1
|
Greenberg RN, Schmidt D, Reichhardt D, Roesch S, Vidojkovic S, Maclennan J, Chen LM, Gruenert R, Kreusel C, Weidenthaler H, Meyer TP, Chaplin PJ. Equivalence of freeze-dried and liquid-frozen formulations of MVA-BN as smallpox and mpox vaccine. Hum Vaccin Immunother 2024; 20:2384189. [PMID: 39171509 PMCID: PMC11346558 DOI: 10.1080/21645515.2024.2384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Modified Vaccinia Ankara Bavarian Nordic (MVA-BN) as a smallpox and mpox vaccine has been approved in its liquid-frozen (LF) formulation in the US, Canada, and EU. A freeze-dried (FD) formulation may offer additional benefits, such as a longer shelf life and reduced dependence on cold chain storage and transport. In a phase 2 clinical trial, 651 vaccinia-naïve participants were vaccinated with two doses of MVA-BN LF or FD, 4 weeks apart. The objectives were to compare MVA-BN FD with LF in terms of vaccine-induced immune responses, safety, and reactogenicity. Non-inferiority of the immune response was assessed by the 95% CI of the geometric mean ratios. Both formulations induced robust vaccinia-specific humoral and cellular immune responses. At peak humoral responses (Week 6), geometric means of total antibody titers were 1096 (95% CI 1013, 1186) from the FD group and 877 (95% CI 804, 956) from the LF group, achieving the primary endpoint of non-inferiority of MVA-BN FD compared to MVA-BN LF. At peak cellular responses (Week 2), geometric means of T cell spot forming units were 449 (95% CI 341, 590) from the FD group and 316 (95% CI 234, 427) from the LF group. Both formulations of MVA-BN were well tolerated, with similar unsolicited AEs and solicited systemic reactions in both groups but slightly more local reactions in the FD group. No vaccine-related serious adverse events (SAEs) or vaccine-related AE of special interest were reported. The FD formulation of MVA-BN was shown to be equivalent to MVA-BN LF.
Collapse
Affiliation(s)
- Richard N. Greenberg
- Division of Infectious Diseases, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Darja Schmidt
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | | | | | - Sanja Vidojkovic
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | - Jane Maclennan
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | - Liddy M. Chen
- Clinical Biometrics, Bavarian Nordic Inc, Durham, NC, USA
| | - Robert Gruenert
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | - Christian Kreusel
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | - Heinz Weidenthaler
- Clinical Testing, Quality Control Munich, Bavarian Nordic GmbH, Martinsried, Germany
| | - Thomas P.H. Meyer
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, Munich, Germany
| | | |
Collapse
|
2
|
Berry MT, Khan SR, Schlub TE, Notaras A, Kunasekaran M, Grulich AE, MacIntyre CR, Davenport MP, Khoury DS. Predicting vaccine effectiveness for mpox. Nat Commun 2024; 15:3856. [PMID: 38719852 PMCID: PMC11078999 DOI: 10.1038/s41467-024-48180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The Modified Vaccinia Ankara vaccine developed by Bavarian Nordic (MVA-BN) was widely deployed to prevent mpox during the 2022 global outbreak. This vaccine was initially approved for mpox based on its reported immunogenicity (from phase I/II trials) and effectiveness in animal models, rather than evidence of clinical efficacy. However, no validated correlate of protection after vaccination has been identified. Here we performed a systematic search and meta-analysis of the available data to test whether vaccinia-binding ELISA endpoint titer is predictive of vaccine effectiveness against mpox. We observe a significant correlation between vaccine effectiveness and vaccinia-binding antibody titers, consistent with the existing assumption that antibody levels may be a correlate of protection. Combining this data with analysis of antibody kinetics after vaccination, we predict the durability of protection after vaccination and the impact of dose spacing. We find that delaying the second dose of MVA-BN vaccination will provide more durable protection and may be optimal in an outbreak with limited vaccine stock. Although further work is required to validate this correlate, this study provides a quantitative evidence-based approach for using antibody measurements to predict the effectiveness of mpox vaccination.
Collapse
Affiliation(s)
- Matthew T Berry
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Shanchita R Khan
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Adriana Notaras
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | | | - Andrew E Grulich
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - C Raina MacIntyre
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- College of Public Service and Community Solutions, and College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Muller MP, Navarro C, Wilson SE, Shulha HP, Naus M, Lim G, Padhi S, McGeer A, Finkelstein M, Liddy A, Bettinger JA. Prospective monitoring of adverse events following vaccination with Modified vaccinia Ankara - Bavarian Nordic (MVA-BN) administered to a Canadian population at risk of Mpox: A Canadian Immunization Research Network study. Vaccine 2024; 42:535-540. [PMID: 38199921 DOI: 10.1016/j.vaccine.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
MVA-BN is an orthopoxvirus vaccine that provides protection against both smallpox and mpox. In June 2022, Canada launched a publicly-funded vaccination campaign to offer MVA-BN to at-risk populations including men who have sex with men (MSM) and sex workers. The safety of MVA-BN has not been assessed in this context. To address this, the Canadian National Vaccine Safety Network (CANVAS) conducted prospective safety surveillance during public health vaccination campaigns in Toronto, Ontario and in Vancouver, British Columbia. Vaccinated participants received a survey 7 and 30 days after each MVA-BN dose to elicit adverse health events. Unvaccinated individuals from a concurrent vaccine safety project evaluating COVID-19 vaccine safety were used as controls. Vaccinated and unvaccinated participants that reported a medically attended visit on their 7-day survey were interviewed. Vaccinated participants and unvaccinated controls were matched 1:1 based on age group, gender, sex and provincial study site. Overall, 1,173 vaccinated participants completed a 7-day survey, of whom 75 % (n = 878) also completed a 30-day survey. Mild to moderate injection site pain was reported by 60 % of vaccinated participants. Among vaccinated participants 8.4 % were HIV positive and when compared to HIV negative vaccinated individuals, local injection sites were less frequent in those with HIV (48 % vs 61 %, p = 0.021), but health events preventing work/school or requiring medical assessment were more frequent (7.1 % vs 3.1 %, p = 0.040). Health events interfering with work/school, or requiring medical assessment were less common in the vaccinated group than controls (3.3 % vs. 7.1 %, p < 0.010). No participants were hospitalized within 7 or 30 days of vaccination. No cases of severe neurological disease, skin disease, or myocarditis were identified. Our results demonstrate that the MVA-BN vaccine appears safe when used for mpox prevention, with a low frequency of severe adverse events and no hospitalizations observed.
Collapse
Affiliation(s)
- M P Muller
- Canadian National Vaccine Safety Network (CANVAS); Department of Medicine, St. Michael's Hospital, Toronto, Canada.
| | - C Navarro
- Public Health Ontario, Ontario, Canada
| | | | - H P Shulha
- Canadian National Vaccine Safety Network (CANVAS)
| | - M Naus
- British Columbia Centre for Disease Control, British Columbia, Canada
| | - G Lim
- Public Health Ontario, Ontario, Canada
| | - S Padhi
- Toronto Public Health, Toronto, Canada
| | - A McGeer
- Canadian National Vaccine Safety Network (CANVAS); Department of Laboratory Medicine, Sinai Health Systems, Toronto, Canada
| | | | - A Liddy
- Toronto Public Health, Toronto, Canada
| | - J A Bettinger
- Canadian National Vaccine Safety Network (CANVAS); Vaccine Evaluation Center, BC Children's Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Gopi P, Krishna G, Veettil MV. Biology of Variola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:139-149. [PMID: 38801576 DOI: 10.1007/978-3-031-57165-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Variola virus is an anthroponotic agent that belongs to the orthopoxvirus family. It is an etiological agent of smallpox, an ancient disease that caused massive mortality of human populations. Twentieth century has witnessed the death of about 300 million people due to the unavailability of an effective vaccine. Early detection is the primary strategy to prevent an outbreak of smallpox. Variola virus forms the characteristic pus-filled pustules and centrifugal rash distribution in the infected patients while transmission occurs mainly through respiratory droplets during the early stage of infection. No antiviral drugs are approved for variola virus till date. Generation of first-generation vaccines helped in the eradication of smallpox which was declared by the World Health Organization.
