1
|
Pinheiro F, Lail H, Neves JS, Negrão R, Wanders D. Sulfur Amino Acid Restriction Mitigates High-Fat Diet-Induced Molecular Alterations in Cardiac Remodeling Primarily via FGF21-Independent Mechanisms. Nutrients 2024; 16:4347. [PMID: 39770968 PMCID: PMC11677450 DOI: 10.3390/nu16244347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21. Methods: Male C57BL/6J wild-type and FGF21 knockout mice were randomized into four dietary regimens, including normal fat and high-fat diets (HFDs) with and without SAAR, over five weeks. Results: SAAR significantly reduced body weight and visceral adiposity while increasing serum FGF21 levels. In the heart, SAAR-induced molecular metabolic alterations are indicative of enhanced lipid utilization, glucose uptake, and mitochondrial biogenesis. SAAR also elicited opposing effects on the cardiac gene expression of FGF21 and adiponectin. Regarding cellular stress responses, SAAR mitigated the HFD-induced increase in the cardiac expression of genes involved in oxidative stress, inflammation, and apoptosis, while upregulating antioxidative genes. Structurally, SAAR did not induce alterations indicative of cardiac hypertrophy and it counteracted HFD-induced fibrotic gene expression. Overall, most alterations induced by SAAR were FGF21-independent, except for those related to lipid utilization and glucose uptake. Conclusions: Altogether, SAAR promotes cardiac alterations indicative of physiological rather than pathological remodeling, primarily through FGF21-independent mechanisms.
Collapse
Affiliation(s)
- Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - João Sérgio Neves
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal;
- Unit of Cardiovascular Research and Development—Unic@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Negrão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
| |
Collapse
|
2
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Mann CG, MacArthur MR, Zhang J, Gong S, AbuSalim JE, Hunter CJ, Lu W, Agius T, Longchamp A, Allagnat F, Rabinowitz J, Mitchell JR, De Bock K, Mitchell SJ. Sulfur Amino Acid Restriction Enhances Exercise Capacity in Mice by Boosting Fat Oxidation in Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601041. [PMID: 39005372 PMCID: PMC11244859 DOI: 10.1101/2024.06.27.601041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle β-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.
Collapse
Affiliation(s)
- Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jenna E AbuSalim
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Craig J. Hunter
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Joshua Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah J Mitchell
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Zaman K, Mun HC, Solon-Biet SM, Senior AM, Raubenheimer D, Simpson SJ, Conigrave AD. Mice Regulate Dietary Amino Acid Balance and Energy Intake by Selecting between Complementary Protein Sources. J Nutr 2024; 154:1766-1780. [PMID: 38583524 DOI: 10.1016/j.tjnut.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND A balanced intake of protein and constituent amino acids (AAs) requires adjustments to total food intake (protein leverage [PL]) and food selection to balance deficits and excesses (complementary feeding). We provided mice with choices of casein and whey, 2 protein sources that are complementary in AA balance, across a range of protein concentrations (P%) of digestible energy (DE). OBJECTIVES We aimed to determine if: 1) PL operates similarly for casein and whey; 2) one protein source is preferred at control P%; 3) the preference changes as P% falls; and 4) AA intakes under control and low P% levels identify AAs that drive changes in protein selection. METHODS Food intake and plasma fibroblast growth factor-21 (FGF21) concentrations were measured in mice at various P% (P7.5%-P33%). For direct comparisons, defined diets were used in which the protein source was either casein or whey. In food choice studies, mice had access to foods in which both casein and whey were provided at the same P% level at the same time. RESULTS PL operated at different P% thresholds in casein (13%)- and whey (10%)-based diets, and the magnitude of PL was greater for casein. Although mice preferred casein under control conditions (P23%), a pronounced preference shift to whey occurred as P% fell to P13% and P10%. At low P%, increases in food intake were accompanied by increases in plasma FGF21, a protein hunger signal. Among AAs deficient in casein and enriched in whey, the intake of Cys was the most invariant as P% changed between P23% and P10%, appearing to drive the switch in protein preference. CONCLUSIONS Mice selected between complementary protein sources, casein and whey, achieving stable total energy intake and regulated intake of AAs as P% varied. Supplementation of low P% casein diets with one whey-enriched AA, Cys, suppressed plasma FGF21 and total food intake.
