1
|
Che H, Hart ML, Lauer JC, Selig M, Voelker M, Kurz B, Rolauffs B. A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications. Biomed Mater 2025; 20:025008. [PMID: 39719129 DOI: 10.1088/1748-605x/ada335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g. fetal bovine serum (FBS), are established for use with micro-patterns (MPs). Thus, there are currently no good manufacturing practice (GMP)-compliant media available for MPs. This study tested a xenogenic-free human plasma and platelet lysate (hP + PL) medium supplement to determine its compatibility with MPs. Unfiltered hP + PL medium resulted in significant protein deposition, creating a 'carpet-like' layer that rendered MPs ineffective. Filtration (3×/5×) eliminated this effect. Importantly, quantitative comparison using droplet digital PCR revealed that human MSCs in all media types exhibited similar profiles with strong myogenic Calponin 1/Transgelin 2 (TAGLN2) and weaker osteogenic alkaline phosphatase/Runt-related transcription factor 2 marker expression, and much weaker adipogenic (lipoprotein lipase/peroxisome proliferator-activated receptor gamma) and chondrogenic (collagen type II/aggrecan) expression, with profiles being dominated by myogenic markers. Within these similar profiles, an even stronger induction of the myogenic marker TAGLN2 by all hP + PL- compared to FBS-containing media. Overall, this suggested that FBS can be replaced with hP + PL without altering differentiation profiles. However, assessing individual MSC responses to various MP types with defined categories revealed that unfiltered hP + PL medium was unusable. Importantly, FBS- and 3× filtered hP + PL media were comparable in each differentiation category. Summarized, this study recommends 3× filtered hP + PL as a xenogenic-free and potentially GMP-compliant alternative to FBS as a culture medium supplement for micro-patterning cell populations in both basic and translational research that will ensure consistent and reliable MSC micro-patterning for therapeutic use.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Fujita E, Yamamoto S, Hanada T, Jogasaki S, Koga Y, Yatsuda Y, Kakizaki Y, Jo Y, Asano Y, Yonezawa K, Moriya Y, Nakayama M, Arimura Y, Okawa Y, Komatsu H, Ito M, Suzuki S, Kuroda T, Yasuda S, Kamiyama Y, Sato Y. Using qPCR and ddPCR to study biodistribution of cell therapy products: a multi-site evaluation. Cytotherapy 2025; 27:51-65. [PMID: 39453335 DOI: 10.1016/j.jcyt.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUD AIMS Regenerative therapies employing cell therapy products (CTPs) have attracted considerable attention. Biodistribution (BD) evaluation of CTPs is mainly performed to clarify the cell survival time, engraftment, and distribution site. This evaluation is crucial for predicting the efficacy and safety profiles of clinical studies based on non-clinical BD study outcomes. However, no internationally unified method has been established for assessing cell BD after administration. Here, we aimed to standardize the BD assay method used for CTPs, conducting the following evaluations using the same protocol across multiple study facilities: (1) in vitro validation of quantitative polymerase chain reaction (qPCR) and droplet digital PCR (ddPCR) analyses using the primate-specific Alu gene, and (2) in vivo BD studies after the intravenous administration of human mesenchymal stem cells (hMSCs) to immunodeficient mice, commonly used in non-clinical tumorigenicity studies. METHODS Quality control samples were prepared and analyzed by adding a fixed number of human-derived cells to several mouse tissues. The respective quantitative performances of the qPCR and ddPCR methods were compared for accuracy and precision. hMSCs were intravenously administered to immunodeficient mice, and tissues were collected at 1, 4, and 24 h after administration. RESULTS Both methods demonstrated an accuracy (relative error) generally within ±50% and a precision (coefficient of variation) generally less than 50%. While differences in calibration curve ranges were observed between qPCR and ddPCR, no significant differences in quantification were found among the assay facilities. The BD of hMSCs in mice was evaluated at seven facilities (qPCR at three facilities; ddPCR at four facilities), revealing similar tissue distribution profiles in all facilities, with the lungs showing the highest cell distribution among the tissues tested. CONCLUSIONS Quantitative evaluation of qPCR and ddPCR using Alu sequences was conducted, demonstrating that the test method can be adapted for BD evaluation.
Collapse
Affiliation(s)
- Eriko Fujita
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan
| | - Shingo Jogasaki
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, Mediford Corporation, Uto, Kumamoto, Japan
| | - Yukinori Yatsuda
- Life Science Sales, Bio-Rad Laboratories K.K., 14th Warehouse B-Wing, Keihin Truck Terminal, Ohta-ku, Tokyo, Japan
| | - Yoshiyuki Kakizaki
- Non-Clinical Research Department, CMIC Pharma Science Co., Ltd., Yamanashi, Japan
| | - Yoshinori Jo
- Tsukuba Research Institute, BoZo Research Center Inc., Tsukuba, Ibaraki, Japan
| | - Yuya Asano
- Nihon Bioresearch Inc., Hashima, Gifu, Japan
| | - Koichi Yonezawa
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yukiko Arimura
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Yurie Okawa
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Miyanoura, Kagoshima, Japan
| | - Hiroyuki Komatsu
- Non-Clinical Research Department, CMIC Pharma Science Co., Ltd., Yamanashi, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., Tsukuba, Ibaraki, Japan
| | | | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yoshiteru Kamiyama
- Applied Research & Operations, Astellas Pharma Inc., Tsukuba-shi, Ibaraki, Japan.
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Agnusdei A, De Miccolis Angelini RM, Faretra F, Pollastro S, Gerin D. AcOTApks Gene-Based Molecular Tools to Improve Quantitative Detection of the Mycotoxigenic Fungus Aspergillus carbonarius. Foods 2024; 14:65. [PMID: 39796355 PMCID: PMC11719998 DOI: 10.3390/foods14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). Aspergillus carbonarius is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of A. carbonarius in vineyards the main strategy used to reduce OTA contamination risk. Several molecular methods are available for A. carbonarius detection, but the correlation between the abundance of fungal population and OTA contamination needs to be improved. This study aimed at the development of innovative quantitative PCR (qPCR) and digital droplet PCR (ddPCR) tools to quantify the mycotoxigenic fractions of A. carbonarius strains on grapes, based on the key gene AcOTApks in the pathway of OTA biosynthesis. Different primers/probe sets were assessed, based on their specificity and sensitivity. This method allowed to quantify up to 100 fg∙µL-1 [cycle of quantification (Cq) = 37] and 10 fg∙µL-1 (0.38 copies∙µL-1) of genomic DNA (gDNA) from A. carbonarius mycelium in qPCR and ddPCR, respectively. The sensitivity as to artificially contaminated must samples was up to 100 conidia (Cq = 38) and 1 conidium (0.13 copies∙µL-1) with qPCR and ddPCR, respectively. Finally, the methods were validated on naturally infected must samples, and the quantification of the fungus was in both cases highly correlated (r = +0.8) with OTA concentrations in the samples. The results showed that both analytical methods can be suitable for improving the sustainable management of OTA contamination in grapes and their derivatives.
Collapse
Affiliation(s)
| | | | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (R.M.D.M.A.); (D.G.)
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (A.A.); (R.M.D.M.A.); (D.G.)
| | | |
Collapse
|
4
|
Shi K, Hu X, Yin Y, Shi Y, Pan Y, Long F, Feng S, Li Z. Development of a triplex crystal digital RT-PCR for the detection of PHEV, PRV, and CSFV. Front Vet Sci 2024; 11:1462880. [PMID: 39726583 PMCID: PMC11669669 DOI: 10.3389/fvets.2024.1462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV. The results indicated that this assay had high sensitivity, and the limitation of detection (LODs) for PHEV, PRV, and CSFV were 4.812, 4.047, and 5.243 copies/reaction, respectively, which was about 50 times higher than that of multiplex real-time quantitative RT-PCR (RT-qPCR). This assay showed good specificity, without cross-reaction with other important swine pathogens, i.e., FMDV, PRRSV, PEDV, SIV, TGEV, PoRV, and PCV2. This assay had high repeatability, with intra-assay coefficients of variation (CVs) of 0.73-1.87%, and inter-assay CVs of 0.57-2.95%. The developed assay was used to test 1,367 clinical tissue samples from Guangxi province in China, and the positive rates of PHEV, PRV, and CSFV were 3.44% (47/1,367), 1.24% (17/1,367), and 1.90% (26/1,367), respectively, with a coincidence rate of 98.98% and a Kappa value of 0.94 to the reference multiplex RT-qPCR. The established triplex cdRT-PCR was a highly rapid, sensitive, and accurate assay to detect and differentiate PHEV, PRV, and CSFV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Sidireddi SH, Park JW, Gonzalez M, Sétamou M, Kunta M. Loop-Mediated Isothermal Amplification Assay for the Detection of Citrus Canker Causing Bacterial Variant, Xanthomonas citri pv. citri A w Strain. Int J Mol Sci 2024; 25:11590. [PMID: 39519140 PMCID: PMC11546398 DOI: 10.3390/ijms252111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Citrus canker, a highly transmissible bacterial disease, has three major types, with Asiatic canker (Canker A), caused by Xanthomonas citri pv. citri (Xcc A), being the most widespread and severe, affecting most citrus varieties. Xcc A has two mild variants, Xcc A* and Aw with a limited host range, reported in Southwest Asia and Florida, respectively. Since 2015, the canker caused by Xcc Aw has been being reported in the Rio Grande Valley of South Texas where the Texas commercial citrus industry is located. In 2016, a more severe Canker A was reported in the upper Texas gulf coast region, north of the Rio Grande Valley, posing a potential threat to the Texas citrus industry. Given that existing diagnostic methods cannot reliably distinguish Xcc Aw from Xcc A, we developed a loop-mediated isothermal amplification (LAMP) assay specific to Xcc Aw (LAMP-Aw) for rapid, field-based identification of this bacterial variant. The detection limit of LAMP-Aw was ~4.52 Log10 copies of the target molecule. This study also evaluated the field applicability of the LAMP-Aw assay by coupling the LAMP-Aw assay with a lateral flow immunoassay system.
