blood pressure in PND60 offspring but not in PND21 offspring. Additionally, we observed transcriptome-wide alterations in the hypothalamus of PND60 offspring following maternal fructose exposure. Overall, our study provides evidence that maternal fructose exposure during pregnancy and lactation may alter the transcriptome-wide of offspring hypothalamus and activate the AT1R/TLR4 pathway, leading to hypertension. These findings may have important implications for the prevention and treatment of hypertension-related diseases in offspring exposed to excessive fructose during pregnancy and lactation.
Collapse
Affiliation(s)
- Qing Guo
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yuchen Zou
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yidan Chang
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yongyong Zhong
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lin Cheng
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lihong Jia
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Lingling Zhai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Yinglong Bai
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Qi Sun
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China
| | - Wei Wei
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, P. R. China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
6
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
7
|
Issotina Zibrila A, Wang Z, Sangaré-Oumar MM, Zeng M, Liu X, Wang X, Zeng Z, Kang YM, Liu J. Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sci 2022; 320:121351. [PMID: 36592790 DOI: 10.1016/j.lfs.2022.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Hypertension remains a threat for society due to its unknown causes, preventing proper management, for the growing number of patients, for its state as a high-risk factor for stroke, cardiac and renal complication and as cause of disability. Data from clinical and animal researches have suggested the important role of many soluble factors in the pathophysiology of hypertension through their neuro-stimulating effects. Central targets of these factors are of molecular, cellular and structural nature. Preeclampsia (PE) is characterized by high level of soluble factors with strong pro-hypertensive activity and includes immune factors such as proinflammatory cytokines (PICs). The potential neural effect of those factors in PE is still poorly understood. Shedding light into the potential central effect of the soluble factors in PE may advance our current comprehension of the pathophysiology of hypertension in PE, which will contribute to better management of the disease. In this paper, we summarized existing data in respect of hypothesis of this review, that is, the existence of the neural component in the pathophysiology of the hypertension in PE. Future studies would address this hypothesis to broaden our understanding of the pathophysiology of hypertension in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China; Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, PR China
| | - Machioud Maxime Sangaré-Oumar
- Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
8
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
9
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
10
|
Li YF, Ren X, Zhang L, Wang YH, Chen T. Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front Aging Neurosci 2022; 14:901117. [PMID: 35978950 PMCID: PMC9376354 DOI: 10.3389/fnagi.2022.901117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that threatens life and health of people. It poses a great economic burden on the healthcare system. Thus, seeking effective therapy to cure a patient with TBI is a matter of great urgency. Microglia are macrophages in the central nervous system (CNS) and play an important role in neuroinflammation. When TBI occurs, the human body environment changes dramatically and microglia polarize to one of two different phenotypes: M1 and M2. M1 microglia play a role in promoting the development of inflammation, while M2 microglia play a role in inhibiting inflammation. How to regulate the polarization direction of microglia is of great significance for the treatment of patients with TBI. The polarization of microglia involves many cellular signal transduction pathways, such as the TLR-4/NF-κB, JAK/STAT, HMGB1, MAPK, and PPAR-γ pathways. These provide a theoretical basis for us to seek therapeutic drugs for the patient with TBI. There are several drugs that target these pathways, including fingolimod, minocycline, Tak-242 and erythropoietin (EPO), and CSF-1. In this study, we will review signaling pathways involved in microglial polarization and medications that influence this process.
Collapse
Affiliation(s)
| | | | | | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| |
Collapse
|
11
|
Fernández-Arjona MDM, León-Rodríguez A, Grondona JM, López-Ávalos MD. Microbial neuraminidase induces TLR4-dependent long-term immune priming in the brain. Front Cell Neurosci 2022; 16:945229. [PMID: 35966200 PMCID: PMC9366060 DOI: 10.3389/fncel.2022.945229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory explains the plasticity of immune responses after repeated immune stimulation, leading to either enhanced or suppressed immune responses. This process has been extensively reported in peripheral immune cells and also, although modestly, in the brain. Here we explored two relevant aspects of brain immune priming: its persistence over time and its dependence on TLR receptors. For this purpose, we used an experimental paradigm consisting in applying two inflammatory stimuli three months apart. Wild type, toll-like receptor (TLR) 4 and TLR2 mutant strains were used. The priming stimulus was the intracerebroventricular injection of neuraminidase (an enzyme that is present in various pathogens able to provoke brain infections), which triggers an acute inflammatory process in the brain. The second stimulus was the intraperitoneal injection of lipopolysaccharide (a TLR4 ligand) or Pam3CSK4 (a TLR2 ligand). One day after the second inflammatory challenge the immune response in the brain was examined. In wild type mice, microglial and astroglial density, as well as the expression of 4 out of 5 pro-inflammatory genes studied (TNFα, IL1β, Gal-3, and NLRP3), were increased in mice that received the double stimulus compared to those exposed only to the second one, which were initially injected with saline instead of neuraminidase. Such enhanced response suggests immune training in the brain, which lasts at least 3 months. On the other hand, TLR2 mutants under the same experimental design displayed an enhanced immune response quite similar to that of wild type mice. However, in TLR4 mutant mice the response after the second immune challenge was largely dampened, indicating the pivotal role of this receptor in the establishment of immune priming. Our results demonstrate that neuraminidase-induced inflammation primes an enhanced immune response in the brain to a subsequent immune challenge, immune training that endures and that is largely dependent on TLR4 receptor.
Collapse
Affiliation(s)
- María del Mar Fernández-Arjona
- Laboratorio de Medicina Regenerativa, Grupo de investigación en Neuropsicofarmacología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Ana León-Rodríguez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús M. Grondona
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - María Dolores López-Ávalos
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Laboratorio de Fisiología Animal, Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- *Correspondence: María Dolores López-Ávalos
| |
Collapse
|
12
|
Owen A, Patel JM, Parekh D, Bangash MN. Mechanisms of Post-critical Illness Cardiovascular Disease. Front Cardiovasc Med 2022; 9:854421. [PMID: 35911546 PMCID: PMC9334745 DOI: 10.3389/fcvm.2022.854421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jaimin M. Patel
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dhruv Parekh
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mansoor N. Bangash
- Department of Critical Care, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Mansoor N. Bangash
| |
Collapse
|
13
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
14
|
Lin CH, Wu JS, Hsieh PC, Chiu V, Lan CC, Kuo CY. Wild Bitter Melon Extract Abrogates Hypoxia-Induced Cell Death via the Regulation of Ferroptosis, ER Stress, and Apoptosis in Microglial BV2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1072600. [PMID: 35449822 PMCID: PMC9017512 DOI: 10.1155/2022/1072600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Microglial cells are well-known phagocytic cells that are resistant to the central nervous system (CNS) and play an important role in the maintenance of CNS homeostasis. Activated microglial cells induce neuroinflammation under hypoxia and typically cause neuronal damage in CNS diseases. In this study, we propose that wild bitter melon extract (WBM) has a protective effect on hypoxia-induced cell death via regulation of ferroptosis, ER stress, and apoptosis. The results demonstrated that hypoxia caused microglial BV-2 the accumulation of lipid ROS, ferroptosis, ER stress, and apoptosis. In this study, we investigated the pharmacological effects of WBM on BV-2 cells following hypoxia-induced cell death. The results indicated that WBM reversed hypoxia-downregulated antiferroptotic molecules Gpx4 and SLC7A11, as well as upregulated the ER stress markers CHOP and Bip. Moreover, WBM alleviated hypoxia-induced apoptosis via the regulation of cleaved-caspase 3, Bax, and Bcl-2. Our results suggest that WBM may be a good candidate for preventing CNS disorders in the future.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Department of Internal Medicine, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiunn-Sheng Wu
- Division of Infectious Diseases, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Valeria Chiu
- Division of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| | - Chou-Chin Lan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City 231, Taiwan
| |
Collapse
|
15
|
Huang Q, Cai G, Liu T, Liu Z. Relationships Among Gut Microbiota, Ischemic Stroke and Its Risk Factors: Based on Research Evidence. Int J Gen Med 2022; 15:2003-2023. [PMID: 35795301 PMCID: PMC9252587 DOI: 10.2147/ijgm.s353276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Abstract
Stroke is a highly lethal disease and disabling illness while ischemic stroke accounts for the majority of stroke. It has been found that inflammation plays a key role in the initiation and progression of stroke, and atherosclerotic plaque rupture is considered to be the leading cause of ischemic stroke. Furthermore, chronic inflammatory diseases, such as obesity, type 2 diabetes mellitus (T2DM) and hypertension, are also considered as the high-risk factors for stroke. Recently, the topic on how gut microbiota affects human health has aroused great concern. The initiation and progression of ischemic stroke has been found to have close relation with gut microbiota dysbiosis. Hence, this manuscript briefly summarizes the roles of gut microbiota in ischemic stroke and its related risk factors, and the practicability of preventing and alleviating ischemic stroke by reconstructing gut microbiota.