Collapse
Affiliation(s)
- Kamrul Zaman
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hee-Chang Mun
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Raubenheimer
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Arthur D Conigrave
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee-Ødegård S, Troensegaard H, Johannessen H, Doeland B, Vo AAD, Dahl AF, Svendsen K, Thoresen M, Refsum H, Rising R, Barvíková K, van Greevenbroek M, Kožich V, Retterstøl K, Vinknes KJ. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40. [PMID: 38195568 PMCID: PMC10775517 DOI: 10.1186/s12967-023-04833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS SAAR led to a ~ 20% greater weight loss compared to controls (β 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elena C Tore
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Johannessen
- Department of Paedriatic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Beate Doeland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna A D Vo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anja F Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023; 26:107046. [PMID: 37389181 PMCID: PMC10300224 DOI: 10.1016/j.isci.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Hematology, Haddasah Medical Center, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
8
|
Fang H, Stone KP, Wanders D, Forney LA, Gettys TW. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu Rev Nutr 2022; 42:201-226. [PMID: 35588443 PMCID: PMC9936953 DOI: 10.1146/annurev-nutr-062320-111849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, Georgia, USA
| | - Laura A Forney
- Department of Kinesiology, Houston Baptist University, Houston, Texas, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
9
|
Multiomics assessment of dietary protein titration reveals altered hepatic glucose utilization. Cell Rep 2022; 40:111187. [PMID: 35977507 DOI: 10.1016/j.celrep.2022.111187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/17/2021] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary protein restriction (PR) has rapid effects on metabolism including improved glucose and lipid homeostasis, via multiple mechanisms. Here, we investigate responses of fecal microbiome, hepatic transcriptome, and hepatic metabolome to six diets with protein from 18% to 0% of energy in mice. PR alters fecal microbial composition, but metabolic effects are not transferable via fecal transplantation. Hepatic transcriptome and metabolome are significantly altered in diets with lower than 10% energy from protein. Changes upon PR correlate with calorie restriction but with a larger magnitude and specific changes in amino acid (AA) metabolism. PR increases steady-state aspartate, serine, and glutamate and decreases glucose and gluconeogenic intermediates. 13C6 glucose and glycerol tracing reveal increased fractional enrichment in aspartate, serine, and glutamate. Changes remain intact in hepatic ATF4 knockout mice. Together, this demonstrates an ATF4-independent shift in gluconeogenic substrate utilization toward specific AAs, with compensation from glycerol to promote a protein-sparing response.
Collapse
|
10
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
11
|
Allaway D, Harrison M, Haydock R, Watson P. Adaptations Supporting Plasma Methionine on a Limited-Methionine, High-Cystine Diet Alter the Canine Plasma Metabolome Consistent with Interventions that Extend Life Span in Other Species. J Nutr 2021; 151:3125-3136. [PMID: 34224573 DOI: 10.1093/jn/nxab204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Using indicator amino acid oxidation methodology, the mean dietary requirement of adult dogs for methionine (Met) was estimated to be ∼66% of the current recommended allowance. Dogs fed a diet formulated to provide the estimated mean Met requirement for 32 wk maintained plasma Met, seemingly supported by betaine oxidation. OBJECTIVE To gain a better understanding of the metabolic changes that were associated with supporting plasma Met when dogs were fed a limited Met diet over 32 wk, we analyzed plasma samples taken from that study using a data-driven metabolomics approach. METHODS Labrador retrievers (20 females/13 males; mean age: 4.9 y; range: 2.0-7.9 y) were fed semi-purified, nutritionally complete diets. After 4 wk of feeding a control diet (DL-Met; 1.37 g/1000 kcal), 17 dogs remained on this diet and 16 were transitioned to a test diet formulated to the estimated mean Met requirement (0.55 g/1000 kcal), with dietary total sulfur amino acid maintained with additional l-cystine (Cys). Dogs were individually fed diets to maintain a stable body weight at an ideal body condition score for 32 wk. Plasma samples from fasted blood collected at baseline and 8 and 32 wk were analyzed using untargeted metabolic profiling. RESULTS Analysis of metabolites (n = 593) confirmed our primary findings (increased Met, betaine, and dimethylglycine). Metabolite changes consistent with repartitioning choline to support Met cycling included reduced pools of lipids derived via phosphatidylethanolamine N-methyltransferase and enhanced fatty acid oxidation. Some changes were consistent with metabolomics studies reported in other species that used interventions known to extend life span (caloric- and Met-restricted diets or feeding strategy). CONCLUSIONS Changes in the plasma metabolome were consistent with reported adaptations to support Met-dependent activities. We propose that feeding a limited-Met, high-Cys diet using the estimated mean Met requirement in adult Labrador retrievers alters regulation of the Met cycle, thereby altering metabolism, similar to interventions that extend life span.