Collapse
Affiliation(s)
| | - Jong-Won Park
- Citrus Center, Texas A&M University Kingsville, Weslaco, TX 78599, USA; (S.H.S.); (M.G.); (M.S.)
| | | | | | - Madhurababu Kunta
- Citrus Center, Texas A&M University Kingsville, Weslaco, TX 78599, USA; (S.H.S.); (M.G.); (M.S.)
| |
Collapse
|
6
|
Su Y, Zhu X, Jing H, Yu H, Liu H. Establishment of a Sensitive and Reliable Droplet Digital PCR Assay for the Detection of Bursaphelenchus xylophilus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2701. [PMID: 39409571 PMCID: PMC11478728 DOI: 10.3390/plants13192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Pine wilt disease (PWD), which poses a significant risk to pine plantations across the globe, is caused by the pathogenic agent Bursaphelenchus xylophilus, also referred to as the pine wood nematode (PWN). A droplet digital PCR (ddPCR) assay was developed for the quick identification of the PWN in order to improve detection sensitivity. The research findings indicate that the ddPCR assay demonstrated significantly higher analysis sensitivity and detection sensitivity in comparison to traditional quantitative PCR (qPCR). However, it had a more limited dynamic range. High specificity was shown by both the ddPCR and qPCR techniques in the diagnosis of the PWN. Assessments of reproducibility revealed that ddPCR had lower coefficients of variation at every template concentration. Inhibition tests showed that ddPCR was less susceptible to inhibitors. There was a strong linear association between standard template measurements obtained using ddPCR and qPCR (Pearson correlation = 0.9317; p < 0.001). Likewise, there was strong agreement (Pearson correlation = 0.9348; p < 0.001) between ddPCR and qPCR measurements in the evaluation of pine wood samples. Additionally, wood samples from symptomatic (100% versus 86.67%) and asymptomatic (31.43% versus 2.9%) pine trees were diagnosed with greater detection rates using ddPCR. This study's conclusions highlight the advantages of the ddPCR assay over qPCR for the quantitative detection of the PWN. This method has a lot of potential for ecological research on PWD and use in quarantines.
Collapse
Affiliation(s)
- Yu Su
- College of Plant Protection, Southwest University, Chongqing 400716, China;
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China; (X.Z.); (H.J.)
| | - Xuedong Zhu
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China; (X.Z.); (H.J.)
| | - Haozheng Jing
- Southeast Chongqing Academy of Agricultural Sciences, Chongqing 408000, China; (X.Z.); (H.J.)
| | - Haiying Yu
- General Station of Forest and Grassland Pest Management, National Forestry and Grassland Administration, Shenyang 110034, China;
| | - Huai Liu
- College of Plant Protection, Southwest University, Chongqing 400716, China;
| |
Collapse
|
7
|
Cubero J, Zarco-Tejada PJ, Cuesta-Morrondo S, Palacio-Bielsa A, Navas-Cortés JA, Sabuquillo P, Poblete T, Landa BB, Garita-Cambronero J. New Approaches to Plant Pathogen Detection and Disease Diagnosis. PHYTOPATHOLOGY 2024; 114:1989-2006. [PMID: 39264350 DOI: 10.1094/phyto-10-23-0366-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
Collapse
Affiliation(s)
- Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo J Zarco-Tejada
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sara Cuesta-Morrondo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan A Navas-Cortés
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Sabuquillo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Tomás Poblete
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Blanca B Landa
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | |
Collapse
|
8
|
Neugebauer M, Calabrese S, Müller S, Truong TT, Juelg P, Borst N, Hutzenlaub T, Dazert E, von Bubnoff NCC, von Stetten F, Lehnert M. Generic Reporter Sets for Colorimetric Multiplex dPCR Demonstrated with 6-Plex SNP Quantification Panels. Int J Mol Sci 2024; 25:8968. [PMID: 39201654 PMCID: PMC11355019 DOI: 10.3390/ijms25168968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Digital PCR (dPCR) is a powerful method for highly sensitive and precise quantification of nucleic acids. However, designing and optimizing new multiplex dPCR assays using target sequence specific probes remains cumbersome, since fluorescent signals must be optimized for every new target panel. As a solution, we established a generic fluorogenic 6-plex reporter set, based on mediator probe technology, that decouples target detection from signal generation. This generic reporter set is compatible with different target panels and thus provides already optimized fluorescence signals from the start of new assay development. Generic reporters showed high population separability in a colorimetric 6-plex mediator probe dPCR, due to their tailored fluorophore and quencher selection. These reporters were further tested using different KRAS, NRAS and BRAF single-nucleotide polymorphisms (SNP), which are frequent point mutation targets in liquid biopsy. We specifically quantified SNP targets in our multiplex approach down to 0.4 copies per microliter (cp/µL) reaction mix, equaling 10 copies per reaction, on a wild-type background of 400 cp/µL for each, equaling 0.1% variant allele frequencies. We also demonstrated the design of an alternative generic reporter set from scratch in order to give detailed step-by-step guidance on how to systematically establish and optimize novel generic reporter sets. Those generic reporter sets can be customized for various digital PCR platforms or target panels with different degrees of multiplexing.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Silvia Calabrese
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Sarah Müller
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Truong-Tu Truong
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Eva Dazert
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (E.D.); (N.C.C.v.B.)
| | - Nikolas Christian Cornelius von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (E.D.); (N.C.C.v.B.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.N.); (S.C.); (S.M.); (T.-T.T.); (M.L.)
| |
Collapse
|
9
|
Shelley BA, Pandey B, Sarwar A, Douches D, Collins P, Qu X, Pasche J, Clarke CR. The Role of Soil Abundance of TxtAB in Potato Common Scab Disease Severity. PHYTOPATHOLOGY 2024; 114:1176-1185. [PMID: 38079373 DOI: 10.1094/phyto-09-23-0347-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Common scab is an economically costly soilborne disease of potato endemic in many potato-growing regions. The disease is caused by species of Streptomyces bacteria that produce the phytotoxin thaxtomin A. The primary disease management tool available to growers is planting resistant cultivars, but no cultivar is fully resistant to common scab, and partially resistant cultivars are often not the preferred choice of growers because of agronomic or market considerations. Therefore, growers would benefit from knowledge of the presence and severity of common scab infestations in field soils to make informed planting decisions. We implemented a quantitative PCR diagnostic assay to enable field detection and quantification of all strains of Streptomyces that cause common scab in the United States through amplification of thaxtomin A biosynthetic genes. Greenhouse trials confirmed that pathogen abundance was highly correlated with disease severity for five distinct phytopathogenic Streptomyces species, although the degree of disease severity was dependent on the pathogen species. Correlations between the abundance of the thaxtomin biosynthetic genes from field soil with disease on tubers at field sites across four U.S. states and across 2 years were not as strong as correlations observed in greenhouse assays. We also developed an effective droplet digital PCR diagnostic assay that also has potential for field quantification of thaxtomin biosynthetic genes. Further improvement of the PCR assays and added modeling of other environmental factors that impact disease outcome, such as soil composition, can aid growers in making informed planting decisions.
Collapse
Affiliation(s)
- Brett A Shelley
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Binod Pandey
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Arslan Sarwar
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - David Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Paul Collins
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Xinshun Qu
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802
| | - Julie Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Christopher R Clarke
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
10
|
Goto A, Moriya Y, Nakayama M, Iwasaki S, Yamamoto S. DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges. Drug Metab Pharmacokinet 2024; 56:101003. [PMID: 38843652 DOI: 10.1016/j.dmpk.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients' lives through efficient CAR cell therapies.
Collapse
Affiliation(s)
- Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.
| |
Collapse
|
11
|
Le Geay M, Mayers K, Küttim M, Lauga B, Jassey VEJ. Development of a digital droplet PCR approach for the quantification of soil micro-organisms involved in atmospheric CO 2 fixation. Environ Microbiol 2024; 26:e16666. [PMID: 38889760 DOI: 10.1111/1462-2920.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Carbon-fixing micro-organisms (CFMs) play a pivotal role in soil carbon cycling, contributing to carbon uptake and sequestration through various metabolic pathways. Despite their importance, accurately quantifying the absolute abundance of these micro-organisms in soils has been challenging. This study used a digital droplet polymerase chain reaction (ddPCR) approach to measure the abundance of key and emerging CFMs pathways in fen and bog soils at different depths, ranging from 0 to 15 cm. We targeted total prokaryotes, oxygenic phototrophs, aerobic anoxygenic phototrophic bacteria and chemoautotrophs, optimizing the conditions to achieve absolute quantification of these genes. Our results revealed that oxygenic phototrophs were the most abundant CFMs, making up 15% of the total prokaryotic abundance. They were followed by chemoautotrophs at 10% and aerobic anoxygenic phototrophic bacteria at 9%. We observed higher gene concentrations in fen than in bog. There were also variations in depth, which differed between fen and bog for all genes. Our findings underscore the abundance of oxygenic phototrophs and chemoautotrophs in peatlands, challenging previous estimates that relied solely on oxygenic phototrophs for microbial carbon dioxide fixation assessments. Incorporating absolute gene quantification is essential for a comprehensive understanding of microbial contributions to soil processes. This approach sheds light on the complex mechanisms of soil functioning in peatlands.
Collapse
Affiliation(s)
- Marie Le Geay
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| | - Kyle Mayers
- NORCE Norwegian Research Centre AS, Bergen, Norway
| | - Martin Küttim
- Institute of Ecology, School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Béatrice Lauga
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vincent E J Jassey
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRE, IRD, Toulouse INP, Université Toulouse 3-Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
12
|
Sorbini M, Carradori T, Togliatto GM, Vaisitti T, Deaglio S. Technical Advances in Circulating Cell-Free DNA Detection and Analysis for Personalized Medicine in Patients' Care. Biomolecules 2024; 14:498. [PMID: 38672514 PMCID: PMC11048502 DOI: 10.3390/biom14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) refers to small fragments of DNA molecules released after programmed cell death and necrosis in several body fluids such as blood, saliva, urine, and cerebrospinal fluid. The discovery of cfDNA has revolutionized the field of non-invasive diagnostics in the oncologic field, in prenatal testing, and in organ transplantation. Despite the potential of cfDNA and the solid results published in the recent literature, several challenges remain, represented by a low abundance, a need for highly sensitive assays, and analytical issues. In this review, the main technical advances in cfDNA analysis are presented and discussed, with a comprehensive examination of the current available methodologies applied in each field. Considering the potential advantages of cfDNA, this biomarker is increasing its consensus among clinicians, as it allows us to monitor patients' conditions in an easy and non-invasive way, offering a more personalized care. Nevertheless, cfDNA analysis is still considered a diagnostic marker to be further validated, and very few centers are implementing its analysis in routine diagnostics. As technical improvements are enhancing the performances of cfDNA analysis, its application will transversally improve patients' quality of life.