Collapse
Affiliation(s)
- Qinhong Huang
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Guannan Cai
- First Clinical School, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
- Correspondence: Ting Liu; Zhihua Liu, Email ;
| | - Zhihua Liu
- Department of Anorectal Surgery, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, People’s Republic of China
| |
Collapse
|
16
|
Han TH, Lee HW, Kang EA, Song MS, Lee SY, Ryu PD. Microglial activation induced by LPS mediates excitation of neurons in the hypothalamic paraventricular nucleus projecting to the rostral ventrolateral medulla. BMB Rep 2021. [PMID: 34814975 PMCID: PMC8728541 DOI: 10.5483/bmbrep.2021.54.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglia are known to be activated in the hypothalamic para-ventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM). Systemic injection of LPS induced microglial activation in the PVN, increased the frequency of spontaneous firing activity of PVN-RVLM neurons, reduced GABAergic inputs into these neurons, and increased plasma NE levels and heart rate. Systemic minocycline injection blocked all the observed LPS-induced effects. Our results indicate that LPS increases the firing rate and decreases GABAergic transmission in PVN-RVLM neurons associated with sympathetic outflow and the alteration is largely attributed to the activation of microglia. Our findings provide some insights into the role of microglial activation in regulating the activity of PVN-RVLM neurons associated with modulation of sympathetic outflow in cardiovascular diseases.
Collapse
Affiliation(s)
- Tae Hee Han
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Heow Won Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Eun A Kang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
17
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
de Vicente LG, Muñoz VR, Pinto AP, Rovina RL, da Rocha AL, Marafon BB, Tavares MEDA, Teixeira GR, Ferrari GD, Alberici LC, Frantz FG, Simabuco FM, Ropelle ER, de Moura LP, Cintra DE, Pauli JR, da Silva ASR. TLR4 deletion increases basal energy expenditure and attenuates heart apoptosis and ER stress but mitigates the training-induced cardiac function and performance improvement. Life Sci 2021; 285:119988. [PMID: 34592238 DOI: 10.1016/j.lfs.2021.119988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Strategies capable of attenuating TLR4 can attenuate metabolic processes such as inflammation, endoplasmic reticulum (ER) stress, and apoptosis in the body. Physical exercise has been a cornerstone in suppressing inflammation and dysmetabolic outcomes caused by TRL4 activation. Thus, the present study aimed to evaluate the effects of a chronic physical exercise protocol on the TLR4 expression and its repercussion in the inflammation, ER stress, and apoptosis pathways in mice hearts. Echocardiogram, RT-qPCR, immunoblotting, and histological techniques were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (TLR4 KO) mice submitted to a 4-week physical exercise protocol. Moreover, we performed a bioinformatics analysis to expand the relationship of Tlr4 mRNA in the heart with inflammation, ER stress, and apoptosis-related genes of several isogenic strains of BXD mice. The TLR4 KO mice had higher energy expenditure and heart rate in the control state but lower activation of apoptosis and ER stress pathways. The bioinformatics analysis reinforced these data. In the exercised state, the WT mice improved performance and cardiac function. However, these responses were blunted in the KO group. In conclusion, TLR4 has an essential role in the inhibition of apoptosis and ER stress pathways, as well as in the training-induced beneficial adaptations.
Collapse
Affiliation(s)
- Larissa G de Vicente
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vitor R Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Bruno B Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Eduarda de A Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Gustavo D Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-FCFRP USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-FCFRP USP, Ribeirao Preto, Sao Paulo, Brazil
| | - Fabiani G Frantz
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Fernando M Simabuco
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Sloan RP, Cole SW. Parasympathetic neural activity and the reciprocal regulation of innate antiviral and inflammatory genes in the human immune system. Brain Behav Immun 2021; 98:251-256. [PMID: 34400237 PMCID: PMC8511100 DOI: 10.1016/j.bbi.2021.08.217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/18/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The vagus nerve mediates parasympathetic nervous system control of peripheral physiological processes including cardiovascular activity and immune response. In mice, tonic vagal activation down-regulates inflammation via nicotinic acetylcholine receptor-mediated inhibition of the pro-inflammatory transcription factor NF-κB in monocyte/macrophages. Because Type I interferon and pro-inflammatory genes are regulated reciprocally at the level of transcription factor activation and cell differentiation, we hypothesized that vagal activity would up-regulate Type I interferon response genes concurrently with inflammatory downregulation in human immune cells. We mapped empirical individual differences in the circulating leukocyte transcriptome and vagal activity indexed by high frequency (0.15-0.40 Hz) heart rate variability (HF-HRV) in 380 participants in the Midlife in the US study. Here we show that promoter-based bioinformatics analyses linked greater HF-HRV to reduced NF-κB activity and increased activity of IRF transcription factors involved in Type I interferon response (independent of β-antagonists, BMI, smoking, heavy alcohol consumption, and demographic factors). Transcript origin analyses implicated myeloid lineage immune cells as targets, representing per-cell alterations in gene transcription as HF-HRV was not associated with differential prevalence of leukocyte subsets. These findings support the concept of parasympathetic inhibition of pro-inflammatory gene expression in humans and up-regulation of Type I interferons that could augment host defense against viral infections.