Collapse
Affiliation(s)
- David Allaway
- WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire, United Kingdom
| | - Matthew Harrison
- WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire, United Kingdom
| | - Richard Haydock
- WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire, United Kingdom
| | - Phillip Watson
- WALTHAM Petcare Science Institute, Melton Mowbray, Leicestershire, United Kingdom
| |
Collapse
|
12
|
Malin D, Lee Y, Chepikova O, Strekalova E, Carlson A, Cryns VL. Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells by inducing thioredoxin reductase. Breast Cancer Res Treat 2021; 190:373-387. [PMID: 34553295 DOI: 10.1007/s10549-021-06398-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Tumor cells are dependent on the glutathione and thioredoxin antioxidant pathways to survive oxidative stress. Since the essential amino acid methionine is converted to glutathione, we hypothesized that methionine restriction (MR) would deplete glutathione and render tumors dependent on the thioredoxin pathway and its rate-limiting enzyme thioredoxin reductase (TXNRD). METHODS Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control or MR media and the effects on reactive oxygen species (ROS) and antioxidant signaling were examined. To determine the role of TXNRD in MR-induced cell death, TXNRD1 was inhibited by RNAi or the pan-TXNRD inhibitor auranofin, an antirheumatic agent. Metastatic and PDX TNBC mouse models were utilized to evaluate in vivo antitumor activity. RESULTS MR rapidly and transiently increased ROS, depleted glutathione, and decreased the ratio of reduced glutathione/oxidized glutathione in TNBC cells. TXNRD1 mRNA and protein levels were induced by MR via a ROS-dependent mechanism mediated by the transcriptional regulators NRF2 and ATF4. MR dramatically sensitized TNBC cells to TXNRD1 silencing and the TXNRD inhibitor auranofin, as determined by crystal violet staining and caspase activity; these effects were suppressed by the antioxidant N-acetylcysteine. H-Ras-transformed MCF-10A cells, but not untransformed MCF-10A cells, were highly sensitive to the combination of auranofin and MR. Furthermore, dietary MR induced TXNRD1 expression in mammary tumors and enhanced the antitumor effects of auranofin in metastatic and PDX TNBC murine models. CONCLUSION MR exposes a vulnerability of TNBC cells to the TXNRD inhibitor auranofin by increasing expression of its molecular target and creating a dependency on the thioredoxin pathway.
Collapse
Affiliation(s)
- Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Yoonkyu Lee
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Olga Chepikova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Alexis Carlson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
13
|
Fang H, Stone KP, Ghosh S, Forney LA, Gettys TW. The Role of Reduced Methionine in Mediating the Metabolic Responses to Protein Restriction Using Different Sources of Protein. Nutrients 2021; 13:nu13082609. [PMID: 34444768 PMCID: PMC8399679 DOI: 10.3390/nu13082609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction using elemental diets. Although the soy-based control diets supported faster growth compared to casein-based control diets, casein-based protein restriction and soy-based protein restriction produced comparable reductions in body weight and fat deposition, and similar increases in energy intake, energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction. The present findings support the feasibility of using restricted intake of diets from various protein sources to produce therapeutically effective implementation of dietary methionine restriction.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura A. Forney
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA;
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing & Adipocyte Signaling, 6400 Perkins Road, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (H.F.); (K.P.S.)
- Correspondence:
| |
Collapse
|
14
|
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021; 12:3486. [PMID: 34108489 PMCID: PMC8190293 DOI: 10.1038/s41467-021-23856-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Collapse
|
15
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Rev Proteomics 2021; 18:571-606. [PMID: 34107825 DOI: 10.1080/14789450.2021.1940143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-pregnancy overweight and obesity, depending on maternal nutrition and metabolic state, can influence fetal, neonatal and long-term offspring health, regarding cardio-metabolic, respiratory, immunological and cognitive outcomes. Thus, maternal weight can act, through mechanisms that are not full understood, on the physiology and metabolism of some fetal organs and tissues, to adapt themselves to the intrauterine environment and nutritional reserves. These effects could occur by modulating gene expression, neonatal microbiome, and through breastfeeding. AREAS COVERED In this paper, we investigated the potential effects of metabolites found altered in breast milk (BM) of overweight/obese mothers, through an extensive review of metabolomics studies, and the potential short- and long-term clinical effects in the offspring, especially regarding overweight, glucose homeostasis, insulin resistance, oxidative stress, infections, immune processes, and neurodevelopment. EXPERT OPINION Metabolomics seems the ideal tool to investigate BM variation depending on maternal or fetal/neonatal factors. In particular, BM metabolome alterations according to maternal conditions were recently pointed out in cases of gestational diabetes, preeclampsia, intrauterine growth restriction and maternal overweight/obesity. In our opinion, even if BM is the food of choice in neonatal nutrition, the deepest comprehension of its composition in overweight/obese mothers could allow targeted supplementation, to improve offspring health and metabolic homeostasis.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, section of Pediatrics, University of Pisa, Italy. Via Roma, 55, 56126 Pisa PI, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| |