Collapse
Affiliation(s)
- Monica Sorbini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
| | - Tullia Carradori
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
| | - Gabriele Maria Togliatto
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (T.C.); (T.V.); (S.D.)
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza, 10126 Turin, Italy;
| |
Collapse
|
13
|
Scriver M, von Ammon U, Youngbull C, Pochon X, Stanton JAL, Gemmell NJ, Zaiko A. Drop it all: extraction-free detection of targeted marine species through optimized direct droplet digital PCR. PeerJ 2024; 12:e16969. [PMID: 38410796 PMCID: PMC10896080 DOI: 10.7717/peerj.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular biomonitoring programs increasingly use environmental DNA (eDNA) for detecting targeted species such as marine non-indigenous species (NIS) or endangered species. However, the current molecular detection workflow is cumbersome and time-demanding, and thereby can hinder management efforts and restrict the "opportunity window" for rapid management responses. Here, we describe a direct droplet digital PCR (direct-ddPCR) approach to detect species-specific free-floating extra-cellular eDNA (free-eDNA) signals, i.e., detection of species-specific eDNA without the need for filtration or DNA extraction, with seawater samples. This first proof-of-concept aquarium study was conducted with three distinct marine species: the Mediterranean fanworm Sabella spallanzanii, the ascidian clubbed tunicate Styela clava, and the brown bryozoan Bugula neritina to evaluate the detectability of free-eDNA in seawater. The detectability of targeted free-eDNA was assessed by directly analysing aquarium marine water samples using an optimized species-specific ddPCR assay. The results demonstrated the consistent detection of S. spallanzanii and B. neritina free-eDNA when these organisms were present in high abundance. Once organisms were removed, the free-eDNA signal exponentially declined, noting that free-eDNA persisted between 24-72 h. Results indicate that organism biomass, specimen characteristics (e.g., stress and viability), and species-specific biological differences may influence free-eDNA detectability. This study represents the first step in assessing the feasibility of direct-ddPCR technology for the detection of marine species. Our results provide information that could aid in the development of new technology, such as a field development of ddPCR systems, which could allow for automated continuous monitoring of targeted marine species, enabling point-of-need detection and rapid management responses.
Collapse
Affiliation(s)
- Michelle Scriver
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Ulla von Ammon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
| | - Cody Youngbull
- Nucleic Sensing Systems, LCC, Saint Paul, Minnesota, United States
| | - Xavier Pochon
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anastasija Zaiko
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- Sequench Ltd, Nelson, New Zealand
| |
Collapse
|
14
|
Punja ZK, Kahl D, Reade R, Xiang Y, Munz J, Nachappa P. Challenges to Cannabis sativa Production from Pathogens and Microbes-The Role of Molecular Diagnostics and Bioinformatics. Int J Mol Sci 2023; 25:14. [PMID: 38203190 PMCID: PMC10779078 DOI: 10.3390/ijms25010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The increased cultivation of Cannabis sativa L. in North America, represented by high Δ9-tetrahydrocannabinol-containing (high-THC) cannabis genotypes and low-THC-containing hemp genotypes, has been impacted by an increasing number of plant pathogens. These include fungi which destroy roots, stems, and leaves, in some cases causing a build-up of populations and mycotoxins in the inflorescences that can negatively impact quality. Viroids and viruses have also increased in prevalence and severity and can reduce plant growth and product quality. Rapid diagnosis of the occurrence and spread of these pathogens is critical. Techniques in the area of molecular diagnostics have been applied to study these pathogens in both cannabis and hemp. These include polymerase chain reaction (PCR)-based technologies, including RT-PCR, multiplex RT-PCR, RT-qPCR, and ddPCR, as well as whole-genome sequencing (NGS) and bioinformatics. In this study, examples of how these technologies have enhanced the rapidity and sensitivity of pathogen diagnosis on cannabis and hemp will be illustrated. These molecular tools have also enabled studies on the diversity and origins of specific pathogens, specifically viruses and viroids, and these will be illustrated. Comparative studies on the genomics and metabolomics of healthy and diseased plants are urgently needed to provide insight into their impact on the quality and composition of cannabis and hemp-derived products. Management of these pathogens will require monitoring of their spread and survival using the appropriate technologies to allow accurate detection, followed by appropriate implementation of disease control measures.
Collapse
Affiliation(s)
- Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Dieter Kahl
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Ron Reade
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Yu Xiang
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Jack Munz
- 3 Rivers Biotech, Coquitlam, BC V5A 1S6, Canada;
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
15
|
Haqshenas G, Garland SM, Balgovind P, Cornall A, Danielewski J, Molano M, Machalek DA, Murray G. Development of a touchdown droplet digital PCR assay for the detection and quantitation of human papillomavirus 16 and 18 from self-collected anal samples. Microbiol Spectr 2023; 11:e0183623. [PMID: 37962350 PMCID: PMC10714734 DOI: 10.1128/spectrum.01836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE The quantity of the human papillomavirus (HPV) is associated with disease outcome. We designed an accurate and precise digital PCR assay for quantitating HPV in anal samples, a sample type that is typically problematic due to the presence of PCR inhibitors.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Suzanne M. Garland
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Prisha Balgovind
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Alyssa Cornall
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Jennifer Danielewski
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Monica Molano
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
| | - Dorothy A. Machalek
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gerald Murray
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Women’s Infectious Diseases, The Royal Women’s Hospital, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Casmil IC, Huang C, Blakney AK. A duplex droplet digital PCR assay for absolute quantification and characterization of long self-amplifying RNA. Sci Rep 2023; 13:19050. [PMID: 37923834 PMCID: PMC10624827 DOI: 10.1038/s41598-023-46314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Self-amplifying messenger ribonucleic acid (saRNA) provides extended expression of genes of interest by encoding an alphavirus-derived RNA replicase and thus is 2-3 times larger than conventional messenger RNA. However, quality assessment of long RNA transcripts is challenging using standard techniques. Here, we utilized a multiplex droplet digital polymerase chain reaction (ddPCR) assay to assess the quality of saRNA produced from an in vitro transcription reaction and the replication kinetics in human cell lines. Using the one-step reverse transcription ddPCR, we show that an in vitro transcription generates 50-60% full-length saRNA transcripts. However, we note that the two-step reverse transcription ddPCR assay results in a 20% decrease from results obtained using the one-step and confirmed using capillary gel electrophoresis. Additionally, we provided three formulas that differ in the level of stringency and assumptions made to calculate the fraction of intact saRNA. Using ddPCR, we also showed that subgenomic transcripts of saRNA were 19-to-108-fold higher than genomic transcripts at different hours post-transfection of mammalian cells in copies. Therefore, we demonstrate that multiplex ddPCR is well suited for quality assessment of long RNA and replication kinetics of saRNA based on absolute quantification.
Collapse
Affiliation(s)
- Irafasha C Casmil
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cynthia Huang
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
17
|
Lawaju BR, Yan G, Whitworth J. Development of a Droplet Digital PCR Assay for Detection and Quantification of Stubby Root Nematode, Paratrichodorus allius, in Soil. PLANT DISEASE 2023; 107:3344-3353. [PMID: 37115564 DOI: 10.1094/pdis-03-23-0439-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The stubby root nematode Paratrichodorus allius is an important plant-parasitic nematode species within the Trichodoridae family. It can directly harm the plants by feeding on the roots or indirectly by transmitting Tobacco rattle virus. These nematodes are mostly diagnosed either by traditional microscopic methods or a polymerase chain reaction (PCR)-based method. Droplet digital PCR (ddPCR) is a novel PCR technique which is sensitive and precise in quantifying DNA templates of the test samples. In this study, we developed a ddPCR assay to detect and quantify P. allius in soil. The specificity and sensitivity of the assay was first determined using P. allius nematode DNA or DNA from sterilized soil artificially inoculated with P. allius, and the assay was used to quantify P. allius populations in field soils. The assay did not detect nematodes other than P. allius, thus showing high specificity. It was able to detect P. allius equivalent to a 0.01 and 0.02 portion of a single nematode in soil DNA and nematode DNA extracts, respectively. Highly linear relationships between DNA copy numbers from ddPCR and serial dilutions of known concentrations were observed with DNA from P. allius nematodes (R2 = 0.9842) and from artificially infested soil (R2 = 0.9464). The P. allius populations from field soils determined by ddPCR were highly correlated with traditional microscopic counts (R2 = 0.7963). To our knowledge, this is the first report of applying ddPCR to detect and quantify stubby root nematode in soil. The results of this study support the potentiality of a ddPCR assay as a new research tool in diagnostics of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Guiping Yan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Jonathan Whitworth
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID 83210
| |
Collapse
|
18
|
Tournayre O, Wolfe R, McCurdy-Adams H, Chabot AA, Lougheed SC. A species-specific digital PCR assay for the endangered blue racer ( Coluber constrictor foxii) in Canada. Genome 2023; 66:251-260. [PMID: 37270848 DOI: 10.1139/gen-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The only population of the endangered blue racer (Coluber constrictor foxii) in Canada occurs on Pelee Island, Ontario. The species is threatened by multiple factors, including habitat degradation and loss, road mortality, persecution, and potentially predation. We designed and evaluated the performance of an environmental DNA droplet digital PCR assay that can be used for multiple facets of conservation of this species. We tested the assay in silico and in vitro using DNA of blue racers and co-occurring snake species and estimated the LOD and LOQ using synthetic DNA. As wild turkey predation has been suggested to negatively affect racers, we tested the assay on eight wild turkey faecal samples. Our assay is specific, can detect the target species at very low levels of concentration (0.002 copies/µL), and can accurately quantify copy numbers ≥ 0.26 copies/µL. We detected no racer DNA in any wild turkey faecal sample. More faecal samples collected at strategic locations during snake peak activity on Pelee Island would enable a more thorough assessment of the possibility of turkey predation. Our assay should be effective for other environmental samples and can be used for investigating other factors negatively affecting blue racers, for example, helping to quantify blue racer habitat suitability and site occupancy.