Collapse
Affiliation(s)
- Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Gayathri Krishna
- Institute of Advanced Virology, Thonnakkal, Trivandrum, Kerala, 695317, India
| | | |
Collapse
|
5
|
Grabenstein JD, Hacker A. Vaccines against mpox: MVA-BN and LC16m8. Expert Rev Vaccines 2024; 23:796-811. [PMID: 39188013 DOI: 10.1080/14760584.2024.2397006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Global outbreaks involving mpox clade IIb began in mid-2022. Today, clade IIb and clade I outbreaks continue. Reliable mpox vaccines can prevent serious mpox disease and death. AREAS COVERED Globally, two vaccines hold mpox indications, regardless of mpox viral clade: MVA-BN (Bavarian Nordic) and LC16m8 (KM Biologics). This review summarizes the human and pivotal animal data establishing safety and efficacy for MVA-BN and LC16m8, including real-world evidence gathered during mpox outbreaks from 2022 through 2024. EXPERT OPINION Some regulatory decisions for MVA-BN and LC16m8 followed pathways based on surrogate outcomes, including lethal-challenge studies in nonhuman primates, among other atypical aspects. Nonetheless, MVA-BN and LC16m8 hold unencumbered registration in multiple countries. Effectiveness of MVA-BN as primary preventive vaccination (PPV) in humans against clade IIb mpox is clear from real-world studies; effectiveness of LC16m8 against clade IIb is likely from surrogate endpoints. Effectiveness of MVA-BN and LC16m8 as PPV against more-lethal clade I is likely, based on animal-challenge studies with multiple orthopoxvirus species and other studies. Both vaccines have solid safety records. MVA-BN's replication incompetence favors adoption, whereas LC16m8 has more pediatric data. Additional real-world evidence, in additional geographic settings and special populations (e.g. pregnancy, immune suppression, atopic dermatitis), is needed.
Collapse
Affiliation(s)
| | - Adam Hacker
- Coalition for Epidemic Preparedness & Innovation, Oslo, Norway
| |
Collapse
|
6
|
Hirani R, Noruzi K, Iqbal A, Hussaini AS, Khan RA, Harutyunyan A, Etienne M, Tiwari RK. A Review of the Past, Present, and Future of the Monkeypox Virus: Challenges, Opportunities, and Lessons from COVID-19 for Global Health Security. Microorganisms 2023; 11:2713. [PMID: 38004725 PMCID: PMC10673257 DOI: 10.3390/microorganisms11112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Monkeypox, a rare but significant zoonotic and orthopoxviral disease, has garnered increasing attention due to its potential for human-to-human transmission and its recent resurgence in multiple countries throughout Europe, North America, and Oceania. The disease has emerged as a novel threat to the global health systems that are still striving to recover from the major shocks of the COVID-19 pandemic. The unusual manifestation of the illness highlights a substantial knowledge deficit and necessitates the immediate development of a public health action strategy, considering the epidemiological differences observed in the ongoing outbreak and the appearance of cases in non-endemic nations. This literature review aims to synthesize existing knowledge on monkeypox, encompassing its historical context, etiology, epidemiology, surveillance, prevention, transmission, clinical presentation, diagnosis, treatments, and recent outbreak. Particular attention is given to both advances and gaps in our understanding of monkeypox, and we point toward future directions for research and intervention efforts as pertains to vaccine development and distribution. Lastly, we will also review the recent outbreak through a sociopolitical lens as relates to decision-making strategies, especially given the lessons learned from COVID-19.
Collapse
Affiliation(s)
- Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Kaleb Noruzi
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Aroubah Iqbal
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Anum S. Hussaini
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Rafay A. Khan
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Aleksandr Harutyunyan
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Mill Etienne
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
- Department of Neurology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Jordan E, Kabir G, Schultz S, Silbernagl G, Schmidt D, Jenkins VA, Weidenthaler H, Stroukova D, Martin BK, De Moerlooze L. Reduced Respiratory Syncytial Virus Load, Symptoms, and Infections: A Human Challenge Trial of MVA-BN-RSV Vaccine. J Infect Dis 2023; 228:999-1011. [PMID: 37079393 PMCID: PMC10582911 DOI: 10.1093/infdis/jiad108] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes significant disease burden in older adults. MVA-BN-RSV is a novel poxvirus-vectored vaccine encoding internal and external RSV proteins. METHODS In a phase 2a randomized double-blind, placebo-controlled trial, healthy participants aged 18 to 50 years received MVA-BN-RSV or placebo, then were challenged 4 weeks later with RSV-A Memphis 37b. Viral load was assessed from nasal washes. RSV symptoms were collected. Antibody titers and cellular markers were assessed before and after vaccination and challenge. RESULTS After receiving MVA-BN-RSV or placebo, 31 and 32 participants, respectively, were challenged. Viral load areas under the curve from nasal washes were lower (P = .017) for MVA-BN-RSV (median = 0.00) than placebo (median = 49.05). Total symptom scores also were lower (median = 2.50 and 27.00, respectively; P = .004). Vaccine efficacy against symptomatic, laboratory-confirmed or culture-confirmed infection was 79.3% to 88.5% (P = .022 and .013). Serum immunoglobulin A and G titers increased approximately 4-fold after MVA-BN-RSV vaccination. Interferon-γ-producing cells increased 4- to 6-fold after MVA-BN-RSV in response to stimulation with the encoded RSV internal antigens. Injection site pain occurred more frequently with MVA-BN-RSV. No serious adverse events were attributed to vaccination. CONCLUSIONS MVA-BN-RSV vaccination resulted in lower viral load and symptom scores, fewer confirmed infections, and induced humoral and cellular responses. CLINICAL TRIALS REGISTRATION NCT04752644.
Collapse
|
8
|
Mopuri R, Welbourn S, Charles T, Ralli-Jain P, Rosales D, Burton S, Aftab A, Karunakaran K, Pellegrini K, Kilembe W, Karita E, Gnanakaran S, Upadhyay AA, Bosinger SE, Derdeyn CA. High throughput analysis of B cell dynamics and neutralizing antibody development during immunization with a novel clade C HIV-1 envelope. PLoS Pathog 2023; 19:e1011717. [PMID: 37878666 PMCID: PMC10627474 DOI: 10.1371/journal.ppat.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/06/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
A protective HIV-1 vaccine has been hampered by a limited understanding of how B cells acquire neutralizing activity. Our previous vaccines expressing two different HIV-1 envelopes elicited robust antigen specific serum IgG titers in 20 rhesus macaques; yet serum from only two animals neutralized the autologous virus. Here, we used high throughput immunoglobulin receptor and single cell RNA sequencing to characterize the overall expansion, recall, and maturation of antigen specific B cells longitudinally over 90 weeks. Diversification and expansion of many B cell clonotypes occurred broadly in the absence of serum neutralization. However, in one animal that developed neutralization, two neutralizing B cell clonotypes arose from the same immunoglobulin germline and were tracked longitudinally. Early antibody variants with high identity to germline neutralized the autologous virus while later variants acquired somatic hypermutation and increased neutralization potency. The early engagement of precursors capable of neutralization with little to no SHM followed by prolonged affinity maturation allowed the two neutralizing lineages to successfully persist despite many other antigen specific B cells. The findings provide new insight into B cells responding to HIV-1 envelope during heterologous prime and boost immunization in rhesus macaques and the development of selected autologous neutralizing antibody lineages.
Collapse
Affiliation(s)
- Rohini Mopuri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Tysheena Charles
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Pooja Ralli-Jain
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - David Rosales
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Samantha Burton
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Areeb Aftab
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kirti Karunakaran
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn Pellegrini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | | | - Sandrasegaram Gnanakaran
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amit A. Upadhyay
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia A. Derdeyn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine Unit, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
10
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
11
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
12
|
Gaspari AA. Injection Site Reactions to Monkeypox Vaccine. Dermatitis 2023; 34:75-76. [PMID: 36917524 DOI: 10.1089/derm.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anthony A Gaspari
- From the *Department of Dermatology, Beebe Medical Group, Rehoboth Beach, Delaware, USA; and †Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Malone SM, Mitra AK, Onumah NA, Brown A, Jones LM, Tresvant D, Brown CS, Onyia AU, Iseguede FO. Safety and Efficacy of Post-Eradication Smallpox Vaccine as an Mpox Vaccine: A Systematic Review with Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2963. [PMID: 36833653 PMCID: PMC9957080 DOI: 10.3390/ijerph20042963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, 83,339 laboratory-confirmed cases, including 72 deaths, of mpox (formerly known as monkeypox), have been reported from 110 locations globally as of 20 December 2022, making the disease a public health concern. Most of the cases (56,171, 67.4%) were reported from countries in North America. Limited data on vaccine effectiveness in the current mpox outbreak are available. However, the modified vaccinia virus (smallpox vaccine) has been predicted to prevent or reduce the severity of the mpox infection. The present study of systematic review and meta-analysis aimed to evaluate the modified vaccinia vaccine's safety and efficacy on mpox by using reported randomized clinical trials. Following guidelines from the Cochrane Collaboration and PRISMA, multiple databases including PubMed, PLOS ONE, Google Scholar, British Medical Journal, and the U. S. National Library of Medicine were searched. Out of 13,294 research articles initially identified, 187 were screened after removing duplicates. Following the inclusion and exclusion criteria, the meta-analysis included ten studies with 7430 patients. Three researchers independently assessed the risk of bias in the included study. The pooled results suggest that the vaccinia-exposed group had fewer side effects when compared to the vaccinia naïve group (odds ratio: 1.66; 95% CI: 1.07-2.57; p = 0.03). Overall, the modified vaccinia has proven safe and effective in both vaccinia naïve and previously exposed groups, with higher efficacy in the previously exposed groups.