Collapse
|
16
|
Hepatic Nfe2l2 Is Not an Essential Mediator of the Metabolic Phenotype Produced by Dietary Methionine Restriction. Nutrients 2021; 13:nu13061788. [PMID: 34073838 PMCID: PMC8225036 DOI: 10.3390/nu13061788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The principal sensing of dietary methionine restriction (MR) occurs in the liver, where it activates multiple transcriptional programs that mediate various biological components of the response. Hepatic Fgf21 is a key target and essential endocrine mediator of the metabolic phenotype produced by dietary MR. The transcription factor, Nfe2l2, is also activated by MR and functions in tandem with hepatic Atf4 to transactivate multiple, antioxidative components of the integrated stress response. However, it is unclear whether the transcriptional responses linked to Nfe2l2 activation by dietary MR are essential to the biological efficacy of the diet. Using mice with liver-specific deletion of Nfe2l2 (Nfe2l2fl/(Alb)) and their floxed littermates (Nfe2l2fl/fl) fed either Control or MR diets, the absence of hepatic Nfe2l2 had no effect on the ability of the MR diet to increase FGF21, reduce body weight and adiposity, and increase energy expenditure. Moreover, the primary elements of the hepatic transcriptome were similarly affected by MR in both genotypes, with the only major differences occurring in induction of the P450-associated drug metabolism pathway and the pentose glucuronate interconversion pathway. The biological significance of these pathways is uncertain but we conclude that hepatic Nfe2l2 is not essential in mediating the metabolic effects of dietary MR.
Collapse
|
17
|
Fang H, Stone KP, Forney LA, Sims LC, Gutierrez GC, Ghosh S, Gettys TW. Implementation of dietary methionine restriction using casein after selective, oxidative deletion of methionine. iScience 2021; 24:102470. [PMID: 34113817 PMCID: PMC8169944 DOI: 10.1016/j.isci.2021.102470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023] Open
Abstract
Dietary methionine restriction (MR) is normally implemented using diets formulated from elemental amino acids (AA) that reduce methionine content to ∼0.17%. However, translational implementation of MR with elemental AA-based diets is intractable due to poor palatability. To solve this problem and restrict methionine using intact proteins, casein was subjected to mild oxidation to selectively reduce methionine. Diets were then formulated using oxidized casein, adding back methionine to produce a final concentration of 0.17%. The biological efficacy of dietary MR using the oxidized casein (Ox Cas) diet was compared with the standard elemental MR diet in terms of the behavioral, metabolic, endocrine, and transcriptional responses to the four diets. The Ox Cas MR diet faithfully reproduced the expected physiological, biochemical, and transcriptional responses in liver and inguinal white adipose tissue. Collectively, these findings demonstrate that dietary MR can be effectively implemented using casein after selective oxidative reduction of methionine.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Laura A. Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Landon C. Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Gabriela C. Gutierrez
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Program in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
18
|
Stone KP, Ghosh S, Kovalik JP, Orgeron M, Wanders D, Sims LC, Gettys TW. The acute transcriptional responses to dietary methionine restriction are triggered by inhibition of ternary complex formation and linked to Erk1/2, mTOR, and ATF4. Sci Rep 2021; 11:3765. [PMID: 33580171 PMCID: PMC7880992 DOI: 10.1038/s41598-021-83380-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
The initial sensing of dietary methionine restriction (MR) occurs in the liver where it activates an integrated stress response (ISR) that quickly reduces methionine utilization. The ISR program is regulated in part by ATF4, but ATF4's prototypical upstream regulator, eIF2α, is not acutely activated by MR. Bioinformatic analysis of RNAseq and metabolomics data from liver samples harvested 3 h and 6 h after initiating MR shows that general translation is inhibited at the level of ternary complex formation by an acute 50% reduction of hepatic methionine that limits formation of initiator methionine tRNA. The resulting ISR is induced by selective expression of ATF4 target genes that mediate adaptation to reduced methionine intake and return hepatic methionine to control levels within 4 days of starting the diet. Complementary in vitro experiments in HepG2 cells after knockdown of ATF4, or inhibition of mTOR or Erk1/2 support the conclusion that the early induction of genes by MR is partially dependent on ATF4 and regulated by both mTOR and Erk1/2. Taken together, these data show that initiation of dietary MR induces an mTOR- and Erk1/2-dependent stress response that is linked to ATF4 by the sharp, initial drop in hepatic methionine and resulting repression of translation pre-initiation.
