1
|
Liu S, Yang H, Zhang H, Liu J, Ma S, Hui H, Wang L, Cheng Q, Shen H. Phenotypic, genetic, variation, and molecular function of CaMYB113 in pepper (Capsicum annuum L.). Int J Biol Macromol 2024; 281:136300. [PMID: 39389497 DOI: 10.1016/j.ijbiomac.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pepper (Capsicum annuum L.) is widely consumed vegetables worldwide, and F1 hybrids are highly sought after in the pepper seed industry. However, studies on gene mutations affecting the color of cotyledon are rare, and the same is true for peppers. In this study, a segregating population was developed by crossing the pepper accession 21C1344 with purple cotyledon and accession 21C912 with green cotyledon. Initially, a target genomic region was identified by screening polymorphic SSR markers distributed across 12 chromosomes. Subsequently, polymorphic markers were developed based on resequencing data from the two parental lines, and genetic linkage analysis was performed. This approach ultimately identified Capana10g001433 (CaMYB113) as the candidate gene responsible for the purple cotyledons. The gene mutation type in 21C912 represents a new mutation type distinct from the reported missense mutation types, and this mutation affects the biosynthesis of anthocyanins. Virus-induced gene silencing (VIGS) of CaMYB113 substantially decreased anthocyanin accumulation in the cotyledons. Subsequent overexpression of CaMYB113 resulted in purple callus and leaves of pepper, and changed the expression levels of downstream genes involved in anthocyanin synthesis. Yeast one-hybrid and dual-luciferase transient expression assays demonstrated the binding of CaMYB113 to anthocyanin biosynthesis-related genes, thereby regulating anthocyanin accumulation in pepper cotyledons.
Collapse
Affiliation(s)
- Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Haizhou Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Han Hui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liru Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Wang Y, Zhang X, Du X, Zhang Z, He Z. Effects of different straw breeding substrates on the growth of tomato seedlings and transcriptome analysis. Sci Rep 2024; 14:22181. [PMID: 39333764 PMCID: PMC11437046 DOI: 10.1038/s41598-024-73135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Traditional substrate cultivation is now a routine practice in vegetable facility breeding. However, finding renewable substrates that can replace traditional substrates is urgent in today's production. In this study, we used the 'Pindstrup' substrate as control and two types of composite substrates made from fermented corn straw (i.e. 0-3 and 3-5 mm) to identify appropriate substrate conditions for tomato seedling growth under winter greenhouse conditions. Seedling growth potential related data and substrate water content related data were tested to carry out data-oriented support. Since the single physiological data cannot well explain the mechanism of tomato seedlings under winter greenhouse condition, transcriptomic analysis of tomato root and leaf tissues were conducted to provide theoretical basis. The physiological data of tomato seedlings and substrate showed that compared with 0-3 mm and Pindstrup substrate, tomato seedlings planted in 3-5 mm had stronger growth potential and stronger water retention, and were more suitable for planting tomato seedlings. Transcriptome analysis revealed a greater number of DEGs between the Pindstrup and the 3-5 mm. The genes in this group contribute to tomato growth as well as tomato stress response mechanisms, such as ABA-related genes, hormone-related genes and some TFs. The simulation network mechanism diagram adds evidence to the above conclusions. Overall, these results demonstrate the potential benefits of using the fermented corn straw of 3-5 mm for growing tomato seedlings and present a novel method of utilizing corn straw.
Collapse
Affiliation(s)
- Yilian Wang
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Xinyu Zhang
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Xuejing Du
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Zhibo Zhang
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China
| | - Zhigang He
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning, China.
- Institute of Plant Nutrition and Environmental Resources, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| |
Collapse
|
3
|
Suprun AR, Manyakhin AY, Trubetskaya EV, Kiselev KV, Dubrovina AS. Regulation of Anthocyanin Accumulation in Tomato Solanum lycopersicum L. by Exogenous Synthetic dsRNA Targeting Different Regions of SlTRY Gene. PLANTS (BASEL, SWITZERLAND) 2024; 13:2489. [PMID: 39273974 PMCID: PMC11396968 DOI: 10.3390/plants13172489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
RNA interference (RNAi) is a regulatory and protective mechanism that plays a crucial role in the growth, development, and control of plant responses to pathogens and abiotic stresses. In spray-induced gene silencing (SIGS), exogenous double-stranded RNAs (dsRNA) are used to efficiently regulate target genes via plant surface treatment. In this study, we aimed to evaluate the effect of specific exogenous dsRNAs on silencing different regions (promoter, protein-coding and intron) of the target SlTRY tomato gene, encoding an R3-type MYB repressor of anthocyanin biosynthesis. We also assessed the impact of targeting different SlTRY regions on the expression of genes involved in anthocyanin and flavonoid biosynthesis. This study demonstrated the critical importance of selecting the appropriate gene target region for dsRNA action. The highest inhibition of the SlTRY gene expression and activation of anthocyanin biosynthesis was achieved by dsRNA complementary to the protein-coding region of SlTRY gene, compared with dsRNAs targeting the SlTRY promoter or intron regions. Silencing the SlTRY gene increased the content of anthocyanins and boosted levels of other substances in the phenylpropanoid pathway, such as caffeoyl putrescine, chlorogenic acid, ferulic acid glucoside, feruloyl quinic acid, and rutin. This study is the first to examine the effects of four different dsRNAs targeting various regions of the SlTRY gene, an important negative regulator of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Andrey R Suprun
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Artem Yu Manyakhin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Evgeniya V Trubetskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Konstantin V Kiselev
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexandra S Dubrovina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
4
|
Singh D, Dwivedi S, Singh N, Trivedi PK. HY5 and COP1 function antagonistically in the regulation of nicotine biosynthesis in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108916. [PMID: 39002305 DOI: 10.1016/j.plaphy.2024.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation. Here, we identified NtCOP1, a COP1 homolog in Nicotiana tabacum, and demonstrated its ability to complement the cop1-4 mutant in Arabidopsis thaliana at molecular, morphological, and biochemical levels. Through the development of NtCOP1 overexpression (NtCOP1OX) plants, we observed a significant reduction in nicotine and flavonol content, inversely correlated with the down-regulation of nicotine and phenylpropanoid pathway. Conversely, CRISPR/Cas9-based knockout mutant plants (NtCOP1CR) exhibited an increase in nicotine levels. Further investigations, including yeast-two hybrid assays, grafting experiments, and Western blot analyses, revealed that NtCOP1 modulates nicotine biosynthesis by targeting NtHY5, thereby impeding its transport from shoot-to-root. We conclude that the interplay between HY5 and COP1 functions antagonistically in the light-dependent regulation of nicotine biosynthesis in tobacco.