Collapse
Affiliation(s)
- Orianne Tournayre
- Biology Department, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ryan Wolfe
- Natural Resource Solutions Inc., Waterloo, ON N2L 3X2, Canada
| | | | - Amy A Chabot
- African Lion Safari, Cambridge, ON N1R 5S2, Canada
| | | |
Collapse
|
19
|
Nuraeni U, Malau J, Astuti RT, Dewantoro A, Apriori D, Lusiana ED, Prasetya B. Droplet digital PCR versus real-time PCR for in-house validation of porcine detection and quantification protocol: An artificial recombinant plasmid approach. PLoS One 2023; 18:e0287712. [PMID: 37450440 PMCID: PMC10348585 DOI: 10.1371/journal.pone.0287712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Authenticity and traceability are essential for modern food and medicine inspection, and reliable techniques are important for the trade of halal foods, which reach more than 20 percent of the world market. A sensitive and accurate porcine detection method is required to develop a conformity assessment system that includes laboratory testing for porcine-free certification. This study proposes a procedure that could be incorporated into the development of a standardized control and protocol for real-time PCR (qPCR) methods and their traceability using droplet digital PCR (ddPCR). The design used a recombinant pUC57 plasmid as an amplification target to carry the 97 bp fragment of the porcine ATCB gene. The absolute quantification and linearity assessment showed high precision with R2 values of 0.9971 and 0.9998 for qPCR and ddPCR, respectively. In general, both methods showed comparable results in terms of linearity and detection limit. However, both limit of detection assessments showed high sensitivity, although ddPCR showed a slightly higher sensitivity than that of qPCR, especially at low DNA concentrations. Multiple-sample and inter-participatory testing evaluations revealed a high sensitivity, broad applicability, and robustness of the qPCR method. Therefore, we conclude that based on a recombinant plasmid analysis with a low quantity (less than five copy number), the digital PCR method produced more reliable results. These results could provide scientific information for regulatory authorities, especially those in Indonesia, to consider the development and formulation of a well-established qPCR protocol for porcine detection using expected DNA concentrations.
Collapse
Affiliation(s)
- Umi Nuraeni
- Laboratory of National Measurement Standards of Biology, The National Standard Agency of Indonesia (BSN), South Tangerang, Banten, Indonesia
| | - Jekmal Malau
- Department of Pharmacy, Faculty of Health Science, Universitas Singaperbangsa Karawang, West Java, Indonesia
| | - Retno Tri Astuti
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, East Java, Indonesia
| | - Auraga Dewantoro
- Research Center for Genetic Engineering, The National Research and Innovation Agency of Indonesia (BRIN), Bogor, Indonesia
| | - Dini Apriori
- Laboratory of National Measurement Standards of Biology, The National Standard Agency of Indonesia (BSN), South Tangerang, Banten, Indonesia
| | - Evellin Dewi Lusiana
- Department of Aquatic Resource Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, East Java, Indonesia
| | - Bambang Prasetya
- Research Center for Testing Technology and Standards, The National Research and Innovation Agency of Indonesia (BRIN), South Tangerang, Indonesia
| |
Collapse
|
20
|
Hart JJ, Jamison MN, McNair JN, Woznicki SA, Jordan B, Rediske RR. Using watershed characteristics to enhance fecal source identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117642. [PMID: 36907065 DOI: 10.1016/j.jenvman.2023.117642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fecal pollution is one of the most prevalent forms of pollution affecting waterbodies worldwide, threatening public health and negatively impacting aquatic environments. Microbial source tracking (MST) applies polymerase chain reaction (PCR) technology to help identify the source of fecal pollution. In this study, we combine spatial data for two watersheds with general and host-associated MST markers to target human (HF183/BacR287), bovine (CowM2), and general ruminant (Rum2Bac) sources. Concentrations of MST markers in samples were determined with droplet digital PCR (ddPCR). The three MST markers were detected at all sites (n = 25), but bovine and general ruminant markers were significantly associated with watershed characteristics. MST results, combined with watershed characteristics, suggest that streams draining areas with low-infiltration soil groups and high agricultural land use are at an increased risk for fecal contamination. Microbial source tracking has been applied in numerous studies to aid in identifying the sources of fecal contamination, but these studies usually lack information on the involvement of watershed characteristics. Our study combined watershed characteristics with MST results to provide more comprehensive insight into the factors that influence fecal contamination in order to implement the most effective best management practices.
Collapse
Affiliation(s)
- John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Sean A Woznicki
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - Ben Jordan
- Ottawa Conservation District, 16731 Ferris St, Grand Haven, MI, 49417, USA.
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| |
Collapse
|
21
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Nakayama M, Yamamoto S, Hirabayashi H. Novel Cell Quantification Method Using a Single Surrogate Calibration Curve Across Various Biological Samples. AAPS J 2023; 25:26. [PMID: 36806998 DOI: 10.1208/s12248-023-00791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) is generally used to quantify transplanted cell therapy products in biological samples. As the matrix effects on PCR amplification and variability in DNA recovery from biological samples are well-known limitations that hinder the assay's performance, a calibration curve is conventionally established for each matrix. Droplet digital PCR (ddPCR) is based on the endpoint assay and advantageous in avoiding matrix effects. Moreover, the use of an external control gene may correct assay fluctuations to minimize the effects caused by inconsistent DNA recovery. In this study, we aimed to establish a novel and robust ddPCR method capable of quantifying human cells across various mouse biological samples using a single surrogate calibration curve in combination with an external control gene and DNA recovery normalization. Acceptable accuracy and precision were observed for quality control samples from different tissues, indicating the excellent quantitative and versatile potential of the developed method. Furthermore, the established method enabled the evaluation of human CD8+ T cell biodistribution in immunodeficient mice. Our findings provide new insights into the use of ddPCR-based quantification methods in biodistribution studies of cell therapy products.
Collapse
Affiliation(s)
- Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan.
| | - Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
23
|
Chen Y, Tournayre O, Tian H, Lougheed SC. Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring. PeerJ 2023; 11:e14679. [PMID: 36710869 PMCID: PMC9879156 DOI: 10.7717/peerj.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Background Climate change has driven shifts in breeding phenology of many amphibians, causing phenological mismatches (e.g., predator-prey interactions), and potentially population declines. Collecting data with high spatiotemporal sensitivity on hibernation emergence and breeding times can inform conservation best practices. However, monitoring the phenology of amphibians can be challenging because of their cryptic nature over much of their life cycle. Moreover, most salamanders and caecilians do not produce conspicuous breeding calls like frogs and toads do, presenting additional monitoring challenges. Methods In this study, we designed and evaluated the performance of an environmental DNA (eDNA) droplet digital PCR (ddPCR) assay as a non-invasive tool to assess the breeding phenology of a Western Chorus Frog population (Pseudacris maculata mitotype) in Eastern Ontario and compared eDNA detection patterns to hourly automatic acoustic monitoring. For two eDNA samples with strong PCR inhibition, we tested three methods to diminish the effect of inhibitors: diluting eDNA samples, adding bovine serum albumin to PCR reactions, and purifying eDNA using a commercial clean-up kit. Results We recorded the first male calling when the focal marsh was still largely frozen. Chorus frog eDNA was detected on April 6th, 6 days after acoustic monitoring revealed this first calling male, but only 2 days after males attained higher chorus activity. eDNA signals were detected at more sampling locales within the marsh and eDNA concentrations increased as more males participated in the chorus, suggesting that eDNA may be a reasonable proxy for calling assemblage size. Internal positive control revealed strong inhibition in some samples, limiting detection probability and quantification accuracy in ddPCR. We found diluting samples was the most effective in reducing inhibition and improving eDNA quantification. Conclusions Altogether, our results showed that eDNA ddPCR signals lagged behind male chorusing by a few days; thus, acoustic monitoring is preferable if the desire is to document the onset of male chorusing. However, eDNA may be an effective, non-invasive monitoring tool for amphibians that do not call and may provide a useful complement to automated acoustic recording. We found inhibition patterns were heterogeneous across time and space and we demonstrate that an internal positive control should always be included to assess inhibition for eDNA ddPCR signal interpretations.
Collapse
|
24
|
Rapid identification and absolute quantitation of zero tolerance-Salmonella enterica subsp. enterica serovar Thompson using droplet digital polymerase chain reaction. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Khashayar P, Al-Madhagi S, Azimzadeh M, Scognamiglio V, Arduini F. New frontiers in microfluidics devices for miRNA analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
27
|
Development of Droplet Digital PCR Assay for Detection of Seed-Borne Burkholderia glumae and B. gladioli Causing Bacterial Panicle Blight Disease of Rice. Microorganisms 2022; 10:microorganisms10061223. [PMID: 35744741 PMCID: PMC9227566 DOI: 10.3390/microorganisms10061223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial panicle blight of rice or bacterial grain rot of rice is a worldwide rice disease. Burkholderia glumae and B. gladioli are the causal agents. The early and accurate detection of seed-borne B. glumae and B. gladioli is critical for domestic and international quarantine and effective control of the disease. Here, genomic analyses revealed that B. gladioli contains five phylogroups and the BG1 primer pair designed to target the 3’-end sequence of a gene encoding a Rhs family protein is specific to B. glumae and two phylogroups within B. gladioli. Using the BG1 primer pair, a 138-bp DNA fragment was amplified only from the tested panicle blight pathogens B. glumae and B. gladioli. An EvaGreen droplet digital PCR (dPCR) assay on detection and quantification of the two pathogens was developed from a SYBR Green real-time quantitative PCR (qPCR). The detection limits of the EvaGreen droplet dPCR on the two pathogens were identical at 2 × 103 colony forming units (CFU)∙mL−1 from bacterial suspensions and 2 × 102 CFU∙seed−1 from rice seeds. The EvaGreen droplet dPCR assay showed 10-fold detection sensitivity of the SYBR Green qPCR and could detect a single copy of the target gene in a 20-μL assay. Together, the SYBR Green qPCR assay allows for routine high-throughput detection of the panicle blight pathogens and the EvaGreen droplet dPCR assay provides a high-sensitive and high-accurate diagnostic method for quarantine of the pathogens.
