1
|
Zubair A, Bibi B, Habib F, Sujan A, Ali M. Clinical trials and recent progress in HIV vaccine development. Funct Integr Genomics 2024; 24:143. [PMID: 39192058 DOI: 10.1007/s10142-024-01425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
The greatest obstacle for scientists is to develop an effective HIV vaccine. An effective vaccine represents the last hope for halting the unstoppable global spread of HIV and its catastrophic clinical consequences. Creating this vaccine has been challenging due to the virus's extensive genetic variability and the unique role of cytotoxic T lymphocytes (CTL) in containing it. Innovative methods to stimulate CTL have demonstrated significant therapeutic advantages in nonhuman primate model systems, unlike traditional vaccination techniques that are not expected to provide safe and efficient protection against HIV. Human clinical trials are currently evaluating these vaccination strategies, which involve plasmid DNA and live recombinant vectors. This review article covers the existing vaccines and ongoing trial vaccines. It also explores the different approaches used in developing HIV vaccines, including their molecular mechanisms, target site effectiveness, and potential side effects.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| | - Bushra Bibi
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Faiza Habib
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Arooba Sujan
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Muhammad Ali
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| |
Collapse
|
2
|
Furlong JC, Darley PD, Deng W, Mullins JI, Bumgarner RE. Phylobook: a tool for display, clade annotation and extraction of sequences from molecular phylogenies. Biotechniques 2024; 76:263-274. [PMID: 38700279 DOI: 10.2144/btn-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
As the volume of sequence data from variable pathogens increases, means of analyzing, annotating and extracting specific taxa for study becomes more difficult. To meet these challenges for datasets with hundreds to thousands of taxa, 'Phylobook' was developed. Starting with a sequence alignment file, Phylobook generates and displays phylogenetic trees adjacent to highlighter plots showing the position of mutations, and allows the user to identify lineages and recombinants, annotate and export selected subsets of sequences for downstream analysis. Accurate lineage assignment, which is difficult to automate, is aided using annotations created by different clustering methods. Phylobook provides web-based display combined with automated clustering and manual editing to allow for expert assessment and correction of lineage assignments and extraction for downstream analysis.
Collapse
Affiliation(s)
- Jeffrey C Furlong
- Department of Microbiology, University of Washington School of Medicine, Box 358070, WA 98195-8070, USA
| | - Peter D Darley
- Department of Microbiology, University of Washington School of Medicine, Box 358070, WA 98195-8070, USA
| | - Wenjie Deng
- Department of Microbiology, University of Washington School of Medicine, Box 358070, WA 98195-8070, USA
| | - James I Mullins
- Department of Microbiology, University of Washington School of Medicine, Box 358070, WA 98195-8070, USA
| | - Roger E Bumgarner
- Department of Microbiology, University of Washington School of Medicine, Box 358070, WA 98195-8070, USA
| |
Collapse
|
3
|
Williamson BD, Magaret CA, Karuna S, Carpp LN, Gelderblom HC, Huang Y, Benkeser D, Gilbert PB. Application of the SLAPNAP statistical learning tool to broadly neutralizing antibody HIV prevention research. iScience 2023; 26:107595. [PMID: 37654470 PMCID: PMC10466901 DOI: 10.1016/j.isci.2023.107595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
Combination monoclonal broadly neutralizing antibody (bnAb) regimens are in clinical development for HIV prevention, necessitating additional knowledge of bnAb neutralization potency/breadth against circulating viruses. Williamson et al. (2021) described a software tool, Super LeArner Prediction of NAb Panels (SLAPNAP), with application to any HIV bnAb regimen with sufficient neutralization data against a set of viruses in the Los Alamos National Laboratory's Compile, Neutralize, and Tally Nab Panels repository. SLAPNAP produces a proteomic antibody resistance (PAR) score for Env sequences based on predicted neutralization resistance and estimates variable importance of Env amino acid features. We apply SLAPNAP to compare HIV bnAb regimens undergoing clinical testing, finding improved power for downstream sieve analyses and increased precision for comparing neutralization potency/breadth of bnAb regimens due to the inclusion of PAR scores of Env sequences with much larger sample sizes available than for neutralization outcomes. SLAPNAP substantially improves bnAb regimen characterization, ranking, and down-selection.
Collapse
Affiliation(s)
- Brian D. Williamson
- Biostatistics Division; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Craig A. Magaret
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- GreenLight Biosciences, Medford, MA 02155, USA
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Huub C. Gelderblom
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Global Health; University of Washington, Seattle, WA 98105, USA
| | - David Benkeser
- Department of Biostatistics and Bioinformatics; Emory University, Atlanta, GA 30322, USA
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics; University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Sanusi B, Cai J, Hudgens MG. Nonparametric estimation of marked survival data in the presence of dependent censoring. Stat Med 2023; 42:1995-2008. [PMID: 36945185 PMCID: PMC10192031 DOI: 10.1002/sim.9710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
We consider nonparametrically estimating the joint distribution of a survival time and mark variable, where the survival time is subject to right censoring and the mark variable is only observed when the survival time is not censored. The possibility of dependent censoring is allowed for using inverse probability of censoring weights. The proposed estimator is shown to be consistent and asymptotically normal. Finite sample behavior of the proposed methods are investigated via simulation study. Finally, we illustrate the nonparametric estimator from a recent HIV vaccine efficacy trial.