Collapse
Affiliation(s)
- Deeksha Singh
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shambhavi Dwivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Nivedita Singh
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
6
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
7
|
Zhou Y, Wu W, Sun Y, Shen Y, Mao L, Dai Y, Yang B, Liu Z. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation. BMC PLANT BIOLOGY 2024; 24:210. [PMID: 38519909 PMCID: PMC10960449 DOI: 10.1186/s12870-024-04888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.
Collapse
Affiliation(s)
- Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Weisheng Wu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yunhua Dai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
8
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
9
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
10
|
Yan S, Wang Y, Yu B, Gan Y, Lei J, Chen C, Zhu Z, Qiu Z, Cao B. A putative E3 ubiquitin ligase substrate receptor degrades transcription factor SmNAC to enhance bacterial wilt resistance in eggplant. HORTICULTURE RESEARCH 2024; 11:uhad246. [PMID: 38239808 PMCID: PMC10794948 DOI: 10.1093/hr/uhad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/12/2023] [Indexed: 01/22/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a severe soil-borne disease globally, limiting the production in Solanaceae plants. SmNAC negatively regulated eggplant resistance to Bacterial wilt (BW) though restraining salicylic acid (SA) biosynthesis. However, other mechanisms through which SmNAC regulates BW resistance remain unknown. Here, we identified an interaction factor, SmDDA1b, encoding a substrate receptor for E3 ubiquitin ligase, from the eggplant cDNA library using SmNAC as bait. SmDDA1b expression was promoted by R. solanacearum inoculation and exogenous SA treatment. The virus-induced gene silencing of the SmDDA1b suppressed the BW resistance of eggplants; SmDDA1b overexpression enhanced the BW resistance of tomato plants. SmDDA1b positively regulates BW resistance by inhibiting the spread of R. solanacearum within plants. The SA content and the SA biosynthesis gene ICS1 and signaling pathway genes decreased in the SmDDA1b-silenced plants but increased in SmDDA1b-overexpression plants. Moreover, SmDDB1 protein showed interaction with SmCUL4 and SmDDA1b and protein degradation experiments indicated that SmDDA1b reduced SmNAC protein levels through proteasome degradation. Furthermore, SmNAC could directly bind the SmDDA1b promoter and repress its transcription. Thus, SmDDA1b is a novel regulator functioning in BW resistance of solanaceous crops via the SmNAC-mediated SA pathway. Those results also revealed a negative feedback loop between SmDDA1b and SmNAC controlling BW resistance.
Collapse
Affiliation(s)
- Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yixi Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bingwei Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Debnath T, Dhar DG, Dhar P. Molecular switches in plant stress adaptation. Mol Biol Rep 2023; 51:20. [PMID: 38108912 DOI: 10.1007/s11033-023-09051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Climate change poses a significant threat to the global ecosystem, prompting plants to use various adaptive mechanisms via molecular switches to combat biotic and abiotic stress factors. These switches activate stress-induced pathways by altering their configuration between stable states. In this review, we investigated the regulation of molecular switches in different plant species in response to stress, including the stress-regulated response of multiple switches in Arabidopsis thaliana. We also discussed techniques for developing stress-resilient crops using molecular switches through advanced biotechnological tools. The literature search, conducted using databases such as PubMed, Google Scholar, Web of Science, and SCOPUS, utilized keywords such as molecular switch, plant adaptation, biotic and abiotic stresses, transcription factors, Arabidopsis thaliana, and crop improvement. Recent studies have shown that a single molecular switch can regulate multiple stress networks, and multiple switches can regulate a single stress condition. This multifactorial understanding provides clarity to the switch regulatory network and highlights the interrelationships of different molecular switches. Advanced breeding techniques, along with genomic and biotechnological tools, have paved the way for further research on molecular switches in crop improvement. The use of synthetic biology in molecular switches will lead to a better understanding of plant stress biology and potentially bring forth a new era of stress-resilient, climate-smart crops worldwide.
Collapse
Affiliation(s)
- Tista Debnath
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India
| | - Debasmita Ghosh Dhar
- Kataganj Spandan, Social Welfare Organization, Kalyani, West Bengal, 741250, India
| | - Priyanka Dhar
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
12
|
Zhao X, Wu Y, Zhang X, Tian F, Yu F, Li X, Huang D. Association Analysis of Transcriptome and Targeted Metabolites Identifies Key Genes Involved in Iris germanica Anthocyanin Biosynthesis. Int J Mol Sci 2023; 24:16462. [PMID: 38003651 PMCID: PMC10671556 DOI: 10.3390/ijms242216462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The anthocyanin biosynthetic pathway is the main pathway regulating floral coloration in Iris germanica, a well-known ornamental plant. We investigated the transcriptome profiles and targeted metabolites to elucidate the relationship between genes and metabolites in anthocyanin biosynthesis in the bitone flower cultivar 'Clarence', which has a deep blue outer perianth and nearly white inner perianth. In this study, delphinidin-, pelargonidin-, and cyanidin-based anthocyanins were detected in the flowers. The content of delphinidin-based anthocyanins increased with the development of the flower. At full bloom (stage 3), delphinidin-based anthocyanins accounted for most of the total anthocyanin metabolites, whereas the content of pelargonidin- and cyanidin-based anthocyanins was relatively low. Based on functional annotations, a number of novel genes in the anthocyanin pathway were identified, which included early biosynthetic genes IgCHS, IgCHI, and IgF3H and late biosynthetic genes Ig F3'5'H, IgANS, and IgDFR. The expression of key structural genes encoding enzymes, such as IgF3H, Ig F3'5'H, IgANS, and IgDFR, was significantly upregulated in the outer perianth compared to the inner perianth. In addition, most structural genes exhibited their highest expression at the half-color stage rather than at the full-bloom stage, which indicates that these genes function ahead of anthocyanins synthesis. Moreover, transcription factors (TFs) of plant R2R3-myeloblastosis (R2R3-MYB) related to the regulation of anthocyanin biosynthesis were identified. Among 56 R2R3-MYB genes, 2 members belonged to subgroup 4, with them regulating the expression of late biosynthetic genes in the anthocyanin biosynthetic pathway, and 4 members belonged to subgroup 7, with them regulating the expression of early biosynthetic genes in the anthocyanin biosynthetic pathway. Quantitative real-time PCR (qRT-PCR) analysis was used to validate the data of RNA sequencing (RNA-Seq). The relative expression profiles of most candidate genes were consistent with the FPKM of RNA-seq. This study identified the key structural genes encoding enzymes and TFs that affect anthocyanin biosynthesis, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis in I. germanica.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dazhuang Huang
- Department of Landscape Architecture, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071001, China; (X.Z.); (Y.W.); (X.Z.); (F.T.); (F.Y.); (X.L.)
