1
|
Tiruthani K, Cruz‐Teran C, Chan JFW, Ma A, McSweeney M, Wolf W, Yuan S, Poon VKM, Chan CCS, Botta L, Farrer B, Stewart I, Schaefer A, Edelstein J, Kumar P, Arora H, Hutchins JT, Hickey AJ, Yuen K, Lai SK. Engineering a "muco-trapping" ACE2-immunoglobulin hybrid with picomolar affinity as an inhaled, pan-variant immunotherapy for COVID-19. Bioeng Transl Med 2024; 9:e10650. [PMID: 39036085 PMCID: PMC11256170 DOI: 10.1002/btm2.10650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Soluble angiotensin-converting enzyme 2 (ACE2) can act as a decoy molecule that neutralizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by blocking spike (S) proteins on virions from binding ACE2 on host cells. Based on structural insights of ACE2 and S proteins, we designed a "muco-trapping" ACE2-Fc conjugate, termed ACE2-(G4S)6-Fc, comprised of the extracellular segment of ACE2 (lacking the C-terminal collectrin domain) that is linked to mucin-binding IgG1-Fc via an extended glycine-serine flexible linker. ACE2-(G4S)6-Fc exhibits substantially greater binding affinity and neutralization potency than conventional full length ACE2-Fc decoys or similar truncated ACE2-Fc decoys without flexible linkers, possessing picomolar binding affinity and strong neutralization potency against pseudovirus and live virus. ACE2-(G4S)6-Fc effectively trapped fluorescent SARS-CoV-2 virus like particles in fresh human airway mucus and was stably nebulized using a commercial vibrating mesh nebulizer. Intranasal dosing of ACE2-(G4S)6-Fc in hamsters as late as 2 days postinfection provided a 10-fold reduction in viral load in the nasal turbinate tissues by Day 4. These results strongly support further development of ACE2-(G4S)6-Fc as an inhaled immunotherapy for COVID-19, as well as other emerging viruses that bind ACE2 for cellular entry.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Carlos Cruz‐Teran
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jasper F. W. Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Alice Ma
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shoufeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Vincent K. M. Poon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Chris C. S. Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | | | - Brian Farrer
- Inhalon Biopharma, Inc.MorrisvilleNorth CarolinaUSA
| | - Ian Stewart
- RTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Alison Schaefer
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jasmine Edelstein
- UNC/NCSU Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Kumar
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Harendra Arora
- Department of Anesthesiology, School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | | | | | - Kwok‐Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulam, Hong Kong Special Administrative RegionChina
- Centre for Virology, Vaccinology and TherapeuticsHong Kong Science and Technology ParkHong Kong Special Administrative RegionChina
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Inhalon Biopharma, Inc.MorrisvilleNorth CarolinaUSA
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Zare H, Farkhondeh T, Bakherad H, Sharifi H, Shirzeyli MH, Samarghandian S, Ghasemi F. Covid-19 Prevention and Treatment by Targeting Fc-fusion Proteins: An Experience to Fight Emerging Diseases. Curr Mol Med 2024; 24:428-434. [PMID: 37038291 DOI: 10.2174/1566524023666230410093243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic has been considered a major threat to human health. Effective therapeutic approaches are urgently required. Spike protein and the Angiotensin-converting enzyme 2 (ACE2) receptors have critical roles in SARS-CoV-2 infection. As a result, these two proteins are considered potential targets for the development of a wide variety of biotherapeutics and vaccines for controlling Covid-19. The fusion proteins have desirable medicinal properties, including high serum half-life, stability, and solubility in the body. Moreover, other Fc-fusion proteins used to treat other diseases have no known side effects. These Fc-fusion proteins are valuable biopharmaceuticals and have been proposed as therapeutic candidates for the treatment and prevention of Covid-19 owing to their potential therapeutic benefits.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hengame Sharifi
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Hosseinzade Shirzeyli
- Department of Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
3
|
Wang X, Shi L, Wang Y, Chen J, Yang Z, Liu C, Liu X, Li Y, Zhang C, Sun A, Yan H, Sun H. Effects of the glycosylation of the receptor binding domain (RBD dimer)-based Covid-19 vaccine (ZF2001) on its humoral immunogenicity and immunoreactivity. Int J Biol Macromol 2023; 253:126874. [PMID: 37709229 DOI: 10.1016/j.ijbiomac.2023.126874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
The SARS-CoV-2 spike protein receptor-binding domain (RBD), which is a key target for the development of SARS-CoV-2 neutralizing antibodies and vaccines, mediates the binding of the host receptor angiotensin-converting enzyme 2 (ACE2). However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenicity of RBD-based vaccines (Ye et al., 2021). Here, our data suggested that the glycosylation significantly affected the humoral immunogenicity and immunoreactivity of the RBD-dimer-based Covid-19 vaccine (ZF2001) (Yang et al., 2021). Several deglycosylated types of ZF2001 (with sialic acid removed (ZF2001-ΔSA), sialic acid & O-glycans removed (ZF2001-ΔSA&O), N-glycans removed (ZF2001-ΔN), N- & O-glycans removed (ZF2001-ΔN&O)) were obtained by treatment with glycosidases. The binding affinity between deglycosylated types of ZF2001 and ACE2 was slightly weakened and that between deglycosylated types of ZF2001 and several monoclonal antibodies (mAbs) were also changed compared with ZF2001. The results of pseudovirus neutralization assay and binding affinity assay of all ZF2001 types revealed that the antigens with complex glycosylation had better humoral immunogenicity and immunoreactivity. Molecular dynamics simulation indicated that the more complex glycosylation of RBD corresponded to more hydrogen bonds formed between helper T-cell epitopes of RBD and major histocompatibility complex II (MHC-II). In summary, these results demonstrated that the glycosylation of RBD affects antigen presentation, humoral immunogenicity and immunoreactivity, which may be an important consideration for vaccine design and production technology.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Lulu Shi
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yirong Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Chen
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zelan Yang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Chenglong Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiaomei Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yang Li
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Can Zhang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Anhui Sun
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China.