Collapse
Affiliation(s)
- Shelia M. Malone
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Jackson State University, Jackson, MS 39217, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Turner Overton E, Schmidt D, Vidojkovic S, Menius E, Nopora K, Maclennan J, Weidenthaler H. A randomized phase 3 trial to assess the immunogenicity and safety of 3 consecutively produced lots of freeze-dried MVA-BN® vaccine in healthy adults. Vaccine 2023; 41:397-406. [PMID: 36460535 PMCID: PMC9707699 DOI: 10.1016/j.vaccine.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Since vaccination remains the only effective protection against orthopox virus-induced diseases such as smallpox or monkeypox, the strategic use and stockpiling of these vaccines remains of significant public health importance. The approved liquid-frozen formulation of Bavarian Nordic's Modified Vaccinia Ankara (MVA-BN) smallpox vaccine has specific cold-chain requirements, while the freeze-dried (FD) formulation of this vaccine provides more flexibility in terms of storage conditions and shelf life. In this randomized phase 3 trial, the immunogenicity and safety of 3 consecutively manufactured lots of the FD MVA-BN vaccine was evaluated. A total of 1129 healthy adults were randomized to 3 treatment groups (lots 1 to 3) and received 2 vaccinations 4 weeks apart. For both neutralizing and total antibodies, a robust increase of geometric mean titer (GMT) was observed across all lot groups 2 weeks following the second vaccination, comparable to published data. For the primary results, the ratios of the neutralizing antibody GMTs between the lot group pairs ranged from 0.936 to 1.115, with confidence ratios well within the pre-specified margin of equivalence. Results for total antibodies were similar. In addition, seroconversion rates were high across the 3 lots, ranging between 99.1 % and 99.7 %. No safety concerns were identified; particularly, no inflammatory cardiac disorders were detected. The most common local solicited adverse events (AEs) reported across lot groups were injection site pain (87.2%) and erythema (73.2%), while the most common general solicited adverse events were myalgia, fatigue, and headache in 40.6% to 45.5% of all participants, with no meaningful differences among the lot groups. No related serious AEs were reported. In conclusion, the data demonstrate consistent and robust immunogenicity and safety results with a freeze-dried formulation of MVA-BN. Clinical Trial Registry Number: NCT03699124.
Collapse
Affiliation(s)
- Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Erika Menius
- Bavarian Nordic Inc., 1005 Slater Road, Suite 101, Durham, NC 27703, United States
| | - Katrin Nopora
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Jane Maclennan
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | |
Collapse
|
15
|
Ophinni Y, Frediansyah A, Sirinam S, Megawati D, Stoian AM, Enitan SS, Akele RY, Sah R, Pongpirul K, Abdeen Z, Aghayeva S, Ikram A, Kebede Y, Wollina U, Subbaram K, Koyanagi A, Al Serouri A, Blaise Nguendo-Yongsi H, Edwards J, Sallam DE, Khader Y, Viveiros-Rosa SG, Memish ZA, Amir-Behghadami M, Vento S, Rademaker M, Sallam M. Monkeypox: Immune response, vaccination and preventive efforts. NARRA J 2022; 2:e90. [PMID: 38449905 PMCID: PMC10914130 DOI: 10.52225/narra.v2i3.90] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/20/2022] [Indexed: 02/05/2023]
Abstract
Infectious threats to humans are continuously emerging. The 2022 worldwide monkeypox outbreak is the latest of these threats with the virus rapidly spreading to 106 countries by the end of September 2022. The burden of the ongoing monkeypox outbreak is manifested by 68,000 cumulative confirmed cases and 26 deaths. Although monkeypox is usually a self-limited disease, patients can suffer from extremely painful skin lesions and complications can occur with reported mortalities. The antigenic similarity between the smallpox virus (variola virus) and monkeypox virus can be utilized to prevent monkeypox using smallpox vaccines; treatment is also based on antivirals initially designed to treat smallpox. However, further studies are needed to fully decipher the immune response to monkeypox virus and the immune evasion mechanisms. In this review we provide an up-to-date discussion of the current state of knowledge regarding monkeypox virus with a special focus on innate immune response, immune evasion mechanisms and vaccination against the virus.
Collapse
Affiliation(s)
- Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Andri Frediansyah
- PRTPP-National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Salin Sirinam
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dewi Megawati
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Microbiology and Parasitology, School of Medicine, Universitas Warmadewa, Bali, Indonesia
| | - Ana M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, CA, United States
| | - Seyi S. Enitan
- Department of Medical Laboratory Science, Babcock University, Ilishan-Remo, Nigeria
| | - Richard Y. Akele
- Department of Biomedical Science, School of Applied Science, University of Brighton, London, United Kingdom
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Krit Pongpirul
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Bumrungrad International Hospital, Bangkok, Thailand
| | - Ziad Abdeen
- Department of Community Health, Faculty of Medicine, Al-Quds University, Jerusalem
| | - Sevda Aghayeva
- Department of Gastroenterology, Baku Medical Plaza Hospital, Baku, Azerbaijan
| | - Aamer Ikram
- National Institute of Heath, Islamabad, Pakistan
| | - Yohannes Kebede
- Department of Health, Behavior and Society, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Dresden, Germany
| | - Kannan Subbaram
- School of Medicine, The Maldives National University, Maldives
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain
| | | | - H. Blaise Nguendo-Yongsi
- Department of Epidemiology, School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Jeffrey Edwards
- Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| | - Dina E. Sallam
- Department of Pediatrics and Pediatric Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yousef Khader
- The Center of Excellence for Applied Epidemiology, The Eastern Mediterranean Public Health Network (EMPHNET), Amman, Jordan
| | | | - Ziad A. Memish
- Research & Innovation Centre, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mehrdad Amir-Behghadami
- Iranian Center of Excellence in Health Management, Department of Health Service Management, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh, Cambodia
| | - Marius Rademaker
- Clinical Trial New Zealand, Waikato Hospital Campus, Hamilton, New Zealand
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
16
|
Priyamvada L, Carson WC, Ortega E, Navarra T, Tran S, Smith TG, Pukuta E, Muyamuna E, Kabamba J, Nguete BU, Likafi T, Kokola G, Lushima RS, Tamfum JJM, Okitolonda EW, Kaba DK, Monroe BP, McCollum AM, Petersen BW, Satheshkumar PS, Townsend MB. Serological responses to the MVA-based JYNNEOS monkeypox vaccine in a cohort of participants from the Democratic Republic of Congo. Vaccine 2022; 40:7321-7327. [PMID: 36344361 PMCID: PMC9635871 DOI: 10.1016/j.vaccine.2022.10.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation.
Collapse
Affiliation(s)
- Lalita Priyamvada
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William C. Carson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eddy Ortega
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Terese Navarra
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Tran
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Todd G. Smith
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elisabeth Pukuta
- Institut National pour la Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Elisabeth Muyamuna
- Institut National pour la Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Joelle Kabamba
- Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo
| | - Beatrice U. Nguete
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Toutou Likafi
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Gaston Kokola
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | | | | | - Emile W. Okitolonda
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Didine K. Kaba
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Benjamin P. Monroe
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea M. McCollum
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brett W. Petersen
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Michael B. Townsend
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA,Corresponding author
| |
Collapse
|
17
|
Abdelaal A, Reda A, Lashin BI, Katamesh BE, Brakat AM, AL-Manaseer BM, Kaur S, Asija A, Patel NK, Basnyat S, Rabaan AA, Alhumaid S, Albayat H, Aljeldah M, Shammari BRA, Al-Najjar AH, Al-Jassem AK, AlShurbaji ST, Alshahrani FS, Alynbiawi A, Alfaraj ZH, Alfaraj DH, Aldawood AH, Sedhai YR, Mumbo V, Rodriguez-Morales AJ, Sah R. Preventing the Next Pandemic: Is Live Vaccine Efficacious against Monkeypox, or Is There a Need for Killed Virus and mRNA Vaccines? Vaccines (Basel) 2022; 10:1419. [PMID: 36146497 PMCID: PMC9500691 DOI: 10.3390/vaccines10091419] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: The monkeypox virus (MPV) is a double-stranded DNA virus belonging to the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. It was called monkeypox because it was first discovered in monkeys, in a Danish laboratory, in 1958. However, the actual reservoir for MPV is still unknown. (2) Methods and Results: We have reviewed the existing literature on the options for Monkeypox virus. There are three available vaccines for orthopoxviruses-ACAM2000, JYNNEOS, and LC16-with the first being a replicating vaccine and the latter being non- or minimally replicating. (3) Conclusions: Smallpox vaccinations previously provided coincidental immunity to MPV. ACAM2000 (a live-attenuated replicating vaccine) and JYNNEOS (a live-attenuated, nonreplicating vaccine) are two US FDA-approved vaccines that can prevent monkeypox. However, ACAM2000 may cause serious side effects, including cardiac problems, whereas JYNNEOS is associated with fewer complications. The recent outbreaks across the globe have once again highlighted the need for constant monitoring and the development of novel prophylactic and therapeutic modalities. Based on available data, there is still a need to develop an effective and safe new generation of vaccines specific for monkeypox that are killed or developed into a mRNA vaccine before monkeypox is declared a pandemic.
