1
|
Choi J, Speckhart K, Tsai B, DiMaio D. Rab6a enables BICD2/dynein-mediated trafficking of human papillomavirus from the trans-Golgi network during virus entry. mBio 2024:e0281124. [PMID: 39431827 DOI: 10.1128/mbio.02811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Rab GTPases control intracellular vesicular transport, including retrograde trafficking of human papillomavirus (HPV) during cell entry, guiding the virus from the endosome to the trans-Golgi network (TGN), the Golgi apparatus, and eventually the nucleus. Rab proteins have been identified that act prior to the arrival of HPV at the TGN, but Rab proteins operating in later stages of entry remain elusive. Here, we report that knockdown of Rab6a impairs HPV entry by preventing HPV exit from the TGN and impeding intra-Golgi transport of the incoming virus. Rab6a supports HPV trafficking by facilitating the association of HPV with dynein, a motor protein complex, and BICD2, a dynein adaptor, in the TGN. L2 can bind directly to GTP-Rab6a in vitro, and excess of either GTP-Rab6a or GDP-Rab6 inhibits HPV entry, suggesting that cycling between GDP-Rab6 and GTP-Rab6 is critical. Notably, Rab6a is crucial for HPV-BICD2 and HPV-dynein association in the TGN of infected cells but not in the endosome. Our findings reveal important features of the molecular basis of HPV infection, including the discovery that HPV uses different mechanisms to engage dynein at different times during entry, and identify potential targets for therapeutic approaches to inhibit HPV infection. IMPORTANCE Human papillomaviruses (HPVs) are small, non-enveloped DNA viruses that cause approximately 5% of human cancer. Like most other DNA viruses, HPV traffics to the nucleus during virus entry to successfully infect cells. We show here that HPV utilizes a cellular enzyme, Rab6a, during virus entry to engage the dynein molecular motor for transport along microtubules. Rab6a is required for complex formation between the HPV L2 capsid protein, dynein, and the dynein adaptor BICD2 in the trans-Golgi network (TGN). This complex is required for transport of the incoming virus out of the TGN as it journeys to the nucleus. Our findings identify potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kaitlyn Speckhart
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
2
|
He C, Lv X, Liu J, Ruan J, Chen P, Huang C, Angeletti PC, Hua G, Moness ML, Shi D, Dhar A, Yang S, Murphy S, Montoute I, Chen X, Islam KN, George S, Ince TA, Drapkin R, Guda C, Davis JS, Wang C. HPV-YAP1 oncogenic alliance drives malignant transformation of fallopian tube epithelial cells. EMBO Rep 2024; 25:4542-4569. [PMID: 39271776 PMCID: PMC11467260 DOI: 10.1038/s44319-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
High grade serous ovarian carcinoma (HGSOC) is the most common and aggressive ovarian malignancy. Accumulating evidence indicates that HGSOC may originate from human fallopian tube epithelial cells (FTECs), although the exact pathogen(s) and/or molecular mechanism underlying the malignant transformation of FTECs is unclear. Here we show that human papillomavirus (HPV), which could reach FTECs via retrograde menstruation or sperm-carrying, interacts with the yes-associated protein 1 (YAP1) to drive the malignant transformation of FTECs. HPV prevents FTECs from natural replicative and YAP1-induced senescence, thereby promoting YAP1-induced malignant transformation of FTECs. HPV also stimulates proliferation and drives metastasis of YAP1-transformed FTECs. YAP1, in turn, stimulates the expression of the putative HPV receptors and suppresses the innate immune system to facilitate HPV acquisition. These findings provide critical clues for developing new strategies to prevent and treat HGSOC.