| | - Hui Sun
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
4
|
Matthews AM, Biel TG, Ortega-Rodriguez U, Falkowski VM, Bush X, Faison T, Xie H, Agarabi C, Rao VA, Ju T. SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins. PLoS One 2022; 17:e0278294. [PMID: 36472974 PMCID: PMC9725131 DOI: 10.1371/journal.pone.0278294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (Covid-19) pandemic, continues to evolve and circulate globally. Current prophylactic and therapeutic countermeasures against Covid-19 infection include vaccines, small molecule drugs, and neutralizing monoclonal antibodies. SARS-CoV-2 infection is mainly mediated by the viral spike glycoprotein binding to angiotensin converting enzyme 2 (ACE2) on host cells for viral entry. As emerging mutations in the spike protein evade efficacy of spike-targeted countermeasures, a potential strategy to counter SARS-CoV-2 infection is to competitively block the spike protein from binding to the host ACE2 using a soluble recombinant fusion protein that contains a human ACE2 and an IgG1-Fc domain (ACE2-Fc). Here, we have established Chinese Hamster Ovary (CHO) cell lines that stably express ACE2-Fc proteins in which the ACE2 domain either has or has no catalytic activity. The fusion proteins were produced and purified to partially characterize physicochemical properties and spike protein binding. Our results demonstrate the ACE2-Fc fusion proteins are heavily N-glycosylated, sensitive to thermal stress, and actively bind to five spike protein variants (parental, alpha, beta, delta, and omicron) with different affinity. Our data demonstrates a proof-of-concept production strategy for ACE2-Fc fusion glycoproteins that can bind to different spike protein variants to support the manufacture of potential alternative countermeasures for emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alicia M. Matthews
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Thomas G. Biel
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Uriel Ortega-Rodriguez
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vincent M. Falkowski
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Talia Faison
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Cyrus Agarabi
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yusuf AP, Zhang JY, Li JQ, Muhammad A, Abubakar MB. Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100280. [PMID: 35463625 PMCID: PMC9014648 DOI: 10.1016/j.phyplu.2022.100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 04/21/2023]
Abstract
BACKGROUND The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. METHODS Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. RESULTS A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. CONCLUSION The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.