Collapse
Affiliation(s)
- Abdelaziz Abdelaal
- Postgraduate Medical Education, Harvard Medical School, Boston, MA 02115, USA
- School of Medicine, Boston University, Boston, MA 02118, USA
- Tanta Research Team, Tanta 31527, Egypt
- Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | | | - Basant E. Katamesh
- Tanta Research Team, Tanta 31527, Egypt
- Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Aml M. Brakat
- Faculty of Medicine, Zagazig University, Ash Sharqia Governorate, Zagazig 44519, Egypt
| | - Balqees Mahmoud AL-Manaseer
- Jordan University Hospital, Amman 11942, Jordan
- School of Medicine, University of Jordan, Amman 11733, Jordan
| | - Sayanika Kaur
- Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Ankush Asija
- Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Nimesh K. Patel
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Soney Basnyat
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 11564, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11564, Saudi Arabia
| | - Ahmed K. Al-Jassem
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11564, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Zainab H. Alfaraj
- Department of Nursing, Maternity and Children Hospital, Dammam 31176, Saudi Arabia
| | - Duaa H. Alfaraj
- Department of Nursing, Maternity and Children Hospital, Dammam 31176, Saudi Arabia
| | - Ahmed H. Aldawood
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Yub Raj Sedhai
- Division of Pulmonary Diseases and Critical Care Medicine, University of Kentucky, Bowling Green, KY 40292, USA
| | - Victoria Mumbo
- Coast General Teaching and Referral Hospital, Mombasa P.O. Box 90231-80100, Kenya
| | - Alfonso J. Rodriguez-Morales
- Latin American Network on Monkeypox Virus Research (LAMOVI), Pereira 66001, Colombia
- Institución Universitaria Visión de las Américas, Pereira 12998, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónomade las Américas, Pereira 66003, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima 4861, Peru
| | - Ranjit Sah
- Postgraduate Medical Education, Harvard Medical School, Boston, MA 02115, USA
- Latin American Network on Monkeypox Virus Research (LAMOVI), Pereira 66001, Colombia
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| |
Collapse
|
18
|
Focosi D, Novazzi F, Baj A, Maggi F. Monkeypox: An international epidemic. Rev Med Virol 2022; 32:e2392. [PMID: 36029181 DOI: 10.1002/rmv.2392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/30/2023]
Abstract
Human monkeypox (MPX) is a viral zoonosis caused by the Monkeypox virus. For decades outbreaks exclusively occurred in the tropical rainforests of Africa, with a few imported cases and very limited human-to-human transmission outside Africa. Nevertheless, in the last years sustained outbreaks have emerged, peaking at 4600 cases in 2020 in the Democratic Republic of Congo. Since May 2022, an international epidemic originated at 2 events in Spain and Belgium led to sustained human-to-human transmission across multiple continents, mostly in males having sex with males subjects. We review here clinical presentation, epidemiology, viral evolution, vaccines, and therapeutics against human MPX.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabrizio Maggi
- Istituto Nazionale Malattie Infettive "Lazzaro Spallanzani", Rome, Italy
| |
Collapse
|
19
|
Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H, Mehta R, Rabaan AA, Alhumaid S, Alfouzan WA, Alomar AI, Khamis F, Alofi FS, Aljohani MH, Alfaraj AH, Alfaresi M, Al-Jishi JM, Alsalman J, Alynbiawi A, Almogbel MS, Rodriguez-Morales AJ. Monkeypox and Its Possible Sexual Transmission: Where Are We Now with Its Evidence? Pathogens 2022; 11:924. [PMID: 36015044 PMCID: PMC9414346 DOI: 10.3390/pathogens11080924] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been identified in 89 countries. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores on the hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more likely to be infected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of cases. Moreover, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard.
Collapse
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
- Harvard Medical School, Boston, MA 02115, USA
| | - Abdelaziz Abdelaal
- Harvard Medical School, Boston, MA 02115, USA
- School of Medicine, Boston University, Boston, MA 02118, USA
- Tanta Research Team, Tanta 31527, Egypt
- MBBCh, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Basant E. Katamesh
- Tanta Research Team, Tanta 31527, Egypt
- MBBCh, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali 3286, Rwanda
| | - Hanaa Abdelmonem
- MBBCh, Faculty of Medicine Fayoum University, Fayoum 63514, Egypt
| | - Rachana Mehta
- National Public Health Laboratory, Kathmandu 44600, Nepal
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Amer I. Alomar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Maha H. Aljohani
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain P.O. Box 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira 660003, Risaralda, Colombia
- Institucion Universitaria Vision de las Americas, Pereira 12998, Risaralda, Colombia
- Master of Clinical Epidemiology and Biostatistics, Universidad Cientifica del Sur, Lima 15024, Peru
| |
Collapse
|
20
|
Pilna H, Hajkova V, Knitlova J, Liskova J, Elsterova J, Melkova Z. Vaccinia Virus Expressing Interferon Regulatory Factor 3 Induces Higher Protective Immune Responses against Lethal Poxvirus Challenge in Atopic Organism. Viruses 2021; 13:1986. [PMID: 34696416 PMCID: PMC8539567 DOI: 10.3390/v13101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) is an enveloped DNA virus from the Orthopoxvirus family, various strains of which were used in the successful eradication campaign against smallpox. Both original and newer VACV-based replicating vaccines reveal a risk of serious complications in atopic individuals. VACV encodes various factors interfering with host immune responses at multiple levels. In atopic skin, the production of type I interferon is compromised, while VACV specifically inhibits the phosphorylation of the Interferon Regulatory Factor 3 (IRF-3) and expression of interferons. To overcome this block, we generated a recombinant VACV-expressing murine IRF-3 (WR-IRF3) and characterized its effects on virus growth, cytokine expression and apoptosis in tissue cultures and in spontaneously atopic Nc/Nga and control Balb/c mice. Further, we explored the induction of protective immune responses against a lethal dose of wild-type WR, the surrogate of smallpox. We demonstrate that the overexpression of IRF-3 by WR-IRF3 increases the expression of type I interferon, modulates the expression of several cytokines and induces superior protective immune responses against a lethal poxvirus challenge in both Nc/Nga and Balb/c mice. Additionally, the results may be informative for design of other virus-based vaccines or for therapy of different viral infections.
Collapse
Affiliation(s)
- Hana Pilna
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Vera Hajkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jarmila Knitlova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Liskova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Jana Elsterova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
| | - Zora Melkova
- Department of Immunology and Microbiology, First Faculty of Medicine, Charles University, Studnickova 7, 128 00 Prague 2, Czech Republic; (H.P.); (V.H.); (J.K.); (J.L.); (J.E.)
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
21
|
Volkmann A, Williamson AL, Weidenthaler H, Meyer TPH, Robertson JS, Excler JL, Condit RC, Evans E, Smith ER, Kim D, Chen RT. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39:3067-3080. [PMID: 33077299 PMCID: PMC7568176 DOI: 10.1016/j.vaccine.2020.08.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. The Modified Vaccinia Ankara (MVA) vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features specifically of the MVA-BN vector system, followed by a template with details on the safety and characteristics of an MVA-BN based vaccine against Zaire ebolavirus and other filovirus strains. The MVA-BN-Filo vaccine is based on a live, highly attenuated poxviral vector incapable of replicating in human cells and encodes glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein of the Thai Forest virus. This vaccine has been approved in the European Union in July 2020 as part of a heterologous Ebola vaccination regimen. The MVA-BN vector is attenuated following over 500 serial passages in eggs, showing restricted host tropism and incompetence to replicate in human cells. MVA has six major deletions and other mutations of genes outside these deletions, which all contribute to the replication deficiency in human and other mammalian cells. Attenuation of MVA-BN was demonstrated by safe administration in immunocompromised mice and non-human primates. In multiple clinical trials with the MVA-BN backbone, more than 7800 participants have been vaccinated, demonstrating a safety profile consistent with other licensed, modern vaccines. MVA-BN has been approved as smallpox vaccine in Europe and Canada in 2013, and as smallpox and monkeypox vaccine in the US in 2019. No signal for inflammatory cardiac disorders was identified throughout the MVA-BN development program. This is in sharp contrast to the older, replicating vaccinia smallpox vaccines, which have a known risk for myocarditis and/or pericarditis in up to 1 in 200 vaccinees. MVA-BN-Filo as part of a heterologous Ebola vaccination regimen (Ad26.ZEBOV/MVA-BN-Filo) has undergone clinical testing including Phase III in West Africa and is currently in use in large scale vaccination studies in Central African countries. This paper provides a comprehensive picture of the MVA-BN vector, which has reached regulatory approvals, both as MVA-BN backbone for smallpox/monkeypox, as well as for the MVA-BN-Filo construct as part of an Ebola vaccination regimen, and therefore aims to provide solutions to prevent disease from high-consequence human pathogens.