Collapse
Affiliation(s)
- Richard P Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, 622 West 168(th)St., PH1540, New York, NY 10032, USA; New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, USA.
| | - Steve W Cole
- Department of Psychiatry & Biobehavioral Sciences, Department of Medicine, Division of Hematology-Oncology, Norman Cousins Center, Jonsson Comprehensive Cancer Center, University of California Los Angeles, 11-934 Factor Building, Los Angeles, CA 90095-1678, USA.
| |
Collapse
|
20
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
21
|
Canale MP, Noce A, Di Lauro M, Marrone G, Cantelmo M, Cardillo C, Federici M, Di Daniele N, Tesauro M. Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review. Nutrients 2021; 13:nu13041162. [PMID: 33915885 PMCID: PMC8066853 DOI: 10.3390/nu13041162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a cluster of the most dangerous cardiovascular (CV) risk factors including visceral obesity, insulin resistance, hyperglycemia, alterations in lipid metabolism and arterial hypertension (AH). In particular, AH plays a key role in the complications associated with metabolic syndrome. High salt intake is a well-known risk factor for AH and CV diseases. Vasoconstriction, impaired vasodilation, extracellular volume expansion, inflammation, and an increased sympathetic nervous system (SNS) activity are the mechanisms involved in the pathogenesis of AH, induced by Western diet. Gut dysbiosis in AH is associated with reduction of short chain fatty acid-producing bacteria: acetate, butyrate and propionate, which activate different pathways, causing vasoconstriction, impaired vasodilation, salt and water retention and a consequent high blood pressure. Moreover, increased trimethylamine N-oxide and lipopolysaccharides trigger chronic inflammation, which contributes to endothelial dysfunction and target organs damage. Additionally, a high salt-intake diet impacts negatively on gut microbiota composition. A bidirectional neuronal pathway determines the “brain–gut” axis, which, in turn, influences blood pressure levels. Then, we discuss the possible adjuvant novel treatments related to gut microbiota modulation for AH control.
Collapse
Affiliation(s)
- Maria Paola Canale
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.P.C.); (M.F.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- Correspondence: (A.N.); (M.T.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2982 (M.T.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Maria Cantelmo
- School of Specialization in Geriatrics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Carmine Cardillo
- Department of Internal Medicine and Geriatrics, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.P.C.); (M.F.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
| | - Manfredi Tesauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (G.M.); (N.D.D.)
- Correspondence: (A.N.); (M.T.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2982 (M.T.)
| |
Collapse
|
22
|
Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci 2021; 22:3451. [PMID: 33810594 PMCID: PMC8037648 DOI: 10.3390/ijms22073451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Essential hypertension (EH) is a highly heterogenous disease with a complex etiology. Recent evidence highlights the significant contribution of subclinical inflammation, triggered and sustained by excessive innate immune system activation in the pathogenesis of the disease. Toll-like receptors (TLRs) have been implied as novel effectors in this inflammatory environment since they can significantly stimulate the production of pro-inflammatory cytokines, the migration and proliferation of smooth muscle cells and the generation of reactive oxygen species (ROS), facilitating a low-intensity inflammatory background that is evident from the very early stages of hypertension. Furthermore, the net result of their activation is oxidative stress, endothelial dysfunction, vascular remodeling, and finally, vascular target organ damage, which forms the pathogenetic basis of EH. Importantly, evidence of augmented TLR expression and activation in hypertension has been documented not only in immune but also in several non-immune cells located in the central nervous system, the kidneys, and the vasculature which form the pathogenetic core systems operating in hypertensive disease. In this review, we will try to highlight the contribution of innate immunity in the pathogenesis of hypertension by clarifying the deleterious role of TLR signaling in promoting inflammation and facilitating hypertensive vascular damage.
Collapse
Affiliation(s)
- Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eleni Gavriilaki
- Hematology Department, Bone Marrow Transplantation Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece; (A.L.); (S.D.); (E.G.)
| |
Collapse
|
23
|
He M, Qian K, Zhang Y, Huang XF, Deng C, Zhang B, Gao G, Li J, Xie H, Sun T. Olanzapine-Induced Activation of Hypothalamic Astrocytes and Toll-Like Receptor-4 Signaling via Endoplasmic Reticulum Stress Were Related to Olanzapine-Induced Weight Gain. Front Neurosci 2021; 14:589650. [PMID: 33584172 PMCID: PMC7874166 DOI: 10.3389/fnins.2020.589650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The antipsychotic drug olanzapine is associated with serious obesity side effects. Hypothalamic astrocytes and associated toll-like receptor-4 (TLR4) signaling play an essential role in obesity pathogenesis. This study investigated the effect of olanzapine on astrocytes and TLR4 signaling both in vitro and in the rat hypothalamus and their potential role in olanzapine-induced weight gain. We found that olanzapine treatment for 24 h dose-dependently increased cell viability, increased the protein expression of astrocyte markers including glial fibrillary acidic protein (GFAP) and S100 calcium binding protein B (S100B), and activated TLR4 signaling in vitro. In rats, 8- and 36-day olanzapine treatment caused weight gain accompanied by increased GFAP and S100B protein expression and activated TLR4 signaling in the hypothalamus. These effects still existed in pair-fed rats, suggesting that these effects were not secondary effects of olanzapine-induced hyperphagia. Moreover, treatment with an endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced weight gain and ameliorated olanzapine-induced changes in hypothalamic GFAP, S100B, and TLR4 signaling. The expression of GFAP, S100B, and TLR4 correlated with food intake and weight gain. These findings suggested that olanzapine-induced increase in hypothalamic astrocytes and activation of TLR4 signaling were related to ER stress, and these effects may be related to olanzapine-induced obesity.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Baohua Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
24
|
Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients 2020; 12:E2982. [PMID: 33003455 PMCID: PMC7601560 DOI: 10.3390/nu12102982] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota and its metabolites such as short chain fatty acids (SCFA), lipopolysaccharides (LPS), and trimethylamine-N-oxide (TMAO) impact cardiovascular health. In this review, we discuss how gut microbiota and gut metabolites can affect hypertension and atherosclerosis. Hypertensive patients were shown to have lower alpha diversity, lower abundance of SCFA-producing microbiota, and higher abundance of gram-negative bacteria, which are a source of LPS. Animal studies point towards a direct role for SCFAs in blood pressure regulation and show that LPS has pro-inflammatory effects. Translocation of LPS into the systemic circulation is a consequence of increased gut permeability. Atherosclerosis, a multifactorial disease, is influenced by the gut microbiota through multiple pathways. Many studies have focused on the pro-atherogenic role of TMAO, however, it is not clear if this is a causal factor. In addition, gut microbiota play a key role in bile acid metabolism and some interventions targeting bile acid receptors tend to decrease atherosclerosis. Concluding, gut microbiota affect hypertension and atherosclerosis through many pathways, providing a wide range of potential therapeutic targets. Challenges ahead include translation of findings and mechanisms to humans and development of therapeutic interventions that target cardiovascular risk by modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Andrei Prodan
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Majon Muller
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
| |
Collapse
|
25
|
Ao T, Kikuta J, Sudo T, Uchida Y, Kobayashi K, Ishii M. Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation. Int Immunol 2020; 32:727-736. [DOI: 10.1093/intimm/dxaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Abstract
The sympathetic nervous system plays critical roles in the differentiation, maturation and recruitment of immune cells under homeostatic conditions, and in responses to environmental stimuli, although its role in the migratory control of immune cells during acute inflammation remains unclear. In this study, using an advanced intravital bone imaging system established in our laboratory, we demonstrated that the sympathetic nervous system locally regulates neutrophil egress from the bone marrow for mobilization to inflammatory foci. We found that sympathetic neurons were located close to blood vessels in the bone marrow cavity; moreover, upon lipopolysaccharide (LPS) administration, local sympathectomy delayed neutrophil egress from the bone marrow and increased the proportion of neutrophils that remained in place. We also showed that vascular endothelial cells produced C-X-C motif chemokine ligand 1 (CXCL1), which is responsible for neutrophil egress out of the bone marrow. Its expression was up-regulated during acute inflammation, and was suppressed by β-adrenergic receptor blockade, which was accompanied with inhibition of neutrophil egress into the systemic circulation. Furthermore, systemic β-adrenergic signaling blockade decreased the recruitment of neutrophils in the lung under conditions of acute systemic inflammation. Taken together, the results of this study first suggested a new regulatory system, wherein local sympathetic nervous activation promoted neutrophil egress by enhancing Cxcl1 expression in bone marrow endothelial cells in a β-adrenergic signaling-dependent manner, contributing to the recruitment of neutrophils at the onset of inflammation in vivo.