Collapse
Key Words
- 8-OHDG, 8-hydroxy-2’-deoxyguanosine
- ACE2
- ACE2, Angiotensin-converting enzyme 2
- ADMA, asymmetric de-methyl-arginine
- ARDS, acute respiratory distress syndrome
- COVID-19
- Comorbidity
- DM, diabetes mellitus
- Diabetes
- FBS, fasting blood sugar
- GLUT-4, glucose transporter-4
- GSK-3β, glycogen synthase kinase-3β
- HDL, high-density lipoprotein
- HOMA, homeostasis model assessment
- Herbal medication
- IAPP, islet amyloid polypeptide
- IFN, interferon
- IFNAR2, interferon-alpha receptor 2
- IL-6, interleukin-6
- LDL, low-density lipoprotein
- MDA, malondialdehyde
- Mpro, main protease
- Natural products
- PLpro, papain-like protease
- PON1, paraoxonase-1
- RBD, receptor-binding domain
- RCT, randomized control trial
- RdRp, RNA-dependent RNA polymerase
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SFJDC, Shufeng Jiedu Capsule
- T1D, type 1 diabetes
- T2D, type 2 diabetes
- TAC, total antioxidant capacity
- TMPRSS2, transmembrane protease serine 2
- hs-CRP, high-sensitivity C-reactive protein
Collapse
Affiliation(s)
- Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jing-Quan Li
- The first Affiliated Hospital, Hainan Medical University, Haikou, P.R. China
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810107, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, P.M.B. 2254, Sokoto, Nigeria
| |
Collapse
|
6
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Rollins Z, Harris B, George S, Faller R. A molecular dynamics investigation of N-glycosylation effects on T-cell receptor kinetics. J Biomol Struct Dyn 2022:1-10. [PMID: 35763488 DOI: 10.1080/07391102.2022.2091660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The binding interaction between the T-cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) is modulated by several factors (known and unknown), however, investigations into effects of glycosylation are limited. A fully glycosylated computational model of the TCR bound to the pMHC is developed to investigate the effects of glycosylation on dissociation kinetics from the pMHC. Here, we examine the effects of N-glycosylation on TCR-pMHC bond strength using steered molecular dynamic simulations. N-glycosylation is a post-translational modification that adds sugar moieties to molecules and can modulate the activity of several immune molecules. Using a TCR-pMHC pair found in melanoma as a case study, our study demonstrates that N-glycosylation of the TCR-pMHC alters the proteins' conformation; increases the bond lifetime; and increases the number of hydrogen bonds and Lennard-Jones Contacts involved in the TCR-pMHC bond. We find that weak glycan-protein or glycan-glycan interactions impact the equilibrated structure of the TCR and pMHC leading to an increase in the overall bond strength of the TCR-pMHC complex including the duration and energetic strength under constant load. These results indicate that N-glycosylation plays an important role in the TCR-pMHC bond and should be considered in future computational and experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zachary Rollins
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Bradley Harris
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| |
Collapse
|
8
|
Lai YC, Cheng YW, Chao CH, Chang YY, Chen CD, Tsai WJ, Wang S, Lin YS, Chang CP, Chuang WJ, Chen LY, Wang YR, Chang SY, Huang W, Wang JR, Tseng CK, Lin CK, Chuang YC, Yeh TM. Antigenic Cross-Reactivity Between SARS-CoV-2 S1-RBD and Its Receptor ACE2. Front Immunol 2022; 13:868724. [PMID: 35603169 PMCID: PMC9114768 DOI: 10.3389/fimmu.2022.868724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus responsible for the ongoing COVID-19 pandemic. SARS-CoV-2 binds to the human cell receptor angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain in the S1 subunit of the spike protein (S1-RBD). The serum levels of autoantibodies against ACE2 are significantly higher in patients with COVID-19 than in controls and are associated with disease severity. However, the mechanisms through which these anti-ACE2 antibodies are induced during SARS-CoV-2 infection are unclear. In this study, we confirmed the increase in antibodies against ACE2 in patients with COVID-19 and found a positive correlation between the amounts of antibodies against ACE2 and S1-RBD. Moreover, antibody binding to ACE2 was significantly decreased in the sera of some COVID-19 patients after preadsorption of the sera with S1-RBD, which indicated that antibodies against S1-RBD can cross-react with ACE2. To confirm this possibility, two monoclonal antibodies (mAbs 127 and 150) which could bind to both S1-RBD and ACE2 were isolated from S1-RBD-immunized mice. Measurement of the binding affinities by Biacore showed these two mAbs bind to ACE2 much weaker than binding to S1-RBD. Epitope mapping using synthetic overlapping peptides and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that the amino acid residues P463, F464, E465, R466, D467 and E471 of S1-RBD are critical for the recognition by mAbs 127 and 150. In addition, Western blotting analysis showed that these mAbs could recognize ACE2 only in native but not denatured form, indicating the ACE2 epitopes recognized by these mAbs were conformation-dependent. The protein-protein interaction between ACE2 and the higher affinity mAb 127 was analyzed by HDX-MS and visualized by negative-stain transmission electron microscopy imaging combined with antigen-antibody docking. Together, our results suggest that ACE2-cross-reactive anti-S1-RBD antibodies can be induced during SARS-CoV-2 infection due to potential antigenic cross-reactivity between S1-RBD and its receptor ACE2.
Collapse
Affiliation(s)
- Yen-Chung Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Yu-Wei Cheng
- Leadgene Biomedical, Inc., Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Wei-Jiun Tsai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc., Tainan, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Rollins ZA, Faller R, George SC. Using Molecular Dynamics Simulations to Interrogate T Cell Receptor Non-Equilibrium Kinetics. Comput Struct Biotechnol J 2022; 20:2124-2133. [PMID: 35832631 PMCID: PMC9092387 DOI: 10.1016/j.csbj.2022.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Insights into the atomic-scale interaction of the T Cell Receptor with the peptide Major Histocompatibility Complex. Investigation of the physiochemical features that correspond with T Cell Receptor recognition during dynamic dissociation. Implications of force-dependent non-equilibrium kinetics on T Cell Receptor mechanosensing.