| |
Collapse
|
13
|
Yang F, Shen H, Huang T, Yao Q, Hu J, Tang J, Zhang R, Tong H, Wu Q, Zhang Y, Su Q. Flavonoid production in tomato mediates both direct and indirect plant defences against whiteflies in tritrophic interactions. PEST MANAGEMENT SCIENCE 2023; 79:4644-4654. [PMID: 37442806 DOI: 10.1002/ps.7667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND The role of plant flavonoids in direct defences against chewing and sap-sucking herbivorous insects has been extensively characterized. However, little is known about flavonoid-mediated tritrophic interactions between plants, herbivorous insects and natural enemies. In this study, we investigated how flavonoids modulate plant-insect interactions in a tritrophic system involving near-isogenic lines (NILs) of cultivated tomato (Solanum lycopersicum) with high (line NIL-purple hypocotyl [PH]) and low (line NIL-green hypocotyl [GH]) flavonoid levels, with a generalist herbivore whitefly (Bemisia tabaci) and its predatory bug (Orius sauteri). RESULTS By contrasting levels of tomato flavonoids (direct defence) while manipulating the presence of predators (indirect defence), we found that high production of flavonoids in tomato was associated with a higher inducibility of direct defences and a stronger plant resistance to whitefly infestation and stimulated the emissions of induced volatile organic compounds, thereby increasing the attractiveness of B. tabaci-infested plants to the predator O. sauteri. Furthermore, suppression of B. tabaci population growth and enhancement of plant growth were mediated directly by the high production of flavonoids and indirectly by the attraction of O. sauteri, and the combined effects were larger than each effect individually. CONCLUSION Our results show that high flavonoid production in tomato enhances herbivore-induced direct and indirect defences to better defend against herbivores in tritrophic interactions. Thus, the development of transgenic plants may present an opportunity to utilize the beneficial role of flavonoids in integrated pest management, while simultaneously maintaining or improving resistance against other pests and pathogens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Haowei Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tianyu Huang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qixi Yao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Wang Y, Wang Z, Du H, Chen B, Wang G, Wang Q, Geng S, Zhang X. Fine mapping of the flavonoid 3',5'-hydroxylase gene controlling anthocyanin biosynthesis in pepper anthers and stems. FRONTIERS IN PLANT SCIENCE 2023; 14:1232755. [PMID: 37575941 PMCID: PMC10416102 DOI: 10.3389/fpls.2023.1232755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Pepper (Capsicum annuum L) is one of the most important vegetables grown worldwide. Nevertheless, the key structural and regulatory genes involved in anthocyanin accumulation in pepper have not been well understood or fine mapped yet. In this study, F1, F2, BC1P1, and BC1P2 pepper populations were analyzed and these populations were derived from a cross between line 14-Z4, which has yellow anthers and green stems, and line 14-Z5, which has purple anthers and stems. The results showed that the yellow anthers and green stems were determined by a single recessive locus called to as ayw. While, using preliminary and fine mapping techniques, ayw locus was located between markers aywSNP120 and aywSNP124, with physical distance of 0.2 Mb. The CA11g18550 gene was identified as promising candidate for the ayw locus, as it co-segregated with the yellow anthers and green stems phenotypes. CA11g18550 encodes a homolog of the F3'5'H (flavonoid 3',5'-hydroxylase) anthocyanin synthesis structure gene. The missense mutation of CA11g18550 possibly resulted in a loss-of-function. The expression analysis showed that CA11g18550 was significantly expressed in the stems, leaves, anthers and petals in 14-Z5, and it's silencing caused the stems changing from purple to green. This study provides a theoretical basis for using yellow anthers and green stems in pepper breeding and helps to advance the understanding of anthocyanin synthesis.
Collapse
Affiliation(s)
- Yixin Wang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Zheng Wang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Heshan Du
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Chen
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guoyun Wang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qian Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Sansheng Geng
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaofen Zhang
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
15
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
16
|
Xu Z, Wang J, Ma Y, Wang F, Wang J, Zhang Y, Hu X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36999610 DOI: 10.1111/tpj.16224] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Menconi J, Perata P, Gonzali S. Novel R2R3 MYB transcription factors regulate anthocyanin synthesis in Aubergine tomato plants. BMC PLANT BIOLOGY 2023; 23:148. [PMID: 36935480 PMCID: PMC10026432 DOI: 10.1186/s12870-023-04153-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND A high content in anthocyanins, for their health beneficial properties, represents an added value for fruits and vegetables. Tomato (Solanum lycopersicum) is one of the most consumed vegetables worldwide and is rich in vitamins and carotenoids. In recent years, purple-skinned tomatoes, enriched of anthocyanins, were produced recovering allelic variants from wild Solanum species. The molecular basis of the Anthocyanin fruit (Aft) locus, exploited by breeders to activate the anthocyanin synthesis in tomato epicarp, has been recently identified in the correct splicing of the R2R3 MYB gene AN2like. Aubergine (Abg) is a tomato accession which introgressed from Solanum lycopersicoides a locus activating the synthesis of anthocyanins in the fruit. The Abg locus was mapped in the region of chromosome 10 containing Aft and the possibility that Abg and Aft represented alleles of the same gene was hypothesized. RESULTS We dissected the R2R3 MYB gene cluster located in the Abg genomic introgression and demonstrated that AN2like is correctly spliced in Abg plants and is expressed in the fruit epicarp. Moreover, its silencing specifically inhibits the anthocyanin synthesis. The Abg allele of AN2like undergoes alternative splicing and produces two proteins with different activities. Furthermore, in Abg the master regulator of the anthocyanin synthesis in tomato vegetative tissues, AN2, is very poorly expressed. Finally, a novel R2R3 MYB gene was identified: it encodes another positive regulator of the pathway, whose activity was lost in tomato and in its closest relatives. CONCLUSION In this study, we propose that AN2like is responsible of the anthocyanin production in Abg fruits. Unlike wild type tomato, the Abg allele of AN2like is active and able to regulate its targets. Furthermore, in Abg alternative splicing leads to two forms of AN2like with different activities, likely representing a novel type of regulation of anthocyanin synthesis in tomato.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy.
| |
Collapse
|
18
|
Murphy AM, Jiang S, Elderfield JA, Pate AE, Halliwell C, Glover BJ, Cunniffe NJ, Carr JP. Biased pollen transfer by bumblebees favors the paternity of virus-infected plants in cross-pollination. iScience 2023; 26:106116. [PMID: 36994192 PMCID: PMC10040881 DOI: 10.1016/j.isci.2023.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 03/19/2023] Open
Abstract
We used a green fluorescent protein marker gene for paternity analysis to determine if virus infection affected male reproductive success of tomato in bumblebee-mediated cross-pollination under glasshouse conditions. We found that bumblebees that visited flowers of infected plants showed a strong preference to subsequently visit flowers of non-infected plants. The behavior of the bumblebees to move toward non-infected plants after pollinating virus-infected plants appears to explain the paternity data, which demonstrate a statistically significant ∼10-fold bias for fertilization of non-infected plants with pollen from infected parents. Thus, in the presence of bumblebee pollinators, CMV-infected plants exhibit enhanced male reproductive success.
