1
|
Lu Y, Ding Z, Zhang D, Zhu F, Gao B. Integrated Metabolomic and Transcriptomic Analysis Reveals the Pharmacological Effects and Differential Mechanisms of Isoflavone Biosynthesis in Four Species of Glycyrrhiza. Int J Mol Sci 2025; 26:2539. [PMID: 40141180 PMCID: PMC11942288 DOI: 10.3390/ijms26062539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Licorice (Glycyrrhiza L.) is a globally popular medicinal and edible plant, with nearly 30 species distributed across all continents. The usable part is primarily the root. To understand the metabolic differences among different Glycyrrhiza species, we selected four species and performed comprehensive analyses of their roots. Metabolomic profiling was conducted using UPLC-MS/MS and GC-MS, while transcriptomic analysis was carried out using RNA-sequencing. A total of 2716 metabolites were identified, including flavonoids (527 types) and terpenoids (251 types), among various other components. Subsequently, network pharmacology was employed to explore the medicinal value and potential pharmacological ingredients of these metabolites. Joint analysis of transcriptomic and metabolomic data revealed significant differences in differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) in pairwise comparisons among the four species. These differences were primarily enriched in the isoflavone pathway. Further investigation into the regulatory mechanisms of isoflavone biosynthesis in different Glycyrrhiza species identified key genes and metabolites involved in isoflavone biosynthesis. Finally, we made reasonable predictions of the potential suitable habitats for the four Glycyrrhiza species, aiming to provide new insights for the development and utilization of licorice resources. The results of this study can serve as a basis for the development and utilization of licorice and for in-depth research on the regulation of isoflavone biosynthesis in licorice.
Collapse
Affiliation(s)
- Yuanfeng Lu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.); (Z.D.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210008, China
| | - Zhen Ding
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.); (Z.D.); (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.); (Z.D.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fuyuan Zhu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.); (Z.D.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210008, China
| | - Bei Gao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.); (Z.D.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
2
|
Xu Y, Ding Y, Wu H, Li D, Li Y, Hu Y, Meng H. Glycyrrhetinic acid reduces lung inflammation caused by pneumococcal infection by reducing the toxicity of pneumolysin. Heliyon 2024; 10:e38611. [PMID: 39397991 PMCID: PMC11471213 DOI: 10.1016/j.heliyon.2024.e38611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Objective In this study, to provide new methods for the treatment of Streptococcus pneumoniae infection, we aimed to describe the anti-inflammatory and antibacterial value of glycyrrhetinic acid on the basis of its inhibitory effect on bacterial growth (without killing the bacteria) and its reduction of the toxicity of S. pneumoniae. Methods A mouse model was established via intranasal administration of Streptococcus pneumoniae D39, and glycyrrhetinic acid was subcutaneously injected for treatment. The wet‒dry ratio, bacterial flora content and inflammatory factor levels in the mouse lungs were determined. Cell experiments were used to evaluate glycyrrhetinic acid-mediated inhibition of PLY hemolysis and A549 cell death, and WB was used to measure glycyrrhetinic acid-mediated inhibition of PLY oligomerization. Results Glycyrrhetinic acid reduced the levels of inflammatory factors, the dry‒wet ratio, the abundance of S. pneumoniae in the lungs of infected mice, pneumolysin-mediated A549 cell death, erythrocyte hemolysis and PLY oligoplasia. Conclusion Glycyrrhetinic acid can reduce the virulence of S. pneumoniae by preventing the oligomerization of PLY.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Ying Ding
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Hongji Wu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Donglin Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yudi Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yibo Hu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Haoji Meng
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| |
Collapse
|
3
|
Yang Z, Li X, Liu W, Wang G, Ma J, Jiang L, Yu D, Ding Y, Li Y. One-Step Organic Synthesis of 18β-Glycyrrhetinic Acid-Anthraquinone Ester Products: Exploration of Antibacterial Activity and Structure-Activity Relationship, Toxicity Evaluation in Zebrafish. Chem Biol Drug Des 2024; 104:e14631. [PMID: 39317695 DOI: 10.1111/cbdd.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
To combine the activity characteristics of 18β-glycyrrhetinic acid (18β-GA) and anthraquinone compounds (rhein and emodin), reduce toxicity, and explore the structure-activity relationship (SAR) of anthraquinones, 18β-GA-anthraquinone ester compounds were synthesized by one-step organic synthesis. The products were separated and purified by HPLC and characterized by NMR and EI-MS. It was finally determined as di-18β-GA-3-rhein ester (1, New), GA dimer (2, known), 18β-GA-3-emodin ester (3, known), and di-18β-GA-1-emodin ester (4, new). The MIC of three reactants and four products against Escherichia coli and Staphylococcus aureus were detected in vitro. Its developmental toxicity and cardiotoxicity were assessed using zebrafish embryos. The experimental results showed that rhein had the best antibacterial activity against Staphylococcus aureus with MIC50 of 2.4 mM, and it was speculated that -COOH, -OH, and intramolecular hydrogen bonds in anthraquinone compounds would enhance the antibacterial effect, while the presence of-CH3 might weaken the antibacterial activity. Product 1 increased the hatching rate and survival rate of zebrafish embryos and reduced the malformation rate and cardiomyocyte apoptosis. This experiment lays the foundation for further studying the SAR of anthraquinones and providing new drug candidates.
Collapse
Affiliation(s)
- Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyan Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Health and Welfare, Changchun Humanities and Sciences College, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Denghui Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Ohara K, Tomiyama K, Okuda T, Tsutsumi K, Ishihara C, Hashimoto D, Fujii Y, Chikazawa T, Kurita K, Mukai Y. Dipotassium glycyrrhizate prevents oral dysbiosis caused by Porphyromonas gingivalis in an in vitro saliva-derived polymicrobial biofilm model. J Oral Biosci 2024; 66:575-581. [PMID: 38972505 DOI: 10.1016/j.job.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES Oral microbiome dysbiosis prevention is important to avoid the onset and progression of periodontal disease. Dipotassium glycyrrhizate (GK2) is a licorice root extract with anti-inflammatory effects, and its associated mechanisms have been well-reported. However, their effects on the oral microbiome have not been investigated. This study aimed to elucidate the effects of GK2 on the oral microbiome using an in vitro polymicrobial biofilm model. METHODS An in vitro saliva-derived polymicrobial biofilm model was used to evaluate the effects of GK2 on the oral microbiome. One-week anaerobic culture was performed, in which GK2 was added to the medium. Subsequently, microbiome analysis was performed based on the V1-V2 region of the 16 S rRNA gene, and pathogenicity indices were assessed. We investigated the effects of GK2 on various bacterial monocultures by evaluating its inhibitory effects on cell growth, based on culture turbidity. RESULTS GK2 treatment altered the microbiome structure and decreased the relative abundance of periodontal pathogenic bacteria, including Porphyromonas. Moreover, GK2 treatment reduced the DPP4 activity -a pathogenicity index of periodontal disease. Specifically, GK2 exhibited selective antibacterial activity against periodontal pathogenic bacteria. CONCLUSIONS These findings suggest that GK2 has a selective antibacterial effect against periodontal pathogenic bacteria; thus, preventing oral microbiome dysbiosis. Therefore, GK2 is expected to contribute to periodontal disease prevention by modulating the oral microbiome toward a state with low inflammatory potential, thereby utilizing its anti-inflammatory properties on the host.
Collapse
Affiliation(s)
- Kanta Ohara
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan.
| | - Kiyoshi Tomiyama
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Takuma Okuda
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kota Tsutsumi
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Chikako Ishihara
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Daiki Hashimoto
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yuto Fujii
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Takashi Chikazawa
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kei Kurita
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yoshiharu Mukai
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| |
Collapse
|
5
|
Li M, Chen B, Xu M, Li F, Geng Y, Chen D, Ouyang P, Huang X, Deng Y. Identification of TonB-dependent siderophore receptor inhibitors against Flavobacterium columnare using a structure-based high-throughput virtual screening method. Front Microbiol 2024; 15:1392178. [PMID: 38835482 PMCID: PMC11148330 DOI: 10.3389/fmicb.2024.1392178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
TonB-dependent siderophore receptors play a critical transport role for Flavobacterium columnare virulence formation and growth, and have become valuable targets for the development of novel antimicrobial agents. Traditional Chinese medicine has demonstrated notable efficacy in the treatment of fish diseases and includes potential antibacterial agents. Herein, we performed molecular docking-based virtual screening to discover novel TonB-dependent siderophore receptor inhibitors from traditional Chinese medicine and provide information for developing novel antibacterial agents. Firstly, we efficiently obtained 11 potential inhibitors with desirable drug-like characteristics from thousands of compounds in the TCM library based on virtual screening and property prediction. The antibacterial activity of Enoxolone, along with its interaction characteristics, were determined via an MIC assay and molecular dynamic simulation. Transcriptional profiling, along with validation experiments, subsequently revealed that an insufficient uptake of iron ions by bacteria upon binding to the TonB-dependent siderophore receptors is the antibacterial mechanism of Enoxolone. Finally, Enoxolone's acceptable toxicity was illustrated through immersion experiments. In summary, we have used virtual screening techniques for the first time in the development of antimicrobial agents in aquaculture. Through this process, we have identified Enoxolone as a promising compound targeting the TonB-dependent siderophore receptor of F. columnare. In addition, our findings will provide new ideas for the advancement of innovative antimicrobial medications in aquaculture.