An atomic-scale mechanism of T Cell Receptor (TCR) mechanosensing of peptides in the binding groove of the peptide-major histocompatibility complex (pMHC) may inform the design of novel TCRs for immunotherapies. Using steered molecular dynamics simulations, our study demonstrates that mutations to peptides in the binding groove of the pMHC – which are known to discretely alter the T cell response to an antigen – alter the MHC conformation at equilibrium. This subsequently impacts the overall strength (duration and length) of the TCR-pMHC bond under constant load. Moreover, physiochemical features of the TCR-pMHC dynamic bond strength, such as hydrogen bonds and Lennard-Jones contacts, correlate with the immunogenic response elicited by the specific peptide in the MHC groove. Thus, formation of transient TCR-pMHC bonds is characteristic of immunogenic peptides, and steered molecular dynamics simulations can be used in the overall design strategy of TCRs for immunotherapies.
Collapse
Affiliation(s)
- Zachary A. Rollins
- Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer Hall, Davis, CA 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, 1 Shields Ave, Bainer Hall, Davis, CA 95616, United States
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., GBSF 2303, Davis, CA 95616, United States
- Corresponding author at: Department of Biomedical Engineering, 451 E. Health Sciences Drive, Room 2315, University of California, Davis, CA 95616, United States.
| |
Collapse
|
10
|
Sardu C, Marfella R, Prattichizzo F, La Grotta R, Paolisso G, Ceriello A. Effect of Hyperglycemia on COVID-19 Outcomes: Vaccination Efficacy, Disease Severity, and Molecular Mechanisms. J Clin Med 2022; 11:jcm11061564. [PMID: 35329890 PMCID: PMC8955791 DOI: 10.3390/jcm11061564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Background/Aims: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded single-stranded RNA virus, a member of the subgenus Sarbecovirus (beta-CoV lineage B) and responsible for the coronavirus disease 2019 (COVID-19). COVID-19 encompasses a large range of disease severity, from mild symptoms to severe forms with Intensive Care Unit admission and eventually death. The severe forms of COVID-19 are usually observed in high-risk patients, such as those with type two diabetes mellitus. Here, we review the available evidence linking acute and chronic hyperglycemia to COVID-19 outcomes, describing also the putative mediators of such interactions. Findings/Conclusions: Acute hyperglycemia at hospital admission represents a risk factor for poor COVID-19 prognosis in patients with and without diabetes. Acute and chronic glycemic control are both emerging as major determinants of vaccination efficacy, disease severity and mortality rate in COVID-19 patients. Mechanistically, it has been proposed that hyperglycemia might be a disease-modifier for COVID-19 through multiple mechanisms: (a) induction of glycation and oligomerization of ACE2, the main receptor of SARS-CoV-2; (b) increased expression of the serine protease TMPRSS2, responsible for S protein priming; (c) impairment of the function of innate and adaptive immunity despite the induction of higher pro-inflammatory responses, both local and systemic. Consistently, managing acute hyperglycemia through insulin infusion has been suggested to improve clinical outcomes, while implementing chronic glycemic control positively affects immune response following vaccination. Although more research is warranted to better disentangle the relationship between hyperglycemia and COVID-19, it might be worth considering glycemic control as a potential route to optimize disease prevention and management.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (R.M.); (G.P.)
- Correspondence: (C.S.); (F.P.)
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (R.M.); (G.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Francesco Prattichizzo
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (R.L.G.); (A.C.)
- Correspondence: (C.S.); (F.P.)
| | - Rosalba La Grotta
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (R.L.G.); (A.C.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (R.M.); (G.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Via Fantoli 16/15, 20138 Milan, Italy; (R.L.G.); (A.C.)
| |
Collapse
|
11
|
Vargas-Rodriguez JR, Garza-Veloz I, Flores-Morales V, Badillo-Almaraz JI, Rocha-Pizaña MR, Valdés-Aguayo JJ, Martinez-Fierro ML. Hyperglycemia and Angiotensin-Converting Enzyme 2 in Pulmonary Function in the Context of SARS-CoV-2 Infection. Front Med (Lausanne) 2022; 8:758414. [PMID: 35096863 PMCID: PMC8792738 DOI: 10.3389/fmed.2021.758414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Since the appearance of the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 in China, diabetes mellitus (DM) and hyperglycemia in patients infected with SARS-CoV, represent independent predictors of mortality. Therefore, metabolic control has played a major role in the prognosis of these patients. In the current pandemic of coronavirus disease 19 (COVID-19), multiple studies have shown that DM is one of the main comorbidities associated with COVID-19 and higher risk of complications and death. The incidence and prevalence of COVID-19 complications and death related with hyperglycemia in patients with or without DM are high. There are many hypotheses related with worse prognosis and death related to COVID-19 and/or hyperglycemia. However, the information about the interplay between hyperglycemia and angiotensin-converting enzyme 2 (ACE2), the critical receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the context of SARS-CoV-2 infection, is almost null, but there is enough information to consider the possible participation of hyperglycemia in the glycation of this protein, unleashing a pool of reactions leading to acute respiratory distress syndrome and death in patients with COVID-19. In this document we investigated the current evidence related with ACE2 as a key element within the pathophysiological mechanism related with hyperglycemia extrapolating it to context of SARS-CoV-2 infection and its relationship with worse prognosis and death for COVID-19.