Collapse
Affiliation(s)
- Tomoka Ao
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takao Sudo
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institute of Natural Sciences, Aichi, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Butler MJ, Perrini AA, Eckel LA. Estradiol treatment attenuates high fat diet-induced microgliosis in ovariectomized rats. Horm Behav 2020; 120:104675. [PMID: 31923417 PMCID: PMC7117977 DOI: 10.1016/j.yhbeh.2020.104675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/20/2019] [Accepted: 12/28/2019] [Indexed: 01/03/2023]
Abstract
Consumption of a high fat diet (HFD) increases circulating free fatty acids, which can enter the brain and promote a state of microgliosis, as defined by a change in microglia number and/or morphology. Most studies investigating diet-induced microgliosis have been conducted in male rodents despite well-documented sex differences in the neural control of food intake and neuroimmune signaling. This highlights the need to investigate how sex hormones may modulate the behavioral and cellular response to HFD consumption. Estradiol is of particular interest since it exerts a potent anorexigenic effect and has both anti-inflammatory and neuroprotective effects in the brain. As such, the aim of the current study was to investigate whether estradiol attenuates the development of HFD-induced microgliosis in female rats. Estradiol- and vehicle-treated ovariectomized rats were fed either a low-fat chow diet or a 60% HFD for 4 days, after which they were perfused and brain sections were processed via immunohistochemistry for microglia-specific Iba1 protein. Four days of HFD consumption promoted microgliosis, as measured via an increase in the number of microglia in the arcuate nucleus (ARC) of the hypothalamus and nucleus of the solitary tract (NTS), and a decrease in microglial branching in the ARC, NTS, lateral hypothalamus (LH), and ventromedial hypothalamus. Estradiol replacement attenuated the HFD-induced changes in microglia accumulation and morphology in the ARC, LH, and NTS. We conclude that estradiol has protective effects against HFD-induced microgliosis in a region-specific manner in hypothalamic and hindbrain areas implicated in the neural control of food intake.
Collapse
Affiliation(s)
- Michael J Butler
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, 43210, United States
| | - Alexis A Perrini
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States
| | - Lisa A Eckel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
27
|
Tlr4 participates in the responses of markers of apoptosis, inflammation, and ER stress to different acute exercise intensities in mice hearts. Life Sci 2020; 240:117107. [DOI: 10.1016/j.lfs.2019.117107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
|
28
|
Qi J, Yu XJ, Fu LY, Liu KL, Gao TT, Tu JW, Kang KB, Shi XL, Li HB, Li Y, Kang YM. Exercise Training Attenuates Hypertension Through TLR4/MyD88/NF-κB Signaling in the Hypothalamic Paraventricular Nucleus. Front Neurosci 2019; 13:1138. [PMID: 31708733 PMCID: PMC6821652 DOI: 10.3389/fnins.2019.01138] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Exercise training (ExT) is beneficial for cardiovascular health, yet the central mechanism by which aerobic ExT attenuates the hypertensive responses remains unclear. Activation of pro-inflammatory cytokines (PICs) in the hypothalamic paraventricular nucleus (PVN) is important for the sympathoexcitation and hypertensive response. We thus hypothesized that aerobic ExT can decrease the blood pressure of hypertensive rats by reducing the levels of PICs through TLR4/MyD88/NF-κB signaling within the PVN. To examine this hypothesis, two-kidney-one-clip (2K1C) renovascular hypertensive rats were assigned to two groups: sedentary or exercise training and examined for 8 weeks. At the same time, bilateral PVN infusion of vehicle or TAK242, a TLR4 inhibitor, was performed on both groups. As a result, the systolic blood pressure (SBP), renal sympathetic nerve activity (RSNA) and plasma levels of norepinephrine (NE), epinephrine (EPI) were found significantly increased in 2K1C hypertensive rats. These rats also had higher levels of Fra-like activity, NF-κB p65 activity, TLR4, MyD88, IL-1β and TNF-α in the PVN than SHAM rats. Eight weeks of ExT attenuated the RSNA and SBP, repressed the NF-κB p65 activity, and reduced the increase of plasma levels of NE, EPI, and the expression of Fra-like, TLR4, MyD88, IL-1β and TNF-α in the PVN of 2K1C rats. These findings are highly similar to the results in 2K1C rats with bilateral PVN infusions of TLR4 inhibitor (TAK242). This suggests that 8 weeks of aerobic ExT may decrease blood pressure in hypertensive rats by reducing the PICs activation through TLR4/MyD88/NF-κB signaling within the PVN, and thus delays the progression of 2K1C renovascular hypertension.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Tian-Tian Gao
- School of Clinical Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Wei Tu
- School of Clinical Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
de Araújo EV, Carneiro dos Santos LA, Speretta GFF, Ferreira GDAH, de Luna Freire MO, de Santana DF, Carvalho‐Galvão A, Cruz JC, Costa-Silva JHD, Braga V, Brito Alves JL. Short‐ and long‐term effects of maternal dyslipidaemia on blood pressure and baroreflex sensitivity in male rat offspring. Clin Exp Pharmacol Physiol 2019; 47:27-37. [DOI: 10.1111/1440-1681.13174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Guilherme Fleury Fina Speretta
- Department of Physiological Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis Brazil
| | | | | | - David Filipe de Santana
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Alynne Carvalho‐Galvão
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - Josiane Campos Cruz
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - João Henrique da Costa-Silva
- Department of Physical Education and Sport Sciences Federal University of Pernambuco Vitória de Santo Antão Brazil
| | - Valdir Braga
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| | - José Luiz Brito Alves
- Department of Nutrition Health Sciences Centre Federal University of Paraíba João Pessoa Brazil
- Biotechnology Department Biotechnology Centre Federal University of Paraíba João Pessoa Brazil
| |
Collapse
|
30
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
31
|
TLR4 participates in sympathetic hyperactivity Post-MI in the PVN by regulating NF-κB pathway and ROS production. Redox Biol 2019; 24:101186. [PMID: 30978539 PMCID: PMC6460304 DOI: 10.1016/j.redox.2019.101186] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023] Open
Abstract
Sympathetic nerve hyperactivity is a primary reason for fatal ventricular arrhythmias (VAs) following myocardial infarction (MI). Pro-inflammatory cytokines produced in the paraventricular nucleus (PVN) post-MI are associated with sympathetic overexcitation; however, the precise mechanism needs further investigation. Our aim was to explore the mechanism of toll-like receptor 4 (TLR4) and its downstream molecular pathway in mediating sympathetic activity post-MI within the PVN. A rat MI model was developed via left anterior descending coronary artery ligation. TLR4 was primarily localized in microglia and increased markedly within the PVN at 3 days in MI rats. Sympathoexcitation also increased, as indicated by high levels of renal sympathetic nerve activity (RSNA) and norepinephrine (NE) concentration. TLR4 knockdown via shRNA microinjection to the PVN resulted in decreased activation of Fos protein (+) neurons in the PVN and peripheral sympathetic nerve activity. TLR4 knockdown also exhibited a lower arrhythmia score following programmed electrical stimulation than those treated with MI surgery only, indicating that the knockdown of TLR4 decreased the incidence of malignant ventricular arrhythmias following MI. LPS-induced inflammatory response was analyzed to explore the underlying mechanism of TLR4 in sympathetic hyperactivity. High levels of NF-κB protein, the pro-inflammatory cytokines IL-1β and TNF-α, and ROS production were observed in the LPS group. PVN-targeted injection of the NF-κB inhibitor PDTC attenuated NF-κB expression and sympathetic activity. Taken together, the results suggested that knockdown of microglial TLR4 within the PVN decreased sympathetic hyperactivity and subsequent VAs post-MI. The downstream NF-κB pathway and ROS production participated in the process. Interventions targeting TLR4 signaling in the PVN may be a novel approach to ameliorate the incidence of VAs post-MI.