Collapse
Affiliation(s)
- Busola Sanusi
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Michael G. Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, McMichael AJ, Kelsoe G, Hahn BH, Alt F, Shaw GM. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol 2023; 23:142-158. [PMID: 35962033 PMCID: PMC9372928 DOI: 10.1038/s41577-022-00753-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
After nearly four decades of research, a safe and effective HIV-1 vaccine remains elusive. There are many reasons why the development of a potent and durable HIV-1 vaccine is challenging, including the extraordinary genetic diversity of HIV-1 and its complex mechanisms of immune evasion. HIV-1 envelope glycoproteins are poorly recognized by the immune system, which means that potent broadly neutralizing antibodies (bnAbs) are only infrequently induced in the setting of HIV-1 infection or through vaccination. Thus, the biology of HIV-1-host interactions necessitates novel strategies for vaccine development to be designed to activate and expand rare bnAb-producing B cell lineages and to select for the acquisition of critical improbable bnAb mutations. Here we discuss strategies for the induction of potent and broad HIV-1 bnAbs and outline the steps that may be necessary for ultimate success.
Collapse
Affiliation(s)
- Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA.
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Kshitij Wagh
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University of School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Baxter J, Langhorne S, Shi T, Tully DC, Villabona-Arenas CJ, Hué S, Albert J, Leigh Brown A, Atkins KE. Inferring the multiplicity of founder variants initiating HIV-1 infection: a systematic review and individual patient data meta-analysis. THE LANCET. MICROBE 2023; 4:e102-e112. [PMID: 36642083 DOI: 10.1016/s2666-5247(22)00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND HIV-1 infections initiated by multiple founder variants are characterised by a higher viral load and a worse clinical prognosis than those initiated with single founder variants, yet little is known about the routes of exposure through which transmission of multiple founder variants is most probable. Here we used individual patient data to calculate the probability of multiple founders stratified by route of HIV exposure and study methodology. METHODS We conducted a systematic review and meta-analysis of studies that estimated founder variant multiplicity in HIV-1 infection, searching MEDLINE, Embase, and Global Health databases for papers published between Jan 1, 1990, and Sept 14, 2020. Eligible studies must have reported original estimates of founder variant multiplicity in people with acute or early HIV-1 infections, have clearly detailed the methods used, and reported the route of exposure. Studies were excluded if they reported data concerning people living with HIV-1 who had known or suspected superinfection, who were documented as having received pre-exposure prophylaxis, or if the transmitting partner was known to be receiving antiretroviral treatment. Individual patient data were collated from all studies, with authors contacted if these data were not publicly available. We applied logistic meta-regression to these data to estimate the probability that an HIV infection is initiated by multiple founder variants. We calculated a pooled estimate using a random effects model, subsequently stratifying this estimate across exposure routes in a univariable analysis. We then extended our model to adjust for different study methods in a multivariable analysis, recalculating estimates across the exposure routes. This study is registered with PROSPERO, CRD42020202672. FINDINGS We included 70 publications in our analysis, comprising 1657 individual patients. Our pooled estimate of the probability that an infection is initiated by multiple founder variants was 0·25 (95% CI 0·21-0·29), with moderate heterogeneity (Q=132·3, p<0·0001, I2=64·2%). Our multivariable analysis uncovered differences in the probability of multiple variant infection by exposure route. Relative to a baseline of male-to-female transmission, the predicted probability for female-to-male multiple variant transmission was significantly lower at 0·13 (95% CI 0·08-0·20), and the probabilities were significantly higher for transmissions in people who inject drugs (0·37 [0·24-0·53]) and men who have sex with men (0·30 [0·33-0·40]). There was no significant difference in the probability of multiple variant transmission between male-to-female transmission (0·21 [0·14-0·31]), post-partum transmission (0·18 [0·03-0·57]), pre-partum transmission (0·17 [0·08-0·33]), and intra-partum transmission (0·27 [0·14-0·45]). INTERPRETATION We identified that transmissions in people who inject drugs and men who have sex with men are significantly more likely to result in an infection initiated by multiple founder variants, and female-to-male infections are significantly less probable. Quantifying how the routes of HIV infection affect the transmission of multiple variants allows us to better understand how the evolution and epidemiology of HIV-1 determine clinical outcomes. FUNDING Medical Research Council Precision Medicine Doctoral Training Programme and a European Research Council Starting Grant.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, The University of Edinburgh, Edinburgh, UK.
| | - Sarah Langhorne
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Ting Shi
- Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Damien C Tully
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ch Julián Villabona-Arenas
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Stéphane Hué
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E Atkins
- Usher Institute, The University of Edinburgh, Edinburgh, UK; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
7
|
Lewitus E, Sanders-Buell E, Bose M, O'Sullivan AM, Poltavee K, Li Y, Bai H, Mdluli T, Donofrio G, Slike B, Zhao H, Wong K, Chen L, Miller S, Lee J, Ahani B, Lepore S, Muhammad S, Grande R, Tran U, Dussupt V, Mendez-Rivera L, Nitayaphan S, Kaewkungwal J, Pitisuttithum P, Rerks-Ngarm S, O'Connell RJ, Janes H, Gilbert PB, Gramzinski R, Vasan S, Robb ML, Michael NL, Krebs SJ, Herbeck JT, Edlefsen PT, Mullins JI, Kim JH, Tovanabutra S, Rolland M. RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evol 2021; 7:veab057. [PMID: 34532060 PMCID: PMC8438874 DOI: 10.1093/ve/veab057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
The scale of the HIV-1 epidemic underscores the need for a vaccine. The multitude of circulating HIV-1 strains together with HIV-1’s high evolvability hints that HIV-1 could adapt to a future vaccine. Here, we wanted to investigate the effect of vaccination on the evolution of the virus post-breakthrough infection. We analyzed 2,635 HIV-1 env sequences sampled up to a year post-diagnosis from 110 vaccine and placebo participants who became infected in the RV144 vaccine efficacy trial. We showed that the Env signature sites that were previously identified to distinguish vaccine and placebo participants were maintained over time. In addition, fewer sites were under diversifying selection in the vaccine group than in the placebo group. These results indicate that HIV-1 would possibly adapt to a vaccine upon its roll-out.