Collapse
Affiliation(s)
- Jose R Vargas-Rodriguez
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Virginia Flores-Morales
- Laboratorio de Sintesis Asimetrica y Bioenergetica, Ingenieria Quimica, Unidad Academica de Ciencias Quimicas, Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Jose I Badillo-Almaraz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Maria R Rocha-Pizaña
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey Campus Puebla, Puebla, Mexico
| | - José J Valdés-Aguayo
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y C.S., Campus UAZ Siglo XXI, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
12
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Shanshin DV, Rudometov AP, Karpenko LI, Belenkaya SV, Isaeva AA, Nesmeyanova VS, Kazachinskaia EI, Volosnikova EA, Esina TI, Zaykovskaya AV, Pyankov OV, Borisevich SS, Shelemba AA, Chikaev AN, Ilyichev AA. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines (Basel) 2022; 10:vaccines10010096. [PMID: 35062757 PMCID: PMC8779843 DOI: 10.3390/vaccines10010096] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
- Correspondence: ; Tel.: +7-383-363-47-00 (ext. 2007)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Center, 450078 Ufa, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Anton N. Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Novosibirsk, Russia; (I.A.M.); (M.B.B.); (D.V.S.); (A.P.R.); (L.I.K.); (S.V.B.); (A.A.I.); (V.S.N.); (E.I.K.); (E.A.V.); (T.I.E.); (A.V.Z.); (O.V.P.); (A.A.I.)
| |
Collapse
|
13
|
Huang Y, Harris BS, Minami SA, Jung S, Shah PS, Nandi S, McDonald KA, Faller R. SARS-CoV-2 spike binding to ACE2 is stronger and longer ranged due to glycan interaction. Biophys J 2021; 121:79-90. [PMID: 34883069 PMCID: PMC8648368 DOI: 10.1016/j.bpj.2021.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
Highly detailed steered molecular dynamics simulations are performed on differently glycosylated receptor binding domains of the severe acute respiratory syndrome coronavirus-2 spike protein. The binding strength and the binding range increase with glycosylation. The interaction energy rises very quickly when pulling the proteins apart and only slowly drops at larger distances. We see a catch-slip-type behavior whereby interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode is hydrogen bonds, but Lennard-Jones and electrostatic interactions are relevant as well.
Collapse
Affiliation(s)
- Yihan Huang
- Department of Materials Science, UC Davis, Davis, California
| | | | - Shiaki A Minami
- Department of Chemical Engineering, UC Davis, Davis, California
| | - Seongwon Jung
- Department of Chemical Engineering, UC Davis, Davis, California
| | - Priya S Shah
- Department of Chemical Engineering, UC Davis, Davis, California; Department of Microbiology and Molecular Genetics, UC Davis, Davis, California
| | - Somen Nandi
- Department of Chemical Engineering, UC Davis, Davis, California; Global HealthShare Initiative, UC Davis, Davis, California
| | - Karen A McDonald
- Department of Chemical Engineering, UC Davis, Davis, California; Global HealthShare Initiative, UC Davis, Davis, California
| | - Roland Faller
- Department of Chemical Engineering, UC Davis, Davis, California.
| |
Collapse
|
14
|
Picomolar inhibition of SARS-CoV-2 variants of concern by an engineered ACE2-IgG4-Fc fusion protein. Antiviral Res 2021; 196:105197. [PMID: 34774603 PMCID: PMC8579703 DOI: 10.1016/j.antiviral.2021.105197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.