Collapse
Affiliation(s)
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine at the University of Cape Town, South Africa
| | | | | | | | | | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Eric Evans
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R Smith
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Denny Kim
- Janssen Pharmaceuticals, Titusville, NJ, USA
| | - Robert T Chen
- Brighton Collaboration, a Program of the Task Force for Global Health, Decatur, GA, USA
| |
Collapse
|
22
|
Myopericarditis Associated With Smallpox Vaccination Among US Army Personnel - Fort Hood, Texas, 2018. Disaster Med Public Health Prep 2021; 16:1022-1028. [PMID: 33719991 DOI: 10.1017/dmp.2020.478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In March 2018, the US Department of Defense (DOD) added the smallpox vaccination, using ACAM2000, to its routine immunizations, increasing the number of persons receiving the vaccine. The following month, Fort Hood reported a cluster of 5 myopericarditis cases. The Centers for Disease Control and Prevention and the DOD launched an investigation. METHODS The investigation consisted of a review of medical records, establishment of case definitions, causality assessment, patient interviews, and active surveillance. A 2-sided exact rate ratio test was used to compare myopericarditis incidence rates. RESULTS This investigation identified 4 cases of probable myopericarditis and 1 case of suspected myopericarditis. No alternative etiology was identified as a cause. No additional cases were identified. There was no statistically significant difference in incidence rates between the observed cluster (5.23 per 1000 vaccinated individuals, 95% CI: 1.7-12.2) and the ACAM2000 clinical trial outcomes for symptomatic persons, which was 2.29 per 1000 vaccinated individuals (95% CI: 0.3-8.3). CONCLUSIONS Vaccination with ACAM2000 is the presumptive cause of this cluster. Caution should be exercised before considering vaccination campaigns for smallpox given the clinical morbidity and costs incurred by a case of myopericarditis. Risk of myopericarditis should be carefully weighed with risk of exposure to smallpox.
Collapse
|
23
|
Henning L, Endt K, Steigerwald R, Anderson M, Volkmann A. A Monovalent and Trivalent MVA-Based Vaccine Completely Protects Mice Against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenge. Front Immunol 2021; 11:598847. [PMID: 33542715 PMCID: PMC7851092 DOI: 10.3389/fimmu.2020.598847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.
Collapse
Affiliation(s)
- Lisa Henning
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | | | | |
Collapse
|
24
|
DeVore SB, Gonzalez T, Sherenian MG, Herr AB, Khurana Hershey GK. On the surface: Skin microbial exposure contributes to allergic disease. Ann Allergy Asthma Immunol 2020; 125:628-638. [PMID: 32853786 DOI: 10.1016/j.anai.2020.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To discuss the skin microbiome modulates immunity by interactions between skin immunology with keratinocytes to combat pathogens. Allergic disorders are classified by immunoglobulin E sensitivity and aberrant TH2 cell responses, and an increasing number of studies have described the associations with skin microbiome fluctuations. In this review, we discuss commensal-epidermal homeostasis and its influence on allergic disease. DATA SOURCES All included references were obtained from the PubMed database. STUDY SELECTIONS Studies addressing relevant aspects of commensal-epidermal homeostasis, skin microbiome dysbiosis, microbiome-targeted therapeutics, and prevention in allergy were included. RESULTS Homeostasis between the commensal microbiome and the epidermis is important in protecting against allergic disease. Commensals promote antiallergic TH1 and TH17 immunophenotypes within the skin and induce keratinocytes to secrete antimicrobial peptides and alarmins that enhance barrier function and antagonize proallergic organisms. Perturbations in this homeostasis, however, is associated with allergic disease development. Atopic dermatitis is associated with decreases in skin commensals and increases in the pathogen, Staphylococcus aureus. Fluctuations in the skin microbiome contributes to decreased barrier dysfunction, allergic sensitization, and TH2 cytokine secretion. Little is known about how the skin microbiome affects food allergy, allergic rhinitis, and asthma, and it is poorly understood how cutaneous inflammation influences systemic allergic responses. Therapies are targeted toward maintenance of the skin barrier, replacement of healthy commensals, and anti-TH2 biologic therapy. CONCLUSION Although the effects of commensal-epidermal homeostasis on allergy within the skin are becoming increasingly clear, future studies are necessary to assess its effects on extracutaneous allergic disorders and explore potential therapeutics targeting the skin microbiome.
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tammy Gonzalez
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael G Sherenian
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
25
|
Prow NA, Liu L, McCarthy MK, Walters K, Kalkeri R, Geiger J, Koide F, Cooper TH, Eldi P, Nakayama E, Diener KR, Howley PM, Hayball JD, Morrison TE, Suhrbier A. The vaccinia virus based Sementis Copenhagen Vector vaccine against Zika and chikungunya is immunogenic in non-human primates. NPJ Vaccines 2020; 5:44. [PMID: 32550013 PMCID: PMC7265471 DOI: 10.1038/s41541-020-0191-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 01/09/2023] Open
Abstract
The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.
Collapse
Affiliation(s)
- Natalie A Prow
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia.,Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kevin Walters
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Raj Kalkeri
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Jillian Geiger
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Fusataka Koide
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701 USA
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Eri Nakayama
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640 Japan
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5000 Australia
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD 4029 and 4072 Australia
| |
Collapse
|
26
|
O'Donnell K, Marzi A. The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Rev Vaccines 2020; 19:267-277. [PMID: 32129120 DOI: 10.1080/14760584.2020.1738225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: For over 40 years, ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates across western and central Africa. In December 2013, an unprecedented Ebola virus (EBOV) epidemic began in West Africa and resulted in the largest outbreak to date. The past and current epidemics in West Africa and the Democratic Republic of the Congo has focused attention on the potential vaccine platforms developed over the past 20 years.Areas covered: This review summarizes the extraordinary progress using a variety of vaccination platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, incorporating the primary antigen of EBOV, the glycoprotein. These vaccine constructs have shown varying degrees of protective efficacy in the 'gold-standard' nonhuman primate model for EBOV infections and were immunogenic in human clinical trials.Expert commentary: A number of these vaccine platforms have moved into phase III clinical trials over the past years and with the recent approval of the first EBOV vaccine in the European Union and the USA there is a strong potential to prevent future outbreaks/epidemics of EBOV infections on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Kyle O'Donnell
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
27
|
Prkno A, Hoffmann D, Kaiser M, Goerigk D, Pfeffer M, Winter K, Vahlenkamp TW, Beer M, Starke A. Field Trial Vaccination against Cowpox in Two Alpaca Herds. Viruses 2020; 12:v12020234. [PMID: 32093320 PMCID: PMC7077317 DOI: 10.3390/v12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
In Europe, cowpox virus (CPXV) infection in South American camelids occurs as a so-called spill-over infection. Although infected animals generally have a mild form of the disease and survive, cases of fatal generalised CPXV infection have also been described. Prevention by prophylactic vaccination is the only way to protect animals from disease. In the present study, modified vaccinia virus Ankara (MVA) vaccine, which has been successfully used in many animal species, was used in a prime-boost vaccination regimen in two alpaca herds with a history of CPXV infection. The focus of the study was the prevention of further clinical cases, and to determine the safety and immunogenicity of the MVA vaccine in alpacas. The MVA vaccine was well tolerated and safe in the 94 animals vaccinated. An indirect immunofluorescence assay (IFA) using MVA as an antigen showed that the seroprevalence of antibody after booster vaccination was 81.3% in herd I and 91.7% in herd II. Detectable antibody titres declined to 15.6% in herd I and 45.8% in herd II over a 12-month period after booster vaccination. Animals could be divided into four groups based on individual antibody titres determined over one year: Group 1 consisted of 19.3% of animals that were seropositive until the end of the trial period; Group 2 consisted of 58.0% of animals that were seropositive after booster vaccination, but seronegative one year later; Group 3 consisted of 14.7% of animals that were not seropositive at any time point; and Group 4 consisted of 7.9% of animals that were seropositive after initial immunisation, seronegative six months later, but seropositive or intermediate in IFA one year after immunisation, likely because of natural exposure. In new-born crias born to MVA-vaccinated mares, specific maternal antibodies were detected in 50.0% of animals up to 14 weeks of age. Our results confirm that MVA vaccination is a feasible tool for the prevention of CPXV disease in alpacas. Long-term studies are needed to verify future vaccination regimen in CPXV affected herds.