Collapse
Affiliation(s)
- Minghao Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Isca VMS, Mohammed TS, Abdrabo MSM, Amin MA, Abd El Maksoud AI, Hassan A. Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a. Pharmaceuticals (Basel) 2024; 17:589. [PMID: 38794159 PMCID: PMC11123903 DOI: 10.3390/ph17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Patricia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Vera M. S. Isca
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed S. M. Abdrabo
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed A. Amin
- Department of Basic Medical Science, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt;
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
7
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
8
|
Jeong JY, Jung IG, Yum SH, Hwang YJ. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1491. [PMID: 37895962 PMCID: PMC10610001 DOI: 10.3390/ph16101491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of healthcare-associated infections. Medicinal plants have long been used in the traditional treatment of diseases or syndromes worldwide. Combined use of plant extracts could improve the effectiveness of pharmacological action by obtaining synergism, acting on multiple targets simultaneously, reducing the doses of individual components, and minimizing side effects. We aimed to investigate the synergistic inhibitory effects of selected medicinal plants (Caesalpinia sappan L. (CS), Glycyrrhiza uralensis Fisch. (GU), Sanguisorba officinalis L. (SO), and Uncaria gambir Roxb. (UG)) on the bacterial growth of MRSA and its clinical isolates. SO and UG extracts generated the best synergistic interaction as adjudged by checkerboard synergy assays. MICs of the individual extracts decreased 4-fold from 250 to 62.5 μg/mL, respectively. The SO + UG combination was further evaluated for its effects on bacterial growth inhibition, minimum bactericidal/inhibitory concentration (MBC/MIC) ratio, and time-kill kinetics. The results indicate that the SO + UG combination synergistically inhibited the bacterial growth of MRSA strains with bactericidal effects. SO + UG combination also exhibited more potent effects against clinical isolates. In multistep resistance selection experiments, both standard and isolates of MRSA showed no resistance to the SO + UG combination even after repeated exposure over fourteen passages. Our data suggest that using plant extract combinations could be a potential strategy to treat MRSA infections.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - In-Geun Jung
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hoon Yum
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - You-Jin Hwang
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
9
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Angellotti G, Di Prima G, D'Agostino F, Peri E, Tricoli MR, Belfiore E, Allegra M, Cancemi P, De Caro V. Multicomponent Antibiofilm Lipid Nanoparticles as Novel Platform to Ameliorate Resveratrol Properties: Preliminary Outcomes on Fibroblast Proliferation and Migration. Int J Mol Sci 2023; 24:ijms24098382. [PMID: 37176088 PMCID: PMC10179555 DOI: 10.3390/ijms24098382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The well-being of skin and mucous membranes is fundamental for the homeostasis of the body and thus it is imperative to treat any lesion quickly and correctly. In this view, polyphenols might assist and enhance a successful wound healing process by reducing the inflammatory cascade and the production of free radicals. However, they suffer from disadvantageous physico-chemical properties, leading to restricted clinical use. In this work, a complex mixture of PEGylated lipid, Glyceryl monoester, 18-β-Glycyrrhetinic Acid and Menthol was designed to entrap Resveratrol (RSV) as the active ingredient and further produce lipid nanoparticles (LNPs) by homogenization followed by high-frequency sonication. The nanosystem was properly characterized in terms of particle size (DLS, SEM), zeta potential, drug loading, antioxidant power (DPPH), release behaviour, cytocompatibility, wound healing and antibiofilm properties. The optimized lipid mixture was homogeneous, melted at 57-61 °C and encapsulated amorphous RSV (4.56 ± 0.04% w/w). The RSV-loaded LNPs were almost monodispersed (PDI: 0.267 ± 0.010), with nanometric size (162.86 ± 3.12 nm), scavenger properties and suitable DR% and LE% values (96.82 ± 1.34% and 95.17 ± 0.25%, respectively). The release studies were performed to simulate the wound conditions: 1-octanol to mimic the lipophilic domains of biological tissues (where the First Order kinetic was observed) and citrate buffer pH 5.5 according to the inflammatory wound exudate (where the Korsmeyer-Peppas kinetic was followed). The biological and microbiological evaluations highlighted fibroblast proliferation and migration effects as well as antibiofilm properties at extremely low doses (LNPs: 22 μg/mL, corresponding to RSV 5 µM). Thus, the proposed multicomponent LNPs could represent a valuable RSV delivery platform for wound healing purposes.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Fabio D'Agostino
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment, National Research Council (IAS-CNR), Campobello di Mazara, 91021 Trapani, Italy
| | - Emanuela Peri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Maria Rita Tricoli
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D'Alessandro, Section of Microbiology, University of Palermo, 90127 Palermo, Italy
| | - Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
11
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
12
|
Chen K, Qin T, Pan L, Bing X, Xi B, Xie J. Effects of glycyrrhetinic acid β on growth and virulence of Aeromonas hydrophila. Front Microbiol 2023; 14:1043838. [PMID: 36846766 PMCID: PMC9950564 DOI: 10.3389/fmicb.2023.1043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Aeromonas hydrophila is a significant pathogen to freshwater farmed animals, and antibiotics are usually used to control the bacterial septicemia caused by A. hydrophila. Due to the severe situation of development and spread of antibiotic resistance, there are stricter restrictions on antibiotics used in aquaculture. To evaluate the feasibility of glycyrrhetinic acid β (GA) as an alternative therapy against bacterial infection, in this study, an A. hydrophila isolated from diseased fish is used to test the antibacterial, anti-virulence activity and therapeutic effect of GA in vitro and in vivo, respectively. Results showed that GA did not affect the growth of A. hydrophila in vitro, while it could down-regulate (p < 0.05) the mRNA expression of the hemolysis-related genes hly and aerA, and significantly inhibited (p < 0.05) hemolytic activity of A. hydrophila. In addition, in vivo test showed that oral administration of GA was ineffective in controlling acute infections caused by A. hydrophila. In conclusion, these findings suggested that GA was a potential anti-virulence candidate against A. hydrophila, but the application of GA for the prevention and treatment of A. hydrophila-related diseases was still a long way.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Qin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Liangkun Pan
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xuwen Bing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | | | | |
Collapse
|
13
|
Guo P, Jin L, Zhou H, Bao Y, Yang J, Chen J, He Y, Yu D, Wan H. Glycyrrhetinic acid protects against Multidrug-resistant Acinetobacter baumannii-induced lung epithelial cells injury by regulating inflammation and oxidative stress. BMC Pharmacol Toxicol 2023; 24:5. [PMID: 36717837 PMCID: PMC9887834 DOI: 10.1186/s40360-023-00648-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Glycyrrhetinic acid (GA) is a bio-effective component of Licorice. The GA is a monomer and the ingredient is an Oleanane-type pentacyclic triterpenes that has been used as a remedy for years. Due to the abuse of antibiotics, people pay attention to the emergence of Multidrug-resistant Acinetobacter baumannii (MDR-AB). As a conditional pathogen, MDR-AB causes severe infection, endangering human lives. Our previous studies found GA played an important role in Yinhua Pinggan, a Chinese medicine. However, whether GA could protect lung epithelium from MDR-AB-induced cell injury was elusive. Herein, we investigated the effects of GA on MDR-AB-infected A549 cells. The results showed GA had slightly antibacterial activity to MDR-AB in the GA (high concentration) but no impact on drug resistance genes. Notwithstanding, GA could reverse MDR-AB-induced cell apoptosis, hampered adhesion and invasion of MDR-AB to cells, and inhibit pro-inflammatory cytokines expression of IL-1β, IL-6, and TNF. Besides, MDR-AB-induced reactive oxygen species, pro-oxidative protein malonaldehyde, and myeloperoxidase of cells were decreased by GA, while antioxidative proteins were recovered, showing antioxidative capacity of GA might play a critical role. The expressions of toll-like receptor (TLRs) - 1, 2, 4, 5, 6, and 9 were increased by MDR-AB infection, while GA reversed the tendency. Interestingly, GA inhibited MDR-AB induced myeloiddifferentiationfactor88 expression (MYD88), one downstream con-factors of TLRs, but no affection on Interferon regulatory Factor 3 (IRF3), the other one, indicating GA inhibited MDR-AB induced cell injury by impact TLR/MYD88 pathway to attenuate inflammation. Altogether, our results demonstrated that GA protects against MDR-AB-induced cell injury through its antioxidative and anti-inflammatory properties, which deserve further study in the future.