Collapse
|
15
|
Lecot S, Chevolot Y, Phaner-Goutorbe M, Yeromonahos C. Curious Binding Energy Increase between the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein and Angiotensin-Converting Enzyme 2 Adsorbed on a Silane Monolayer from Molecular Dynamics Simulations. J Phys Chem B 2021; 125:11078-11090. [PMID: 34570497 DOI: 10.1021/acs.jpcb.1c06050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the context of the COVID-19 outbreak since December 2019, antigenic tests are widely used, for diagnosis purposes, to detect the SARS-CoV-2 spike protein in nasopharyngeal fluid through its interactions with specific antibodies. However, the SARS-CoV-2 spike protein is subject to rapid mutations yielding more and more variants that might lose their affinity toward the currently used antibodies. The virus entry into the host cell involves interactions between the angiotensin-converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein receptor-binding domain. Consequently, ACE2 could be a target with limited mutation escaping possibilities. However, as the enzyme has not evolved to recognize the virus, its affinity with the spike protein receptor-binding domain is lower than that with specific antibodies. The present molecular dynamics simulations study suggests that the adsorption of the ACE2 on specific silane monolayers could increase its affinity toward the spike protein receptor-binding domain. Indeed, silane monolayers, combining silane molecules with short alkyl chains and positively charged head groups and silane molecules without charged head groups, could adsorb the ACE2 while maintaining its bioactivity (orientation compatible with the spike protein trapping, low conformational changes) and increasing its interactions with the spike protein receptor-binding domain (number of hydrogen bonds and electrostatic interactions) to lead to an increase by 20% both in the binding free energy and in the enzyme /receptor-binding domain rupture force. This work could help develop biosensing tools efficient toward any variants of the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Solène Lecot
- Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Université de Lyon, Ecully 69130, France
| | - Yann Chevolot
- Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Université de Lyon, Ecully 69130, France
| | - Magali Phaner-Goutorbe
- Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Université de Lyon, Ecully 69130, France
| | - Christelle Yeromonahos
- Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, Université de Lyon, Ecully 69130, France
| |
Collapse
|
16
|
Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel J, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O’Keefe B, Oksman‐Caldentey K, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1901-1920. [PMID: 34182608 PMCID: PMC8486245 DOI: 10.1111/pbi.13657] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.
Collapse
Affiliation(s)
- Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Amaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennasser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andera Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes.F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sathish Kumar Ramalingam
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen. A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keefe
- Molecular Targets ProgramCenter for Cancer Research, National Cancer Institute, and Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickMDUSA
| | | | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Julio C. M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
17
|
Uyar A, Dickson A. Perturbation of ACE2 Structural Ensembles by SARS-CoV-2 Spike Protein Binding. J Chem Theory Comput 2021; 17:5896-5906. [PMID: 34383488 PMCID: PMC8370119 DOI: 10.1021/acs.jctc.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 01/23/2023]
Abstract
The human ACE2 enzyme serves as a critical first recognition point of coronaviruses, including SARS-CoV-2. In particular, the extracellular domain of ACE2 interacts directly with the S1 tailspike protein of the SARS-CoV-2 virion through a broad protein-protein interface. Although this interaction has been characterized by X-ray crystallography, these structures do not reveal significant differences in the ACE2 structure upon S1 protein binding. In this work, using several all-atom molecular dynamics simulations, we show persistent differences in the ACE2 structure upon binding. These differences are determined with the linear discriminant analysis (LDA) machine learning method and validated using independent training and testing datasets, including long trajectories generated by D. E. Shaw Research on the Anton 2 supercomputer. In addition, long trajectories for 78 potent ACE2-binding compounds, also generated by D. E. Shaw Research, were projected onto the LDA classification vector in order to determine whether the ligand-bound ACE2 structures were compatible with S1 protein binding. This allows us to predict which compounds are "apo-like" versus "complex-like" and to pinpoint long-range ligand-induced allosteric changes in the ACE2 structure.
Collapse
Affiliation(s)
- Arzu Uyar
- Department
of Biochemistry & Molecular Biology, Michigan State University, East Lansing Michigan 48824, United States
| | - Alex Dickson
- Department
of Biochemistry & Molecular Biology, Michigan State University, East Lansing Michigan 48824, United States
- Department
of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing Michigan 48824, United States
| |
Collapse
|
18
|
Farouq MA, Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Biomolecular interactions with nanoparticles: applications for coronavirus disease 2019. Curr Opin Colloid Interface Sci 2021; 54:101461. [PMID: 33907504 PMCID: PMC8062422 DOI: 10.1016/j.cocis.2021.101461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticles are small particles sized 1-100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.
Collapse
Affiliation(s)
- Mohammed A.H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK,Corresponding author: Farouq, M.A.H
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - Karina Kubiak-Ossowska
- Department of Physics/Archie-West HPC, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
19
|
Wang Y, Wu Z, Hu W, Hao P, Yang S. Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS OMEGA 2021; 6:15988-15999. [PMID: 34179644 PMCID: PMC8204757 DOI: 10.1021/acsomega.1c01785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.