Collapse
Affiliation(s)
- Eric Lewitus
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Meera Bose
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Kultida Poltavee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Yifan Li
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hongjun Bai
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Thembi Mdluli
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bonnie Slike
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Shana Miller
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Jenica Lee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bahar Ahani
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Steven Lepore
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sevan Muhammad
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Rebecca Grande
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Ursula Tran
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Vincent Dussupt
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Sorachai Nitayaphan
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Robert J O'Connell
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Holly Janes
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Robert Gramzinski
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, WRAIR, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Paul T Edlefsen
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jerome H Kim
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Morgane Rolland
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| |
Collapse
|
8
|
Sobia P, Archary D. Preventive HIV Vaccines-Leveraging on Lessons from the Past to Pave the Way Forward. Vaccines (Basel) 2021; 9:vaccines9091001. [PMID: 34579238 PMCID: PMC8472969 DOI: 10.3390/vaccines9091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Almost four decades on, since the 1980’s, with hundreds of HIV vaccine candidates tested in both non-human primates and humans, and several HIV vaccines trials later, an efficacious HIV vaccine continues to evade us. The enormous worldwide genetic diversity of HIV, combined with HIV’s inherent recombination and high mutation rates, has hampered the development of an effective vaccine. Despite the advent of antiretrovirals as pre-exposure prophylaxis and preventative treatment, which have shown to be effective, HIV infections continue to proliferate, highlighting the great need for a vaccine. Here, we provide a brief history for the HIV vaccine field, with the most recent disappointments and advancements. We also provide an update on current passive immunity trials, testing proof of the concept of the most clinically advanced broadly neutralizing monoclonal antibodies for HIV prevention. Finally, we include mucosal immunity, the importance of vaccine-elicited immune responses and the challenges thereof in the most vulnerable environment–the female genital tract and the rectal surfaces of the gastrointestinal tract for heterosexual and men who have sex with men transmissions, respectively.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa;
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: ; Tel.: +27-(0)-31-655-0540
| |
Collapse
|
9
|
Chua JV, Davis C, Husson JS, Nelson A, Prado I, Flinko R, Lam KWJ, Mutumbi L, Mayer BT, Dong D, Fulp W, Mahoney C, Gerber M, Gottardo R, Gilliam BL, Greene K, Gao H, Yates N, Ferrari G, Tomaras G, Montefiori D, Schwartz JA, Fouts T, DeVico AL, Lewis GK, Gallo RC, Sajadi MM. Safety and immunogenicity of an HIV-1 gp120-CD4 chimeric subunit vaccine in a phase 1a randomized controlled trial. Vaccine 2021; 39:3879-3891. [PMID: 34099328 PMCID: PMC8224181 DOI: 10.1016/j.vaccine.2021.05.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 05/23/2021] [Indexed: 01/14/2023]
Abstract
A major challenge for HIV vaccine development is to raise anti-envelope antibodies capable of recognizing and neutralizing diverse strains of HIV-1. Accordingly, a full length single chain (FLSC) of gp120-CD4 chimeric vaccine construct was designed to present a highly conserved CD4-induced (CD4i) HIV-1 envelope structure that elicits cross-reactive anti-envelope humoral responses and protective immunity in animal models of HIV infection. IHV01 is the FLSC formulated in aluminum phosphate adjuvant. We enrolled 65 healthy adult volunteers in this first-in-human phase 1a randomized, double-blind, placebo-controlled study with three dose-escalating cohorts (75 µg, 150 µg, and 300 µg doses). Intramuscular injections were given on weeks 0, 4, 8, and 24. Participants were followed for an additional 24 weeks after the last immunization. The overall incidence of adverse events (AEs) was not significantly different between vaccinees and controls. The majority (89%) of vaccine-related AE were mild. The most common vaccine-related adverse event was injection site pain. There were no vaccine-related serious AE, discontinuation due to AE, intercurrent HIV infection, or significant decreases in CD4 count. By the final vaccination, all vaccine recipients developed antibodies against IHV01 and demonstrated anti-CD4i epitope antibodies. The elicited antibodies reacted with CD4 non-liganded Env antigens from diverse HIV-1 strains. Antibody-dependent cell-mediated cytotoxicity against heterologous infected cells or gp120 bound to CD4+ cells was evident in all cohorts as were anti-gp120 T-cell responses. IHV01 vaccine was safe, well tolerated, and immunogenic at all doses tested. The vaccine raised broadly reactive humoral responses against conserved CD4i epitopes on gp120 that mediates antiviral functions.
Collapse
Affiliation(s)
- Joel V Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Davis
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer S Husson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy Nelson
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ilia Prado
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin Flinko
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ka Wing J Lam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lydiah Mutumbi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan Dong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Monica Gerber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bruce L Gilliam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kelli Greene
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Timothy Fouts
- Advanced BioScience Laboratories, Rockville, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Global Virus Network, Baltimore, MD, USA
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Global Virus Network, Baltimore, MD, USA
| | - Robert C Gallo
- Global Virus Network, Baltimore, MD, USA; Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohammad M Sajadi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Intralytix, Columbia, MD, USA.