Collapse
Affiliation(s)
- Piaoyi Guo
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Liang Jin
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Huifen Zhou
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Yida Bao
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Jiehong Yang
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Jing Chen
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Yu He
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| | - Daojun Yu
- grid.13402.340000 0004 1759 700XAffiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310003 PR China
| | - Haitong Wan
- grid.268505.c0000 0000 8744 8924Zhejiang Chinese Medical University, Hangzhou Zhejiang, 310053 PR China
| |
Collapse
|
14
|
Cicogna F, Passaglia E, Benedettini M, Oberhauser W, Ishak R, Signori F, Coiai S. Rosmarinic and Glycyrrhetinic Acid-Modified Layered Double Hydroxides as Functional Additives for Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010347. [PMID: 36615541 PMCID: PMC9822188 DOI: 10.3390/molecules28010347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Immobilizing natural antioxidant and biologically active molecules in layered double hydroxides (LDHs) is an excellent method to retain and release these substances in a controlled manner, as well as protect them from thermal and photochemical degradation. Herein, we describe the preparation of host-guest systems based on LDHs and rosmarinic and glycyrrhetinic acids, two molecules obtained from the extraction of herbs and licorice root, respectively, with antioxidant, antimicrobial, and anti-inflammatory properties. Intercalation between the lamellae of the mono-deprotonated anions of rosmarinic and glycyrrhetinic acid (RA and GA), alone or in the presence of an alkyl surfactant, allows for readily dispersible systems in biobased polymer matrices such as poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and a 60/40 wt./wt. PLA/PBS blend. The composites based on the PLA/PBS blend showed better interphase compatibility than the neat blend, correlated with increased adhesion at the interface and a decreased dispersed phase size. In addition, we proved that the active species migrate slowly from thin films of the composite materials in a hydroalcoholic solvent, confirming the optimization of the release process. Finally, both host-guest systems and polymeric composites showed antioxidant capacity and, in the case of the PLA composite containing LDH-RA, excellent inhibitory capacity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Francesca Cicogna
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| | - Elisa Passaglia
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Matilde Benedettini
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Werner Oberhauser
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Randa Ishak
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Francesca Signori
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Serena Coiai
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| |
Collapse
|
15
|
Cheng A, Lei S, Zhu J, Lu J, Paine MF, Xie W, Ma X. Chemical basis of pregnane X receptor activators in the herbal supplement Gancao (licorice). LIVER RESEARCH 2022; 6:251-257. [PMID: 39957905 PMCID: PMC11791855 DOI: 10.1016/j.livres.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Background and aims The herbal supplement Gancao, also known as licorice, belongs to the genus Glycyrrhiza and has been used worldwide for its hepatoprotective effect. Recent studies have raised concerns about potential herb-drug interactions associated with Gancao via pregnane X receptor (PXR)-mediated induction of hepatic cytochrome P450 3A4 (CYP3A4). The current work aimed to determine the phytochemicals in Gancao that activate PXR and induce CYP3A4. Methods DPX2 cells were used for cell-based PXR reporter assays. The phytochemicals in Gancao extract were identified using a metabolomics approach. The effects of PXR activators identified from in vitro studies were further investigated in PXR- and CYP3A4-humanized mouse models. Results Gancao was verified to be a PXR-activating herb. Two major phytochemicals in Gancao, glycyrrhizin (GZ) and glycyrrhetinic acid (GA), did not activate PXR in the cell-based reporter assays. However, glabridin was shown to activate PXR in a dose-dependent manner. In vivo studies confirmed that GZ is not a PXR activator and glabridin is a weak PXR activator. Although GA did not active PXR in vitro, it induced CYP3A4 expression in a PXR-dependent manner in the PXR- and CYP3A4-humanized mice. Conclusions GZ is not a PXR activator. GA could not activate PXR in cell-based reporter assays but it could activate PXR in vivo. Glabridin is a weak PXR activator. This work provides novel insights into the underlying mechanisms of Gancao-related herb-drug interactions via PXR.
Collapse
Affiliation(s)
- Anqi Cheng
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Guan X, Jin L, Yu D, He Y, Bao Y, Zhou H, Wan H. Glycyrrhetinic acid prevents carbapenem-resistant Klebsiella pneumoniae-induced cell injury by inhibiting mitochondrial dysfunction via Nrf-2 pathway. Microb Pathog 2022; 177:105825. [PMID: 36244594 DOI: 10.1016/j.micpath.2022.105825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Due to the abuse of antibiotics, the high reoccurrence of drug-resistance strains, such as carbapenem-resistant Klebsiella pneumoniae (CRKP), deteriorates CRKP-infected pneumonia in the clinic, suggesting it is necessary to find new alternatives. Glycyrrhetinic acid (GA), an active ingredient of Yinhuapinggan granule, has antioxidant & anti-inflammatory capacity. Little, however, is known about the effects of GA on CRKP-induced epithelial injury. METHODS In this research, we examined the protective effects of GA against pulmonary epithelium damage caused by CRKP infection and potential molecular mechanisms. RESULTS Our results noted GA significantly promoted cell survival and reduced pro-inflammatory cytokines production, during CRKP-induced human pulmonary epithelial cell. Mechanically, GA alleviated mitochondrial-damage-induced apoptosis amid CRKP infection by inhibiting mitochondrial damage. Additionally, we found GA inhibited the expression of pro-apoptotic proteins Cyto-c, the Bax, and Caspase-3 while increasing the expression of anti-apoptotic protein Bcl-2. Further exploration found GA could trigger Nrf-2 expression at both gene and protein levels, activating antioxidative proteins to diminish CRKP-induced oxidative stress. CONCLUSION Together, our results demonstrated that GA was a promising candidate to alleviate CRKP-infected lung injury as well as a synergist to treat CRKP infection with antibiotics.
Collapse
Affiliation(s)
- Xiaodan Guan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Liang Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Daojun Yu
- Hangzhou First People's Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang, 310053, PR China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yida Bao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
17
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
18
|
Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. NANOMATERIALS 2022; 12:nano12081295. [PMID: 35458003 PMCID: PMC9029034 DOI: 10.3390/nano12081295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Chitin nanofibrils (CN) and nanolignin (NL) were used to embed active molecules, such as vitamin E, sodium ascorbyl phosphate, lutein, nicotinamide and glycyrrhetinic acid (derived from licorice), in the design of antimicrobial, anti-inflammatory and antioxidant nanostructured chitin nanofibrils–nanolignin (CN-NL) complexes for skin contact products, thus forming CN-NL/M complexes, where M indicates the embedded functional molecule. Nano-silver was also embedded in CN-NL complexes or on chitin nanofibrils to exploit its well-known antimicrobial activity. A powdery product suitable for application was finally obtained by spray-drying the complexes co-formulated with poly(ethylene glycol). The structure and morphology of the complexes was studied using infrared spectroscopy and field emission scanning electron microscopy, while their thermal stability was investigated via thermo-gravimetry. The latter provided criteria for evaluating the suitability of the obtained complexes for subsequent demanding industrial processing, such as, for instance, incorporation into bio-based thermoplastic polymers through conventional melt extrusion. In vitro tests were carried out at different concentrations to assess skin compatibility. The obtained results provided a physical–chemical, morphological and cytocompatibility knowledge platform for the correct selection and further development of such nanomaterials, allowing them to be applied in different products. In particular, chitin nanofibrils and the CN-NL complex containing glycyrrhetinic acid can combine excellent thermal stability and skin compatibility to provide a nanostructured system potentially suitable for industrial applications.
Collapse
|
19
|
Cortés-Correa C, Piquero-Casals J, Chaparro-Reyes D, Garré Contreras A, Granger C, Peñaranda-Contreras E. Facial Seborrheic Dermatitis in HIV-Seropositive Patients: Evaluation of the Efficacy and Safety of a Non-Steroidal Cream Containing Piroctone Olamine, Biosaccharide Gum-2 and Stearyl Glycyrrhetinate - A Case Series. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:483-488. [PMID: 35330623 PMCID: PMC8940309 DOI: 10.2147/ccid.s344807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/02/2022] [Indexed: 12/04/2022]
Abstract
Facial seborrheic dermatitis is common in HIV-positive patients, and the presence of facial lesions can affect quality of life. The management and control of lesions can be frustrating for both physicians and patients. In this pilot clinical study, we clinically evaluated the effectiveness of a topical non-steroidal cream in treating mild to moderate facial seborrheic dermatitis in 20 HIV-positive patients. The patients applied a twice-a-day topical cream containing zinc PCA, piroctone olamine, hydroxyphenyl propamidobenzoic acid, biosaccharide gum-2, and stearyl glycyrrhetinate for 12 weeks with no topical or oral antifungal or corticosteroid treatment. Signs and symptoms and tolerance were assessed before, during, and at the end of treatment. All of the patients showed clinical improvement after 4 and 12 weeks of treatment. None of the patients had no response to treatment, and no adverse effects were reported. No rescue therapy with corticosteroids was needed. The patients reported a very noticeable improvement in their skin which contributed to high compliance with the protocol requirement.