Collapse
Affiliation(s)
- Yan Wang
- Mass
Spectrometry Facility, National Institute
of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhua Hu
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Computational search for drug repurposing to identify potential inhibitors against SARS-COV-2 using Molecular Docking, QTAIM and IQA methods in viral Spike protein - Human ACE2 interface. J Mol Struct 2021; 1232:130076. [PMID: 33583954 PMCID: PMC7870108 DOI: 10.1016/j.molstruc.2021.130076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
With the advancement of the Covid-19 pandemic, this work aims to find molecules that can inhibit the attraction between the Spike proteins of the SARS-COV-2 virus and human ACE2. The results of molecular docking positioned four molecules at the interaction site Tyr-491(Spike)-Glu-37(ACE2) and one at the site Gly-488(Spike)-Lys-353(ACE2). The QTAIM and IQA data showed that the 1629 molecule had a significant inhibitory effect on the Gly488-Ly353 site, decreasing the Laplacian of the electronic density of the BCP O4-N10. The molecule 2542 showed an inhibitory effect in two regions of interaction of the Tyr491-Glu37 site, acting on the BCPs H30-H33 and O8-H31 while the ligand 2600, in conformation 26, presented a similar effect only on the BCP O8-H31 of that same interactive site. Thus, the data suggest laboratory tests of a combination of molecules that can act at two sites of interaction simultaneously, using the combination of 1629/2542 and 1629/2600 ligands.
Collapse
|
21
|
Di Rienzo L, Monti M, Milanetti E, Miotto M, Boffi A, Tartaglia GG, Ruocco G. Computational optimization of angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular recognition. Comput Struct Biotechnol J 2021; 19:3006-3014. [PMID: 34002118 PMCID: PMC8116125 DOI: 10.1016/j.csbj.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the Covid19 pandemic, many efforts have been devoted to identifying approaches to neutralize SARS-CoV-2 replication within the host cell. A promising strategy to block the infection consists of using a mutant of the human receptor angiotensin-converting enzyme 2 (ACE2) as a decoy to compete with endogenous ACE2 for the binding to the SARS-CoV-2 Spike protein, which decreases the ability of the virus to enter the host cell. Here, using a computational framework based on the 2D Zernike formalism we investigate details of the molecular binding and evaluate the changes in ACE2-Spike binding compatibility upon mutations occurring in the ACE2 side of the molecular interface. We demonstrate the efficacy of our method by comparing our results with experimental binding affinities changes upon ACE2 mutations, separating ones that increase or decrease binding affinity with an Area Under the ROC curve ranging from 0.66 to 0.93, depending on the magnitude of the effects analyzed. Importantly, the iteration of our approach leads to the identification of a set of ACE2 mutants characterized by an increased shape complementarity with Spike. We investigated the physico-chemical properties of these ACE2 mutants and propose them as bona fide candidates for Spike recognition.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Michele Monti
- RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
D'Onofrio N, Scisciola L, Sardu C, Trotta MC, De Feo M, Maiello C, Mascolo P, De Micco F, Turriziani F, Municinò E, Monetti P, Lombardi A, Napolitano MG, Marino FZ, Ronchi A, Grimaldi V, Hermenean A, Rizzo MR, Barbieri M, Franco R, Campobasso CP, Napoli C, Municinò M, Paolisso G, Balestrieri ML, Marfella R. Glycated ACE2 receptor in diabetes: open door for SARS-COV-2 entry in cardiomyocyte. Cardiovasc Diabetol 2021; 20:99. [PMID: 33962629 PMCID: PMC8104461 DOI: 10.1186/s12933-021-01286-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. Objective To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. Methods and results We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. Conclusions The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01286-7.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marisa De Feo
- Department of Cardio-Thoracic Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ciro Maiello
- Unit of Cardiac Surgery and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, 80131, Naples, Italy
| | - Pasquale Mascolo
- Department of Experimental Medicine Forensic Pathology Service, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco De Micco
- Department of Experimental Medicine Forensic Pathology Service, University of Campania L. Vanvitelli, Naples, Italy
| | - Fabrizio Turriziani
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Emilia Municinò
- Department of Forensic, Evaluative and Necroscopic Medicine, ASL Napoli 2 NORD, Naples, Italy
| | - Pasquale Monetti
- Department of Forensic, Evaluative and Necroscopic Medicine, ASL Napoli 2 NORD, Naples, Italy
| | - Antonio Lombardi
- Department of Forensic, Evaluative and Necroscopic Medicine, ASL Napoli 2 NORD, Naples, Italy
| | | | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Vincenzo Grimaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Anca Hermenean
- Institute of Life Science, Vasile Goldis Western University, Arad, Romania
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Carlo Pietro Campobasso
- Department of Experimental Medicine Forensic Pathology Service, University of Campania L. Vanvitelli, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Maurizio Municinò
- Department of Forensic, Evaluative and Necroscopic Medicine, ASL Napoli 2 NORD, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | | | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy.,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
23
|
Uthaya Kumar A, Kadiresen K, Gan WC, Ling APK. Current updates and research on plant-based vaccines for coronavirus disease 2019. Clin Exp Vaccine Res 2021; 10:13-23. [PMID: 33628750 PMCID: PMC7892944 DOI: 10.7774/cevr.2021.10.1.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