Collapse
Affiliation(s)
- Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, USA
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jean Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Manda Orgeron
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
19
|
Effect of Methionine Restriction on Aging: Its Relationship to Oxidative Stress. Biomedicines 2021; 9:biomedicines9020130. [PMID: 33572965 PMCID: PMC7911310 DOI: 10.3390/biomedicines9020130] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Enhanced oxidative stress is closely related to aging and impaired metabolic health and is influenced by diet-derived nutrients and energy. Recent studies have shown that methionine restriction (MetR) is related to longevity and metabolic health in organisms from yeast to rodents. The effect of MetR on lifespan extension and metabolic health is mediated partially through a reduction in oxidative stress. Methionine metabolism is involved in the supply of methyl donors such as S-adenosyl-methionine (SAM), glutathione synthesis and polyamine metabolism. SAM, a methionine metabolite, activates mechanistic target of rapamycin complex 1 and suppresses autophagy; therefore, MetR can induce autophagy. In the process of glutathione synthesis in methionine metabolism, hydrogen sulfide (H2S) is produced through cystathionine-β-synthase and cystathionine-γ-lyase; however, MetR can induce increased H2S production through this pathway. Similarly, MetR can increase the production of polyamines such as spermidine, which are involved in autophagy. In addition, MetR decreases oxidative stress by inhibiting reactive oxygen species production in mitochondria. Thus, MetR can attenuate oxidative stress through multiple mechanisms, consequently associating with lifespan extension and metabolic health. In this review, we summarize the current understanding of the effects of MetR on lifespan extension and metabolic health, focusing on the reduction in oxidative stress.
Collapse
|
20
|
Topology predicts long-term functional outcome in early psychosis. Mol Psychiatry 2021; 26:5335-5346. [PMID: 32632207 PMCID: PMC8589664 DOI: 10.1038/s41380-020-0826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/02/2022]
Abstract
Early intervention in psychosis is crucial to improving patient response to treatment and the functional deficits that critically affect their long-term quality of life. Stratification tools are needed to personalize functional deficit prevention strategies at an early stage. In the present study, we applied topological tools to analyze symptoms of early psychosis patients, and detected a clear stratification of the cohort into three groups. One of the groups had a significantly better psychosocial outcome than the others after a 3-year clinical follow-up. This group was characterized by a metabolic profile indicative of an activated antioxidant response, while that of the groups with poorer outcome was indicative of oxidative stress. We replicated in a second cohort the finding that the three distinct clinical profiles at baseline were associated with distinct outcomes at follow-up, thus validating the predictive value of this new stratification. This approach could assist in personalizing treatment strategies.
Collapse
|
21
|
Effect of Dietary Methionine Deficiency Followed by a Re-Feeding Phase on the Hepatic Antioxidant Activities of Lambs. Animals (Basel) 2020; 11:ani11010007. [PMID: 33374518 PMCID: PMC7822206 DOI: 10.3390/ani11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Our objective was to investigate the effect of methionine restriction and resuming supply on liver antioxidant response in lambs. The concentrations of methionine and its metabolites and the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive factor, were detected after methionine restriction treatment for 50 days and methionine supply recovery for 29 days. The expression of glutathione (GSH) S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were characterized at the level of transcription and translation. Methionine restriction can directly change the content of methionine and its metabolites in plasma and liver, and affect the redox state of lambs by activating the Nrf2 signaling pathway. Liver tissue can adapt to oxidative environment by upregulating the expression of antioxidant enzymes such as GSH-Px and SOD. Moreover, it was found that there was a lag effect in the recovery of metabolism after methionine supplementation.
Collapse
|
22
|
Forney LA, Fang H, Sims LC, Stone KP, Vincik LY, Vick AM, Gibson AN, Burk DH, Gettys TW. Dietary Methionine Restriction Signals to the Brain Through Fibroblast Growth Factor 21 to Regulate Energy Balance and Remodeling of Adipose Tissue. Obesity (Silver Spring) 2020; 28:1912-1921. [PMID: 32959519 PMCID: PMC7513464 DOI: 10.1002/oby.22919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Restricting dietary methionine to 0.17% in mice increases energy expenditure (EE), reduces fat deposition, and improves metabolic health by increasing hepatic fibroblast growth factor 21 (FGF21). The goal of this study was to compare each of these responses in mice with the coreceptor for FGF21 deleted in either adipose tissue or the brain. METHODS Methionine-restriction (MR) diets were fed to age-matched cohorts of mice with the coreceptor for FGF21 deleted in either adipose tissue or the brain. The physiological and transcriptional responses to MR were compared in the respective cohorts. RESULTS Tissue-specific deletion of the FGF21 coreceptor in adipose tissue did not abrogate the ability of dietary MR to increase EE and reduce fat deposition. Tissue-specific deletion of the FGF21 coreceptor from the brain produced mice that were unable to respond to the effects of MR on EE or the remodeling of adipose tissue. CONCLUSIONS The increase in FGF21 produced by dietary MR acts primarily in the brain to produce its physiological effects on energy balance. In contrast, the effects of MR on hepatic gene expression were intact in both models, supporting a mechanism that directly links detection of reduced methionine in the liver to transcriptional mechanisms that alter gene expression in the liver.