Collapse
Affiliation(s)
| | - Jaime Piquero-Casals
- Department of Dermatology, Dermik, Multidisciplinary Dermatology Clinic, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Facile Preparation of Organo-Modified ZnO/Attapulgite Nanocomposites Loaded with Monoammonium Glycyrrhizinate via Mechanical Milling and Their Synergistic Antibacterial Effect. MINERALS 2022. [DOI: 10.3390/min12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, monoammonium glycyrrhizinate (MAG) was introduced into cetyltrimethyl ammonium bromide (CTAB)-modified ZnO/attapulgite (APT) via a mechanical process to form performance-enhanced antibacterial nanocomposites (MAG/C–ZnO/APT). The APT supported ZnO nanocomposite (ZnO/APT) was prepared by a conventional precipitation method, and 20–50 nm of globular ZnO nanoparticles were uniformly decorated on APT nanorods. The FTIR and zeta potential analyses demonstrated that modification by CTAB facilitated the loading of MAG into ZnO/APT by H-bonding and electrostatic interactions. Antibacterial evaluation results indicate that MAG/C–ZnO/APT nanocomposites with CTAB and MAG doses of 2.5% and 0.25%, respectively, exhibited synergistically enhanced inhibitory activities against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases Escherichia coli, with minimum inhibitory concentrations of 1, 0.1, 0.25, 5, 0.1, and 2.5 mg/mL, respectively, which are better than those of ZnO/APT, C–ZnO/APT and MAG. Moreover, the nanocomposites had low cytotoxicity on human normal cell line L-O2. Therefore, this study provided a more effective strategy to extend the antibacterial spectrum and strengthen the inhibitory effects of antibiotic-free materials to address increasingly serious situations of microbial infection.
Collapse
|
21
|
Ahmed EA, Shoala T, Abdelkhalik A, El-Garhy HAS, Ismail IA, Farrag AA. Nanoinhibitory Impacts of Salicylic Acid, Glycyrrhizic Acid Ammonium Salt, and Boric Acid Nanoparticles against Phytoplasma Associated with Faba Bean. Molecules 2022; 27:1467. [PMID: 35268567 PMCID: PMC8911656 DOI: 10.3390/molecules27051467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Phytoplasmas are economically important plant pathogenic bacterial diseases, causing severe yield losses worldwide. In this study, we tested nanoformulations such as glycyrrhizic acid ammonium salt (GAS), salicylic acid (SA), and boric acid (BA) as novel antimicrobial agents inducing the resistance against the phytoplasma disease in faba bean. The nanoparticles (NP) were foliar-applied to naturally phytoplasma-infected faba bean with three concentrations from each of SA, GAS, and BA, under field conditions. Nested PCR (using universal primer pairs P1/P7 and R16F2n/R16R2) were reacted positively with all symptomatic samples and gave a product size of approximately 1200 bp, while the healthy plant gave no results. Transmission electron microscopy examinations of phytoplasma-infected faba bean plants treated with different nanoparticles revealed that severe damage occurred in phytoplasma particle's structure, degradation, malformation, lysis in the cell membrane, and the cytoplasmic leakage followed by complete lysis of phytoplasma cells. Exogenous application of GAS-NP (1.68 µM), SA-NP (0.28 µM), and BA-NP (0.124 µM) suppressed the infection percentage of phytoplasma by 75%, 50%, and 20%, and the disease severity by 84%, 64%, and 54%, respectively. Foliar application of nanoparticles improved Fv/Fm (maximum quantum efficiency of PSII Photochemistry), PI (the performance index), SPAD chlorophyll (the relative chlorophyll content), shoots height, and leaves number, thus inducing recovery of the plant biomass and green pods yield. The most effective treatment was GAS-NP at 1.68 µM that mediated substantial increases in the shoots' fresh weight, shoots' dry weight, number of pods per plant, and green pods yield by 230%, 244%, 202% and 178%, respectively, compared to those of infected plants not sprayed with nanoparticles. This study demonstrated the utility of using nanoparticles, particularly GAS-NP at 1.68 µM to suppress the phytoplasma infection.
Collapse
Affiliation(s)
- Eman A. Ahmed
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Tahsin Shoala
- Environmental Biotechnology Department, College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | | | - Hoda A. S. El-Garhy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Qalyubia 13736, Egypt;
| | - Ismail A. Ismail
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amro A. Farrag
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| |
Collapse
|
22
|
Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021; 12:719758. [PMID: 34899289 PMCID: PMC8661450 DOI: 10.3389/fphar.2021.719758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen-Feng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhan-Chang Xin
- Gansu Qilian Mountain Pharmaceutical Limited Liability Company, Jiuquan, China
| | - Xin-Fu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (
Glycyrrhiza
sp.). FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Kiran Bala
- Department of P.G. Studies and Research in Biological Science Rani Durgavati University Jabalpur India
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi, University, MS 38677 USA
- Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University, MS 38677 USA
| |
Collapse
|
24
|
Dewake N, Ma X, Sato K, Nakatsu S, Yoshimura K, Eshita Y, Fujinaka H, Yano Y, Yoshinari N, Yoshida A. β-Glycyrrhetinic acid inhibits the bacterial growth and biofilm formation by supragingival plaque commensals. Microbiol Immunol 2021; 65:343-351. [PMID: 33860563 DOI: 10.1111/1348-0421.12884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
β-Glycyrrhetinic acid (BGA) is a natural antibacterial agent. Previous studies reported that BGA has antibacterial effects against several bacteria. This study evaluated the effects of BGA on the regulation of supragingival plaque bacteria. First, the minimum inhibitory concentrations (MICs) of BGA against oral bacteria were measured. Next, the minimum concentrations for inhibition of biofilm formation were evaluated against Streptococcus mutans and Streptococcus sobrinus, possessing insoluble glucan synthesis abilities. The MICs of biofilm formation by these bacteria ranged from 1/8 to 2× MIC. Furthermore, the inhibition effects of BGA against the coaggregation of Porphyromonas gingivalis and Streptococcus gordonii were evaluated. BGA at 32 or 64 μg/mL inhibited the coaggregation of these bacteria after a 30 min incubation. Lastly, the inhibition effects of BGA against human supragingival plaque bacteria were evaluated. Human supragingival plaque samples were obtained from 12 healthy donors. The inhibition effects of BGA against biofilm formation by these plaque bacteria were evaluated. Of 12 samples, the biofilm formation by 11 was significantly attenuated by 128-256 μg/mL of BGA. The number of colony forming units in these biofilms was also significantly attenuated. In conclusion, it was revealed that BGA inhibits the growth and biofilm formation of bacteria, furthermore, the same effect was confirmed with supragingival plaque bacteria. BGA is a good candidate for a natural agent that prevents the outbreak and progression of periodontal disease because it suppresses not only the growth and biofilm formation of bacteria, but also the coaggregation of P. gingivalis with plaque bacteria.
Collapse
Affiliation(s)
- Nanae Dewake
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Xiangtao Ma
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Kayo Sato
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Susumu Nakatsu
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Kenji Yoshimura
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Yoshiyuki Eshita
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Hidetake Fujinaka
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Yoshitaka Yano
- Personal Health Care Product Research, Kao Corporation, Tokyo, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
25
|
Calorimetric Evaluation of Glycyrrhetic Acid (GA)- and Stearyl Glycyrrhetinate (SG)-Loaded Solid Lipid Nanoparticle Interactions with a Model Biomembrane. Molecules 2021; 26:molecules26164903. [PMID: 34443491 PMCID: PMC8398178 DOI: 10.3390/molecules26164903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.
Collapse
|
26
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100043. [PMID: 35399823 PMCID: PMC7886629 DOI: 10.1016/j.phyplu.2021.100043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 04/28/2023]
Abstract
BACKGROUND Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. PURPOSE The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. METHODOLOGY We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo). These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). RESULTS Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. CONCLUSION The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.