| |
Collapse
|
10
|
Hessell AJ, Li L, Malherbe DC, Barnette P, Pandey S, Sutton W, Spencer D, Wang XH, Gach JS, Hunegnaw R, Tuen M, Jiang X, Luo CC, LaBranche CC, Shao Y, Montefiori DC, Forthal DN, Duerr R, Robert-Guroff M, Haigwood NL, Gorny MK. Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine-Induced Anti-V2 Antibodies Alone. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1266-1283. [PMID: 33536254 PMCID: PMC7946713 DOI: 10.4049/jimmunol.2001010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
The role of vaccine-induced anti-V2 Abs was tested in three protection experiments in rhesus macaques. In an experiment using immunogens similar to those in the RV144 vaccine trial (Anti-envelope [Env]), nine rhesus macaques were coimmunized with gp16092TH023 DNA and SIV gag and gp120A244 and gp120MN proteins. In two V2-focused experiments (Anti-V2 and Anti-V2 Mucosal), nine macaques in each group were immunized with V1V292TH023 DNA, V1V2A244 and V1V2CasaeA2 proteins, and cyclic V2CaseA2 peptide. DNA and protein immunogens, formulated in Adjuplex, were given at 0, 4, 12, and 20 weeks, followed by intrarectal SHIVBaL.P4 challenges. Peak plasma viral loads (PVL) of 106-107 copies/ml developed in all nine sham controls. Overall, PVL was undetectable in one third of immunized macaques, and two animals tightly controlled the virus with the Anti-V2 Mucosal vaccine strategy. In the Anti-Env study, Abs that captured or neutralized SHIVBaL.P4 inversely correlated with PVL. Conversely, no correlation with PVL was found in the Anti-V2 experiments with nonneutralizing plasma Abs that only captured virus weakly. Titers of Abs against eight V1V2 scaffolds and cyclic V2 peptides were comparable between controllers and noncontrollers as were Ab-dependent cellular cytotoxicity and Ab-dependent cell-mediated virus inhibition activities against SHIV-infected target cells and phagocytosis of gp120-coated beads. The Anti-Env experiment supports the role of vaccine-elicited neutralizing and nonneutralizing Abs in control of PVL. However, the two V2-focused experiments did not support a role for nonneutralizing V2 Abs alone in controlling PVL, as neither Ab-dependent cellular cytotoxicity, Ab-dependent cell-mediated virus inhibition, nor phagocytosis correlated inversely with heterologous SHIVBaL.P4 infection.
Collapse
Affiliation(s)
- Ann J Hessell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - William Sutton
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Xiao-Hong Wang
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ruth Hunegnaw
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Tuen
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, NC 27710; and
| | - Yongzhao Shao
- Department of Population Health, New York University School of Medicine, New York, NY 10016
| | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
11
|
Affiliation(s)
- Cesar J. Lopez Angel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
12
|
Gorny MK. Search for antiviral functions of potentially protective antibodies against V2 region of HIV-1. Hum Vaccin Immunother 2020; 16:2033-2041. [PMID: 32701369 PMCID: PMC7553674 DOI: 10.1080/21645515.2020.1787070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the only successful RV144 vaccine trial to date, high levels of antibodies (Abs) against the V2 region of the virus envelope protein gp120 correlated with reduced HIV-1 infection. The protective role of V2 Abs has not yet been determined, and the antiviral function of V2 Abs that mediate protection against HIV-1 in humans or SHIV infection in rhesus macaques remains unclear. V2 Abs do not neutralize resistant tier 2 viruses; their Fc-mediated activities are modest and similar to those of another anti-envelope Abs, and inhibition of the gp120–α4β7 integrin interaction is ineffective in both animals and clinical trials. Moreover, in protection experiments in monkeys, levels of V1V2 vaccine-induced V2 Abs do not correlate with plasma viral load. Together, these observations suggest that V2 Abs may not control SHIV infection in rhesus macaques and that V2 Abs may instead be a surrogate marker of other protective immune responses.
Collapse
Affiliation(s)
- Miroslaw K Gorny
- Department of Pathology, New York University Grossman School of Medicine , New York, NY, USA
| |
Collapse
|
13
|
Ouattara A, Niangaly A, Adams M, Coulibaly D, Kone AK, Traore K, Laurens MB, Tolo Y, Kouriba B, Diallo DA, Doumbo OK, Plowe CV, Djimdé A, Thera MA, Laufer MK, Takala-Harrison S, Silva JC. Epitope-based sieve analysis of Plasmodium falciparum sequences from a FMP2.1/AS02 A vaccine trial is consistent with differential vaccine efficacy against immunologically relevant AMA1 variants. Vaccine 2020; 38:5700-5706. [PMID: 32571720 DOI: 10.1016/j.vaccine.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023]
Abstract
To prevent premature dismissal of promising vaccine programs, it is critical to determine if lack of efficacy in the field is due to allele specific-efficacy, rather than to the lack of immunogenicity of the candidate antigen. Here we use samples collected during a field trial of the AMA1-based FMP2.1/AS02A malaria vaccine, which incorporates the AMA1 variant encoded by the reference Plasmodium falciparum 3D7 strain, to assess the usefulness of epitope-based sieve analysis for the detection of vaccine-induced allele-specific immune responses. The samples used are from volunteers who received the malaria vaccine FMP2.1/AS02A or a control (rabies vaccine), during a vaccine efficacy field trial, and who later developed malaria. In a previous study, P. falciparum DNA was extracted from all samples, and the ama1 locus amplified and sequenced. Here, a sieve analysis was used to measure T and B-cell escape, and difference in 3D7-like epitopes in the two treatment arms. Overall, no difference was observed in mean amino acid distance to the 3D7 AMA1 variant between sequences from vaccinees and controls in B-cell epitopes. However, we found a significantly greater proportion of 3D7-like T-cell epitopes that map to the AMA1 cluster one loop (c1L) region in the control vs. the vaccinee group (p = 0.02), consistent with allele-specific vaccine efficacy. Interestingly, AMA1 epitopes in infections from vaccinees had higher mean IC50, and consequently lower binding affinity, than epitopes generated from the control group (p = 0.01), suggesting that vaccine-induced selection impacted the immunological profile of the strains that pass through the sieve imposed by the vaccine-induced protection. These findings are consistent with a vaccine-derived sieve effect on the c1L region of AMA1 and suggest that sieve analyses of malaria vaccine trial samples targeted to epitopes identified in silico can help identify protective malaria antigens that may be efficacious if combined in a multivalent vaccine.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA; Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Abdoulaye K Kone
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Dapa A Diallo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | | | - Abdoulaye Djimdé
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, BP 1805, Bamako, Mali.
| | - Miriam K Laufer
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Heath, University of Maryland School of Medicine, 685 West Baltimore Street HSF1-480 Baltimore, MD 21201, USA.