Collapse
Affiliation(s)
- Laura A Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Leighann Y Vincik
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Alicia M Vick
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | | - David H Burk
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
23
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol 2020; 11:1533. [PMID: 32793208 PMCID: PMC7385070 DOI: 10.3389/fimmu.2020.01533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal overweight and obesity can impair the pregnancy outcome and represent risk factors for several neonatal, childhood, and adult conditions, including excessive weight gain, cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently, breast milk (BM) composition in such category of mothers was not completely defined. In this field, metabolomics represents the ideal technology, able to detect the whole profile of low molecular weight molecules in BM. Limited information is available on human BM metabolites differences in overweight or obese compared to lean mothers. Analyzing all the metabolomics studies published on Medline in English language, this review evaluated the effects that 8 specific types of metabolites found altered by maternal overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols, acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert on the risk of offspring obesity development and other potentially associated health outcomes and complications. However, metabolites variations in samples collected from overweight and obese mothers and the potentially correlated effects highlighted below still need further investigations and should be confirmed in future metabolomics studies on larger samples. Finally, the positive or negative influence of maternal overweight and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed in close correlation with maternal age, genetic and environmental factors, including diet, and taking into account the interactions occurring between BM metabolites and lactobiome. The evaluation of all the factors affecting BM metabolites in overweight and obese mothers can lead to the comprehensive description of such biofluid and the related effects on breastfed subjects, potentially highlighting personalized needs of BM supplementation or short- and long-term prevention strategies to optimize offspring health.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| |
Collapse
|
24
|
Meyer S, Schäfer L, Röhrig J, Maheshwari G, Most E, Zorn H, Ringseis R, Eder K, Gessner DK. Supplementation of Sulfur-Containing Amino Acids or Essential Amino Acids Does Not Reverse the Hepatic Lipid-Lowering Effect of a Protein-Rich Insect Meal in Obese Zucker Rats. Nutrients 2020; 12:nu12040987. [PMID: 32252339 PMCID: PMC7230462 DOI: 10.3390/nu12040987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/16/2023] Open
Abstract
The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While group C received a diet with casein, the IM-fed groups received a diet with IM as the protein source. In groups IM + Met, IM + Cys and IM + EAA, the diets were additionally supplemented with methionine, cysteine and essential amino acids (EAA), respectively. Hepatic concentrations of triacylglycerols and cholesterol, and hepatic mRNA levels and activities of lipogenic and cholesterogenic enzymes were markedly lower in the IM-fed groups than in group C (p < 0.05). All of these parameters either did not differ across the IM-fed groups or were only slightly higher in groups IM + Met, IM + Cys and IM+EAA than in the group IM. In conclusion, the results indicate that a difference in the amino acid composition between IM and casein, a low concentration of methionine in IM and a reduced cysteine synthesis secondary to a decreased methionine availability resulting from feeding IM are not causative for the lipid-lowering effect of IM.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Lea Schäfer
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Julia Röhrig
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Garima Maheshwari
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Str. 2, 35394 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
- Correspondence: ; Tel./Fax: +49-641-9939231
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (S.M.); (L.S.); (J.R.); (G.M.); (E.M.); (K.E.); (D.K.G.)
| |
Collapse
|
25
|
Forney LA, Stone KP, Gibson AN, Vick AM, Sims LC, Fang H, Gettys TW. Sexually Dimorphic Effects of Dietary Methionine Restriction are Dependent on Age when the Diet is Introduced. Obesity (Silver Spring) 2020; 28:581-589. [PMID: 32012481 PMCID: PMC7042039 DOI: 10.1002/oby.22721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Restricting dietary methionine to 0.17% in male mice increases energy expenditure, reduces fat deposition, and improves metabolic health. The goal of this work was to compare each of these responses in postweaning male and female mice and in physically mature male and female mice. METHODS Methionine-restricted (MR) diets were fed to age-matched cohorts of male and female mice for 8 to 10 weeks beginning at 8 weeks of age or beginning at 4 months of age. The physiological and transcriptional responses to MR were compared in the respective cohorts. RESULTS Dietary MR produced sexually dimorphic changes in body composition in young growing animals, with males preserving lean at the expense of fat and females preserving fat at the expense of lean. The effects of MR on energy balance were comparable between sexes when the diet was initiated after attainment of physical maturity (4 months), and metabolic and endocrine responses were also comparable between males and females after 8 weeks on the MR diet. CONCLUSIONS The sexually dimorphic effects of MR are limited to nutrient partitioning between lean and fat tissue deposition in young, growing mice. Introduction of the diet after physical maturity produced comparable effects on growth and metabolic responses in male and female mice.