Collapse
Affiliation(s)
- Almut Prkno
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
- Correspondence: ; Tel.: +49-341-9738331
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Matthias Kaiser
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| | - Daniela Goerigk
- Veterinary practice Dr. Daniela Goerigk, Naundorfer Str. 9, 04668 Schkortitz, Germany;
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Centre for Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany;
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Alexander Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany; (M.K.); (A.S.)
| |
Collapse
|
28
|
Samy N, Reichhardt D, Schmidt D, Chen LM, Silbernagl G, Vidojkovic S, Meyer TP, Jordan E, Adams T, Weidenthaler H, Stroukova D, De Carli S, Chaplin P. Safety and immunogenicity of novel modified vaccinia Ankara-vectored RSV vaccine: A randomized phase I clinical trial. Vaccine 2020; 38:2608-2619. [PMID: 32057576 DOI: 10.1016/j.vaccine.2020.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
Respiratory disease caused by RSV infection is recognized as a severe public health issue in infants, young children and elderly with no specific treatment option. Vaccination may be the most effective strategy to combat this highly infectious virus although no vaccine has been approved. The novel vaccine candidate MVA-BN-RSV encodes RSV surface proteins F and G (subtypes A, B) as well as internal proteins N and M2 in the MVA-BN viral vector backbone to provide broad protection against RSV. This was a first in human study to investigate safety, reactogenicity and immunogenicity of MVA-BN-RSV. Sixty-three participants were allocated to 3 groups: adult (18-49 years) low (1 × 107 TCID50) or high (1 × 108 TCID50) dose and older adult (50-65 years) high dose. Participants in each group were randomized in a 6:1 ratio to receive 2 doses of MVA-BN-RSV or placebo 4 weeks apart and were monitored for 30 weeks. All participants completed the study, receiving both doses. No serious AEs or AEs of special interest were reported. The most common AEs were injection site pain (56% in the combined high dose groups, 17% in the low dose group). MVA-BN-RSV induced robust T cell responses covering all 5 inserts with fold increases ranging from 1.8 to 3.8. Higher and broader responses were observed in the high dose groups (83% responders to at least 3 peptide pools in the combined high dose groups compared to 63% in the low dose group). Moderate but consistent humoral responses were observed against A and B RSV subtypes (up to approximately 2-fold increases in the high dose groups). No differences were observed between the adult and the older adult groups in safety, reactogenicity or immunogenicity. The study demonstrated that the well tolerated MVA-BN-RSV vaccine candidate induces broad cellular and humoral immune responses, warranting further development.
Collapse
Affiliation(s)
- Nathaly Samy
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Liddy M Chen
- Bavarian Nordic Inc, 3025 Carrington Mill Boulevard, Morrisville, NC 27560, United States
| | - Günter Silbernagl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sanja Vidojkovic
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Thomas Ph Meyer
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Elke Jordan
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Tatiana Adams
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Daria Stroukova
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Sonja De Carli
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Paul Chaplin
- Bavarian Nordic A/S, Hejreskovvej 10A, DK-3490 Kvistgård, Denmark
| |
Collapse
|
29
|
Pittman PR, Hahn M, Lee HS, Koca C, Samy N, Schmidt D, Hornung J, Weidenthaler H, Heery CR, Meyer TPH, Silbernagl G, Maclennan J, Chaplin P. Phase 3 Efficacy Trial of Modified Vaccinia Ankara as a Vaccine against Smallpox. N Engl J Med 2019; 381:1897-1908. [PMID: 31722150 DOI: 10.1056/nejmoa1817307] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many countries have stockpiled vaccines because of concerns about the reemergence of smallpox. Traditional smallpox vaccines are based on replicating vaccinia viruses; these vaccines have considerable side effects. METHODS To evaluate the efficacy of modified vaccinia Ankara (MVA) as a potential smallpox vaccine, we randomly assigned 440 participants to receive two doses of MVA followed by one dose of the established replicating-vaccinia vaccine ACAM2000 (the MVA group) or to receive one dose of ACAM2000 (the ACAM2000-only group). The two primary end points were noninferiority of the MVA vaccine to ACAM2000 with respect to the peak serum neutralizing antibody titers and attenuation of the ACAM2000-associated major cutaneous reaction by previous MVA vaccination, measured according to the maximum lesion area and the derived area attenuation ratio. RESULTS A total of 220 and 213 participants were randomly assigned and vaccinated in the MVA group and ACAM2000-only group, respectively, and 208 participants received two MVA vaccinations. At peak visits, MVA vaccination induced a geometric mean titer of neutralizing antibodies of 153.5 at week 6, as compared with 79.3 at week 4 with ACAM2000 (a ratio of 1.94 [95% confidence interval {CI}, 1.56 to 2.40]). At day 14, the geometric mean titer of neutralizing antibodies induced by a single MVA vaccination (16.2) was equal to that induced by ACAM2000 (16.2), and the percentages of participants with seroconversion were similar (90.8% and 91.8%, respectively). The median lesion areas of the major cutaneous reaction were 0 mm2 in the MVA group and 76.0 mm2 in the ACAM2000-only group, resulting in an area attenuation ratio of 97.9% (95% CI, 96.6 to 98.3). There were fewer adverse events or adverse events of grade 3 or higher after both MVA vaccination periods in the MVA group than in the ACAM2000-only group (17 vs. 64 participants with adverse events of grade 3 or higher, P<0.001). CONCLUSIONS No safety concerns associated with the MVA vaccine were identified. Immune responses and attenuation of the major cutaneous reaction suggest that this MVA vaccine protected against variola infection. (Funded by the Office of the Assistant Secretary for Preparedness and Response Biomedical Advanced Research and Development Authority of the Department of Health and Human Services and Bavarian Nordic; ClinicalTrials.gov number, NCT01913353.).
Collapse
Affiliation(s)
- Phillip R Pittman
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Matthew Hahn
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - HeeChoon S Lee
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Craig Koca
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Nathaly Samy
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Darja Schmidt
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Joachim Hornung
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Heinz Weidenthaler
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Christopher R Heery
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Thomas P H Meyer
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Günter Silbernagl
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Jane Maclennan
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| | - Paul Chaplin
- From the U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD (P.R.P., C.K.); Brian Allgood Army Community Hospital, 121st Combat Support Hospital, Yongsan, South Korea (P.R.P., M.H., H.S.L., C.K.); Bavarian Nordic, Martinsried, Germany (N.S., D.S., J.H., H.W., T.P.H.M., G.S., J.M.); Bavarian Nordic, Morrisville NC (C.R.H.); and Bavarian Nordic, Kvistgård, Denmark (P.C.)
| |
Collapse
|
30
|
Tak S, Lim S, Kim H. Estimating the medical capacity required to administer mass prophylaxis: a hypothetical outbreak of smallpox virus infection in Korea. Epidemiol Health 2019; 41:e2019044. [PMID: 31623421 PMCID: PMC6883025 DOI: 10.4178/epih.e2019044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The aim of this study was to estimate the medical surge capacity required for mass prophylaxis based on a hypothetical outbreak of smallpox. METHODS We performed a simulation using the Bioterrorism and Epidemic Outbreak Response Model and varied some important parameters, such as the number of core medical personnel and the number of dispensing clinics. RESULTS Gaps were identified in the medical surge capacity of the Korean government, especially in the number of medical personnel who could respond to the need for mass prophylaxis against smallpox. CONCLUSIONS The Korean government will need to train 1,000 or more medical personnel for such an event, and will need to prepare many more dispensing centers than are currently available.
Collapse
Affiliation(s)
- Sangwoo Tak
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Soomin Lim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Heesu Kim
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev Vaccines 2018; 17:925-934. [PMID: 30300041 DOI: 10.1080/14760584.2018.1522255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.
Collapse
Affiliation(s)
- Natalie A Prow
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| | - Rocio Jimenez Martinez
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - John D Hayball
- c Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences , University of South Australia Cancer Research Institute , Adelaide , Australia
| | - Paul M Howley
- d Inflammation Biology , Sementis Ltd , Berwick , Australia
| | - Andreas Suhrbier
- a Inflammation Biology , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Inflammation Biology , Australian Infectious Disease Research Centre , Brisbane , Australia
| |
Collapse
|
32
|
Julander JG, Testori M, Cheminay C, Volkmann A. Immunogenicity and Protection After Vaccination With a Modified Vaccinia Virus Ankara-Vectored Yellow Fever Vaccine in the Hamster Model. Front Immunol 2018; 9:1756. [PMID: 30116244 PMCID: PMC6082969 DOI: 10.3389/fimmu.2018.01756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022] Open
Abstract
The highly efficacious live-attenuated 17D yellow fever (YF) vaccine is occasionally associated with rare life-threatening adverse events. Modified vaccinia virus Ankara (MVA), a non-replicating poxvirus, has been used as a vaccine platform to safely deliver various antigens. A MVA-based YF vaccine (MVA-BN-YF) was tested with and without a non-mineral oil adjuvant in a hamster model of lethal YF disease and protective efficacy of this vaccine was compared with the 17D vaccine. The vaccine candidate MVA-BN-YF generated a protective response in hamsters infected with YFV that was comparable to protection by the live 17D vaccine. Similar levels of neutralizing antibody were observed in animals vaccinated with either vaccine alone or vaccine with adjuvant. Significant improvement in survival, weight change, and serum alanine aminotransferase levels were observed in vaccinated hamsters when administered 42 and 14 days prior to challenge with Jimenez YF virus (YFV). Neutralizing antibodies induced by MVA-BN-YF were transferred to naïve hamsters prior to virus challenge. Passive administration of neutralizing antibody 24 h prior to virus infection resulted in significantly improved survival and weight change. A trend toward reduced liver enzyme levels was also observed. MVA-BN-YF, therefore, represents a safe alternative to vaccination with live-attenuated YFV.