Collapse
|
28
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Choi CH, Kim E, Yang SM, Kim DS, Suh SM, Lee GY, Kim HY. Comparison of Real-Time PCR and Droplet Digital PCR for the Quantitative Detection of Lactiplantibacillus plantarum subsp. plantarum. Foods 2022; 11:foods11091331. [PMID: 35564054 PMCID: PMC9105557 DOI: 10.3390/foods11091331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Droplet digital polymerase chain reaction (ddPCR) is one of the newest and most promising tools providing absolute quantification of target DNA molecules. Despite its emerging applications in microorganisms, few studies reported its use for detecting lactic acid bacteria. This study evaluated the applicability of a ddPCR assay targeting molecular genes obtained from in silico analysis for detecting Lactiplantibacillus plantarum subsp. plantarum, a bacterium mainly used as a starter or responsible for fermentation in food. The performance characteristics of a ddPCR were compared to those of a quantitative real-time PCR (qPCR). To compare the linearity and sensitivity of a qPCR and ddPCR, the calibration curve for a qPCR and the regression curve for a ddPCR were obtained using genomic DNA [102−108 colony-forming units (CFU)/mL] extracted from a pure culture and spiked food sample. Both the qPCR and ddPCR assays exhibited good linearity with a high coefficient of determination in the pure culture and spiked food sample (R2 ≥ 0.996). The ddPCR showed a 10-fold lower limit of detection, suggesting that a ddPCR is more sensitive than a qPCR. However, a ddPCR has limitations in the absolute quantitation of high bacterial concentrations (>106 CFU/mL). In conclusion, a ddPCR can be a reliable method for detecting and quantifying lactic acid bacteria in food.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hae-Yeong Kim
- Correspondence: ; Tel.: +82-31-201-2600; Fax: +82-31-204-8116
| |
Collapse
|
30
|
Telwatte S, Martin HA, Marczak R, Fozouni P, Vallejo-Gracia A, Kumar GR, Murray V, Lee S, Ott M, Wong JK, Yukl SA. Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods 2022; 201:15-25. [PMID: 33882362 PMCID: PMC8105137 DOI: 10.1016/j.ymeth.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.
Collapse
Affiliation(s)
- Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Ryan Marczak
- University of California, Santa Barbara, CA, United States
| | - Parinaz Fozouni
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Albert Vallejo-Gracia
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - G Renuka Kumar
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Victoria Murray
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Sulggi Lee
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Melanie Ott
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, United States
| | - Joseph K Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Steven A Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States.
| |
Collapse
|
31
|
Intra-Laboratory Evaluation of DNA Extraction Methods and Assessment of a Droplet Digital PCR for the Detection of Xanthomonas citri pv. citri on Different Citrus Species. Int J Mol Sci 2022; 23:ijms23094975. [PMID: 35563366 PMCID: PMC9105834 DOI: 10.3390/ijms23094975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca), causal agents of citrus bacterial canker, are both regulated by the European Union to prevent their introduction. Xcc is responsible for severe outbreaks of citrus production worldwide, therefore, a prompt and reliable detection is advisable for the early detection of this bacterium either in symptomatic or asymptomatic plant material. The current EPPO (European and Mediterranean Plant Protection Organization) diagnostic protocol, PM 7/44(1), includes several diagnostic tests even if new assays have been developed in the latter years for which validation data are needed. Recently, a test performance study was organized within the Valitest EU Project to validate Xcc diagnostic methods and provide evidence on the most reliable assays; however, the influence of DNA extraction methods (DEM) on the reliability of the detection has never been assessed. In this study we evaluate four different DEM, by following two different approaches: (i) a comparison by real-time PCR standard curves of bacterial DNA versus bacterial DNA added to plant DNA (lemon, leaves and fruit; orange fruit); and (ii) the evaluation of performance criteria of spiked samples (plant extract added with ten-fold diluted bacterial suspensions at known concentrations). Droplet digital PCR is developed and compared with real-time PCR, as the detection method.
Collapse
|
32
|
Knight NL, Moslemi A, Begum F, Dodhia KN, Covarelli L, Hills AL, Lopez-Ruiz FJ. Detection of Ramularia collo-cygni from barley in Australia using triplex quantitative and droplet digital PCR. PEST MANAGEMENT SCIENCE 2022; 78:1367-1376. [PMID: 34889505 DOI: 10.1002/ps.6753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ramularia leaf spot (RLS), caused by Ramularia collo-cygni, is an emerging threat to barley (Hordeum vulgare L.) production. RLS has been reported in Australia, however only minimal information is available regarding its detection and distribution. Due to initial asymptomatic growth in planta, slow growth in vitro and symptomatic similarities to net blotch and physiological leaf spots, detection of this pathogen can be challenging. Quantitative polymerase chain reaction (PCR)-based methods for R. collo-cygni-specific identification and detection have been described, however these assays have been demonstrated to lack specificity. False-positive detections may have serious implications, thus we aimed to design a robust R. collo-cygni-specific PCR method. RESULTS Using the phylogenetically informative RNA polymerase II second largest subunit (rpb2) and translation elongation factor 1-alpha (tef1-α) genes, along with the tef1-α gene of H. vulgare, a triplex assay was developed for both quantitative and droplet digital PCR. The triplex assay detected R. collo-cygni DNA in barley leaves from New South Wales, South Australia, Tasmania, Victoria and Western Australia. No R. collo-cygni DNA was detected in barley seed grown in Western Australia. CONCLUSION The presence of R. collo-cygni DNA has been confirmed in Australian barley crops, suggesting a distribution ranging across the southern barley growing regions of Australia. The R. collo-cygni-specific assay will be a valuable tool to assist with monitoring the distribution and impact of R. collo-cygni in Australia and other regions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noel L Knight
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Azin Moslemi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Farhana Begum
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Kejal N Dodhia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| | - Lorenzo Covarelli
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Andrea L Hills
- Department of Primary Industries and Regional Development, State government office in Myrup, Esperance, Australia
| | - Francisco J Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Australia
| |
Collapse
|
33
|
Barua VB, Juel MAI, Blackwood AD, Clerkin T, Ciesielski M, Sorinolu AJ, Holcomb DA, Young I, Kimble G, Sypolt S, Engel LS, Noble RT, Munir M. Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: A six-month long study in Charlotte, North Carolina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152503. [PMID: 34954186 PMCID: PMC8697423 DOI: 10.1016/j.scitotenv.2021.152503] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/05/2023]
Abstract
The global spread of SARS-CoV-2 has continued to be a serious concern after WHO declared the virus to be the causative agent of the coronavirus disease 2019 (COVID-19) a global pandemic. Monitoring of wastewater is a useful tool for assessing community prevalence given that fecal shedding of SARS-CoV-2 occurs in high concentrations by infected individuals, regardless of whether they are asymptomatic or symptomatic. Using tools that are part of wastewater-based epidemiology (WBE) approach, combined with molecular analyses, wastewater monitoring becomes a key piece of information used to assess trends and quantify the scale and dynamics of COVID-19 infection in a specific community, municipality, or area of service. This study investigates a six-month long SARS-CoV-2 RNA quantification in influent wastewater from four municipal wastewater treatment plants (WWTP) serving the Charlotte region of North Carolina (NC) using both RT-qPCR and RT-ddPCR platforms. Influent wastewater was analyzed for the nucleocapsid (N) genes N1 and N2. Both RT-qPCR and RT-ddPCR performed well for detection and quantification of SARS-CoV-2 using the N1 target, while for the N2 target RT-ddPCR was more sensitive. SARS-CoV-2 concentration ranged from 103 to 105 copies/L for all four plants. Both RT-qPCR and RT-ddPCR showed a significant positive correlation between SARS-CoV-2 concentrations and the 7-day rolling average of clinically reported COVID-19 cases when lagging 5 to 12 days (ρ = 0.52-0.92, p < 0.001-0.02). A major finding of this study is that RT-qPCR and RT-ddPCR generated SARS-CoV-2 data that was positively correlated (ρ = 0.569, p < 0.0001) and can be successfully used to monitor SARS-CoV-2 signals across the WWTP of different sizes and metropolitan service functions without significant anomalies.
Collapse
Affiliation(s)
- Visva Bharati Barua
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Md Ariful Islam Juel
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - A Denene Blackwood
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Thomas Clerkin
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Mark Ciesielski
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Adeola Julian Sorinolu
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isaiah Young
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Gina Kimble
- Charlotte Water, 5100 Brookshire Blvd., Charlotte, NC 28216, USA
| | - Shannon Sypolt
- Charlotte Water, 5100 Brookshire Blvd., Charlotte, NC 28216, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel T Noble
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Mariya Munir
- Department of Civil and Environmental Engineering, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA.
| |
Collapse
|
34
|
Wang L, Tian Q, Zhou P, Zhao W, Sun X. Evaluation of Droplet Digital PCR for the Detection of Black Canker Disease in Tomato. PLANT DISEASE 2022; 106:395-405. [PMID: 34569829 DOI: 10.1094/pdis-02-21-0317-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis, the cause of bacterial canker disease, is one of the most destructive pathogens in greenhouse and field tomato. The pathogen is now present in all main production areas of tomato and is widely distributed in the European and Mediterranean Plant Protection Organization region. The inspection and quarantine of the plant pathogens relies heavily on accurate detection tools. Primers and probes reported in previous studies do not distinguish the C. michiganensis subsp. michiganensis pathogen from other closely related subspecies of C. michiganensis, especially the nonpathogenic subspecies that were identified from tomato seeds recently. Here, we have developed a droplet digital PCR (ddPCR) method for the identification of this specific bacterium with primers/TaqMan probe set designed based on the pat-1 gene of C. michiganensis subsp. michiganensis. This new primers/probe set has been evaluated by real-time PCR (qPCR) and ddPCR. The detection results suggest that the ddPCR method established in this study was highly specific for the target strains. The result showed the positive amplification for all five C. michiganensis subsp. michiganensis strains, and no amplification was observed for the other 43 tested bacteria, including the closely related C. michiganensis strains. The detection threshold of ddPCR was 10.8 CFU/ml for both pure C. michiganensis subsp. michiganensis cell suspensions and infected tomato seed, which was 100-fold more sensitive than qPCR performed using the same primers and probe. The data obtained suggest that our established ddPCR could detect C. michiganensis subsp. michiganensis even with low bacterial load, which could facilitate both C. michiganensis subsp. michiganensis inspection for pathogen quarantine and the routine pathogen detection for disease control of black canker in tomato.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Plant Immunity and Plant Disease Ecological Control, College of Plant Protection, Southwest University, Chongqing 400716, China
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Guizhou Academy of Forestry, Guiyang 550011, China
| | - Qian Tian
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Pei Zhou
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Zhao
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xianchao Sun
- Laboratory of Plant Immunity and Plant Disease Ecological Control, College of Plant Protection, Southwest University, Chongqing 400716, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| |
Collapse
|
35
|
Murolo S, Moumni M, Mancini V, Allagui MB, Landi L, Romanazzi G. Detection and Quantification of Stagonosporopsis cucurbitacearum in Seeds of Cucurbita maxima Using Droplet Digital Polymerase Chain Reaction. Front Microbiol 2022; 12:764447. [PMID: 35087483 PMCID: PMC8788924 DOI: 10.3389/fmicb.2021.764447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022] Open
Abstract
Stagonosporopsis cucurbitacearum is an important seedborne pathogen of squash (Cucurbita maxima). The aim of our work was to develop a rapid and sensitive diagnostic tool for detection and quantification of S. cucurbitacearum in squash seed samples, to be compared with blotter analysis, that is the current official seed test. In blotter analysis, 29 of 31 seed samples were identified as infected, with contamination from 1.5 to 65.4%. A new set of primers (DB1F/R) was validated in silico and in conventional, quantitative real-time PCR (qPCR) and droplet digital (dd) PCR. The limit of detection of S. cucurbitacearum DNA for conventional PCR was ∼1.82 × 10–2 ng, with 17 of 19 seed samples positive. The limit of detection for ddPCR was 3.6 × 10–3 ng, which corresponded to 0.2 copies/μl. Detection carried out with artificial samples revealed no interference in the absolute quantification when the seed samples were diluted to 20 ng. All seed samples that showed S. cucurbitacearum contamination in the blotter analysis were highly correlated with the absolute quantification of S. cucurbitacearum DNA (copies/μl) in ddPCR (R2 = 0.986; p ≤ 0.01). Our ddPCR protocol provided rapid detection and absolute quantification of S. cucurbitacearum, offering a useful support to the standard procedure.