Collapse
Affiliation(s)
- Laura A Forney
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Amanda N Gibson
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Alicia M Vick
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Landon C Sims
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Han Fang
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing & Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
26
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
27
|
The effect of short-term methionine restriction on glutathione synthetic capacity and antioxidant responses at the whole tissue and mitochondrial level in the rat liver. Exp Gerontol 2019; 127:110712. [PMID: 31472257 DOI: 10.1016/j.exger.2019.110712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Dietary methionine restriction (MR) where methionine is the sole source of sulfur amino acid increases lifespan in diverse species. Methionine restricted rodents experience a decrease in glutathione (GSH), a major antioxidant, in several tissues, which is paradoxical to longevity interventions because tissues with low GSH might experience more oxidative damage. Liver plays a key role in GSH synthesis and here we examined how MR influences GSH metabolism in the liver. We also hypothesised that low GSH might be subsidized by compensatory pathway(s) in the liver. To investigate GSH synthesis and antioxidant responses, Fischer-344 rats were given either a MR diet or a control diet for 8 weeks. Based on γ-glutamylcysteine synthetase activity, GSH synthetic capacity did not respond to low dietary methionine availability. Tissue level protein and lipid oxidation markers do not support elevated oxidative damage, despite low GSH availability. Whole tissue and mitochondrial level responses to MR differed. Specifically, the activity of glutathione reductase and thioredoxin reductase increase in whole liver tissue which might offset the effects of declined GSH availability whereas mitochondrial GSH levels were unperturbed by MR. Moreover, enhanced proton leak in liver mitochondria by MR (4 week) presumably diminishes ROS production. Taken together, we suggest that the effect of low GSH in liver tissue is subsidized, at least in part, by increased antioxidant activity and possibly by enhanced mitochondrial proton leak.
Collapse
|
28
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Meyer S, Gessner DK, Wen G, Most E, Liebisch G, Zorn H, Ringseis R, Eder K. The Antisteatotic and Hypolipidemic Effect of Insect Meal in Obese Zucker Rats is Accompanied by Profound Changes in Hepatic Phospholipid and 1-Carbon Metabolism. Mol Nutr Food Res 2019; 63:e1801305. [PMID: 30688013 DOI: 10.1002/mnfr.201801305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Indexed: 12/30/2022]
Abstract
SCOPE The hypothesis is tested that insect meal, which has a low methionine content, reduces the hepatic phosphatidylcholine (PC):phosphatidylethanolamine (PE) ratio, which is a critical determinant of hepatic lipid synthesis, by decreasing availability of the methionine metabolite S-adenosylmethionine (SAM). METHODS AND RESULTS Obese rats (n = 24) are randomly divided into two groups (Obese Casein and Obese Insect) of 12 rats each. In addition, lean rats (n = 12) are used as control group (LC). Groups LC and OC receive a control diet with casein as protein source, whereas in the OI group, casein is replaced isonitrogenously by insect meal, which is found to be less digestible (-12% units). Plasma and liver concentrations of lipids and hepatic expression of lipid synthesizing genes are reduced in the OI group compared to the OC group. Plasma and liver concentration of PC and the PC:PE ratio are decreased in the OI group compared to the OC group, while hepatic concentration of SAM and the hepatic SAM:S-adenosylhomocysteine (SAH) ratio is lower in the OI group than in the OC group. CONCLUSION The decrease of the hepatic PC:PE ratio is probably a key mechanism explaining the pronounced antisteatotic and hypolipidemic action of insect meal in obese rats.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Str. 2, 35394, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
30
|
Yin J, Ren W, Chen S, Li Y, Han H, Gao J, Liu G, Wu X, Li T, Woo Kim S, Yin Y. Metabolic Regulation of Methionine Restriction in Diabetes. Mol Nutr Food Res 2018; 62:e1700951. [PMID: 29603632 DOI: 10.1002/mnfr.201700951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Indexed: 12/16/2022]
Abstract
Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction (MR) and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway (PPP), and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Yuying Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Hui Han
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Jing Gao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xin Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| |
Collapse
|
31
|