Collapse
Affiliation(s)
- Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
- Corresponding author
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - James A.D. Elderfield
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - Chay Halliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA United Kingdom
| |
Collapse
|
19
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
20
|
Yang F, Zhang X, Shen H, Xue H, Tian T, Zhang Q, Hu J, Tong H, Zhang Y, Su Q. Flavonoid-producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. INSECT SCIENCE 2023; 30:173-184. [PMID: 35633508 DOI: 10.1111/1744-7917.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is often used for biological control of small arthropod pests in greenhouse vegetable production systems in Asia. In addition to feeding on arthropod prey, O. sauteri consumes small quantities of plant material. Previous studies demonstrated that tomato plant chemistry confers antixenosis resistance to phloem-feeding whiteflies, but the potential nontarget effects of phytochemicals on the beneficial predator O. sauteri are unknown. Comparison of O. sauteri confined to near-isogenic lines (NILs) of tomatoes producing high levels of flavonoids (NIL-purple hypocotyl; resistant to whiteflies) and low levels of flavonoids (NIL-green hypocotyl; susceptible to whiteflies) revealed that O. sauteri had reduced oviposition, nymphal survival, and development on resistant plants, even if they were also provided with prey that did not feed on the host plant. Moreover, O. sauteri showed a significant ovipositional preference in choice assays, laying significantly more eggs on susceptible than on resistant plants. Molecular gut content analysis using the specific chloroplast trnL gene from tomato confirmed that adult and immature O. sauteri feed on both resistant and susceptible genotypes, and feeding behavior assays revealed that resistance did not affect plant feeding or prey acceptance by O. sauteri adults. These results demonstrate a direct negative effect of phytochemicals on a nontarget beneficial species and indicate that resistance mediated by phytochemicals can affect organisms that do not solely feed on phloem sap. The results also indicate that the mode of action and the potential ecological effects of phytochemical-mediated resistance are broader than previously recognized.
Collapse
Affiliation(s)
- Fengbo Yang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Xinyi Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haowei Shen
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Hu Xue
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian Tian
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Zhang
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Jinyu Hu
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Tong
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Su
- Hubei Engineering Technology Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
21
|
Hu Z, He Z, Li Y, Wang Q, Yi P, Yang J, Yang C, Borovskii G, Cheng X, Hu R, Zhang W. Transcriptomic and metabolic regulatory network characterization of drought responses in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1067076. [PMID: 36743571 PMCID: PMC9891310 DOI: 10.3389/fpls.2022.1067076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Drought stress usually causes huge economic losses for tobacco industries. Drought stress exhibits multifaceted impacts on tobacco systems through inducing changes at different levels, such as physiological and chemical changes, changes of gene transcription and metabolic changes. Understanding how plants respond and adapt to drought stress helps generate engineered plants with enhanced drought resistance. In this study, we conducted multiple time point-related physiological, biochemical,transcriptomic and metabolic assays using K326 and its derived mutant 28 (M28) with contrasting drought tolerance. Through integrative analyses of transcriptome and metabolome,we observed dramatic changes of gene expression and metabolic profiles between M28 and K326 before and after drought treatment. we found that some of DEGs function as key enzymes responsible for ABA biosynthesis and metabolic pathway, thereby mitigating impairment of drought stress through ABA signaling dependent pathways. Four DEGs were involved in nitrogen metabolism, leading to synthesis of glutamate (Glu) starting from NO-3 /NO-2 that serves as an indicator for stress responses. Importantly, through regulatory network analyses, we detected several drought induced TFs that regulate expression of genes responsible for ABA biosynthesis through network, indicating direct and indirect involvement of TFs in drought responses in tobacco. Thus, our study sheds some mechanistic insights into how plant responding to drought stress through transcriptomic and metabolic changes in tobacco. It also provides some key TF or non-TF gene candidates for engineering manipulation for breeding new tobacco varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Yi
- Hu'nan Tobacco Company Changde Company, Changde, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Chenkai Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, Russia
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Zuo ZF, Lee HY, Kang HG. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. Int J Mol Sci 2023; 24:ijms24021419. [PMID: 36674933 PMCID: PMC9867082 DOI: 10.3390/ijms24021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors are involved in many physiological processes, and they play important roles in the abiotic stress responses. The literature related to genome sequences has increased, with genome-wide studies on the bHLH transcription factors in plants. Researchers have detailed the functionally characterized bHLH transcription factors from different aspects in the model plant Arabidopsis thaliana, such as iron homeostasis and abiotic stresses; however, other important economic crops, such as rice, have not been summarized and highlighted. The bHLH members in the same subfamily have similar functions; therefore, unraveling their regulatory mechanisms will help us to identify and understand the roles of some of the unknown bHLH transcription factors in the same subfamily. In this review, we summarize the available knowledge on functionally characterized bHLH transcription factors according to four categories: plant growth and development; metabolism synthesis; plant signaling, and abiotic stress responses. We also highlight the roles of the bHLH transcription factors in some economic crops, especially in rice, and discuss future research directions for possible genetic applications in crop breeding.