Collapse
Affiliation(s)
- Sergio Murolo
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marwa Moumni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.,Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, Ariana, Tunisia
| | - Valeria Mancini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Mohamed Bechir Allagui
- Laboratory of Plant Protection, National Institute for Agronomic Research of Tunisia, University of Carthage, Ariana, Tunisia
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
36
|
Increasing the Efficiency of Canola and Soybean GMO Detection and Quantification Using Multiplex Droplet Digital PCR. BIOLOGY 2022; 11:biology11020201. [PMID: 35205068 PMCID: PMC8869681 DOI: 10.3390/biology11020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Digital PCR (dPCR) technology has been used for absolute quantification of genetically modified (GM) events. Duplex dPCR consisting of a target gene and a reference gene is mostly used for absolute quantification of GM events. We investigated the feasibility of absolute quantification of two, three, and four GM canola and soybean events at the same time using the QX200 Droplet Digital PCR (ddPCR) system. Adjustments of the probe concentrations and labels for some of the assays were needed for successful multiplex ddPCR. Absolute quantification of GM canola and soybean events was achieved for duplex, triplex, and tetraplex ddPCR at 0.1%, 1%, and 5% concentrations. Abstract The number of genetically modified (GM) events for canola, maize, and soybean has been steadily increasing. Real-time PCR is widely used for the detection and quantification of individual GM events. Digital PCR (dPCR) has also been used for absolute quantification of GM events. A duplex dPCR assay consisting of one reference gene and one GM event has been carried out in most cases. The detection of more than one GM event in a single assay will increase the efficiency of dPCR. The feasibility of detection and quantification of two, three, and four GM canola and soybean events at the same time was investigated at 0.1%, 1%, and 5% levels using the QX200 Droplet Digital PCR (ddPCR) system. The reference gene assay was carried out on the same plate but in different wells. For some of the assays, optimization of the probe concentrations and labels was needed for successful ddPCR. Results close to the expected result were achieved for duplex, triplex, and tetraplex ddPCR assays for GM canola events. Similar ddPCR results were also achieved for some GM soybean events with some exceptions. Overall, absolute quantification of up to four GM events at the same time improves the efficiency of GM detection.
Collapse
|
37
|
Raguseo C, Gerin D, Pollastro S, Rotolo C, Rotondo PR, Faretra F, De Miccolis Angelini RM. A Duplex-Droplet Digital PCR Assay for Simultaneous Quantitative Detection of Monilinia fructicola and Monilinia laxa on Stone Fruits. Front Microbiol 2021; 12:747560. [PMID: 34912308 PMCID: PMC8667764 DOI: 10.3389/fmicb.2021.747560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Brown rot, caused by different Monilinia species, is a most economically important disease of pome and stone fruits worldwide. In Europe and in Italy, the quarantine pathogen M. fructicola was recently introduced and rapidly spread and, by competing with the main indigenous species Monilinia fructigena and Monilinia laxa, caused relevant changes in Monilinia populations. As a result, in most areas, the pathogen almost replaced M. fructigena and now coexists with M. laxa. The availability of specific and easy-of-use quantification methods is essential to study the population dynamics, and in this work, a new method for the simultaneous quantification of M. fructicola and M. laxa based on droplet digital PCR (ddPCR) technique was established. Under the optimized reaction conditions, consisting of 250/500 nM of primers/probe sets concentration, 58°C as annealing temperature and 50 PCR cycles, the duplex-ddPCR assay was 200-fold more sensitive than duplex-real-time quantitative PCR (qPCR) assay, quantifying < 1 copy μL–1 of target DNA in the PCR mixture. The results obtained with the validation assay performed on apricot and peach fruits, artificially inoculated with conidial suspensions containing different ratios of M. fructicola and M. laxa, showed a high correlation (R2 = 0.98) between the relative quantity of DNA of the two species quantified by ddPCR and qPCR and a more accurate quantification by ddPCR compared to qPCR at higher concentrations of M. fructicola. The herein described method represents a useful tool for the early detection of Monilinia spp. on stone fruits and for the improving knowledge on the epidemiology of brow rot and interactions between the two prevalent Monilinia species.
Collapse
Affiliation(s)
- Celeste Raguseo
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Palma Rosa Rotondo
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
38
|
Badran S, Chen M, Coia JE. Multiplex Droplet Digital Polymerase Chain Reaction Assay for Rapid Molecular Detection of Pathogens in Patients With Sepsis: Protocol for an Assay Development Study. JMIR Res Protoc 2021; 10:e33746. [PMID: 34898460 PMCID: PMC8713102 DOI: 10.2196/33746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood cultures are the cornerstone of diagnosis for detecting the presence of bacteria or fungi in the blood, with an average detection time of 48 hours and failure to detect a pathogen occurring in approximately 50% of patients with sepsis. Rapid diagnosis would facilitate earlier treatment and/or an earlier switch to narrow-spectrum antibiotics. OBJECTIVE The aim of this study is to develop and implement a multiplex droplet digital polymerase chain reaction (ddPCR) assay as a routine diagnostic tool in the detection and identification of pathogens from whole blood and/or blood culture after 3 hours of incubation. METHODS The study consists of three phases: (1) design of primer-probe pairs for accurate and reliable quantification of the most common sepsis-causing microorganisms using a multiplex reaction, (2) determination of the analytical sensitivity and specificity of the multiplex ddPCR assay, and (3) a clinical study in patients with sepsis using the assay. The QX200 Droplet Digital PCR System will be used for the detection of the following species-specific genes in blood from patients with sepsis: coa (staphylocoagulase) in Staphylococcus aureus, cpsA (capsular polysaccharide) in Streptococcus pneumoniae, uidA (beta-D-glucuronidase) in Escherichia coli, oprL (peptidoglycan-associated lipoprotein) in Pseudomonas aeruginosa, and the highly conserved regions of the 16S rRNA gene for Gram-positive and Gram-negative bacteria. All data will be analyzed using QuantaSoft Analysis Pro Software. RESULTS In phase 1, to determine the optimal annealing temperature for the designed primer-probe pairs, results from a gradient temperature experiment will be collected and the limit of detection (LOD) of the assay will be determined. In phase 2, results for the analytical sensitivity and specificity of the assay will be obtained after an optimization of the extraction and purification method in spiked blood. In phase 3, clinical sensitivity and specificity as compared to the standard blood culture technique will be determined using 301 clinical samples. CONCLUSIONS Successful design of primer-probe pairs in the first phase and subsequent optimization and determination of the LOD will allow progression to phase 3 to compare the novel method with existing blood culture methods. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/33746.
Collapse
Affiliation(s)
- Samir Badran
- Research Unit in Clinical Microbiology, Department of Clinical Diagnostics, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ming Chen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Hospital of Southern Jutland, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - John E Coia
- Research Unit in Clinical Microbiology, Department of Clinical Diagnostics, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Ishak A, AlRawashdeh MM, Esagian SM, Nikas IP. Diagnostic, Prognostic, and Therapeutic Value of Droplet Digital PCR (ddPCR) in COVID-19 Patients: A Systematic Review. J Clin Med 2021; 10:5712. [PMID: 34884414 PMCID: PMC8658157 DOI: 10.3390/jcm10235712] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Accurate detection of SARS-CoV-2, the pathogen causing the global pandemic of COVID-19, is essential for disease surveillance and control. Quantitative reverse transcription PCR (RT-qPCR) is considered the reference standard test for the diagnosis of SARS-CoV-2 by the World Health Organization and Centers for Disease Control and Prevention. However, its limitations are a prompt for a more accurate assay to detect SARS-CoV-2, quantify its levels, and assess the prognosis. This article aimed to systematically review the literature and assess the diagnostic performance of droplet digital PCR (ddPCR), also to evaluate its potential role in prognosis and management of COVID-19 patients. PubMed and Scopus databases were searched to identify relevant articles published until 13 July 2021. An additional PubMed search was performed on 21 October 2021. Data from the 39 eligible studies were extracted and an overall 3651 samples from 2825 patients and 145 controls were used for our qualitative analysis. Most studies reported ddPCR was more accurate than RT-qPCR in detecting and quantifying SARS-CoV-2 levels, especially in patients with low viral loads. ddPCR was also found highly effective in quantifying SARS-CoV-2 RNAemia levels in hospitalized patients, monitoring their disease course, and predicting their response to therapy. These findings suggest ddPCR could serve as a complement or alternative SARS-CoV-2 tool with emerging diagnostic, prognostic, and therapeutic value, especially in hospital settings. Additional research is still needed to standardize its laboratory protocols, also to accurately assess its role in monitoring COVID-19 therapy response and in identifying SARS-CoV-2 emerging variants.