Yang Z, Yang HM, Gong DQ, Rose SP, Pirgozliev V, Chen XS, Wang ZY. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018; 97:3463-3477. [PMID: 29931118 DOI: 10.3382/ps/pey242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Dietary methionine (Met) restriction produces a coordinated series of transcriptional responses in the liver that limits growth performance and amino acid metabolism. Methyl donor supplementation with betaine (Bet) may protect against this disturbance and affect the molecular basis of gene regulation. However, a lack of genetic information remains an obstacle to understand the mechanisms underlying the relationship between Met and Bet supplementation and its effects on genetic mechanisms. The goal of this study was to identify the effects of dietary supplementation of Met and Bet on growth performance, transcriptomic gene expression, and epigenetic mechanisms in geese on a Met-deficient diet. One hundred and fifty 21-day-old healthy male Yangzhou geese of similar body weight were randomly distributed into 3 groups with 5 replicates per treatment and 10 geese per replicate: Met-deficient diet (Control), Control+1.2 g/kg of Met (Met), and Control+0.6 g/kg of Bet (Bet). All geese had free access to the diet and water throughout rearing. Our results indicated that supplementation of 1.2 g/kg of Met in Met-deficient feed increased growth performance and plasma homocysteine (HCY) levels, indicating increased transsulfuration flux in the liver. Supplementation of 0.6 g/kg Bet had no apparent sparing effect on Met needs for growth performance in growing geese. The expression of many genes critical for Met metabolism is increased in Met supplementation group. In the Bet-supplemented group, genes involved in energy production and conversion were up-regulated. Dietary supplementation with Bet and Met also altered DNA methylation. We observed changes in the methylation of the LOC106032502 promoter and corresponding changes in mRNA expression. In conclusion, Met and Bet supplementation in geese affects the transcriptional regulatory network and alters the hepatic DNA methylation of LOC106032502.
Collapse
Affiliation(s)
- Z Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China.,The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - S P Rose
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - V Pirgozliev
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - X S Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| |
Collapse
|
32
|
Tamanna N, Mayengbam S, House JD, Treberg JR. Methionine restriction leads to hyperhomocysteinemia and alters hepatic H 2S production capacity in Fischer-344 rats. Mech Ageing Dev 2018; 176:9-18. [PMID: 30367932 DOI: 10.1016/j.mad.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Dietary methionine restriction (MR) increases lifespan in several animal models. Despite low dietary intake of sulphur amino acids, rodents on MR develop hyperhomocysteinemia. On the contrary, MR has been reported to increase H2S production in mice. Enzymes involved in homocysteine metabolism also take part in H2S production and hence, in this study, the impact of MR on hyperhomocysteinemia and H2S production capacity were investigated using Fischer-344 rats assigned either a control or a MR diet for 8 weeks. The MR animals showed elevated plasma homocysteine accompanied with a reduction in liver cysteine content and methylation potential. It was further found that MR decreased cystathionine-β-synthase (CBS) activity in the liver, however, MR increased hepatic cystathionine-γ-lyase (CGL) activity which is the second enzyme in the transsulfuration pathway and also participates in regulating H2S production. The relative contribution of CGL in H2S production increased concomitantly with the increased CGL activity. Additionally, hepatic mercaptopyruvate-sulphur-transferase (MPST) activity also increased in response to MR. Taken together, our results suggest that reduced CBS activity and S-Adenosylmethionine availability contributes to hyperhomocysteinimia in MR animals. Elevated CGL and MPST activities may provide a compensatory mechanism for maintaining hepatic H2S production capacity in response to the decreased CBS activity.
Collapse
Affiliation(s)
- Nahid Tamanna
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Shyamchand Mayengbam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - James D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
33
|
Forney LA, Stone KP, Wanders D, Gettys TW. Sensing and signaling mechanisms linking dietary methionine restriction to the behavioral and physiological components of the response. Front Neuroendocrinol 2018; 51:36-45. [PMID: 29274999 PMCID: PMC6013330 DOI: 10.1016/j.yfrne.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Dietary methionine restriction (MR) is implemented using a semi-purified diet that reduces methionine by ∼80% and eliminates dietary cysteine. Within hours of its introduction, dietary MR initiates coordinated series of transcriptional programs and physiological responses that include increased energy intake and expenditure, decreased adiposity, enhanced insulin sensitivity, and reduction in circulating and tissue lipids. Significant progress has been made in cataloguing the physiological responses to MR in males but not females, but identities of the sensing and communication networks that orchestrate these responses remain poorly understood. Recent work has implicated hepatic FGF21 as an important mediator of MR, but it is clear that other mechanisms are also involved. The goal of this review is to explore the temporal and spatial organization of the responses to dietary MR as a model for understanding how nutrient sensing systems function to integrate complex transcriptional, physiological, and behavioral responses to changes in dietary composition.
Collapse
Affiliation(s)
- Laura A Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Kirsten P Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, United States
| | - Thomas W Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States.
| |
Collapse
|