Collapse
|
23
|
Lim I, Kang M, Kim BC, Ha J. Metabolomic and transcriptomic changes in mungbean ( Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1030677. [PMID: 36325566 PMCID: PMC9618701 DOI: 10.3389/fpls.2022.1030677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Mungbean (Vigna radiata) sprouts are consumed globally as a healthy food with high nutritional values, having antioxidant and anticancer capacity. Under mild salinity stress, plants accumulate more secondary metabolites to alleviate oxidative stress. In this study, metabolomic and transcriptomic changes in mungbean sprouts were identified using a reference cultivar, sunhwa, to understand the regulatory mechanisms of secondary metabolites in response to salinity stress. Under salinity conditions, the contents of phenylpropanoid-derived metabolites, including catechin, chlorogenic acid, isovitexin, p-coumaric acid, syringic acid, ferulic acid, and vitexin, significantly increased. Through RNA sequencing, 728 differentially expressed genes (DEGs) were identified and 20 DEGs were detected in phenylpropanoid and flavonoid biosynthetic pathways. Among them, 11 DEGs encoding key enzymes involved in the biosynthesis of the secondary metabolites that increased after NaCl treatment were significantly upregulated, including dihydroflavonol 4-reductase (log2FC 1.46), caffeoyl-CoA O-methyltransferase (1.38), chalcone synthase (1.15), and chalcone isomerase (1.19). Transcription factor families, such as MYB, WRKY, and bHLH, were also identified as upregulated DEGs, which play a crucial role in stress responses in plants. Furthermore, this study showed that mild salinity stress can increase the contents of phenylpropanoids and flavonoids in mungbean sprouts through transcriptional regulation of the key enzymes involved in the biosynthetic pathways. Overall, these findings will provide valuable information for molecular breeders and scientists interested in improving the nutritional quality of sprout vegetables.
Collapse
|
24
|
Chen R, Yang C, Gao H, Shi C, Zhang Z, Lu G, Shen X, Tang Y, Li F, Lu Y, Ouyang B. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3455-3468. [PMID: 35963933 DOI: 10.1007/s00122-022-04192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.
Collapse
Affiliation(s)
- Rong Chen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunmei Shi
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiying Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangyu Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Shen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Tang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Lv Y, Chen J, Zhu M, Liu Y, Wu X, Xiao X, Yuyama N, Liu F, Jing H, Cai H. Wall-associated kinase-like gene RL1 contributes to red leaves in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:135-150. [PMID: 35942607 DOI: 10.1111/tpj.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Red leaves are common in trees but rare in cereal crops. Red leaves can be used as raw materials for anthocyanin extraction and may have some adaptive significance for plants. In this study, we discovered a red leaf phenotype in the F1 hybrids derived from a cross between two sorghum accessions with green leaf. Histological analysis of red leaves and green leaves showed that red compounds accumulate in mesophyll cells and gradually spreads to the entire leaf blade. In addition, we found chloroplasts degraded more quickly in red leaves than in green leaves based on transmission electron microscopy. Metabolic analysis revealed that flavonoids including six anthocyanins are more abundant in red leaves. Moreover, transcriptome analysis revealed that expression of flavonoid biosynthesis genes was upregulated in red leaves. These observations indicate that flavonoids and anthocyanins in particular, are ideal candidates for the red compounds accumulating in red leaves. Segregation analysis of the red leaf phenotype suggested a genetic architecture consisting of three dominant genes, one (RL1 for RED LEAF1) of which we mapped to a 55-kb region on chromosome 7 containing seven genes. Sequencing, reverse transcription-polymerase chain reaction, and transcriptome analysis suggested Sobic.007G214300, encoding a wall-associated kinase, as the most likely candidate for RL1. Fine mapping the red leaf gene and identifying the metabolites that cause red leaf in sorghum provide us with a better understanding of the red leaf phenotype in the natural population of sorghum.
Collapse
Affiliation(s)
- Ya Lv
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Jun Chen
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Mengjiao Zhu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yishan Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Xiaoyuan Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Xiao
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Nana Yuyama
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| | - Fengxia Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongwei Cai
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| |
Collapse
|
26
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
27
|
Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. PLANT MOLECULAR BIOLOGY 2022; 110:53-68. [PMID: 35723867 DOI: 10.1007/s11103-022-01285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.
Collapse
Affiliation(s)
- Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoyi Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Metabolic and Developmental Changes in Germination Process of Mung Bean (Vigna radiata (L.) R. Wilczek) Sprouts under Different Water Spraying Interval and Duration. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6256310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mung bean is one of the world’s most important legume crops and is a major protein source, particularly in developing countries. Various polyphenolic compounds and nutrients accumulate in mung bean sprouts during germination. Mung bean sprouts are consumed globally as an excellent food source of bioactive phenolic compounds. The contents of phenols and flavonoids and antioxidant activity were monitored for four days after germination under four different spraying conditions using three mung bean cultivars. On the third day after germination, the sprout extract showed the highest antioxidant capacity. The length and thickness of hypocotyl of mung bean sprouts appeared to be the most suitable for consumption on the third day after germination. Using high-performance liquid chromatography analysis, eight phytochemicals were identified, and neochlorogenic acid was identified for the first time in mung bean sprouts. End products (neochlorogenic acid, chlorogenic acid, vitexin, and isovitexin) showed certain trends in their contents for four days, while intermediates (caffeic acid, catechin, syringic acid, and p-coumaric acid) were highly responsive to watering condition and cultivars. Watering interval significantly affected the length of root and lateral root development. Both cultivars and watering conditions and/or their interaction significantly affected the biochemical and physical traits of mung bean sprouts. The results suggest that watering conditions need to be considered as an important factor to improve food quality of mung bean sprouts. Our phenotypic and metabolic profiling would provide potential information for production of mung bean sprouts that fit consumers’ preferences.
Collapse
|
29
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
30
|
Xu Y, Liu X, Huang Y, Xia Z, Lian Z, Qian L, Yan S, Cao B, Qiu Z. Ethylene Inhibits Anthocyanin Biosynthesis by Repressing the R2R3-MYB Regulator SlAN2-like in Tomato. Int J Mol Sci 2022; 23:ijms23147648. [PMID: 35887009 PMCID: PMC9316371 DOI: 10.3390/ijms23147648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fruit ripening is usually accompanied by anthocyanin accumulation. Ethylene is key in ripening-induced anthocyanin production in many fruits. However, the effects of fruit ripening and ethylene on anthocyanin biosynthesis in purple tomato fruits are unclear. This study shows that bagged fruits of the purple tomato cultivar ‘Indigo Rose’ failed to produce anthocyanins at the red ripening stage after bag removal. In contrast, the bagged immature fruits accumulated a significant amount of anthocyanins after removing the bags. The transcriptomic analyses between immature and red ripening fruit before and after bag removal revealed that anthocyanin-related genes, including the key positive R2R3-MYB regulator SlAN2-like, were repressed in the red ripening fruit. The 86 identified transcription factors, including 13 AP2/ERF, 7 bZIP, 8 bHLH and 6 MYB, showed significantly different expressions between immature and red ripening fruits. Moreover, subjecting bagged immature fruits to exogenous ethylene treatment significantly inhibited anthocyanin accumulation and the expression of anthocyanin-related genes, including the anthocyanin structure genes and SlAN2-like. Thus, ethylene inhibits anthocyanin biosynthesis by repressing the transcription of SlAN2-like and other anthocyanin-related genes. These findings provide new insights into anthocyanin regulation in purple tomato fruit.