Collapse
Affiliation(s)
- Angela Ishak
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Mousa M. AlRawashdeh
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| | - Stepan M. Esagian
- Jacobi Medical Center, Department of Medicine, Albert Einstein College of Medicine, The Bronx, New York, NY 10461, USA;
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (A.I.); (M.M.A.)
| |
Collapse
|
40
|
Keremane ML, McCollum TG, Roose ML, Lee RF, Ramadugu C. An Improved Reference Gene for Detection of " Candidatus Liberibacter asiaticus" Associated with Citrus Huanglongbing by qPCR and Digital Droplet PCR Assays. PLANTS 2021; 10:plants10102111. [PMID: 34685920 PMCID: PMC8540500 DOI: 10.3390/plants10102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Citrus huanglongbing (HLB) disease associated with the 'Candidatus Liberibacter asiaticus' (CLas) bacterium has caused significant financial damage to many citrus industries. Large-scale pathogen surveys are routinely conducted in California to detect CLas early in the disease cycle by lab-based qPCR assays. We have developed an improved reference gene for the sensitive detection of CLas from plants in diagnostic duplex qPCR and analytical digital droplet PCR (ddPCR) assays. The mitochondrial cytochrome oxidase gene (COX), widely used as a reference, is not ideal because its high copy number can inhibit amplification of small quantities of target genes. In ddPCRs, oversaturation of droplets complicates data normalization and quantification. The variable copy numbers of COX gene in metabolically active young tissue, greenhouse plants, and citrus relatives suggest the need for a non-variable, nuclear, low copy, universal reference gene for analysis of HLB hosts. The single-copy nuclear gene, malate dehydrogenase (MDH), developed here as a reference gene, is amenable to data normalization, suitable for duplex qPCR and ddPCR assays. The sequence of MDH fragment selected is conserved in most HLB hosts in the taxonomic group Aurantioideae. This study emphasizes the need to develop standard guidelines for reference genes in DNA-based PCR assays.
Collapse
Affiliation(s)
- Manjunath L. Keremane
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA; (M.L.K.); (R.F.L.)
| | | | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Richard F. Lee
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA; (M.L.K.); (R.F.L.)
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
- Correspondence:
| |
Collapse
|
41
|
Keshavarz M, Savriama Y, Refki P, Reeves RG, Tautz D. Natural copy number variation of tandemly repeated regulatory SNORD RNAs leads to individual phenotypic differences in mice. Mol Ecol 2021; 30:4708-4722. [PMID: 34252239 DOI: 10.1111/mec.16076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Genic copy number differences can have phenotypic consequences, but so far this has not been studied in detail in natural populations. Here, we analysed the natural variation of two families of tandemly repeated regulatory small nucleolar RNAs (SNORD115 and SNORD116) in the house mouse (Mus musculus). They are encoded within the Prader-Willi Syndrome gene region, known to be involved in behavioural, metabolic, and osteogenic functions in mammals. We determined that the copy numbers of these SNORD RNAs show substantial natural variation, both in wild-derived mice as well as in an inbred mouse strain (C57BL/6J). We show that copy number differences are subject to change across generations, making them highly variable and resulting in individual differences. In transcriptome data from brain samples, we found SNORD copy-number correlated regulation of possible target genes, including Htr2c, a predicted target gene of SNORD115, as well as Ankrd11, a predicted target gene of SNORD116. Ankrd11 is a chromatin regulator, which has previously been implicated in regulating the development of the skull. Based on morphometric shape analysis of the skulls of individual mice of the inbred strain, we show that shape measures correlate with SNORD116 copy numbers in the respective individuals. Our results suggest that the variable dosage of regulatory RNAs can lead to phenotypic variation between individuals that would typically have been ascribed to environmentally induced variation, while it is actually encoded in individual differences of copy numbers of regulatory molecules.
Collapse
Affiliation(s)
| | - Yoland Savriama
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter Refki
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - R Guy Reeves
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
42
|
Wen T, Zhang X, Lippuner C, Schiff M, Stuber F. Development and Evaluation of a Droplet Digital PCR Assay for 8p23 β-Defensin Cluster Copy Number Determination. Mol Diagn Ther 2021; 25:607-615. [PMID: 34327613 PMCID: PMC8320422 DOI: 10.1007/s40291-021-00546-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/01/2022]
Abstract
Introduction It has been proposed that the copy number (CN) variation (CNV) in β-defensin genes (DEFB) on human chromosome 8p23 determines phenotypic differences in inflammatory diseases. However, no method for accurate and easy DEFB CN quantification is yet available. Objective Droplet digital polymerase chain reaction (ddPCR) is a novel method for CNV quantification and has been used for genes such as CCL4L, CCL3L1, AMY1, and HER2. However, to date, no ddPCR assay has been available for DEFB CN determination. In the present study, we aimed to develop and evaluate such a ddPCR assay. Methods The assay was designed using DEFB4 and RPP30 as the target and the reference gene, respectively. To evaluate the assay, 283 DNA samples with known CNs previously determined using the multiple ligation-dependent probe amplification (MLPA) method, the current gold standard, were used as standards. To discover the optimal DNA template amount, we tested 80 to 2.5 ng DNA by a serial of one to two dilutions of eight samples. To evaluate the reproducibility of the assay, 31 samples were repeated to calculate the intra- and inter-assay variations. To further validate the reliability of the assay, the CNs of all 283 samples were determined using ddPCR. To compare results with those using quantitative PCR (qPCR), DEFB CNs for 48 samples were determined using qPCR with the same primers and probes. Results In a one-dimensional plot, the positive and negative droplets were clearly separated in both DEFB4 and RPP30 detection channels. In a two-dimensional plot, four populations of droplets were observed. The 20 ng template DNA proved optimal, with either high (80 ng) or low (10, 5, 2.5 ng) template input leading to ambiguous or inaccurate results. For the 31 standard samples, DEFB CNs were accurately determined with small intra- and inter-assay variations (coefficient of variation < 0.04 for both). In the validation cohort, ddPCR provided the correct CN for all 283 samples with high confidence. qPCR measurements for the 48 samples produced noisy data with high uncertainty and low accuracy. Conclusions ddPCR is an accurate, reproducible, easy-to-use, cheap, high-throughput method for DEFB CN determination. ddPCR could be applied to DEFB CN quantification in large-scale case–control studies. Supplementary Information The online version contains supplementary material available at 10.1007/s40291-021-00546-2.
Collapse
Affiliation(s)
- Tingting Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianghong Zhang
- Department of Cardiac Intensive Care Unit, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Heath, Hangzhou, Zhejiang, China.
| | - Christoph Lippuner
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Marcel Schiff
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Frank Stuber
- Department of Anesthesiology and Pain Medicine, Bern University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
43
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
44
|
Faller AC, Shanmughanandhan D, Ragupathy S, Zhang Y, Lu Z, Chang P, Swanson G, Newmaster SG. Validation of a Triplex Quantitative Polymerase Chain Reaction Assay for Detection and Quantification of Traditional Protein Sources, Pisum sativum L. and Glycine max (L.) Merr., in Protein Powder Mixtures. FRONTIERS IN PLANT SCIENCE 2021; 12:661770. [PMID: 34108980 PMCID: PMC8183462 DOI: 10.3389/fpls.2021.661770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Several botanicals have been traditionally used as protein sources, including the leguminous Pisum sativum L. and Glycine max (L.) Merr. While a rich history exists of cultivating these plants for their whole, protein-rich grain, modern use as powdered supplements present a new challenge in material authentication. The absence of clear morphological identifiers of an intact plant and the existence of long, complex supply chains behoove industry to create quick, reliable analytical tools to identify the botanical source of a protein product (many of which contain multiple sources). The utility of molecular tools for plant-based protein powder authentication is gaining traction, but few validated tools exist. Multiplex quantitative polymerase chain reaction (qPCR) can provide an economical means by which sources can be identified and relative proportions quantified. We followed established guidelines for the design, optimization, and validation of qPCR assay, and developed a triplex qPCR assay that can amplify and quantify pea and soy DNA targets, normalized by a calibrator. The assay was evaluated for analytical specificity, analytical sensitivity, efficiency, precision, dynamic range, repeatability, and reproducibility. We tested the quantitative ability of the assay using pea and soy DNA mixtures, finding exceptional quantitative linearity for both targets - 0.9983 (p < 0.0001) for soy and 0.9915 (p < 0.0001) for pea. Ratios based on mass of protein powder were also tested, resulting in non-linear patterns in data that suggested the requirement of further sample preparation optimization or algorithmic correction. Variation in fragment size within different lots of commercial protein powder samples was also analyzed, revealing low SD among lots. Ultimately, this study demonstrated the utility of qPCR in the context of protein powder mixtures and highlighted key considerations to take into account for commercial implementation.
Collapse
Affiliation(s)
- Adam C. Faller
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Dhivya Shanmughanandhan
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Yanjun Zhang
- Herbalife International, Torrance, CA, United States
| | - Zhengfei Lu
- Herbalife International, Torrance, CA, United States
| | - Peter Chang
- Herbalife International, Torrance, CA, United States
| | - Gary Swanson
- Herbalife International, Torrance, CA, United States
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021; 9:862. [PMID: 33923763 PMCID: PMC8073235 DOI: 10.3390/microorganisms9040862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.