The primary outbreak of severe acute respiratory syndrome coronavirus 2, causing pneumonia-like symptoms in patients named coronavirus disease 2019 (COVID-19) had evolved into a global pandemic. COVID-19 has surpassed Middle East respiratory syndrome and severe acute respiratory syndrome in terms of rate and scale causing more than one million deaths. Development of an effective vaccine to fight against the spread of COVID-19 is the main goal of many countries around the world and plant-based vaccines are one of the available methods in vaccine developments. Plant-based vaccine has gained its reputation among researchers for its known effective manufacturing process and cost effectiveness. Many companies around the world are participating in the race to develop an effective vaccine by using the plant system. This review discusses different approaches used as well as highlights the challenges faced by various companies and research groups in developing the plant-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kirthikah Kadiresen
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Wen Cong Gan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Casas-Sanchez A, Romero-Ramirez A, Hargreaves E, Ellis CC, Grajeda BI, Estevao IL, Patterson EI, Hughes GL, Almeida IC, Zech T, Acosta-Serrano Á. Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection. mBio 2021; 13:e0371821. [PMID: 35164559 PMCID: PMC8844921 DOI: 10.1128/mbio.03718-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively N-glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These N-glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host N-glycosylation pathway and SARS-CoV-2 N-glycans for infection. Ablation of host N-glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed N-glycans are critical for cell invasion. Altogether, we propose protein N-glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. IMPORTANCE The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several N-glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike N-glycans significantly reduces the spread of SARS-CoV-2 infection in vitro, including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide.
Collapse
Affiliation(s)
- Aitor Casas-Sanchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alessandra Romero-Ramirez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eleanor Hargreaves
- Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Edward I. Patterson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Tobias Zech
- Department of Molecular and Cellular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
25
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
26
|
Yang Q, Hughes TA, Kelkar A, Yu X, Cheng K, Park S, Huang WC, Lovell JF, Neelamegham S. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. eLife 2020; 9:e61552. [PMID: 33103998 PMCID: PMC7685702 DOI: 10.7554/elife.61552] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The Spike protein of SARS-CoV-2, its receptor-binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.
Collapse
Affiliation(s)
- Qi Yang
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Thomas A Hughes
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Anju Kelkar
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Xinheng Yu
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Kai Cheng
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Sheldon Park
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
| | - Wei-Chiao Huang
- Biomedical Engineering, State University of New YorkBuffaloUnited States
| | - Jonathan F Lovell
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
- Biomedical Engineering, State University of New YorkBuffaloUnited States
| | - Sriram Neelamegham
- Chemical & Biological Engineering, State University of New YorkBuffaloUnited States
- Biomedical Engineering, State University of New YorkBuffaloUnited States
- Medicine, State University of New YorkBuffaloUnited States
- Clinical & Translational Research CenterBuffaloUnited States
| |
Collapse
|
27
|
Tusé D, Nandi S, McDonald KA, Buyel JF. The Emergency Response Capacity of Plant-Based Biopharmaceutical Manufacturing-What It Is and What It Could Be. FRONTIERS IN PLANT SCIENCE 2020; 11:594019. [PMID: 33193552 PMCID: PMC7606873 DOI: 10.3389/fpls.2020.594019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 05/12/2023]
Abstract
Several epidemic and pandemic diseases have emerged over the last 20 years with increasing reach and severity. The current COVID-19 pandemic has affected most of the world's population, causing millions of infections, hundreds of thousands of deaths, and economic disruption on a vast scale. The increasing number of casualties underlines an urgent need for the rapid delivery of therapeutics, prophylactics such as vaccines, and diagnostic reagents. Here, we review the potential of molecular farming in plants from a manufacturing perspective, focusing on the speed, capacity, safety, and potential costs of transient expression systems. We highlight current limitations in terms of the regulatory framework, as well as future opportunities to establish plant molecular farming as a global, de-centralized emergency response platform for the rapid production of biopharmaceuticals. The implications of public health emergencies on process design and costs, regulatory approval, and production speed and scale compared to conventional manufacturing platforms based on mammalian cell culture are discussed as a forward-looking strategy for future pandemic responses.
Collapse
Affiliation(s)
- Daniel Tusé
- DT/Consulting Group and GROW Biomedicine, LLC, Sacramento, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- *Correspondence: Johannes Felix Buyel, ; orcid.org/0000-0003-2361-143X
| |
Collapse
|