Collapse
Key Words
- 18β-GA, 18β-glycyrrhetinic acid
- : ACE2, angiotensin-converting enzyme 2
- ALI, acute lung injury
- ARDS, acute Respiratory Distress Syndrome
- Acute lung injury protector
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX-2, cyclooxygenase-2
- DCs, dendritic cells
- Gl, glycyrrhizin
- Glycyrrhizin and licorice extract;Antiviral and antimicrobial, Anti-inflammatory and antioxidant
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- HMGB1, high-mobility group box 1
- IL, interleukin
- Immunododulator
- MAPKs, mitogen-activated protein kinases
- MERS, Middle East respiratory syndrome
- MR, mineralocorticoid receptor
- MRSA, Methicillin-resistant Staphylococcus aureus
- NO, nitric oxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- S, Spike
- SARS, severe acute respiratory syndrome
- TCM, traditional Chinese medicine
- TLR, toll-like receptor
- TMPRSS2, type 2 transmembrane serine protease
- TNF-α, tumor necrosis factor alpha
- h, hour
- iNOS, inducible nitric oxide synthase
- licorice extract, LE
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut Universitya, Beni-Suif, Egypt
| | | |
Collapse
|
28
|
Moustafa GO, Shalaby A, Naglah AM, Mounier MM, El-Sayed H, Anwar MM, Nossier ES. Synthesis, Characterization, In Vitro Anticancer Potentiality, and Antimicrobial Activities of Novel Peptide-Glycyrrhetinic-Acid-Based Derivatives. Molecules 2021; 26:4573. [PMID: 34361728 PMCID: PMC8346995 DOI: 10.3390/molecules26154573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)-amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1-8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.
Collapse
Affiliation(s)
- Gaber O. Moustafa
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed Shalaby
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
| | - Ahmed M. Naglah
- National Research Centre, Peptide Chemistry Department, Chemical Industries Research Division, Cairo 12622, Egypt;
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa M. Mounier
- National Research Centre, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, 33-El Bohouth St., Giza 12622, Egypt;
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11111, Egypt;
| | - Manal M. Anwar
- National Research Centre, Department of Therapeutic Chemistry, Cairo 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| |
Collapse
|
29
|
Antibacterial, Antibiofilm, and Antioxidant Activity of Polysaccharides Obtained from Fresh Sarcotesta of Ginkgo biloba: Bioactive Polysaccharide that Can Be Exploited as a Novel Biocontrol Agent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5518403. [PMID: 34221072 PMCID: PMC8221852 DOI: 10.1155/2021/5518403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus (S. aureus) biofilm plays an important role in the persistence of chronic infection due to its resistance to antibiotics. Because of their functional diversity, active polysaccharide is increasingly being applied as a biocontrol agent to inhibit the formation of biofilm by pathogens. In this study, a new polysaccharide, GBSPII-1, isolated from the fresh sarcotesta of Ginkgo biloba L. (G. biloba) was characterized and its effect on antibiofilm formation of S. aureus was examined in vitro. High-Performance Liquid Chromatography (HPLC) analysis showed that GBSPII-1 is an acidic heteropolysaccharide composed of mannose, rhamnose, glucose, glucuronic acid, and galacturonic acid. GBSPII-1 demonstrated a molecular weight of 34 kDa and may affect the accumulation of polysaccharide intercellular adhesion (PIA) by inhibiting icaA, icaB, icaC, and icaD gene expression at subinhibitory concentrations. Under 10 g/L, GBSPII-1 showed an antioxidant effect on the inhibition rate of H2O2-induced erythrocyte hemolysis and the scavenging rate of DPPH radicals was 76.5 ± 0.5% and 89.2 ± 0.26%, respectively. The findings obtained in this study indicate that GBSPII-1 has antibacterial effect, is a possible source of natural antioxidants, and may be a potential biocontrol agent for the design of new therapeutic strategies for biofilm-related S. aureus infections.
Collapse
|
30
|
Pagano C, Calarco P, Di Michele A, Ceccarini MR, Beccari T, Primavilla S, Scuota S, Marmottini F, Ramella D, Ricci M, Perioli L. Development of sodium carboxymethyl cellulose based polymeric microparticles for in situ hydrogel wound dressing formation. Int J Pharm 2021; 602:120606. [PMID: 33862131 DOI: 10.1016/j.ijpharm.2021.120606] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
18β-glycyrrhetinic acid (Gly), a natural compound obtained from licorice, is known both for the anti-inflammatory and antioxidant activities and for this reason useful for wound treatment. Due to its poor solubility, Gly is not suitable for formulations used in conventional topical products such as gels, foams and creams. Polymeric bioadhesive microparticles (MP), loaded with Gly, were developed to be introduced in the wound bed and swell, once in contact with the exudate, to form a hydrogel in situ able to close the wound. The MP were prepared by spray drying method from the polymeric solution of polysaccharide sodium carboxymethyl cellulose (CMC) and copolymer Soluplus® (SL). Soluplus® introduction in MP composition, using a 3:1 ratio (CMC/SL wt./wt.), allowed to stabilize Gly in non-crystalline form, favoring the improvement of water solubility, and to obtain a spherical with rugged surface MP morphology. Ex vivo studies showed these MP maintain high swelling capability and are able to form in situ a hydrogel for wound repair. The controlled release of Gly from the hydrogel stimulates keratinocyte growth, potentially supporting the physiological healing processes.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Paola Calarco
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico dell'Umbria e delle Marche, Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Stefania Scuota
- Istituto Zooprofilattico dell'Umbria e delle Marche, Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Fabio Marmottini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Daniele Ramella
- Department of Chemistry, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
31
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
32
|
Gao Y, Zhang L, Feng X, Liu X, Guo F, Lv B, Li C. Galactosylation of Monosaccharide Derivatives of Glycyrrhetinic Acid by UDP-Glycosyltransferase GmSGT2 from Glycine max. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8580-8588. [PMID: 32689796 DOI: 10.1021/acs.jafc.0c03842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glycyrrhetinic acid (GA), a pentacyclic triterpenoid aglycone, is the major functional component in licorice which mainly exists in the form of functional glycosides in licorice. The introduction of a sugar moiety to the C-3 OH of GA to yield glycosylated derivatives has been reported, but the late-stage glycosylation of GA-3-O-sugar to form rare GA glycosides with more complexed glycosyl decoration has been rarely reported. In this study, a unique UDP-galactosyltransferase GmSGT2 from Glycine max was found to transfer a galactose to the C2 position of the sugar moiety of GA-3-O-monoglucuronide (GAMG) and GA-3-O-monoglucose. In addition to UDP-galactose, GmSGT2 also recognizes UDP-glucose, UDP-xylose, and UDP-arabinose with relative activities of 32.1-89.2%. Based on a test of 12 typical natural products, GmSGT2 showed high specificity toward the pentacyclic triterpenoid skeleton as the sugar acceptor. Molecular docking was performed to elucidate the substrate recognition mechanism of GmSGT2 toward GAMG.
Collapse
Affiliation(s)
- Yanan Gao
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofei Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Guo
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Chung PY. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152933. [PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures. AIM This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes). METHODS Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized. RESULTS Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics. CONCLUSION The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.
Collapse
Affiliation(s)
- Pooi Yin Chung
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
34
|
Tsujii T, Kawada-Matsuo M, Migita H, Ohta K, Oogai Y, Yamasaki Y, Komatsuzawa H. Antibacterial activity of phellodendron bark against Streptococcus mutans. Microbiol Immunol 2020; 64:424-434. [PMID: 32196736 DOI: 10.1111/1348-0421.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
Streptococcus mutans is a major cause of tooth decay due to its promotion of biofilm formation and acid production. Several plant extracts have been reported to have multiple biological activities such as anti-inflammation and antibacterial effects. This study investigated the antibacterial activity of three plant extracts, phellodendron bark (PB), yucca, and black ginger, and found that PB had a stronger effect than the other extracts. Then, the minimum inhibitory concentration (MIC) of PB against 100 S. mutans strains was investigated. The MIC range of PB was 9.8-312.5 µg/mL. PB suppressed the growth kinetics of S. mutans in a dose-dependent manner, even at sub-MICs of PB. Then, we investigated the effect of PB on S. mutans virulence. The PB suppressed biofilm formation at high concentrations, although PB did not affect the expression of glucosyltransferase genes. Additionally, PB suppressed the decrease in pH from adding an excess of glucose. The expression of genes responsible for acid production was increased by the addition of excess glucose without PB, whereas their expression levels were not increased in the presence of 1× and 2× MIC of PB. Although PB showed a bacteriostatic effect on planktonic S. mutans cells, it was found that more than 2× MIC of PB showed a partial bactericidal effect on biofilm cells. In conclusion, PB not only showed antibacterial activity against S. mutans but also decreased the cariogenic activity in S. mutans.