Collapse
Affiliation(s)
- Yulian Xu
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Xiaoxi Liu
- Guangdong Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yinggemei Huang
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Zhilei Xia
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Zilin Lian
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Lijuan Qian
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Shuangshuang Yan
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
- Correspondence: (B.C.); (Z.Q.); Tel.: +86-20-8528-0228 (Z.Q. & B.C.)
| | - Zhengkun Qiu
- College of Horticulture, South China Agricultural University, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center, Guangzhou 510642, China; (Y.X.); (Y.H.); (Z.X.); (Z.L.); (L.Q.); (S.Y.)
- Correspondence: (B.C.); (Z.Q.); Tel.: +86-20-8528-0228 (Z.Q. & B.C.)
| |
Collapse
|
31
|
Ni X, Ni Z, Ouma KO, Gao Z. Mutations in PmUFGT3 contribute to color variation of fruit skin in Japanese apricot (Prunus mume Sieb. et Zucc.). BMC PLANT BIOLOGY 2022; 22:304. [PMID: 35751035 PMCID: PMC9229503 DOI: 10.1186/s12870-022-03693-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Japanese apricot (Prunus mume Sieb. et Zucc.) is popular for both ornamental and processing value, fruit color affects the processing quality, and red pigmentation is the most obvious phenotype associated with fruit color variation in Japanese apricot, mutations in structural genes in the anthocyanin pathway can disrupt the red pigmentation, while the formation mechanism of the red color trait in Japanese apricot is still unclear. RESULTS: One SNP marker (PmuSNP_27) located within PmUFGT3 gene coding region was found highly polymorphic among 44 different fruit skin color cultivars and relative to anthocyanin biosynthesis in Japanese apricot. Meantime, critical mutations were identified in two alleles of PmUFGT3 in the green-skinned type is inactivated by seven nonsense mutations in the coding region, which leads to seven amino acid substitution, resulting in an inactive UFGT enzyme. Overexpression of the PmUFGT3 allele from red-skinned Japanese apricot in green-skinned fruit lines resulted in greater anthocyanin accumulation in fruit skin. Expression of same allele in an Arabidopsis T-DNA mutant deficient in anthocyanidin activity the accumulation of anthocyanins. In addition, using site-directed mutagenesis, we created a single-base substitution mutation (G to T) of PmUFGT3 isolated from green-skinned cultivar, which caused an E to D amino acid substitution and restored the function of the inactive allele of PmUFGT3 from a green-skinned individual. CONCLUSION This study confirms the function of PmUFGT3, and provides insight into the mechanism underlying fruit color determination in Japanese apricot, and possible approaches towards genetic engineering of fruit color.
Collapse
Affiliation(s)
- Xiaopeng Ni
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Kenneth Omondi Ouma
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 China
| |
Collapse
|
32
|
Li J, Gong J, Zhang L, Shen H, Chen G, Xie Q, Hu Z. Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153698. [PMID: 35461174 DOI: 10.1016/j.jplph.2022.153698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
33
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
34
|
Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int J Mol Sci 2022; 23:ijms23041960. [PMID: 35216077 PMCID: PMC8879456 DOI: 10.3390/ijms23041960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit peels of certain pepper (Capsicum annum L.) varieties accumulate a large amount of anthocyanins and exhibit purple color under medium-wave ultraviolet (UV-B) conditions, which severely impacts the commodity value of peppers. However, the regulatory mechanism of the above process has not been well studied so far. To explore which key genes are involved in this regulatory mechanism, pepper variety 19Q6100, the fruit peels of which turn purple under UV-B conditions, was investigated in this study. Transcription factors with expression levels significantly impacted by UV-B were identified by RNA-seq. Those genes may be involved in the regulation of UV-B-induced anthocyanin biosynthesis. Yeast one-hybrid results revealed that seven transcription factors, CabHLH143, CaMYB113, CabHLH137, CaMYBG, CaWRKY41, CaWRKY44 and CaWRKY53 directly bound to the putative promotor regions of the structural genes in the anthocyanin biosynthesis pathway. CaMYB113 was found to interact with CabHLH143 and CaHY5 by yeast two-hybrid assay, and those three genes may participate collaboratively in UV-B-induced anthocyanin biosynthesis in pepper fruit. Virus-induced gene silencing (VIGS) indicated that fruit peels of CaMYB113-silenced plants were unable to turn purple under UV-B conditions. These findings could deepen our understanding of UV-B-induced anthocyanin biosynthesis in pepper.
Collapse
|
35
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
36
|
Yu T, Han G, Luan Z, Zhu C, Zhao J, Sheng Y. Functional Analysis of Genes GlaDFR1 and GlaDFR2 Encoding Dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Laínz) M. Laínz. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1382604. [PMID: 35047628 PMCID: PMC8763498 DOI: 10.1155/2022/1382604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Anthocyanins are important pigments for flower color, determining the ornamental and economic values of horticultural plants. As a key enzyme in the biosynthesis of anthocyanidins, dihydroflavonol 4-reductase (DFR) catalyzes the reduction of dihydroflavonols to generate the precursors for anthocyanidins (i.e., leucoanthocyanidins) and anthocyanins. To investigate the functions of DFRs in plants, we cloned the GlaDFR1 and GlaDFR2 genes from the petals of Gentiana lutea var. aurantiaca and transformed both genes into Nicotiana tabacum by Agrobacterium-mediated leaf disc method. We further investigated the molecular and phenotypic characteristics of T1 generation transgenic tobacco plants selected based on the hygromycin resistance and verified by both PCR and semiquantitative real-time PCR analyses. The phenotypic segregation was observed in the flower color of the transgenic tobacco plants, showing petals darker than those in the wild-type (WT) plants. Results of high-performance liquid chromatography (HPLC) analysis showed that the contents of gentiocyanin derivatives were decreased in the petals of transgenic plants in comparison to those of WT plants. Ours results revealed the molecular functions of GlaDFR1 and GlaDFR2 in the formation of coloration, providing solid theoretical foundation and candidate genes for further genetic improvement in flower color of plants.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Guojun Han