Collapse
Affiliation(s)
- Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy
| | - Jaime Cubero
- National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel;
| | - Claude Bragard
- UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium;
| | - Edyta Đermić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maria C. Holeva
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece;
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France;
| | - Francoise Petter
- European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France;
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | | | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal; or
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Univ Montpellier, Cirad, INRAe, Institut Agro, IRD, 34398 Montpellier, France;
| | - Joana Costa
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 300-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
46
|
Loncarevic IF, Toepfer S, Hubold S, Klingner S, Kanitz L, Ellinger T, Steinmetzer K, Ernst T, Hochhaus A, Ermantraut E. Ultra-precise quantification of mRNA targets across a broad dynamic range with nanoreactor beads. PLoS One 2021; 16:e0242529. [PMID: 33735175 PMCID: PMC7971518 DOI: 10.1371/journal.pone.0242529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Precise quantification of molecular targets in a biological sample across a wide dynamic range is a key requirement in many diagnostic procedures, such as monitoring response to therapy or detection of measurable residual disease. State of the art digital PCR assays provide for a dynamic range of four orders of magnitude. However digital assays are complex and require sophisticated microfluidic tools. Here we present an assay format that enables ultra-precise quantification of RNA targets in a single measurement across a dynamic range of more than six orders of magnitude. The approach is based on hydrogel beads that provide for microfluidic free compartmentalization of the sample as they are used as nanoreactors for reverse transcription, PCR amplification and combined real time and digital detection of gene transcripts. We have applied these nanoreactor beads for establishing an assay for the detection and quantification of BCR-ABL1 fusion transcripts. The assay has been characterized for its precision and linear dynamic range. A comparison of the new method against conventional real time RT-PCR analysis (reference method) with clinical samples from patients with chronic myeloid leukemia (CML) revealed excellent concordance with Pearsons correlation coefficient of 0.983 and slope of 1.08.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Ernst
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Jena, Germany
| | - Andreas Hochhaus
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Abteilung Hämatologie und Internistische Onkologie, Jena, Germany
| | | |
Collapse
|
47
|
Spilsberg B, Sekse C, Urdahl AM, Nesse LL, Johannessen GS. Persistence of a Stx-Encoding Bacteriophage in Minced Meat Investigated by Application of an Improved DNA Extraction Method and Digital Droplet PCR. Front Microbiol 2021; 11:581575. [PMID: 33552009 PMCID: PMC7855172 DOI: 10.3389/fmicb.2020.581575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens with Shiga toxins as the main virulence factor. Shiga toxins are encoded on Shiga toxin-encoding bacteriophages (Stx phages). Stx phages may exist as free bacteriophages in the environment or in foods or as prophages integrated into the host genome. From a food safety perspective, it is important to have knowledge on the survival and persistence of Stx phages in food products since these may integrate into the bacterial hosts through transduction if conditions are right. Here, we present the results from a study investigating the survival of a Stx phage in minced meat from beef stored at a suboptimal temperature (8°C) for food storage along with modifications and optimizations of the methods applied. Minced meat from beef was inoculated with known levels of a labeled Stx phage prior to storage. Phage filtrates were used for plaque assays and DNA extraction, followed by real-time PCR and digital droplet PCR (ddPCR). The results from the pilot study suggested that the initial DNA extraction protocol was not optimal, and several modifications were tested before a final protocol was defined. The final DNA extraction protocol comprised ultra-centrifugation of the entire phage filtrate for concentrating phages and two times phenol–chloroform extraction. The protocol was used for two spiking experiments. The DNA extraction protocol resulted in flexibility in the amount of DNA available for use in PCR analyses, ultimately increasing the sensitivity of the method used for quantification of phages in a sample. All three quantification methods employed (i.e., plaque assays, real-time PCR, and ddPCR) showed similar trends in the development of the phages during storage, where ddPCR has the benefit of giving absolute quantification of DNA copies in a simple experimental setup. The results indicate that the Stx phages persist and remain infective for at least 20 days under the storage conditions used in the present study. Stx phages in foods might represent a potential risk for humans. Although it can be speculated that transduction may take place at 8°C with subsequent forming of STEC, it can be expected to be a rare event. However, such an event may possibly take place under more optimal conditions, such as an increase in storage temperature of foods or in the gastrointestinal tract of humans.
Collapse
Affiliation(s)
- B Spilsberg
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - C Sekse
- Section for Molecular Biology, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne M Urdahl
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Live L Nesse
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| | - Gro S Johannessen
- Section for Food Safety and Animal Health Research, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
48
|
Duong K, Ou J, Li Z, Lv Z, Dong H, Hu T, Zhang Y, Hanna A, Gordon S, Crynen G, Head SR, Ordoukhanian P, Wang Y. Increased sensitivity using real-time dPCR for detection of SARS-CoV-2. Biotechniques 2021; 70:7-20. [PMID: 33222514 PMCID: PMC7888512 DOI: 10.2144/btn-2020-0133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
A real-time dPCR system was developed to improve the sensitivity, specificity and quantification accuracy of end point dPCR. We compared three technologies - real-time qPCR, end point dPCR and real-time dPCR - in the context of SARS-CoV-2. Some improvement in limit of detection was obtained with end point dPCR compared with real-time qPCR, and the limit of detection was further improved with the newly developed real-time dPCR technology through removal of false-positive signals. Real-time dPCR showed increased linear dynamic range compared with end point dPCR based on quantitation from amplification curves. Real-time dPCR can improve the performance of TaqMan assays beyond real-time qPCR and end point dPCR with better sensitivity and specificity, absolute quantification and a wider linear range of detection.
Collapse
Affiliation(s)
- Kyra Duong
- Gnomegen, 6440 Lusk Blvd, D207, San Diego, CA 92121, USA
| | - Jiajia Ou
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Zhaoliang Li
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Zhaoqing Lv
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Hao Dong
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Tao Hu
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Yunyun Zhang
- QuestGenomics, 12 E. Mozhou Rd, U-Park, Rm P308, Jiangning, Nanjing, Jiangsu, PR China
| | - Ava Hanna
- Gnomegen, 6440 Lusk Blvd, D207, San Diego, CA 92121, USA
| | - Skyler Gordon
- Genomics Core Facility, Scripps Research, 10550 N Torrey Pines Road, La Jolla, CA, USA
| | - Gogce Crynen
- Bioinformatics Core Facility, Scripps Research, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Steven R Head
- Genomics Core Facility, Scripps Research, 10550 N Torrey Pines Road, La Jolla, CA, USA
| | - Phillip Ordoukhanian
- Genomics Core Facility, Scripps Research, 10550 N Torrey Pines Road, La Jolla, CA, USA
| | - Yan Wang
- Gnomegen, 6440 Lusk Blvd, D207, San Diego, CA 92121, USA
| |
Collapse
|
49
|
Miles TD, Neill TM, Colle M, Warneke B, Robinson G, Stergiopoulos I, Mahaffee WF. Allele-Specific Detection Methods for QoI Fungicide-Resistant Erysiphe necator in Vineyards. PLANT DISEASE 2021; 105:175-182. [PMID: 33186075 DOI: 10.1094/pdis-11-19-2395-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Grapevine powdery mildew (GPM), caused by the fungus Erysiphe necator, is a constant threat to worldwide production of grape berries, requiring repeated use of fungicides for management. The frequent fungicide applications have resulted in resistance to commonly used quinone outside inhibitor (QoI) fungicides and the resistance is associated with single-nucleotide polymorphisms (SNPs) in the mitochondrial cytochrome b gene (cytb). In this study, we attempted to detect the most common SNP causing a glycine to alanine substitution at amino acid position 143 (i.e., G143A) in the cytb protein, to track this resistance using allele-specific TaqMan probe and digital-droplet PCR-based assays. Specificity and sensitivity of these assays showed that these two assays could discriminate SNPs and were effective on mixed samples. These diagnostic assays were implemented to survey E. necator samples collected from leaf and air samples from California and Oregon grape-growing regions. Sequencing of PCR amplicons and phenotyping of isolates also revealed that these assays accurately detected each allele (100% agreement), and there was an absolute agreement between the presence or absence of the G143A mutation and resistance to QoIs in the E. necator sampled. These results indicate that the developed diagnostic tools will help growers make informed decisions about fungicide selections and applications which, in turn, will facilitate GPM disease management and improve grape production systems.
Collapse
Affiliation(s)
- Timothy D Miles
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| | - Tara M Neill
- United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - Marivi Colle
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| | - Brent Warneke
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330
| | - Guy Robinson
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
| | | | - Walter F Mahaffee
- United States Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| |
Collapse
|
50
|
Rungkamoltip P, Temisak S, Piboonprai K, Japrung D, Thangsunan P, Chanpanitkitchot S, Chaowawanit W, Chandeying N, Tangjitgamol S, Iempridee T. Rapid and ultrasensitive detection of circulating human papillomavirus E7 cell-free DNA as a cervical cancer biomarker. Exp Biol Med (Maywood) 2020; 246:654-666. [PMID: 33307803 DOI: 10.1177/1535370220978899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has attracted attention as a non-invasive biomarker for diagnosing and monitoring various cancers. Given that human papillomavirus (HPV) DNA integration and overexpression of E6/E7 oncogenes are pivotal events for carcinogenesis, we sought to determine if HPV E7 cfDNA could serve as a specific biomarker for cervical cancer detection. We applied droplet digital PCR (ddPCR) to quantify HPV16/18 E7 cfDNA from the serum of patients with cervical cancer, cervical intraepithelial neoplasia, and controls. HPV16/18 E7 cfDNA was highly specific for cervical cancer, displaying 30.77% sensitivity, 100% specificity, and an area under the curve of 0.65. Furthermore, we developed a sensitive isothermal detection of HPV16/18 E7 and the PIK3CA WT reference gene based on recombinase polymerase amplification combined with a lateral flow strip (RPA-LF). The assay took less than 30 min and the detection limit was 5-10 copies. RPA-LF exhibited 100% sensitivity and 88.24% specificity towards HPV16/18 E7 cfDNA in clinical samples. The agreement between RPA-LF and ddPCR was 83.33% (κ = 0.67) for HPV16 E7 and 100% (κ = 1.0) for HPV18 E7, indicating a good correlation between both tests. Therefore, we conclude that HPV E7 cfDNA represents a potential tumor marker with excellent specificity and moderate sensitivity for minimally invasive cervical cancer monitoring. Moreover, the RPA-LF assay provides an affordable, rapid, and ultrasensitive tool for detecting HPV cfDNA in resource-limited settings.
Collapse
Affiliation(s)
- Phetploy Rungkamoltip
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sasithon Temisak
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Kitiya Piboonprai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand.,Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pattanapong Thangsunan
- Chemical Metrology and Biometry Department, National Institute of Metrology (NIMT), Pathum Thani 12120, Thailand
| | - Saranya Chanpanitkitchot
- Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok 10400, Thailand
| | - Woraphot Chaowawanit
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Nutthaporn Chandeying
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand
| | - Siriwan Tangjitgamol
- Department of Obstetrics and Gynecology, Faculty of Medicine Vajira Hospital, Navamindhadhiraj University, Bangkok 10300, Thailand.,Obstetrics and Gynecology Section, MedPark Hospital, Bangkok 10110, Thailand
| | - Tawin Iempridee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| |
Collapse
|