Collapse
Affiliation(s)
- Toshiya Tsujii
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirono Migita
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
35
|
Akbari N, Asadimehr N, Kiani Z. The effects of licorice containing diphenhydramine solution on recurrent aphthous stomatitis: A double-blind, randomized clinical trial. Complement Ther Med 2020; 50:102401. [PMID: 32444056 DOI: 10.1016/j.ctim.2020.102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare the efficacy of the diphenhydramine solution (DS) and diphenhydramine-containing glycyrrhiza glabra (DSG) in the treatment of recurrent aphthous stomatitis (RAS). DESIGN It was a double-blind randomized clinical trial that was conducted from July to September 2018 at the Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran. INTERVENTION DSG was made by adding 5% hydroethanolic extract of licorice to the diphenhydramine elixir. A total of 70 patients diagnosed with RSA were randomly assigned to the DS and DSG groups, each containing 35 patients. Participants were instructed to swish 3 ml of either solution around their mouth for about three minutes four times a day (at least 20 min before each meal and before bedtime) until the complete healing of the oral lesions. MAIN OUTCOME MEASURES The primary outcome of this study was to assess the severity of pain prior to the intervention and on the first, third, and fifth days of it. This was done using the visual analog scale (VAS). The duration of wound healing was also measured through photography. The secondary outcome was to record the adverse effects of the intervention. This trial was registered at the Iranian Registry of Clinical Trials under number1 IRCT20180407039213N1. RESULTS The average pain score before the treatment in the DS and DSG groups was 8. 1 ± 1.17 and 7.97 ± 1.72, respectively, and there was apparently no significant difference between them. However, there was a significant difference between the two groups in terms of the average pain scores on the first (7 ± 1.28 versus 5.31 ± 1.28), third (4.02 ± 1.8 vs. 2.86 ± 1.56) and fifth days (1.71 ± 1.69 vs. 0.54 ± 1.31) of the intervention. Indeed, DSG significantly reduced the average wound healing duration by 1.5 days, as compared to DS (P = 0.0001). No adverse effects were observed with the intervention. CONCLUSION According to our results, DSG appeared to be more effective in treating RAS than DS alone. TRIAL REGISTRATION The trial was registered at Iranian Registry of Clinical Trials before the enrolment of the first patient on June 29, 2019 (registration no: IRCT20180407039213N1, http://www.irct.ir/trial/31497).
Collapse
Affiliation(s)
- Narjes Akbari
- Faculty of Dentistry, Birjand University of Medical sciences, Birjand, Iran.
| | - Neda Asadimehr
- Faculty of Dentistry, Birjand University of Medical sciences, Birjand, Iran.
| | - Zahra Kiani
- Pharmacology Department, Medical School, Birjand University of Medical Sciences, Birjand, 9717853577, Iran.
| |
Collapse
|
36
|
Staphylococcus aureus Virulence Affected by an Alternative Nisin A Resistance Mechanism. Appl Environ Microbiol 2020; 86:AEM.02923-19. [PMID: 32086306 DOI: 10.1128/aem.02923-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
Nisin A is a bacteriocin produced by Lactococcus lactis and is widely used as a food preservative. Staphylococcus aureus has the BraRS-VraDE system that provides resistance against low concentrations of nisin A. BraRS is a two-component system that induces the expression of the ABC transporter VraDE. Previously, we isolated a highly nisin A-resistant strain with increased VraDE expression due to a mutation in braRS In this study, we isolated S. aureus MW2 mutants with BraRS-VraDE-independent nisin A resistance. These mutants, designated SAN2 ( S. aureus nisin resistant) and SAN469, had a mutation in pmtR, which encodes a transcriptional regulator responsible for the expression of the pmtABCD operon. As a result, these mutants exhibited increased expression of PmtABCD, a transporter responsible for the export of phenol-soluble modulin (PSM). Characterization of the mutants revealed that they have decreased susceptibility to human β-defensin-3 (hBD3) and LL37, which are innate immune factors. Additionally, these mutants showed higher hemolytic activity than the original MW2 strain. Furthermore, in a mouse bacteremia model, the SAN2 strain exhibited a lower survival rate than the original MW2 strain. These results indicate that the increased expression of pmtABCD due to a pmtR mutation is an alternative nisin A resistance mechanism that also affects virulence in S. aureus IMPORTANCE Recently, the emergence of antibiotic-resistant bacteria has resulted in serious problems for chemotherapy. In addition, many antibacterial agents, such as disinfectants and food additives, are widely used. Therefore, there is a possibility that bacteria are becoming resistant to some antibacterial agents. In this study, we investigated whether Staphylococcus aureus can become resistant to nisin A, one of the bacteriocins applied as a food additive. We isolated a highly nisin A-resistant strain designated SAN2 that displayed increased expression of Pmt proteins, which are involved in the secretion of virulence factors called phenol-soluble modulins (PSMs). This strain also showed decreased susceptibility to human antimicrobial peptides and increased hemolytic activity. In addition, SAN2 showed increased lethal activity in a mouse bacteremia model. Our study provides new insights into the possibility that the acquisition of resistance against food preservatives may modulate virulence in S. aureus, suggesting that we need to pay more attention to the use of food preservatives together with antibiotics.
Collapse
|
37
|
Pagano C, Perioli L, Calarco P, Di Michele A, Tiralti MC, Ricci M. New Technological Approach for Glycyrrethic Acid Oral and Topical Administration. Curr Pharm Des 2020; 26:664-674. [DOI: 10.2174/1381612826666191226112249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023]
Abstract
Background:
18β- glycyrrhetinic acid (Gly) is the major bioactive component of licorice roots and
rhizomes of the Glycyrrhiza glabra species. It shows many activities such as antiviral, anti-inflammatory, antioxidant,
antimicrobial, and antifungal, however, its use in the health field is very limited due to the low water solubility.
Methods:
This paper deals with the development of a new technological approach for Gly dissolution rate enhancement.
It consists of Gly intercalation (guest) in the interlamellar spaces between the inorganic spaces (host)
of the anionic clays “hydrotalcites” (HTlc) to obtain hybrids MgAl-HTlc-Gly and ZnAl-HTlc-Gly. Gly can find
applications in both systemic and local therapies, thus advantages of the use of the hybrids in these two fields
were investigated.
Results:
Gly dissolution rate from hybrids in the intestinal environment, site in which it is preferentially absorbed,
resulted enhanced (ZnAl-HTlc-Gly > MgAl-HTlc-Gly) compared to the crystalline form, thereby, making them
suitable for oral administration as dry powder in hard capsules.
:
For a local therapy, bioadhesive, vaginal emulgels loaded with the hybrids were developed. These showed suitable
mucoadhesive property to the vaginal mucosa, necessary to prolong the residence time in the application site.
The emulgel containing ZnAl-HTlc-Gly showed a faster and higher release profile than that containing MgAl-
HTlc-Gly.
Conclusions:
The obtained results suggest that Gly intercalation into HTlc, especially in ZnAl-HTlc, allows to
enhance Gly dissolution when the hybrids are formulated both as oral or topical products.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo 1 - 06123, Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo 1 - 06123, Perugia, Italy
| | - Paola Calarco
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo 1 - 06123, Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, via Pascoli - 06123 Perugia, Italy
| | - Maria C. Tiralti
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo 1 - 06123, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del liceo 1 - 06123, Perugia, Italy
| |
Collapse
|
38
|
Balato A, Caiazzo G, Di Caprio R, Scala E, Fabbrocini G, Granger C. Exploring Anti-Fungal, Anti-Microbial and Anti-Inflammatory Properties of a Topical Non-Steroidal Barrier Cream in Face and Chest Seborrheic Dermatitis. Dermatol Ther (Heidelb) 2020; 10:87-98. [PMID: 31705438 PMCID: PMC6994561 DOI: 10.1007/s13555-019-00339-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The pathogenesis of seborrheic dermatitis (SD) is multifactorial and traditional treatments may not target all aspects of it. The aim of this study was to evaluate short-term anti-fungal, anti-microbial, anti-inflammatory and anti-pruritus properties of a novel non-steroidal cream (NSC) containing piroctone olamine, zinc salt of L-pyrrolidone carboxylate (PCA), hydroxyphenyl propamidobenzoic acid, biosaccharide gum-2 and stearyl glycyrrhetinate in patients with face and chest SD. METHODS Twelve male subjects affected by SD, presenting face and chest manifestations, were enrolled. Patients were instructed to apply NSC twice a day, performing regular visits at baseline (W0), after 7 (W1) and 14 (W2) days of treatment. A limitation of the study was that no control group treated with the vehicle without active ingredients was enrolled. To evaluate the efficacy of the NSC, investigator's assessments were represented by scoring index (SI) and investigator's global assessment score (IGA). In order to assess NSC anti-fungal and anti-microbial effects, skin scale scrapings were collected and used for Malassezia furfur (MF) and Staphylococcus epidermidis (SE) cultures. In parallel, in order to assess NSC anti-inflammatory effects, gene expression of IL-1α, IL-1β, IL-6, IL-8, and TNF-α was assessed. In addition, anti-pruritus effects were also evaluated through gene expression of cathepsin S and L-histidine decarboxylase. RESULTS SI mean scores significantly decreased at W1 and, to a greater extent, at W2 compared with W0. The IGA score registered an important improvement efficacy both for face and chest, from W1 to W2. MF and SE growth was already inhibited at W1, with a more pronounced decrease at W2. Gene expression of all analyzed mediators was significantly reduced at W1 compared to W0. CONCLUSION In conclusion, our assessment is that NSC is an effective and well tolerated treatment option for SD with anti-fungal, anti-microbial and anti-inflammatory properties. TRIAL REGISTRATION ISRCTN registry, ISRCTN77871064 (retrospectively registered October 17, 2019). EudraCT number, 2019-003813-32. FUNDING ISDIN.