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Zhihui Luan
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Changfu Zhu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Jinghua Zhao
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Yanmin Sheng
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| |
Collapse
|
37
|
Rao S, Das JR, Balyan S, Verma R, Mathur S. Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato. PLANTA 2022; 255:31. [PMID: 34982240 DOI: 10.1007/s00425-021-03813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Cultivar-biased regulation of HSFB4a and HSFA7 mediates heat stress tolerance/sensitivity in tomato. Reduced HSFB4a repressor levels and enhanced HSFA7 activator levels govern thermo-tolerance in tolerant cultivars. Heat shock factors (HSFs) are at the core of heat stress (HS) response in plants. However, the contribution of HSFs governing the inherent thermo-tolerance mechanism in tomato from sub-tropical hot climates is poorly understood. With the above aim, comparative expression profiles of the HSF family in a HS-tolerant (CLN1621L) and -sensitive cultivars (CA4 and Pusa Ruby) of tomato under HS revealed cultivar-biased regulation of an activator (HSFA7) and a repressor (HSFB4a) class HSF. HSFA7 exhibited strong upregulation while HSFB4a showed downregulation in tolerant tomato cultivar upon HS. Functional characterization of HSFA7 and HSFB4a in a tolerant-sensitive cultivar pair by virus-induced gene silencing (VIGS)-based silencing and transient overexpression established them as a positive and a negative regulator of HS tolerance, respectively. Promoter:GUS reporter assays and promoter sequence analyses suggest heat-mediated transcriptional control of both the HSF genes in the contrasting cultivars. Moreover, degradome data highlighted HSFB4a is a probable target of microRNA Sly-miR4200. Transient in-planta Sly-MIR4200-effector:HSFB4a-reporter assays showed miRNA-dependent target down-regulation. Chelation of miRNA by short-tandem-target-mimic of Sly-miR4200 increased target abundance, highlighting a link between Sly-miR4200 and HSFB4a. This miRNA has induced several folds upon HS in the tolerant cultivar where HSFB4a levels are reduced, thus exhibiting the inverse miR:target expression. Thus, we speculate that the alleviation of HSFB4a and increased HSFA7 levels govern thermo-tolerance in the tolerant cultivar by regulating downstream heat stress-responsive genes.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Jaishri Rubina Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Radhika Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
38
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
39
|
Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Int J Mol Sci 2021; 22:ijms222111945. [PMID: 34769374 PMCID: PMC8584326 DOI: 10.3390/ijms222111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.
Collapse
|
40
|
Beyond Purple Tomatoes: Combined Strategies Targeting Anthocyanins to Generate Crimson, Magenta, and Indigo Fruit. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The range of colours of many flowers and fruits is largely due to variations in the types of anthocyanins produced. The degree of hydroxylation on the B-ring affects the hue of these pigments, causing a shift from the orange end of the visible spectrum to the blue end. Besides colour, this modification can also affect other properties of anthocyanins, including the ability to protect the plant against different stresses or, when included in the human diet, to provide benefits for disease prevention. The level of hydroxylation of the B-ring is determined by the activity of two key hydroxylases, F3′H and F3′5′H, and by the substrate preference of DFR, an enzyme acting downstream in the biosynthetic pathway. We show that, in tomato, a strategy based on fruit-specific engineering of three regulatory genes (AmDel, AmRos1, AtMYB12) and a single biosynthetic gene (AmDFR), together with the availability of a specific mutation (f3′5′h), results in the generation of three different varieties producing high levels of anthocyanins with different levels of hydroxylation. These tomatoes show distinctive colours and mimic the classes of anthocyanins found in natural berries, thus providing unique near-isogenic material for different studies.
Collapse
|
41
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|
42
|
Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice ( Oryza sativa L.) Caryopsis. Biomolecules 2021; 11:biom11030394. [PMID: 33800105 PMCID: PMC8001509 DOI: 10.3390/biom11030394] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.
Collapse
|
43
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
44
|
Liang Z, Liang H, Guo Y, Yang D. Cyanidin 3- O-galactoside: A Natural Compound with Multiple Health Benefits. Int J Mol Sci 2021; 22:ijms22052261. [PMID: 33668383 PMCID: PMC7956414 DOI: 10.3390/ijms22052261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cyanidin 3-O-galactoside (Cy3Gal) is one of the most widespread anthocyanins that positively impacts the health of animals and humans. Since it is available from a wide range of natural sources, such as fruits (apples and berries in particular), substantial studies were performed to investigate its biosynthesis, chemical stability, natural occurrences and content, extraction methods, physiological functions, as well as potential applications. In this review, we focus on presenting the previous studies on the abovementioned aspects of Cy3Gal. As a conclusion, Cy3Gal shares a common biosynthesis pathway and analogous stability with other anthocyanins. Galactosyltransferase utilizing uridine diphosphate galactose (UDP-galactose) and cyanidin as substrates is unique for Cy3Gal biosynthesis. Extraction employing different methods reveals chokeberry as the most practical natural source for mass-production of this compound. The antioxidant properties and other health effects, including anti-inflammatory, anticancer, antidiabetic, anti-toxicity, cardiovascular, and nervous protective capacities, are highlighted in purified Cy3Gal and in its combination with other polyphenols. These unique properties of Cy3Gal are discussed and compared with other anthocyanins with related structure for an in-depth evaluation of its potential value as food additives or health supplement. Emphasis is laid on the description of its physiological functions confirmed via various approaches.