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, 670 West Baltimore St, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Although HIV-1 diversity is a critical barrier to HIV-1 vaccine development, implementing vaccine strategies that directly address HIV-1 genetic specificities has been challenging. Here, we discuss the intersection between HIV-1 phylogenetics and vaccine development. RECENT FINDINGS We describe the vaccine regimens that are currently tested in two vaccine efficacy trials and recent research highlighting HIV-1 genetic features that were associated with the development of broadly neutralizing antibodies. SUMMARY Compared with how widely HIV-1 diversity is recognized as a critical issue for vaccine research, relatively few genetically informed vaccine solutions have been compared, in part because the lack of correlates of protection against HIV-1 limits the ability to develop and test multiple vaccine candidates in a fully rational manner. Yet, recent findings have provided a better understanding of the viral features associated with the development of broad and potent neutralizing antibodies, offering new avenues for engineering vaccine candidates. Future research should also plan to address potential consequences associated with the rollout of an efficacious vaccine, including the possibility of vaccine resistance spreading in the population.
Collapse
|
15
|
Rolland M, Tovanabutra S, Dearlove B, Li Y, Owen CL, Lewitus E, Sanders-Buell E, Bose M, O’Sullivan A, Rossenkhan R, Labuschagne JPL, Edlefsen PT, Reeves DB, Kijak G, Miller S, Poltavee K, Lee J, Bonar L, Harbolick E, Ahani B, Pham P, Kibuuka H, Maganga L, Nitayaphan S, Sawe FK, Eller LA, Gramzinski R, Kim JH, Michael NL, Robb ML. Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathog 2020; 16:e1008179. [PMID: 32027734 PMCID: PMC7004303 DOI: 10.1371/journal.ppat.1008179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023] Open
Abstract
Most HIV-1 infected individuals do not know their infection dates. Precise infection timing is crucial information for studies that document transmission networks or drug levels at infection. To improve infection timing, we used the prospective RV217 cohort where the window when plasma viremia becomes detectable is narrow: the last negative visit occurred a median of four days before the first detectable HIV-1 viremia with an RNA test, referred below as diagnosis. We sequenced 1,280 HIV-1 genomes from 39 participants at a median of 4, 32 and 170 days post-diagnosis. HIV-1 infections were dated by using sequence-based methods and a viral load regression method. Bayesian coalescent and viral load regression estimated that infections occurred a median of 6 days prior to diagnosis (IQR: 9–3 and 11–4 days prior, respectively). Poisson-Fitter, which analyzes the distribution of hamming distances among sequences, estimated a median of 7 days prior to diagnosis (IQR: 15–4 days) based on sequences sampled 4 days post-diagnosis, but it did not yield plausible results using sequences sampled at 32 days. Fourteen participants reported a high-risk exposure event at a median of 8 days prior to diagnosis (IQR: 12 to 6 days prior). These different methods concurred that HIV-1 infection occurred about a week before detectable viremia, corresponding to 20 days (IQR: 34–15 days) before peak viral load. Together, our methods comparison helps define a framework for future dating studies in early HIV-1 infection. HIV-1 infected individuals rarely know when they became infected but knowing when an infection occurred provides critical information regarding HIV-1 pathogenesis and epidemiology. Using a unique cohort in which infection was known to have occurred in a narrow interval, we investigated methods to estimate the timing of infections. Several methods suggested that HIV-1 infection typically occurs a median of one week before the infection can be detected by HIV-1 RNA testing. Going forward, we provide a strategy that can be used to elucidate the origin of an acute/early infection.
Collapse
Affiliation(s)
- Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail:
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Bethany Dearlove
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Christopher L. Owen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - AnneMarie O’Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Gustavo Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Shana Miller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kultida Poltavee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jenica Lee
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Lydia Bonar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Elizabeth Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Bahar Ahani
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Phuc Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Lucas Maganga
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | | | - Fred K. Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Robert Gramzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | | |
Collapse
|
16
|
Cross-Reactive CD8 T-Cell Responses Elicited by Adenovirus Type 5-Based HIV-1 Vaccines Contributed to Early Viral Evolution in Vaccine Recipients Who Became Infected. J Virol 2020; 94:JVI.01632-19. [PMID: 31645444 DOI: 10.1128/jvi.01632-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022] Open
Abstract
Because of HIV's vast sequence diversity, the ability of the CD8 T-cell response to recognize several variants of a single epitope is an important consideration for vaccine design. Cross-recognition of viral epitopes by CD8 T cells is associated with viral control during HIV-1 infection, but little is known about CD8 cross-reactivity in the context of HIV-1 vaccination. Here, we evaluated vaccine-induced CD8 cross-reactivity in two preventative HIV-1 vaccine efficacy trials, the MRKAd5 and DNA/rAd5 studies. Cross-reactive CD8 responses elicited by vaccination were similar in magnitude and frequency to those induced during acute HIV-1 infection. Although responses directed against variant epitopes were less avid than responses to vaccine-matched epitopes, we did not detect any difference in response polyfunctionality (the proportion of cells producing multiple effector molecules). And while depth, or the frequency of cross-reactive responses, did not correlate with viral loads in recipients who became infected, cross-reactivity did appear to influence early viral evolution. In comparing viral sequences of placebo versus vaccine recipients, we found that viral sequences from vaccinees encoded CD8 epitopes with more substitutions and greater biochemical dissimilarity. In other words, breakthrough sequences of vaccinees would be less cross-recognized by vaccine-induced responses. Additionally, vaccine-induced CD8 T cells poorly cross-recognized variant epitopes encoding HLA-I-associated adaptations, further supporting our conclusion that these responses play a role in driving early HIV-1 viral evolution.IMPORTANCE HIV-1 has exceptionally high sequence diversity, much of which is found within CD8 epitopes. Therefore, the ability of CD8 T cells to recognize multiple versions of a single epitope could be important for an effective vaccine. Here, we show that two previously tested vaccines induced a similar level of CD8 cross-reactivity to that seen in acute HIV-1 infection. Although this cross-reactivity did not seem to affect viral control in vaccine recipients who became infected, we identified several ways in which CD8 cross-reactivity appeared to influence HIV-1 viral evolution. First, we saw that strains isolated from infected vaccine recipients would likely be poorly cross-recognized by the vaccine-induced response. Second, we saw that adapted CD8 epitopes were poorly cross-recognized in both vaccination and infection. Collectively, we believe these results show that CD8 cross-reactivity could be an important consideration in future HIV-1 vaccine design.