Collapse
Affiliation(s)
- Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Giuseppina Caiazzo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Napoli, Italy
| | - Roberta Di Caprio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Emanuele Scala
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | | |
Collapse
|
39
|
Imanishi I, Uchiyama J, Tsukui T, Hisatsune J, Ide K, Matsuzaki S, Sugai M, Nishifuji K. Therapeutic Potential of an Endolysin Derived from Kayvirus S25-3 for Staphylococcal Impetigo. Viruses 2019; 11:v11090769. [PMID: 31443379 PMCID: PMC6784202 DOI: 10.3390/v11090769] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
Impetigo is a contagious skin infection predominantly caused by Staphylococcus aureus. Decontamination of S. aureus from the skin is becoming more difficult because of the emergence of antibiotic-resistant strains. Bacteriophage endolysins are less likely to invoke resistance and can eliminate the target bacteria without disturbance of the normal microflora. In this study, we investigated the therapeutic potential of a recombinant endolysin derived from kayvirus S25-3 against staphylococcal impetigo in an experimental setting. First, the recombinant S25-3 endolysin required an incubation period of over 15 minutes to exhibit efficient bactericidal effects against S. aureus. Second, topical application of the recombinant S25-3 endolysin decreased the number of intraepidermal staphylococci and the size of pustules in an experimental mouse model of impetigo. Third, treatment with the recombinant S25-3 endolysin increased the diversity of the skin microbiota in the same mice. Finally, we revealed the genus-specific bacteriolytic effect of recombinant S25-3 endolysin against staphylococci, particularly S. aureus, among human skin commensal bacteria. Therefore, topical treatment with recombinant S25-3 endolysin can be a promising disease management procedure for staphylococcal impetigo by efficient bacteriolysis of S. aureus while improving the cutaneous bacterial microflora.
Collapse
Affiliation(s)
- Ichiro Imanishi
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Toshihiro Tsukui
- Nippon Zenyaku Kogyo Co. Ltd., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima 963-0196, Japan
| | - Junzo Hisatsune
- Department of Bacteriology, Graduate school of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kaori Ide
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shigenobu Matsuzaki
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, 185-1 Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motoyuki Sugai
- Department of Bacteriology, Graduate school of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Koji Nishifuji
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Institute of Agriculture, Graduate School, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
40
|
Piquero-Casals J, Hexsel D, Mir-Bonafé JF, Rozas-Muñoz E. Topical Non-Pharmacological Treatment for Facial Seborrheic Dermatitis. Dermatol Ther (Heidelb) 2019; 9:469-477. [PMID: 31396944 PMCID: PMC6704200 DOI: 10.1007/s13555-019-00319-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 11/26/2022] Open
Abstract
Facial seborrheic dermatitis (FSD) is a chronic and relapsing inflammatory skin disorder occurring in areas of the face rich in sebaceous glands. It clinically manifests as erythematous scaly macules or plaques, often associated with pruritus. Although the pathogenesis of seborrheic dermatitis is not yet fully understood, Malassezia yeast, hormones, sebum levels, and immune response are known to play important roles. Additional factors including drugs, cold temperatures, and stress may exacerbate the condition. Currently, the available treatments do not cure the disease but relieve symptoms. Various pharmacological treatments are available, including antifungal agents, keratolytics, topical low-potency steroids, and calcineurin inhibitors. All of them provide several benefits, but they also have potential side effects. Seborrheic dermatitis tends to have a chronic, recurrent course. To avoid the long-term use of drugs, topical non-pharmacological products such as cosmetics or medical devices may improve clinical outcomes. Products with antimicrobial and anti-inflammatory ingredients such as zinc, piroctone olamine, dihydroavenanthramide, biosaccharide gum-2, and stearyl glycyrrhetinate may speed FSD recovery and avoid flare-ups. Finally, the use of specific cleansers, moisturizers, and sunscreens formulated as light creams or gel/creams should be strongly recommended to all FSD patients. We provide a brief review of the most used non-pharmacological cleansers, topical gel/creams, and specific sunscreens in the management of FSD.
Collapse
Affiliation(s)
- Jaime Piquero-Casals
- Department of Dermatology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
| | - Doris Hexsel
- Brazilian Center for Studies in Dermatology, Porto Alegre, RS, Brazil
| | | | - Eduardo Rozas-Muñoz
- Department of Dermatology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
41
|
Yamashita T, Kawada-Matsuo M, Katsumata T, Watanabe A, Oogai Y, Nishitani Y, Miyawaki S, Komatsuzawa H. Antibacterial activity of disodium succinoyl glycyrrhetinate, a derivative of glycyrrhetinic acid against Streptococcus mutans. Microbiol Immunol 2019; 63:251-260. [PMID: 31166029 DOI: 10.1111/1348-0421.12717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is a cariogenic bacterium that localizes in the oral cavity. Glycyrrhetinic acid (GRA) is a major component of licorice extract. GRA and several derivatives, including disodium succinoyl glycyrrhetinate (GR-SU), are known to have anti-inflammatory effects in humans. In this study, the antimicrobial effect of GRA and its derivatives against the S. mutans UA159 strain were investigated. Minimum inhibitory concentrations (MICs) of GRA and GR-SU showed antibacterial activity against the S. mutans strain, whereas other tested derivatives did not. Because GR-SU is more soluble than GRA, GR-SU was used for further experiments. The antibacterial activity of GR-SU against 100 S. mutans strains was evaluated and it was found that all strains are susceptible to GR-SU, with MIC values below 256 µg/mL. A cell viability assay showed that GR-SU has a bacteriostatic effect on S. mutans cells. As to growth kinetics, sub-MICs of GR-SU inhibited growth. The effect of GR-SU on S. mutans virulence was then investigated. GR-SU at sub-MICs suppresses biofilm formation. Additionally, GR-SU greatly suppresses the pH drop caused by the addition of glucose and glucose-induced expression of the genes responsible for acid production (ldh and pykF) and tolerance (aguD and atpD). Additionally, expression of enolase, which is responsible for the carbohydrate phosphotransferase system, was not increased in the presence of GR-SU, indicating that GR-SU suppresses incorporation of sugars into S. mutans. In conclusion, GR-SU has antibacterial activity against S. mutans and also decreases S. mutans virulence.
Collapse
Affiliation(s)
- Takahito Yamashita
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tamaki Katsumata
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Atsuko Watanabe
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiro Nishitani
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
42
|
Danti S, Trombi L, Fusco A, Azimi B, Lazzeri A, Morganti P, Coltelli MB, Donnarumma G. Chitin Nanofibrils and Nanolignin as Functional Agents in Skin Regeneration. Int J Mol Sci 2019; 20:ijms20112669. [PMID: 31151285 PMCID: PMC6600226 DOI: 10.3390/ijms20112669] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Chitin and lignin, by-products of fishery and plant biomass, can be converted to innovative high value bio- and eco-compatible materials. On the nanoscale, high antibacterial, anti-inflammatory, cicatrizing and anti-aging activity is obtained by controlling their crystalline structure and purity. Moreover, electropositive chitin nanofibrlis (CN) can be combined with electronegative nanolignin (NL) leading to microcapsule-like systems suitable for entrapping both hydrophilic and lipophilic molecules. The aim of this study was to provide morphological, physico-chemical, thermogravimetric and biological characterization of CN, NL, and CN-NL complexes, which were also loaded with glycyrrhetinic acid (GA) as a model of a bioactive molecule. CN-NL and CN-NL/GA were thermally stable up to 114 °C and 127 °C, respectively. The compounds were administered to in vitro cultures of human keratinocytes (HaCaT cells) and human mesenchymal stromal cells (hMSCs) for potential use in skin contact applications. Cell viability, cytokine expression and effects on hMSC multipotency were studied. For each component, CN, NL, CN-NL and CN-NL/GA, non-toxic concentrations towards HaCaT cells were identified. In the keratinocyte model, the proinflammatory cytokines IL-1α, IL-1 β, IL-6, IL-8 and TNF-α that resulted were downregulated, whereas the antimicrobial peptide human β defensin-2 was upregulated by CN-LN. The hMSCs were viable, and the use of these complexes did not modify the osteo-differentiation capability of these cells. The obtained findings demonstrate that these biocomponents are cytocompatible, show anti-inflammatory activity and may serve for the delivery of biomolecules for skin care and regeneration.