Collapse
|
32
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
33
|
Chen J, Zhang M, Zhu M, Gu J, Song J, Cui L, Liu D, Ning Q, Jia X, Feng L. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1α/NF-κB signaling pathway. Food Funct 2018; 9:2386-2397. [PMID: 29594285 DOI: 10.1039/c7fo01406f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress-associated inflammation is a critical molecular mechanism involved in the pathogenesis of endothelial dysfunction (ED). Hence, strategies for alleviating ER stress-induced inflammation may be essential for the prevention of cardiovascular diseases. Paeoniflorin (PF), a bioactive compound from Paeonia lactiflora Pallas is known for its functional properties against vascular inflammation. However, to date, PF-mediated protection against ER stress-dependent inflammation has not been identified. Herein, we investigate the protective effect of PF on lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cell (HUVEC) injury and explore its underlying mechanism. The result of the cell viability assay indicates that PF promotes the cell survival rate in LPS-stimulated HUVECs. In addition, the LPS-induced over-production of inflammatory cytokines (interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1)) and ER stress markers (78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)) are significantly decreased by PF and the ER stress inhibitor 4-phenylbutric acid (4-PBA). The transmission electron microscopy (TEM) assay implies that the ultrastructural abnormalities in ER are reversed by PF treatment, which is similar to the protective effect of 4-PBA. Impressively, we find that the inositol-requiring enzyme 1α (IRE1α)/nuclear factor-kappa B (NF-κB) pathway is significantly activated and contributes to the progress of LPS-induced HUVEC injury by promoting inflammatory cytokine production. IRE1α siRNA, AEBSF (ATF6 inhibitor), GSK2656157 (PERK inhibitor), PDTC (NF-κB inhibitor) and thapsigargin (TG, IRE1 activator) are used to confirm the role of the IRE1α/NF-κB pathway in PF-mediated protection against LPS-induced HUVEC injury. Our findings indicate that PF has an inhibitory effect on endothelial injury. To summarize, PF might be a potential therapeutic agent to inhibit ER stress-associated vascular inflammation.
Collapse
Affiliation(s)
- Juan Chen
- School of Life Sciences, Anhui University, Hefei 230601, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct 2018; 8:4118-4128. [PMID: 29019365 DOI: 10.1039/c7fo00815e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Blueberries (BB) have been shown to improve insulin sensitivity and endothelial function in obese and pre-diabetic humans, and decrease oxidative stress and inflammation, and ameliorate cardio-renal damage in rodents. This indicates that blueberries have a systemic effect and are not limited to a particular organ system. In order for blueberries to exert beneficial effects on the whole body, the mechanism would logically have to operate through modulation of cellular humoral factors. OBJECTIVE This study investigated the role of blueberries in modulating immune cell levels and attenuating circulatory and monocyte inflammation and oxidative stress in metabolic syndrome (MetS) subjects. DESIGN A double-blind, randomized and placebo-controlled study was conducted in adults with MetS, in which they received a blueberry (22.5 g freeze-dried) or placebo smoothie twice daily for six weeks. Free radical production in the whole blood and monocytes, dendritic cell (DC) levels, expression of cytokines in monocytes and serum inflammatory markers were assessed pre- and post-intervention. RESULTS Baseline free radical levels in MetS subjects' samples were not different between groups. Treatment with blueberries markedly decreased superoxide and total reactive oxygen species (ROS) in whole blood and monocytes compared to the placebo (p ≤ 0.05). The baseline DC numbers in MetS subjects' samples in both groups were not different, however treatment with blueberries significantly increased myeloid DC (p ≤ 0.05) and had no effect on plasmacytoid cells. Blueberry treatment decreased monocyte gene expression of TNFα, IL-6, TLR4 and reduced serum GMCSF in MetS subjects when compared to the placebo treatment (p ≤ 0.05). CONCLUSIONS The findings of the current study demonstrate that blueberries exert immunomodulatory effects and attenuate oxidative stress and inflammation in adults with MetS.
Collapse
Affiliation(s)
- Anand R Nair
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
35
|
Winklewski PJ, Radkowski M, Demkow U. Neuroinflammatory mechanisms of hypertension: potential therapeutic implications. Curr Opin Nephrol Hypertens 2018; 25:410-6. [PMID: 27490783 DOI: 10.1097/mnh.0000000000000250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Inflammation of forebrain and hindbrain nuclei has recently been highlighted as an emerging factor in the pathogenesis of neurogenic hypertension. The aim of this review is to summarize the state of the art in this field and to discuss recently discovered pathophysiological mechanisms, opening new perspectives for therapeutic application. RECENT FINDINGS Microglia Toll-like receptor 4 causally links angiotensin II (AngII)-mediated microglia cell activation and oxidative stress within the hypothalamic paraventricular nucleus (PVN). Toll-like receptor 4 can also be activated by lipopolysaccharides. PVN infusion of nuclear factor κB inhibitor lowers the blood pressure and ameliorates cardiac hypertrophy. Ang-(1-7) exerts direct effects on microglia, causing a reduction in both baseline and prorenin-induced release of proinflammatory cytokines. A compromised blood-brain barrier (BBB) constitutes a complementary mechanism that exacerbates AngII-driven neurohumoral activation, contributing to the development of hypertension. SUMMARY PVN and BBB seem to be pivotal targets for therapeutic intervention in hypertension. Recent advances in imaging techniques enable visualization of the inflammatory state in microglia and BBB integrity in humans. AngII type I receptor blockers and AngII-converting enzyme inhibitors are the most likely candidates for controlled randomized trials in humans aimed at amelioration of brain inflammation in the forthcoming years.