Collapse
|
17
|
Marchese V, Dal Zoppo S, Quaresima V, Rossi B, Matteelli A. Vaccines for STIs: Present and Future Directions. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Charles TP, Derdeyn CA. Striking a balance in an antibody network: A roadmap for HIV-1 vaccines. J Clin Invest 2019; 129:4580-4582. [PMID: 31589166 PMCID: PMC6819087 DOI: 10.1172/jci132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With almost 2 million new HIV-1 infections in 2018, a highly effective vaccine is imperative. Vaccine-elicited HIV-1 antibodies contribute to protection through multiple nonneutralizing activities, but the exact mechanisms remain unknown. In this issue of the JCI, Neidich and associates sought to determine how antibodies contributed to reducing the risk of HIV-1 acquisition in a phase IIb preventative vaccine efficacy trial, HVTN 505. Their studies revealed that antibody-dependent cellular phagocytosis (ADCP) and FcγRIIa binding were strongly associated with reduced HIV-1 risk; however, HIV-1 envelope-specific IgG3, IgA; and host FcγRIIa genotype also influenced risk. This study highlights the intricate interactions between antibodies and innate immune functions in humans.
Collapse
Affiliation(s)
| | - Cynthia A. Derdeyn
- Emory Vaccine Center
- Yerkes National Primate Center, and
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Li SS, Gilbert PB, Carpp LN, Pyo CW, Janes H, Fong Y, Shen X, Neidich SD, Goodman D, deCamp A, Cohen KW, Ferrari G, Hammer SM, Sobieszczyk ME, Mulligan MJ, Buchbinder SP, Keefer MC, DeJesus E, Novak RM, Frank I, McElrath MJ, Tomaras GD, Geraghty DE, Peng X. Fc Gamma Receptor Polymorphisms Modulated the Vaccine Effect on HIV-1 Risk in the HVTN 505 HIV Vaccine Trial. J Virol 2019; 93:e02041-18. [PMID: 31434737 PMCID: PMC6803257 DOI: 10.1128/jvi.02041-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.
Collapse
Affiliation(s)
- Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Scott D Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mark J Mulligan
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan P Buchbinder
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Michael C Keefer
- Division of Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
20
|
Neidich SD, Fong Y, Li SS, Geraghty DE, Williamson BD, Young WC, Goodman D, Seaton KE, Shen X, Sawant S, Zhang L, deCamp AC, Blette BS, Shao M, Yates NL, Feely F, Pyo CW, Ferrari G, Frank I, Karuna ST, Swann EM, Mascola JR, Graham BS, Hammer SM, Sobieszczyk ME, Corey L, Janes HE, McElrath MJ, Gottardo R, Gilbert PB, Tomaras GD. Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. J Clin Invest 2019; 129:4838-4849. [PMID: 31589165 PMCID: PMC6819135 DOI: 10.1172/jci126391] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
HVTN 505 is a preventative vaccine efficacy trial testing DNA followed by recombinant adenovirus serotype 5 (rAd5) in circumcised, Ad5-seronegative men and transgendered persons who have sex with men in the United States. Identified immune correlates of lower HIV-1 risk and a virus sieve analysis revealed that, despite lacking overall efficacy, vaccine-elicited responses exerted pressure on infecting HIV-1 viruses. To interrogate the mechanism of the antibody correlate of HIV-1 risk, we examined antigen-specific antibody recruitment of Fcγ receptors (FcγRs), antibody-dependent cellular phagocytosis (ADCP), and the role of anti-envelope (anti-Env) IgG3. In a prespecified immune correlates analysis, antibody-dependent monocyte phagocytosis and antibody binding to FcγRIIa correlated with decreased HIV-1 risk. Follow-up analyses revealed that anti-Env IgG3 breadth correlated with reduced HIV-1 risk, anti-Env IgA negatively modified infection risk by Fc effector functions, and that vaccine recipients with a specific FcγRIIa single-nucleotide polymorphism locus had a stronger correlation with decreased HIV-1 risk when ADCP, Env-FcγRIIa, and IgG3 binding were high. Additionally, FcγRIIa engagement correlated with decreased viral load setpoint in vaccine recipients who acquired HIV-1. These data support a role for vaccine-elicited anti-HIV-1 Env IgG3, antibody engagement of FcRs, and phagocytosis as potential mechanisms for HIV-1 prevention.