Collapse
Affiliation(s)
- Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
| | - Luisa Trombi
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
| | - Alessandra Fusco
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Bahareh Azimi
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
| | - Pierfrancesco Morganti
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
| | - Giovanna Donnarumma
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy.
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
43
|
Kaczyński T, Miskiewicz A, Górski B, Radkowski M, Strzemecki D, Kryczka T, Górska R. The influence of glycyrrhetinic acid (enoxolone) toothpaste on periodontal treatment outcomes and salivary levels of IL-8, TNF-α, IL-17, MCP-1 and VEGF in patients with chronic periodontitis. POSTEP HIG MED DOSW 2018. [DOI: 10.5604/01.3001.0012.8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study evaluates the influence of glycyrrhetinic acid (enoxolone) toothpaste on the results of scaling and root planing as well as salivary levels of IL-8, TNF-α, IL-17, MCP-1 and VEGF in patients with chronic periodontitis. Clinical parameters and biomarkers of periodontitis were assessed longitudinally to determine response to the therapy. A 3-month case-controlled study of adults with chronic periodontitis was performed, with 18 patients receiving scaling and root planing and enoxlone toothpaste (group A) and 18 with scaling and root planing with regular toothpaste (group B). Clinical measurements of periodontal disease were recorded and saliva samples were collected at week 0 and 12. Samples were analyzed for immune markers: Interleukin-8 (IL-8), Tumor Necrosis Factor-α (TNF-α), Interleukin-17 (IL-17), Monocyte Chemoattractant Protein -1 (MCP-1) and Vascular Endothelial Growth Factor (VEGF). All parameters of periodontal health improved significantly in both groups by week 12 (p<0.01) with no significant differences between groups. However, improvements in group A were greater than in group B. IL-8, TNF-α, IL-17, MCP-1 and VEGF levels decreased significantly from baseline (p<0.01) in group A only. Salivary levels of IL-8, TNF-α, IL-17, MCP-1 and VEGF seem to reflect disease severity and response to therapy, suggesting their potential utility for monitoring periodontal disease status. Greater improvements of periodontal parameters and significant reduction of salivary biomarkers’ levels suggest potential benefits of glycyrrhetinic acid toothpaste in periodontal therapy.
Collapse
Affiliation(s)
- Tomasz Kaczyński
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Damian Strzemecki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kryczka
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Zakova T, Rondevaldova J, Bernardos A, Landa P, Kokoska L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol Immunol Hung 2018; 65:467-476. [PMID: 30203690 DOI: 10.1556/030.65.2018.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a major human pathogen that is responsible for both hospital- and community-acquired infections. Stilbenes are polyphenol compounds of plant origin known to possess a variety of pharmacological properties, such as antibacterial, antiviral, and antifungal effects. This study reports the in vitro growth-inhibitory potential of eight naturally occurring stilbenes against six standard strains and two clinical isolates of S. aureus, using a broth microdilution method, and expressing the results as minimum inhibitory concentrations (MICs). Pterostilbene (MICs = 32-128 μg/ml), piceatannol (MICs = 64-256 μg/ml), and pinostilbene (MICs = 128 μg/ml) are among the active compounds that possess the strongest activity against all microorganisms tested, followed by 3'-hydroxypterostilbene, isorhapontigenin, oxyresveratrol, and rhapontigenin with MICs 128-256 μg/ml. Resveratrol (MIC = 256 μg/ml) exhibited only weak inhibitory effect. Furthermore, structure-activity relationships were studied. Hydroxyl groups at ortho-position (B-3' and -4') played crucial roles for the inhibitory effect of hydroxystilbene piceatannol. Compounds with methoxy groups at ring A (3'-hydroxypterostilbene, pinostilbene, and pterostilbene) produced stronger effect against S. aureus than their analogues (isorhapontigenin and rhapontigenin) with methoxy groups at ring B. These findings provide arguments for further investigation of stilbenes as prospective leading structures for development of novel antistaphylococcal agents for topical treatment of skin infections.
Collapse
Affiliation(s)
- Tereza Zakova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Johana Rondevaldova
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrea Bernardos
- 2 Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Premysl Landa
- 3 Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, Prague, Czech Republic
| | - Ladislav Kokoska
- 1 Faculty of Tropical AgriSciences, Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
45
|
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32:2323-2339. [PMID: 30117204 PMCID: PMC7167772 DOI: 10.1002/ptr.6178] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
In the last years, consumers are paying much more attention to natural medicines and principles, mainly due to the general sense that natural compounds are safe. On the other hand, there is a growing demand by industry for plants used in traditional medicine that could be incorporated in foods, nutraceuticals, cosmetics, or even pharmaceuticals. Glycyrrhiza glabra Linn. belongs to the Fabaceae family and has been recognized since ancient times for its ethnopharmacological values. This plant contains different phytocompounds, such as glycyrrhizin, 18β-glycyrrhetinic acid, glabrin A and B, and isoflavones, that have demonstrated various pharmacological activities. Pharmacological experiments have demonstrated that different extracts and pure compounds from this species exhibit a broad range of biological properties, including antibacterial, anti-inflammatory, antiviral, antioxidant, and antidiabetic activities. A few toxicological studies have reported some concerns. This review addresses all those issues and focuses on the pharmacological activities reported for G. glabra. Therefore, an updated, critical, and extensive overview on the current knowledge of G. glabra composition and biological activities is provided here in order to explore its therapeutic potential and future challenges to be utilized for the formulation of new products that will contribute to human well-being.
Collapse
Affiliation(s)
| | - Laura Cornara
- DISTAVUniversity of GenoaGenoaItaly
- Istituto di BiofisicaConsiglio Nazionale delle RicercheGenoaItaly
| | - Sónia Soares
- LAQV/REQUIMTE, Faculty of PharmacyUniversity of PortoPortoPortugal
| | | | | |
Collapse
|
46
|
Kannan S, Sathasivam G, Marudhamuthu M. Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhetinic acid. Microb Pathog 2018; 126:332-342. [PMID: 30458255 DOI: 10.1016/j.micpath.2018.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/27/2022]
Abstract
The present study elucidates the antibiofilm and antivirulent capability of glycyrrhetinic acid (GRA) against Pseudomonas aeruginosa ATCC 25619. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of GRA against P. aeruginosa were found to be 160 μg/mL and 420 μg/mL respectively. In an acclimatization resistance analysis using P. aeruginosa, no resistance towards GRA was observed during the habituation period. Adequate penetration of GRA over the biofilm matrix was proposed with the membrane penetration model assembly constructed with the preformed biofilm exhibited the prospective penetration of GRA above the mature biofilm. Furthermore, GRA resulted in the attenuation of virulence factors such as motility, biofilm formation, pyocyanin secretion, secreted proteases with its sub MIC concentrations. The antibiofilm property of GRA was assessed with the light microscopy and high content screening fluorescent imaging system, which clearly demonstrates, the thickness of P. aeruginosa biofilm was reduced to 11.33 ± 2.08 μm from 39 ± 2.51 μm. Transmission Electron Microscopy (TEM) images depicted the morphological changes in cells such as disaggregation of colonies, cell disruption with loss of intracellular material, cytolytic damage, the process of morphological transformation, bacteriolysis indicating the potential effect of GRA.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Gowtham Sathasivam
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| |
Collapse
|
47
|
Liu X, Zhang L, Feng X, Lv B, Li C. Biosynthesis of Glycyrrhetinic Acid-3-O-monoglucose Using Glycosyltransferase UGT73C11 from Barbarea vulgaris. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaochen Liu
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Liang Zhang
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Xudong Feng
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Bo Lv
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Chun Li
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
48
|
Shen Z, Qin Q, Liao X, Yang B. Host-guest inclusion system of glycyrrhetic acid with polyamine-β-cyclodextrin: Preparation, characterization, and anticancer activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
50
|
Li B, Cai S, Yang YA, Chen SC, Chen R, Shi JB, Liu XH, Tang WJ. Novel unsaturated glycyrrhetic acids derivatives: Design, synthesis and anti-inflammatory activity. Eur J Med Chem 2017; 139:337-348. [PMID: 28803048 DOI: 10.1016/j.ejmech.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/31/2023]
Abstract
To develop novel anti-inflammatory agents, a series of unsaturated glycyrrhetic acids were designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells. The structure-activity relationship (SAR) of NO inhibitory activity was analyzed. α,β-Unsaturated glycyrrhetic acids showed better activity, among them, compounds 6k and 6l with piperazine unit exhibited the most potent nitric oxide (NO) and interleukin-6 (IL-6) inhibitory activity (IC50 = 13.3 and 15.5 μM respectively). Furthermore, compound 6k could also significantly suppress LPS-induced iNOS and COX-2 expression and IL-6 production through MAPKs and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Shi Cai
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Yong-An Yang
- Elion Nature Biological Technology Co., Ltd, Nanjing 210038, China
| | - Shi-Chao Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Rui Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Jing-Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|