Collapse
Affiliation(s)
- Pawel J Winklewski
- aInstitute of Human Physiology, Medical University of Gdansk, GdanskbDepartment of Immunopathology of Infectious and Parasitic DiseasescDepartment of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
36
|
Tohyama T, Saku K, Kawada T, Kishi T, Yoshida K, Nishikawa T, Mannoji H, Kamada K, Sunagawa K, Tsutsui H. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation. PLoS One 2018; 13:e0190830. [PMID: 29329321 PMCID: PMC5766102 DOI: 10.1371/journal.pone.0190830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Background Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Methods Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. Results In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. Conclusions LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed peripheral arc determines SNA and hemodynamics in LPS-induced acute inflammation.
Collapse
Affiliation(s)
- Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Mannoji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Kamada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Canudas AM, Pallàs M. Resveratrol modulates response against acute inflammatory stimuli in aged mouse brain. Exp Gerontol 2017; 102:3-11. [PMID: 29174969 DOI: 10.1016/j.exger.2017.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
With upcoming age, the capability to fight against harmful stimuli decreases and the organism becomes more susceptible to infections and diseases. Here, the objective was to demonstrate the effect of dietary resveratrol in aged mice in potentiating brain defenses against LipoPolySaccharide (LPS). Acute LPS injection induced a strong proinflammatory effect in 24-months-old C57/BL6 mice hippocampi, increasing InterLeukin (Il)-6, Tumor Necrosis Factor-alpha (Tnf-α), Il-1β, and C-X-C motif chemokine (Cxcl10) gene expression levels. Resveratrol induced higher expression in those cytokines regarding to LPS. Oxidative Stress (OS) markers showed not significant changes after LPS or resveratrol, although for resveratrol treated groups a slight increment in most of the parameters studies was observed, reaching signification for NF-kB protein levels and iNOS expression. However, Endoplasmic Reticulum (ER) stress markers demonstrated significant changes in resveratrol-treated mice after LPS treatment, specifically in eIF2α, BIP, and ATF4. Moreover, as described, resveratrol is able to inhibit the mechanistic Target of Rapamycin (mTOR) pathway and this effect could be linked to (eIF2α) phosphorylation and the increase in the expression of the previously mentioned proinflammatory genes as a response to LPS treatment in aged animals. In conclusion, resveratrol treatment induced a different cellular response in aged animals when they encountered acute inflammatory stimuli.
Collapse
Affiliation(s)
- V Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - C Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - V Izquierdo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - A Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - C Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, and IDIBAPS, 08036 Barcelona, Spain
| | - A M Canudas
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain
| | - M Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section), Institute of Neuroscience, CIBERNED, University of Barcelona, Avda. Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
38
|
Zhang WB, Zhang HY, Zhang Q, Jiao FZ, Zhang H, Wang LW, Gong ZJ. Glutamine ameliorates lipopolysaccharide-induced cardiac dysfunction by regulating the toll-like receptor 4/mitogen-activated protein kinase/nuclear factor-kB signaling pathway. Exp Ther Med 2017; 14:5825-5832. [PMID: 29285127 PMCID: PMC5740782 DOI: 10.3892/etm.2017.5324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022] Open
Abstract
The inflammatory response of sepsis induced by lipopolysaccharide (LPS) may result in irreversible cardiac dysfunction. Glutamine (GLN) has a multitude of pharmacological effects, including anti-inflammatory abilities. Previous studies have reported that GLN attenuated LPS-induced acute lung injury and intestinal mucosal injury. The present study investigated whether GLN exerts potential protective effects on LPS-induced cardiac dysfunction. Male Sprague-Dawley rats were divided into three groups (15 rats per group), including the control (saline-treated), LPS and LPS+GLN groups. Pretreatment with 1 g/kg GLN was provided via gavage for 5 days in the LPS+GLN group, while the control and LPS groups received the same volume of normal saline. On day 6, a cardiac dysfunction model was induced by administration of LPS (10 mg/kg). After 24 h, the cardiac functions of the rats that survived were detected by echocardiography and catheter-based measurements. The serum levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were detected by enzyme-linked immunosorbent assay, while the mRNA levels of toll-like receptor (TLR)4, TNF-α, IL-1β and IL-6 were examined by reverse transcription-quantitative polymerase chain reaction. The protein expression of TLR4, mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were also determined by western blot analysis. The results of echocardiography and catheter-based measurements revealed that GLN treatment attenuated cardiac dysfunction. GLN treatment also attenuated the serum and mRNA levels of the pro-inflammatory cytokines. In addition, the protein levels of TLR4, phosphorylated (p-)extracellular signal-regulated kinase, p-c-Jun N-terminal kinase and p-P38 were reduced upon GLN pretreatment. Furthermore, GLN pretreatment resulted in decreased activation of the NF-κB signaling pathway. In conclusion, GLN has a potential therapeutic effect in the protection against cardiac dysfunction mediated by sepsis through regulating the TLR4/MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
39
|
Li H, Teng X, Yang R, Guo Q, Xue H, Xiao L, Duan X, Tian D, Feng X, Wu Y. Hydrogen Sulfide Facilitates the Impaired Sensitivity of Carotid Sinus Baroreflex in Rats with Vascular Calcification. Front Pharmacol 2017; 8:629. [PMID: 28955233 PMCID: PMC5601057 DOI: 10.3389/fphar.2017.00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
Arterial baroreflex is a general mechanism maintaining cardiovascular homeostasis; its sensitivity is reduced in vascular calcification (VC). Hydrogen sulfide (H2S) treatment facilitates baroreflexive sensitivity in normal and hypertensive rats. Here, we aimed to detect the effect of H2S on baroreflexive sensitivity in rats with VC. The rat VC model was induced by vitamin D3 plus nicotine for 4 weeks. The sensitivity of baroreflex was detected by perfusing the isolated carotid sinus. VC was assessed by hematoxylin and eosin (H&E) staining, Ca2+ content and alkaline phosphatase (ALP) activity. Protein levels were detected by western blot analysis. Vitamin D3 plus nicotine induced structural disorder and elevated Ca2+ content in the aortic and carotid arterial wall and increased plasma ALP activity. In the calcified aorta and carotid artery, protein levels of contractile phenotype markers of vascular smooth muscle cells (VSMCs) were downregulated and that of osteoblast-like phenotype markers and endoplasmic reticulum stress (ERS) markers were upregulated. NaHS treatment ameliorated the histologic disorder and Ca2+ content in the calcified aorta and carotid artery, inhibited the elevated plasma ALP activity, and prevented the transformation of the VSMC phenotype and activation of ERS in rats with VC. Chronic NaHS treatment prevented the impairment of the baroreflex sensitivity and acute NaHS treatment dose-dependently improved the sensitivity in rats with VC. Our results suggested that H2S could directly facilitate the impairment of baroreflex in rats with VC and ameliorate VC, which might provide new target and strategy for regulation of the baroreflex and therapy of VC.