Collapse
Affiliation(s)
- Scott D. Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Youyi Fong
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Shuying S. Li
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brian D. Williamson
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | | | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Kelly E. Seaton
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Lu Zhang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | | | - Bryan S. Blette
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Mengshu Shao
- Statistical Center for HIV/AIDS Research and Prevention
| | - Nicole L. Yates
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Frederick Feely
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Chul-Woo Pyo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - HVTN 505 Team
- The HVTN 505 Team is detailed in the Supplemental Acknowledgments
| | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Scott M. Hammer
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly E. Janes
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raphael Gottardo
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B. Gilbert
- Statistical Center for HIV/AIDS Research and Prevention
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery and
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
21
|
Fong Y, Shen X, Ashley VC, Deal A, Seaton KE, Yu C, Grant SP, Ferrari G, deCamp AC, Bailer RT, Koup RA, Montefiori D, Haynes BF, Sarzotti-Kelsoe M, Graham BS, Carpp LN, Hammer SM, Sobieszczyk M, Karuna S, Swann E, DeJesus E, Mulligan M, Frank I, Buchbinder S, Novak RM, McElrath MJ, Kalams S, Keefer M, Frahm NA, Janes HE, Gilbert PB, Tomaras GD. Modification of the Association Between T-Cell Immune Responses and Human Immunodeficiency Virus Type 1 Infection Risk by Vaccine-Induced Antibody Responses in the HVTN 505 Trial. J Infect Dis 2019; 217:1280-1288. [PMID: 29325070 PMCID: PMC6018910 DOI: 10.1093/infdis/jiy008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/06/2018] [Indexed: 11/13/2022] Open
Abstract
Background HVTN 505 was a human immunodeficiency virus type 1 (HIV-1) preventive vaccine efficacy trial of a DNA/recombinant adenovirus serotype 5 (rAd5) vaccine regimen. We assessed antibody responses measured 1 month after final vaccination (month 7) as correlates of HIV-1 acquisition risk. Methods Binding antibody responses were quantified in serum samples from 25 primary endpoint vaccine cases (diagnosed with HIV-1 infection between month 7 and month 24) and 125 randomly sampled frequency-matched vaccine controls (HIV-1 negative at month 24). We prespecified for a primary analysis tier 6 antibody response biomarkers that measure immunoglobulin G (IgG) and immunoglobulin A (IgA) binding to Env proteins and 2 previously assessed T-cell response biomarkers. Results Envelope-specific IgG responses were significantly correlated with decreased HIV-1 risk. Moreover, the interaction of IgG responses and Env-specific CD8+ T-cell polyfunctionality score had a highly significant association with HIV-1 risk after adjustment for multiple comparisons. Conclusions Vaccinees with higher levels of Env IgG have significantly decreased HIV-1 risk when CD8+ T-cell responses are low. Moreover, vaccinees with high CD8+ T-cell responses generally have low risk, and those with low CD8+ T-cell and low Env antibody responses have high risk. These findings suggest the critical importance of inducing a robust IgG Env response when the CD8+ T-cell response is low.
Collapse
Affiliation(s)
- Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Vicki C Ashley
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Aaron Deal
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Kelly E Seaton
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Chenchen Yu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Shannon P Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryl
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryl
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina.,Department of Immunology, Duke University, Durham, North Carolina
| | - Marcella Sarzotti-Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina.,Department of Immunology, Duke University, Durham, North Carolina
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryl
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Scott M Hammer
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York
| | - Magda Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Edith Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryl
| | | | - Mark Mulligan
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia
| | - Susan Buchbinder
- Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco
| | - Richard M Novak
- Division of Infectious Diseases, University of Illinois at Chicago
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Spyros Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Michael Keefer
- University of Rochester Medical Center, Rochester, New York
| | - Nicole A Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle
| | - Holly E Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina.,Department of Surgery, Duke University, Durham, North Carolina.,Department of Immunology, Duke University, Durham, North Carolina.,Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| |
Collapse
|
22
|
Rossenkhan R, Rolland M, Labuschagne JPL, Ferreira RC, Magaret CA, Carpp LN, Matsen Iv FA, Huang Y, Rudnicki EE, Zhang Y, Ndabambi N, Logan M, Holzman T, Abrahams MR, Anthony C, Tovanabutra S, Warth C, Botha G, Matten D, Nitayaphan S, Kibuuka H, Sawe FK, Chopera D, Eller LA, Travers S, Robb ML, Williamson C, Gilbert PB, Edlefsen PT. Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-infection Estimation towards Enhanced Vaccine Efficacy Assessment. Viruses 2019; 11:E607. [PMID: 31277299 PMCID: PMC6669737 DOI: 10.3390/v11070607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5-10 days for sequences collected 1-2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection.
Collapse
Affiliation(s)
- Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jan P L Labuschagne
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town 7535, South Africa
| | - Roux-Cil Ferreira
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Frederick A Matsen Iv
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erika E Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yuanyuan Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nonkululeko Ndabambi
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Murray Logan
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Ted Holzman
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Melissa-Rose Abrahams
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Colin Anthony
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Christopher Warth
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gordon Botha
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - David Matten
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Fred K Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho 20200, Kenya
| | - Denis Chopera
- Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), Africa Health Research Institute, Durban 4001, South Africa
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Simon Travers
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town 7535, South Africa
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Carolyn Williamson
- Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Magaret CA, Benkeser DC, Williamson BD, Borate BR, Carpp LN, Georgiev IS, Setliff I, Dingens AS, Simon N, Carone M, Simpkins C, Montefiori D, Alter G, Yu WH, Juraska M, Edlefsen PT, Karuna S, Mgodi NM, Edugupanti S, Gilbert PB. Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Comput Biol 2019; 15:e1006952. [PMID: 30933973 PMCID: PMC6459550 DOI: 10.1371/journal.pcbi.1006952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/11/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
The broadly neutralizing antibody (bnAb) VRC01 is being evaluated for its efficacy to prevent HIV-1 infection in the Antibody Mediated Prevention (AMP) trials. A secondary objective of AMP utilizes sieve analysis to investigate how VRC01 prevention efficacy (PE) varies with HIV-1 envelope (Env) amino acid (AA) sequence features. An exhaustive analysis that tests how PE depends on every AA feature with sufficient variation would have low statistical power. To design an adequately powered primary sieve analysis for AMP, we modeled VRC01 neutralization as a function of Env AA sequence features of 611 HIV-1 gp160 pseudoviruses from the CATNAP database, with objectives: (1) to develop models that best predict the neutralization readouts; and (2) to rank AA features by their predictive importance with classification and regression methods. The dataset was split in half, and machine learning algorithms were applied to each half, each analyzed separately using cross-validation and hold-out validation. We selected Super Learner, a nonparametric ensemble-based cross-validated learning method, for advancement to the primary sieve analysis. This method predicted the dichotomous resistance outcome of whether the IC50 neutralization titer of VRC01 for a given Env pseudovirus is right-censored (indicating resistance) with an average validated AUC of 0.868 across the two hold-out datasets. Quantitative log IC50 was predicted with an average validated R2 of 0.355. Features predicting neutralization sensitivity or resistance included 26 surface-accessible residues in the VRC01 and CD4 binding footprints, the length of gp120, the length of Env, the number of cysteines in gp120, the number of cysteines in Env, and 4 potential N-linked glycosylation sites; the top features will be advanced to the primary sieve analysis. This modeling framework may also inform the study of VRC01 in the treatment of HIV-infected persons.