Collapse
Affiliation(s)
- Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | | | | | | |
Collapse
|
33
|
Hu WG, Steigerwald R, Kalla M, Volkmann A, Noll D, Nagata LP. Protective efficacy of monovalent and trivalent recombinant MVA-based vaccines against three encephalitic alphaviruses. Vaccine 2018; 36:5194-5203. [DOI: 10.1016/j.vaccine.2018.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
34
|
Nagata LP, Irwin CR, Hu WG, Evans DH. Vaccinia-based vaccines to biothreat and emerging viruses. Biotechnol Genet Eng Rev 2018; 34:107-121. [PMID: 29779454 PMCID: PMC9491131 DOI: 10.1080/02648725.2018.1471643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have seen a rash of emerging viral diseases, including the Ebola crisis in West Africa, the pandemic spread of chikungunya, and the recent explosion of Zika in South America. Vaccination is the most reliable and cost-effective method of control of infectious diseases, however, there is often a long delay in production and approval in getting new vaccines to market. Vaccinia was the first vaccine developed for the successful eradication of smallpox and has properties that make it attractive as a universal vaccine vector. Vaccinia can cause severe complications, particularly in immune suppressed recipients that would limit its utility, but nonreplicating and attenuated strains have been developed. Modified vaccinia Ankara is nonreplicating in human cells and can be safely given to immune suppressed individuals. Vaccinia has recently been modified for use as an oncolytic treatment for cancer therapy. These new vaccinia vectors are replicating; but have been attenuated and could prove useful as a universal vaccine carrier as many of these are in clinical trials for cancer therapy. This article reviews the development of a universal vaccinia vaccine platform for emerging diseases or biothreat agents, based on nonreplicating or live attenuated vaccinia viruses.
Collapse
Affiliation(s)
- Les P Nagata
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada.,b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Chad R Irwin
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| | - Wei-Gang Hu
- a Biothreat Defence Section, Defence R&D Canada , Suffield Research Centre , Ralston , Canada
| | - David H Evans
- b Medical Microbiology and Immunology , University of Alberta , Edmonton , Canada
| |
Collapse
|
35
|
Overton ET, Lawrence SJ, Wagner E, Nopora K, Rösch S, Young P, Schmidt D, Kreusel C, De Carli S, Meyer TP, Weidenthaler H, Samy N, Chaplin P. Immunogenicity and safety of three consecutive production lots of the non replicating smallpox vaccine MVA: A randomised, double blind, placebo controlled phase III trial. PLoS One 2018; 13:e0195897. [PMID: 29652929 PMCID: PMC5898760 DOI: 10.1371/journal.pone.0195897] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background Modified Vaccinia Ankara (MVA) is a live, viral vaccine under advanced development as a non-replicating smallpox vaccine. A randomised, double-blind, placebo-controlled phase III clinical trial was conducted to demonstrate the humoral immunogenic equivalence of three consecutively manufactured MVA production lots, and to confirm the safety and tolerability of MVA focusing on cardiac readouts. Methods The trial was conducted at 34 sites in the US. Vaccinia-naïve adults aged 18-40 years were randomly allocated to one of four groups using a 1:1:1:1 randomization scheme. Subjects received either two MVA injections from three consecutive lots (Groups 1-3), or two placebo injections (Group 4), four weeks apart. Everyone except personnel involved in vaccine handling and administration was blinded to treatment. Safety assessment focused on cardiac monitoring throughout the trial. Vaccinia-specific antibody titers were measured using a Plaque Reduction Neutralization Test (PRNT) and an Enzyme-Linked Immunosorbent Assay (ELISA). The primary immunogenicity endpoint was Geometric Mean Titers (GMTs) after two MVA vaccinations measured by PRNT at trial visit 4. This trial is registered with ClinicalTrials.gov, number NCT01144637. Results Between March 2013 and May 2014, 4005 subjects were enrolled and received at least one injection of MVA (n = 3003) or placebo (n = 1002). The three MVA lots induced equivalent antibody titers two weeks after the second vaccination, with seroconversion rates of 99·8% (PRNT) and 99·7% (ELISA). Overall, 180 (6·0%) subjects receiving MVA and 29 (2·9%) subjects in the placebo group reported at least one unsolicited Adverse Event (AE) that was considered trial-related. Vaccination was well tolerated without significant safety concerns, particularly regarding cardiac assessment. Conclusions The neutralizing and total antibody titers induced by each of the three lots were equivalent. No significant safety concerns emerged in this healthy trial population, especially regarding cardiac safety, thus confirming the excellent safety and tolerability profile of MVA. Trial registration ClinicalTrials.gov NCT01144637
Collapse
Affiliation(s)
- Edgar Turner Overton
- Division of Infectious Diseases, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States of America
| | - Steven J. Lawrence
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eva Wagner
- Bavarian Nordic GmbH, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prow NA, Liu L, Nakayama E, Cooper TH, Yan K, Eldi P, Hazlewood JE, Tang B, Le TT, Setoh YX, Khromykh AA, Hobson-Peters J, Diener KR, Howley PM, Hayball JD, Suhrbier A. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun 2018; 9:1230. [PMID: 29581442 PMCID: PMC5964325 DOI: 10.1038/s41467-018-03662-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The “Sementis Copenhagen Vector” (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR−/− mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR−/− mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR−/− mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced “shot burden” for these often co-circulating arboviruses. Zika and chikungunya virus are co-circulating in many regions and currently there is no approved vaccine for either virus. Here, the authors engineer one vaccinia virus based vaccine for both, Zika and chikungunya, and show protection from infection and pathogenesis in mice.
Collapse
Affiliation(s)
- Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Eri Nakayama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Preethi Eldi
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia. .,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
37
|
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines (Basel) 2018; 6:vaccines6010008. [PMID: 29382130 PMCID: PMC5874649 DOI: 10.3390/vaccines6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023] Open
Abstract
Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV), and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.
Collapse
Affiliation(s)
- Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
38
|
Reeman S, Gates AJ, Pulford DJ, Krieg A, Ulaeto DO. Protection of Mice from Lethal Vaccinia Virus Infection by Vaccinia Virus Protein Subunits with a CpG Adjuvant. Viruses 2017; 9:v9120378. [PMID: 29232844 PMCID: PMC5744152 DOI: 10.3390/v9120378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022] Open
Abstract
Smallpox vaccination carries a high risk of adverse events in recipients with a variety of contra-indications for live vaccines. Although alternative non-replicating vaccines have been described in the form of replication-deficient vaccine viruses, DNA vaccines, and subunit vaccines, these are less efficacious than replicating vaccines in animal models. DNA and subunit vaccines in particular have not been shown to give equivalent protection to the traditional replicating smallpox vaccine. We show here that combinations of the orthopoxvirus A27, A33, B5 and L1 proteins give differing levels of protection when administered in different combinations with different adjuvants. In particular, the combination of B5 and A27 proteins adjuvanted with CpG oligodeoxynucleotides (ODN) gives a level of protection in mice that is equivalent to the Lister traditional vaccine in a lethal vaccinia virus challenge model.
Collapse
Affiliation(s)
- Sarah Reeman
- Chemical, Biological & Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK.
| | - Amanda J Gates
- Chemical, Biological & Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK.
| | - David J Pulford
- Animal Health Laboratory, Ministry for Primary Industries, Wallaceville, Upper Hutt 5140, New Zealand.
| | - Art Krieg
- Checkmate Pharmaceuticals, One Broadway, 14th Floor, Cambridge, MA 02142, USA.
| | - David O Ulaeto
- Chemical, Biological & Radiological Division, Dstl Porton Down, Salisbury SP4 0JQ, UK.
- The Pirbright Institute, Pirbright GU24 0NF, UK.
| |
Collapse
|
39
|
Eldi P, Cooper TH, Liu L, Prow NA, Diener KR, Howley PM, Suhrbier A, Hayball JD. Production of a Chikungunya Vaccine Using a CHO Cell and Attenuated Viral-Based Platform Technology. Mol Ther 2017; 25:2332-2344. [PMID: 28720468 PMCID: PMC5628773 DOI: 10.1016/j.ymthe.2017.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/03/2017] [Accepted: 06/18/2017] [Indexed: 02/06/2023] Open
Abstract
Vaccinia-based systems have been extensively explored for the development of recombinant vaccines. Herein we describe an innovative vaccinia virus (VACV)-derived vaccine platform technology termed Sementis Copenhagen Vector (SCV), which was rendered multiplication-defective by targeted deletion of the essential viral assembly gene D13L. A SCV cell substrate line was developed for SCV vaccine production by engineering CHO cells to express D13 and the VACV host-range factor CP77, because CHO cells are routinely used for manufacture of biologics. To illustrate the utility of the platform technology, a SCV vaccine against chikungunya virus (SCV-CHIK) was developed and shown to be multiplication-defective in a range of human cell lines and in immunocompromised mice. A single vaccination of mice with SCV-CHIK induced antibody responses specific for chikungunya virus (CHIKV) that were similar to those raised following vaccination with a replication-competent VACV-CHIK and able to neutralize CHIKV. Vaccination also provided protection against CHIKV challenge, preventing both viremia and arthritis. Moreover, SCV retained capacity as an effective mouse smallpox vaccine. In summary, SCV represents a new and safe vaccine platform technology that can be manufactured in modified CHO cells, with pre-clinical evaluation illustrating utility for CHIKV vaccine design and construction.