Collapse
Affiliation(s)
- Hui Li
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China.,Hebei Key Lab of Laboratory Animal Science, Hebei Medical UniversityShijiazhuang, China
| | - Rui Yang
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Xiaocui Duan
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Xiaohong Feng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical UniversityShijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei ProvinceShijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| |
Collapse
|
40
|
Glass MJ, Chan J, Pickel VM. Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 2017; 352:262-272. [PMID: 28385632 PMCID: PMC5522011 DOI: 10.1016/j.neuroscience.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 12/17/2022]
Abstract
The immune/inflammatory signaling molecule tumor necrosis factor α (TNFα) is an important mediator of both constitutive and plastic signaling in the brain. In particular, TNFα is implicated in physiological processes, including fever, energy balance, and autonomic function, known to involve the hypothalamic paraventricular nucleus (PVN). Many critical actions of TNFα are transduced by the TNFα type 1 receptor (TNFR1), whose activation has been shown to potently modulate classical neural signaling. There is, however, little known about the cellular sites of action for TNFR1 in the PVN. In the present study, high-resolution electron microscopic immunocytochemistry was used to demonstrate the ultrastructural distribution of TNFR1 in the PVN. Labeling for TNFR1 was found in somata and dendrites, and to a lesser extent in axon terminals and glia in the PVN. In dendritic profiles, TNFR1 was mainly present in the cytoplasm, and in association with presumably functional sites on the plasma membrane. Dendritic profiles expressing TNFR1 were contacted by axon terminals, which formed non-synaptic appositions, as well as excitatory-type and inhibitory-type synaptic specializations. A smaller population of TNFR1-labeled axon terminals making non-synaptic appositions, and to a lesser extent synaptic contacts, with unlabeled dendrites was also identified. These findings indicate that TNFR1 is structurally positioned to modulate postsynaptic signaling in the PVN, suggesting a mechanism whereby TNFR1 activation contributes to cardiovascular and other autonomic functions.
Collapse
Affiliation(s)
- Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States.
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
41
|
Ogundele OM, Lee CC, Francis J. Thalamic dopaminergic neurons projects to the paraventricular nucleus-rostral ventrolateral medulla/C1 neural circuit. Anat Rec (Hoboken) 2017; 300:1307-1314. [PMID: 27981779 DOI: 10.1002/ar.23528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 01/02/2023]
Abstract
Paraventricular nuclei (PVN) projections to the rostral ventrolateral medulla (RVLM)/C1 catecholaminergic neuron group constitute the pre-autonomic sympathetic center involved in the neural control of systemic cardiovascular function. However, the role of extra-hypothalamic and thalamic dopaminergic (DA) inputs in this circuit remains underexplored. Using retrograde neuroanatomical tracing and high contrast confocal imaging methods, we investigated the projections and morphology of the discrete thalamic DA neuron groups in the dorsal hypothalamic area and their contribution to the PVN-RVLM neural circuit. We found that DA neuron subgroups in the Zona Incerta (Zi; 60%) and Reuniens thalamic nuclei (Re; 40%) were labeled comparably to the PVN (85%) after a retrograde tracer was injected into the RVLM/C1 (P < 0.01 mean ± SEM). The Re/Zi DA neuron subgroups were characterized by angulated cell bodies, superiomedial and inferiomedial projections reaching the contralateral Re/Zi and ipsilateral PVN DA neurons respectively. Ultimately, we deduced that the DA projections of the Re/Zi to the PVN contribute to the PVN-RVLM/C1 neural circuit. As a result of these connections, the Re/Zi DA neuron groups may regulate preautonomic sympathetic events associated with the PVN-RVLM pathway. Anat Rec, 300:1307-1314, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
42
|
Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res 2017; 120:88-96. [PMID: 28330785 DOI: 10.1016/j.phrs.2017.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/13/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
Abstract
Hypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms. During hypertension, dysregulation of the Renin-Angiotensin System is associated with increased expression of pro-inflammatory cytokines and reactive oxygen species causing kidney damage, endothelial dysfunction, and increase in sympathetic activity, among other damages, eventually leading to decline in organ function. Recent studies have shown that these effects involve both the innate and the adaptive immune response. The contribution of adaptive immune responses involving different lymphocyte populations in various models of hypertension has been extensively studied. However, the involvement of the innate immunity mediating inflammation in hypertension is still not well understood. The innate and adaptive immune systems intimately interact with one another and are essential to an effectively functioning of the immune response; hence, the importance of a better understanding of the underlying mechanisms mediating innate immune system during hypertension. In this review, we aim to discuss mechanisms linking Angiotensin II and the innate immune system, in the pathogenesis of hypertension. The newest research investigating Angiotensin II triggering toll like receptor 4 activation in the kidney, vasculature and central nervous system contributing to hypertension will be discussed. Understanding the role of the innate immune system in the development of hypertension may bring to light new insights necessary to improve hypertension management.
Collapse
Affiliation(s)
- Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | | | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | - Sarah Al-Gassimi
- Department of Biological Sciences, Florida Institute of Technology, FL, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, Florida Institute of Technology, FL, United States.
| |
Collapse
|
43
|
Tran DQ, Tse EK, Kim MH, Belsham DD. Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Mol Cell Endocrinol 2016; 438:18-26. [PMID: 27208620 DOI: 10.1016/j.mce.2016.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
Diet-induced obesity can lead to detrimental chronic disorders. The severity of this global epidemic has encouraged ongoing research to characterize the mechanisms underlying obesity and its comorbidities. Recent evidence suggests that saturated fatty acids (SFA) in high-fat diets rapidly generate inflammation in the arcuate nucleus of the hypothalamus (ARC), which centrally regulates whole-body energy homeostasis. Herein, we will review the roles of hypothalamic neurons and resident microglia in the initiation of SFA-induced hypothalamic inflammation. Particularly, we focus on neuronal and microglial free fatty acid-sensing and capacity to produce inflammatory signaling. We also outline a potential role of peripherally-derived monocytes in this inflammation. And finally, we explore synaptic plasticity as a mechanism through which hypothalamic inflammation can modulate ARC circuitry, and thus disrupt energy homeostasis.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mun Heui Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Mini Review: Anticholinergic Activity as a Behavioral Pathology of Lewy Body Disease and Proposal of the Concept of "Anticholinergic Spectrum Disorders". PARKINSONS DISEASE 2016; 2016:5380202. [PMID: 27738546 PMCID: PMC5055966 DOI: 10.1155/2016/5380202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022]
Abstract
Given the relationship between anticholinergic activity (AA) and Alzheimer's disease (AD), we rereview our hypothesis of the endogenous appearance of AA in AD. Briefly, because acetylcholine (ACh) regulates not only cognitive function but also the inflammatory system, when ACh downregulation reaches a critical level, inflammation increases, triggering the appearance of cytokines with AA. Moreover, based on a case report of a patient with mild AD and slightly deteriorated ACh, we also speculate that AA can appear endogenously in Lewy body disease due to the dual action of the downregulation of ACh and hyperactivity of the hypothalamic-pituitary-adrenal axis. Based on these hypotheses, we consider AA to be a behavioral pathology of Lewy body disease. We also propose the concept of “anticholinergic spectrum disorders,” which encompass a variety of conditions, including AD, Lewy body disease, and delirium. Finally, we suggest the prescription of cholinesterase inhibitors to patients in this spectrum of disorders to abolish AA by upregulating ACh.