Collapse
Affiliation(s)
- Craig A. Magaret
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David C. Benkeser
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Brian D. Williamson
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bhavesh R. Borate
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lindsay N. Carpp
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adam S. Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology and Epidemiology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Noah Simon
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Christopher Simpkins
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David Montefiori
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michal Juraska
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shelly Karuna
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Nyaradzo M. Mgodi
- University of Zimbabwe College of Health Sciences Clinical Trials Research Centre, Harare, Zimbabwe
| | - Srilatha Edugupanti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division and Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Tay MZ, Wiehe K, Pollara J. Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Front Immunol 2019; 10:332. [PMID: 30873178 PMCID: PMC6404786 DOI: 10.3389/fimmu.2019.00332] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Antiviral activities of antibodies may either be dependent only on interactions between the antibody and cognate antigen, as in binding and neutralization of an infectious virion, or instead may require interactions between antibody-antigen immune complexes and immunoproteins or Fc receptor expressing immune effector cells. These Fc receptor-dependent antibody functions provide a direct link between the innate and adaptive immune systems by combining the potent antiviral activity of innate effector cells with the diversity and specificity of the adaptive humoral response. The Fc receptor-dependent function of antibody-dependent cellular phagocytosis (ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well as for stimulation of downstream adaptive immune responses by facilitating antigen presentation, or by stimulating the secretion of inflammatory mediators. In this review, we discuss the properties of Fc receptors, antibodies, and effector cells that influence ADCP. We also provide and interpret evidence from studies that support a potential role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe current approaches used to measure antiviral ADCP and discuss considerations for the translation of studies performed in animal models. We propose that additional investigation into the role of ADCP in protective viral responses, the specific virus epitopes targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved in ADCP at sites of virus infection will provide insight into strategies to successfully leverage this important immune response for improved antiviral immunity through rational vaccine design.
Collapse
Affiliation(s)
- Matthew Zirui Tay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Justin Pollara
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
25
|
Gilbert PB. Ongoing Vaccine and Monoclonal Antibody HIV Prevention Efficacy Trials and Considerations for Sequel Efficacy Trial Designs. ACTA ACUST UNITED AC 2019; 11. [PMID: 33312415 DOI: 10.1515/scid-2019-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four randomized placebo-controlled efficacy trials of a candidate vaccine or passively infused monoclonal antibody for prevention of HIV-1 infection are underway (HVTN 702 in South African men and women; HVTN 705 in sub-Saharan African women; HVTN 703/HPTN 081 in sub-Saharan African women; HVTN 704/HPTN 085 in U.S., Peruvian, Brazilian, and Swiss men or transgender persons who have sex with men). Several challenges are posed to the optimal design of the sequel efficacy trials, including: (1) how to account for the evolving mosaic of effective prevention interventions that may be part of the trial design or standard of prevention; (2) how to define viable and optimal sequel trial designs depending on the primary efficacy results and secondary "correlates of protection" results of each of the ongoing trials; and (3) how to define the primary objective of sequel efficacy trials if HIV-1 incidence is expected to be very low in all study arms such that a standard trial design has a steep opportunity cost. After summarizing the ongoing trials, I discuss statistical science considerations for sequel efficacy trial designs, both generally and specifically to each trial listed above. One conclusion is that the results of "correlates of protection" analyses, which ascertain how different host immunological markers and HIV-1 viral features impact HIV-1 risk and prevention efficacy, have an important influence on sequel trial design. This influence is especially relevant for the monoclonal antibody trials because of the focused pre-trial hypothesis that potency and coverage of serum neutralization constitutes a surrogate endpoint for HIV-1 infection. Another conclusion is that while assessing prevention efficacy against a counterfactual placebo group is fraught with risks for bias, such analysis is nonetheless important and study designs coupled with analysis methods should be developed to optimize such inferences. I draw a parallel with non-inferiority designs, which are fraught with risks given the necessity of making unverifiable assumptions for interpreting results, but nevertheless have been accepted when a superiority design is not possible and a rigorous/conservative non-inferiority margin is used. In a similar way, counterfactual placebo group efficacy analysis should use rigorous/conservative inference techniques that formally build in a rigorous/conservative margin to potential biases that could occur due to departures from unverifiable assumptions. Because reliability of this approach would require new techniques for verifying that the study cohort experienced substantial exposure to HIV-1, currently it may be appropriate as a secondary objective but not as a primary objective.
Collapse
Affiliation(s)
- Peter B Gilbert
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Biostatistics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Gao Y, McKay PF, Mann JFS. Advances in HIV-1 Vaccine Development. Viruses 2018; 10:E167. [PMID: 29614779 PMCID: PMC5923461 DOI: 10.3390/v10040167] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection.
Collapse
Affiliation(s)
- Yong Gao
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| | - Paul F McKay
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, W2 1PG, UK.
| | - Jamie F S Mann
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|