Collapse
Affiliation(s)
- Preethi Eldi
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tamara H Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Sementis Ltd., Melbourne, VIC 3000, Australia.
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
40
|
Phelps A, Gates AJ, Eastaugh L, Hillier M, Ulaeto DO. Comparative Efficacy of Intramuscular and Scarification Routes of Administration of Live Smallpox Vaccine in a Murine Challenge Model. Vaccine 2017; 35:3889-3896. [PMID: 28606813 PMCID: PMC9628712 DOI: 10.1016/j.vaccine.2017.05.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022]
Abstract
In recent years concern has mounted regarding the possibility of a re-emergence of smallpox through biowarfare or bioterrorism. There is also concern over the incidence of human monkeypox in endemic areas and the potential for monkeypox to be accidentally transported to non-endemic areas. In the event of re-emergence of smallpox or emergence of monkeypox, the accepted route of administration for live replicating smallpox vaccine is dermal scarification, which generates a virus-shedding lesion that persists for several days at the vaccination site. The lesion is a potential source of contact transmission of vaccine to individuals who may be contra-indicated for receipt of the live vaccine. In this study, we compare dermal scarification with intramuscular vaccination for replicating smallpox vaccine in a mouse lethal challenge model. Comparisons are made over multiple vaccine and challenge doses and data recorded for lethality, disease severity, and antibody responses. Qualitative and quantitative differences between the two routes are observed, and for the intramuscular route the febrile response is not suppressed after subsequent virulent vaccinia virus challenge. However both routes generate an immune response and protect from severe disease and death. Although dermal scarification is the preferred route of vaccination for the general population, intramuscular vaccination may be an option for people who are not contraindicated for the live vaccine, but who are close contacts of people who are contraindicated for the live vaccine, in an emergency situation.
Collapse
Affiliation(s)
- A Phelps
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - A J Gates
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - L Eastaugh
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - M Hillier
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK
| | - D O Ulaeto
- CBR Division, Dstl Porton Down, Salisbury SP4 0JQ, UK; The Pirbright Institute, Ash Road, Woking GU24 0NF, UK.
| |
Collapse
|
41
|
Jackson LA, Frey SE, El Sahly HM, Mulligan MJ, Winokur PL, Kotloff KL, Campbell JD, Atmar RL, Graham I, Anderson EJ, Anderson EL, Patel SM, Fields C, Keitel W, Rouphael N, Hill H, Goll JB. Safety and immunogenicity of a modified vaccinia Ankara vaccine using three immunization schedules and two modes of delivery: A randomized clinical non-inferiority trial. Vaccine 2017; 35:1675-1682. [PMID: 28256358 DOI: 10.1016/j.vaccine.2017.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/17/2023]
Abstract
INTRODUCTION To guide the use of modified vaccinia Ankara (MVA) vaccine in response to a release of smallpox virus, the immunogenicity and safety of shorter vaccination intervals, and administration by jet injector (JI), were compared to the standard schedule of administration on Days 1 and 29 by syringe and needle (S&N). METHODS Healthy adults 18-40years of age were randomly assigned to receive MVA vaccine subcutaneously by S&N on Days 1 and 29 (standard), Days 1 and 15, or Days 1 and 22, or to receive the vaccine subcutaneously by JI on Days 1 and 29. Blood was collected at four time points after the second vaccination for plaque reduction neutralization test (PRNT) (primary endpoint) and ELISA (secondary endpoint) antibody assays. For each subject, the peak PRNT (or ELISA) titer was defined by the highest PRNT (or ELISA) titer among all available measurements post second vaccination. Non-inferiority of a non-standard arm compared to the standard arm was met if the upper limit of the 98.33% confidence interval of the difference in the mean log2 peak titers between the standard and non-standard arm was less than 1. RESULTS Non-inferiority of the PRNT antibody response was not established for any of the three non-standard study arms. Non-inferiority of the ELISA antibody response was established for the Day 1 and 22 compressed schedule and for administration by JI. Solicited local reactions, such as redness and swelling, tended to be more commonly reported with JI administration. Four post-vaccination hypersensitivity reactions were observed. CONCLUSIONS Evaluations of the primary endpoint of PRNT antibody responses do not support alternative strategies of administering MVA vaccine by S&N on compressed schedules or administration by JI on the standard schedule. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01827371.
Collapse
Affiliation(s)
- Lisa A Jackson
- Group Health Research Institute, Seattle, WA, United States.
| | - Sharon E Frey
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Hana M El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Patricia L Winokur
- University of Iowa and Iowa City VA Medical Center, Iowa City, IA, United States
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James D Campbell
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert L Atmar
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Irene Graham
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Edwin L Anderson
- Division of Infectious Diseases, Allergy, & Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Shital M Patel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Colin Fields
- Group Health Research Institute, Seattle, WA, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
42
|
Volz A, Sutter G. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development. Adv Virus Res 2016; 97:187-243. [PMID: 28057259 PMCID: PMC7112317 DOI: 10.1016/bs.aivir.2016.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology.
Collapse
Affiliation(s)
- A Volz
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany
| | - G Sutter
- German Center for Infection Research (DZIF), Institute for Infectious Diseases and Zoonoses, LMU University of Munich, Munich, Germany.
| |
Collapse
|
43
|
Greenberg RN, Hay CM, Stapleton JT, Marbury TC, Wagner E, Kreitmeir E, Röesch S, von Krempelhuber A, Young P, Nichols R, Meyer TP, Schmidt D, Weigl J, Virgin G, Arndtz-Wiedemann N, Chaplin P. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects. PLoS One 2016; 11:e0157335. [PMID: 27327616 PMCID: PMC4915701 DOI: 10.1371/journal.pone.0157335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/27/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56-80 years old population. METHODS MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56-80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. RESULTS Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after the final vaccination for Group MM were 804.1 and 605.8 for Group PM (with ratio of GMTs of 1.33 with 95% CI of [0.96, 1.84]). Similarly, GMTs measured by PRNT were 210.3 for Group MM and 126.7 for Group PM (with ratio 1.66 and 95% CI [0.95, 2.90]). CONCLUSIONS One or two doses of MVA were safe and immunogenic in a 56-80 years old vaccinia-experienced population. No cases of myopericarditis were observed following vaccinations with MVA. The safety, reactogenicity and immunogenicity were similar to that seen in younger (18-55 year old) healthy populations as investigated in other MVA trials. The results suggest that a single dose of MVA in a 56-80 years old population was well tolerated and sufficient to rapidly boost the long-term B cell memory response induced by a prior vaccination with a traditional smallpox vaccine. TRIAL REGISTRATION ClinicalTrials.gov NCT00857493.
Collapse
Affiliation(s)
- Richard N. Greenberg
- University of Kentucky School of Medicine, MN663 Medical Science Bldg., 800 Rose Street, Lexington, KY, 40536, United States of America
| | - Christine M. Hay
- University of Iowa, SW54, GH, 200 Hawkins Drive, UHC, Iowa City, IA, 52242, United States of America
| | - Jack T. Stapleton
- University of Rochester Medical Center School of Medicine and Dentistry, 601 Elmwood Avenue, Box 689, Rochester, NY, 14642, United States of America
| | - Thomas C. Marbury
- Orlando Clinical Research Center, 5055 South Orange Avenue, Orlando, FL, 32809, United States of America
| | - Eva Wagner
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Eva Kreitmeir
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Siegfried Röesch
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Philip Young
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Richard Nichols
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Thomas P. Meyer
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Darja Schmidt
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Josef Weigl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | - Garth Virgin
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| | | | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, 82152 Martinsried, Germany
| |
Collapse
|
44
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
45
|
Greenberg RN, Hurley MY, Dinh DV, Mraz S, Vera JG, von Bredow D, von Krempelhuber A, Roesch S, Virgin G, Arndtz-Wiedemann N, Meyer TP, Schmidt D, Nichols R, Young P, Chaplin P. Correction: A Multicenter, Open-Label, Controlled Phase II Study to Evaluate Safety and Immunogenicity of MVA Smallpox Vaccine (IMVAMUNE) in 18-40 Year Old Subjects with Diagnosed Atopic Dermatitis. PLoS One 2015; 10:e0142802. [PMID: 26554703 PMCID: PMC4640813 DOI: 10.1371/journal.pone.0142802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|