Collapse
|
45
|
Olympiou M, Sargiannidou I, Markoullis K, Karaiskos C, Kagiava A, Kyriakoudi S, Abrams CK, Kleopa KA. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2016; 4:95. [PMID: 27585976 PMCID: PMC5009701 DOI: 10.1186/s40478-016-0369-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte GJs, which may contribute to the increased sensitivity of Cx32 KO mice to LPS and of patients with CMT1X to various stressors. Moreover the presence of an intracellularly retained, misfolded CMT1X mutant such as T55I induces ER stress under inflammatory conditions, further exacerbating oligodendrocyte dysfunction and pathological changes in the CNS.
Collapse
Affiliation(s)
- Margarita Olympiou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Styliana Kyriakoudi
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, USA
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 International Airport Avenue, P.O. Box 23462, , 1683, Nicosia, Cyprus.
| |
Collapse
|
46
|
Park SY, Jin ML, Ko MJ, Park G, Choi YW. Anti-neuroinflammatory Effect of Emodin in LPS-Stimulated Microglia: Involvement of AMPK/Nrf2 Activation. Neurochem Res 2016; 41:2981-2992. [PMID: 27538959 DOI: 10.1007/s11064-016-2018-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
AMPK/Nrf2 signaling regulates multiple antioxidative factors and exerts neuroprotective effects. Emodin is one of the main bioactive components extracted from Polygonum multiflorum, a plant possessing important activities for human health and for treating a variety of diseases. This study examined whether emodin can activate AMPK/Nrf2 signaling and induce the expression of genes targeted by this pathway. In addition, the anti-neuroinflammatory properties of emodin in lipopolysaccharide (LPS)-stimulated microglia were examined. In microglia, the emodin treatment increased the levels of LKB1, CaMKII, and AMPK phosphorylation. Emodin increased the translocation and transactivity of Nrf2 and enhanced the levels of HO-1 and NQO1. In addition, the emodin-mediated expression of HO-1 and NQO1 was attenuated completely by an AMPK inhibitor (compound C). Moreover, emodin decreased dramatically the LPS-induced production of NO and PGE2 as well as the protein expression and promoter activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, emodin effectively inhibited the production of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the level of IκBα phosphorylation, leading to the suppression of the nuclear translocation, phosphorylation, and transactivity of NF-κB. Emodin also suppressed the LPS-stimulated activation of STATs, JNK, and p38 MAPK. The anti-inflammatory effects of emodin were reversed by transfection with Nrf-2 and HO-1 siRNA and by a co-treatment with an AMPK inhibitor. These results suggest that emodin isolated from P. multiflorum can be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signaling in microglia.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 609-735, South Korea
| | - Mei Ling Jin
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 609-735, South Korea
| | - Min Jung Ko
- Department of Nanomaterials Engineering, Pusan National University, Busan, 609-735, South Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Busan, 609-735, South Korea.
| | - Young-Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea.
| |
Collapse
|
47
|
Żera T, Nowiński A, Kwiatkowski P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016; 58:67-72. [PMID: 27241175 DOI: 10.1016/j.npep.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/15/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Emerging evidence indicates that increased levels of TNF in the brain are associated with hypertension. Nitric oxide synthase (NOS) is involved in the central control of the cardiovascular system, exerting both pro- and antihypertensive effects. TNF induces hypothalamic synthesis of nitric oxide. AIM We checked if acutely administered TNF into the cerebral ventricles affects arterial blood pressure, heart rate and baroreflex sensitivity, and whether TNF actions are dependent on NOS in normotensive rats. METHODS We carried out hemodynamic measurements in 6 groups of freely moving, adult Sprague-Dawley male rats, intracerebroventricularly (ICV) infused with either: 1) saline (5μl/h); 2) TNF (200ng/5μl/h); 3) non-selective NO synthase inhibitor - l-NG-Nitroarginine Methyl Ester (l-NAME) (1mg/5μl/h); 4) TNF together with l-NAME (200ng and 1mg/5μl/h, respectively); 5) neuronal NO synthase inhibitor - 7-nitroindazole sodium salt (7-NI) (20μg/10μl/h); 6) or TNF together with 7-NI (200ng and 20μg/10μl/h, respectively). Mean arterial blood pressure (MABP), heart rate (HR) and spontaneous baroreflex sensitivity (sBRS) evaluated by the sequence method were analysed. RESULTS ICV infusion of TNF caused a significant increase in MABP accompanied by a transient increase in HR, and a decrease in sBRS. ICV infusion of l-NAME increased MABP, but it did not change HR, nor sBRS. ICV infusion of 7-NI did not affect MABP, nor HR, nor sBRS. TNF administered together with l-NAME increased MABP with a transient increase in HR without changes of sBRS. Similarly, ICV infusion of TNF with 7-NI increased MABP without changes in HR and sBRS. CONCLUSIONS Centrally administered TNF increases MABP and HR and blunts sBRS. The pressor effect of TNF appears to be independent of NOS activity in the brain. Inhibition of nNOS restores sBRS in TNF treated rats.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Artur Nowiński
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, The Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
48
|
Wang Y, Gong J, Zeng H, Liu R, Jin B, Chen L, Wang Q. Lipopolysaccharide Activates the Unfolded Protein Response in Human Periodontal Ligament Fibroblasts. J Periodontol 2016; 87:e75-81. [DOI: 10.1902/jop.2015.150413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2015; 310:H404-15. [PMID: 26637556 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
50
|
Kitajima Y, Hori K, Konishi K, Tani M, Tomioka H, Akashi N, Hosoi M, Inamoto A, Hasegawa S, Kikuchi N, Takahashi A, Hachisu M. A Review of the Role of Anticholinergic Activity in Lewy Body Disease and Delirium. NEURODEGENER DIS 2015; 15:162-7. [PMID: 26138494 DOI: 10.1159/000381522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously proposed a hypothesis in which we argue that anticholinergic activity (AA) appears endogenously in Alzheimer's disease (AD). Acetylcholine (ACh) controls both cognitive function and inflammation. Consequently, when the downregulation of ACh reaches critical levels, the inflammatory system is upregulated and proinflammatory cytokines with AA appear. However, factors other than downregulation of ACh can produce AA; even if ACh downregulation does not reach critical levels, AA can still appear if one of these other AA-producing factors is added. These factors can include neurocognitive disorders other than AD, such as delirium and Lewy body disease (LBD). In delirium, ACh downregulation fails to reach critical levels, but AA appears due to the use of medicines, physical illnesses or mental stress (termed 'AA inserts'). In LBD, we speculate that AA appears endogenously, even in the absence of severe cognitive dysfunction, for 2 reasons. One reason is that patterns of ACh deterioration are different in LBD from those in AD, with synergistic actions between amyloid and α-synuclein thought to cause additional or severe symptoms that accelerate the disease course. The second reason is that AA occurs through disinhibition by reduced cortisol levels that result from severe autonomic parasympathetic dysfunction in LBD.
Collapse
Affiliation(s)
- Yuka Kitajima
- Department of Anesthesiology, School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|