Collapse
Affiliation(s)
- Zhongxin Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Hongrui Liang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Yizhan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.L.); (H.L.); (Y.G.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-10-6273-7129
| |
Collapse
|
45
|
Lim SH, Kim DH, Jung JA, Lee JY. Alternative Splicing of the Basic Helix-Loop-Helix Transcription Factor Gene CmbHLH2 Affects Anthocyanin Biosynthesis in Ray Florets of Chrysanthemum ( Chrysanthemum morifolium). FRONTIERS IN PLANT SCIENCE 2021; 12:669315. [PMID: 34177983 PMCID: PMC8222801 DOI: 10.3389/fpls.2021.669315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 05/19/2023]
Abstract
Chrysanthemum is an important ornamental crop worldwide. Some white-flowered chrysanthemum cultivars produce red ray florets under natural cultivation conditions, but little is known about how this occurs. We compared the expression of anthocyanin biosynthetic and transcription factor genes between white ray florets and those that turned red based on cultivation conditions to comprehend the underlying mechanism. Significant differences in the expression of CmbHLH2 were detected between the florets of different colors. CmbHLH2 generated two alternatively spliced transcripts, designated CmbHLH2Full and CmbHLH2Short . Compared with CmbHLH2Full , CmbHLH2Short encoded a truncated protein with only a partial MYB-interaction region and no other domains normally present in the full-length protein. Unlike the full-length form, the splicing variant protein CmbHLH2Short localized to the cytoplasm and the nucleus and could not interact with CmMYB6. Additionally, CmbHLH2Short failed to activate anthocyanin biosynthetic genes and induce pigment accumulation in transiently transfected tobacco leaves, whereas CmbHLH2Full promoted both processes when simultaneously expressed with CmMYB6. Co-expressing CmbHLH2Full and CmMYB6 also enhanced the promoter activities of CmCHS and CmDFR. Notably, the Arabidopsis tt8-1 mutant, which lacks red pigmentation in the leaves and seeds, could be complemented by the heterologous expression of CmbHLH2Full, which restored red pigmentation and resulted in red pigmentation in high anthocyanin and proanthocyanidin contents in the leaves and seeds, respectively, whereas expression of CmbHLH2Short did not. Together, these results indicate that CmbHLH2 and CmMYB6 interaction plays a key role in the anthocyanin pigmentation changes of ray florets in chrysanthemum. Our findings highlight alternative splicing as a potential approach to modulate anthocyanin biosynthesis in specific tissues.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- *Correspondence: Sun-Hyung Lim,
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, South Korea
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Jae-A. Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju, South Korea
| | - Jong-Yeol Lee
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
- Jong-Yeol Lee,
| |
Collapse
|
46
|
Tang B, Li L, Hu Z, Chen Y, Tan T, Jia Y, Xie Q, Chen G. Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12152-12163. [PMID: 33054200 DOI: 10.1021/acs.jafc.0c02460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pepper (Capsicum annuum) is among the important horticultural crops with economic value, and more and more colorful varieties have been marketed. The purple pepper is becoming increasingly popular on the consumer market because of its anthocyanin richness. Here, two cyanidin-based anthocyanins were separated and identified from peels of purple cultivars by HPLC-LC-MS. To study the molecular mechanism of anthocyanin accumulation, the differential expression of genes related to anthocyanin biosynthesis was examined by qRT-PCR and RNA-Seq in peel from green and purple cultivars. These results show that CaANT1, CaANT2, CaAN1, and CaTTG1 are involved in anthocyanin accumulation of pepper. Further investigation suggested that CaANT1, CaANT2, CaAN1, and CaTTG1 can activate anthocyanin accumulation via forming a new MMBW transcription complex.
Collapse
Affiliation(s)
- Boyan Tang
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Ling Li
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Zongli Hu
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Yanan Chen
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Tingting Tan
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Yanhua Jia
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Qiaoli Xie
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| | - Guoping Chen
- Key Laboratory of Bioengineering Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
- Bioengineering College, Chongqing University, 83 Shabei Street, Campus B, Chongqing 400045, People's Republic of China
| |
Collapse
|
47
|
Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2118-2132. [PMID: 32163647 PMCID: PMC7540533 DOI: 10.1111/pbi.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
The footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation. The antagonistically expressing genes encode enzymes and proteins that have roles in plant defence and abiotic stresses. Functional characterization of three antagonistic genes by overexpression and silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis) that are up-regulated in tolerant cultivar, as positive regulators of HS tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that are down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS tolerance in tomato. This study identifies several novel HS tolerance genes and provides proof of their utility in tomato thermotolerance.
Collapse
Affiliation(s)
- Sonia Balyan
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sombir Rao
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sarita Jha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Chandni Bansal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Saloni Mathur
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
48
|
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020; 25:E3809. [PMID: 32825684 PMCID: PMC7504512 DOI: 10.3390/molecules25173809] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Sciences, RomaTre University, v.le G. Marconi 446, 00146 Rome, Italy;
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n°228, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Liu X, Huang Y, Qiu Z, Gong H. Comparative transcriptome analysis of differentially expressed genes between the fruit peel and flesh of the purple tomato cultivar 'Indigo Rose'. PLANT SIGNALING & BEHAVIOR 2020; 15:1752534. [PMID: 32338177 PMCID: PMC8570723 DOI: 10.1080/15592324.2020.1752534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/11/2023]
Abstract
Anthocyanins are considered health-promoting phytonutrients; however, anthocyanins strictly occurr in the fruit peel of purple tomato cultivars, making the total anthocyanin content limited per tomato fruit. In this study, we performed a transcriptome analysis between the fruit peel and flesh of a purple tomato cultivar 'Indigo Rose' at both the mature green stage and breaking stage. In total, 1,945 differently expressed genes, including 165 transcription factors, were detected between the fruit peel and flesh, both at and after the mature green stage. We further analyzed the transcription of anthocyanin biosynthesis genes and the regulatory genes composing the MYB-bHLH-WD40 (MBW) complex between the fruit peel and flesh at both development stages. In addition, several light-sensing genes and other transcription factor genes, including BBX family genes and WRKY genes, showed different expression patterns between the fruit peel and flesh. These findings deepen our understanding of anthocyanin biosynthesis in tomato fruit peels and facilitate the identification of genes limiting the anthocyanin biosynthesis in tomato fruit flesh.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yinggemei Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hao Gong
- Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
50
|
Zhi J, Liu X, Li D, Huang Y, Yan S, Cao B, Qiu Z. CRISPR/Cas9-mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. PLANT CELL REPORTS 2020; 39:799-809. [PMID: 32221665 DOI: 10.1007/s00299-020-02531-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Combining phenotype and gene expression analysis of the CRISPR/Cas9-induced SlAN2 mutants, we revealed that SlAN2 specifically regulated anthocyanin accumulation in vegetative tissues in purple tomato cultivar 'Indigo Rose.' Anthocyanins play an important role in plant development and also exhibit human health benefits. The tomato genome contains four highly homologous anthocyanin-related R2R3-MYB transcription factors: SlAN2, SlANT1, SlANT1-like, and SlAN2-like/Aft. SlAN2-like/Aft regulates anthocyanin accumulation in the fruit; however, the genetic function of the other three factors remains unclear. To better understand the function of R2R3-MYB transcription factors, we conducted targeted mutagenesis of SlAN2 in the purple tomato cultivar 'Indigo Rose' using clustered regularly interspersed short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The SlAN2 mutants had a fruit color and anthocyanin content similar to cv. 'Indigo Rose,' while the anthocyanin content and the relative expression levels of several anthocyanin-related genes in vegetative tissues were significantly lower in the SlAN2 mutant relative to cv. Indigo Rose. Furthermore, we found that anthocyanin biosynthesis is controlled by different regulators between tomato hypocotyls and cotyledons. In addition, SlAN2 mutants were shorter, with smaller and lighter fruits than cv. 'Indigo Rose.' Our findings further our understanding of anthocyanin production in tomato and other plant species.
Collapse
Affiliation(s)
- Junjie Zhi
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoxi Liu
- Guangdong Key Laboratory of New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongjing Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yinggemei Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|