Collapse
Affiliation(s)
- Chunbo He
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jiyuan Liu
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jinpeng Ruan
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Peichao Chen
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Cong Huang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter C Angeletti
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Guohua Hua
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madelyn Leigh Moness
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Davie Shi
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Anjali Dhar
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Siyi Yang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Savannah Murphy
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Isabelle Montoute
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xingcheng Chen
- Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kazi Nazrul Islam
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sophia George
- Department of Obstetrics & Gynecology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Tan A Ince
- New York Presbyterian Brooklyn Methodist Hospital and Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chittibabu Guda
- Department of Cellular and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Western Iowa and Nebraska Veteran's Affairs Medical Center, Omaha, NE, 68105, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
3
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
4
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
5
|
Templeton CW, Laimins LA. HPV induced R-loop formation represses innate immune gene expression while activating DNA damage repair pathways. PLoS Pathog 2024; 20:e1012454. [PMID: 39178326 PMCID: PMC11376575 DOI: 10.1371/journal.ppat.1012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 07/28/2024] [Indexed: 08/25/2024] Open
Abstract
R-loops are trimeric nucleic acid structures that form when an RNA molecule hybridizes with its complementary DNA strand, displacing the opposite strand. These structures regulate transcription as well as replication, but aberrant R-loops can form, leading to DNA breaks and genomic instability if unresolved. R-loop levels are elevated in many cancers as well as cells that maintain high-risk human papillomaviruses. We investigated how the distribution as well as function of R-loops changed between normal keratinocytes and HPV positive cells derived from a precancerous lesion of the cervix (CIN I). The levels of R-loops associated with cellular genes were found to be up to 10-fold higher in HPV positive cells than in normal keratinocytes while increases at ALU1 elements increased by up to 500-fold. The presence of enhanced R-loops resulted in altered levels of gene transcription, with equal numbers increased as decreased. While no uniform global effects on transcription due to the enhanced levels of R-loops were detected, genes in several pathways were coordinately increased or decreased in expression only in the HPV positive cells. This included the downregulation of genes in the innate immune pathway, such as DDX58, IL-6, STAT1, IFN-β, and NLRP3. All differentially expressed innate immune genes dependent on R-loops were also associated with H3K36me3 modified histones. Genes that were upregulated by the presence of R-loops in HPV positive cells included those in the DNA damage repair such as ATM, ATRX, and members of the Fanconi Anemia pathway. These genes exhibited a linkage between R-loops and H3K36me3 as well as γH2AX histone marks only in HPV positive cells. These studies identify a potential link in HPV positive cells between DNA damage repair as well as innate immune regulatory pathways with R-loops and γH2AX/H3K36me3 histone marks that may contribute to regulating important functions for HPV pathogenesis.
Collapse
Affiliation(s)
- Conor W Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A peptide derived from sorting nexin 1 inhibits HPV16 entry, retrograde trafficking, and L2 membrane spanning. Tumour Virus Res 2024; 18:200287. [PMID: 38909779 PMCID: PMC11255958 DOI: 10.1016/j.tvr.2024.200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024] Open
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Zachary L Williamson
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A Peptide Derived from Sorting Nexin 1 Inhibits HPV16 Entry, Retrograde Trafficking, and L2 Membrane Spanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595865. [PMID: 38826391 PMCID: PMC11142256 DOI: 10.1101/2024.05.25.595865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
| | - Zachary L Williamson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| | - Matthew A Christofferson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
| | - Advait Jeevanandam
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| |
Collapse
|
8
|
Ssedyabane F, Niyonzima N, Nambi Najjuma J, Birungi A, Atwine R, Tusubira D, Randall TC, Castro CM, Lee H, Ngonzi J. Prevalence of cervical intraepithelial lesions and associated factors among women attending a cervical cancer clinic in Western Uganda; results based on Pap smear cytology. SAGE Open Med 2024; 12:20503121241252265. [PMID: 38764539 PMCID: PMC11100407 DOI: 10.1177/20503121241252265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction There are high incidence and mortality rates of cervical cancer among females in East Africa. This is exacerbated by limited up-to-date data on premalignant lesions and associated factors in this setting. In this study, we determined the prevalence of cervical intraepithelial lesions and associated factors among women attending the Mbarara Regional Referral Hospital cervical cancer clinic in Southwestern Uganda. Methods In this cross-sectional study, 364 participants were recruited from among women attending the Mbarara Regional Referral Hospital cervical cancer clinic from 1 April to 30 June 2023. On consent, the study nurse collected demographic data and Pap smears, which were microscopically examined and reported by a laboratory scientist and a pathologist following the Bethesda grading system (2014). Statistical analyses were done in STATA version 17, using proportions, Chi-square, bivariate, and multivariate logistic regression analysis to determine associated factors at ⩽0.05 significance level. Results The mean age of participants was 41.9 years. A third of all study participants (37.6%, 132/351) were contraceptive users, mostly hormonal contraceptives (87.1%, 115/132). Almost 88% (307/351) had an unknown Human Papilloma Virus status. The prevalence of cervical intraepithelial lesions among our study participants was 6.6% (23/351), of which 73.9% (17/23) were low-grade squamous intraepithelial lesions. More than half (9/17, 52.9%) of low-grade squamous intraepithelial lesions were active hormonal contraceptive users. Use of hormonal contraceptives (OR: 3.032, p: 0.0253), use of intrauterine devices (OR: 6.284, p: 0.039), and any family history of cervical cancer (OR: 4.144, p: 0.049) were significantly associated with cervical intraepithelial lesions. Conclusion The prevalence of cervical intraepithelial lesions was 6.6%, lower than global estimates. Use of hormonal and intrauterine device contraceptives, as well as family history of cervical cancer, were significantly associated with cervical intraepithelial lesions among our study population. Prospective studies are recommended to further understand associations between different types of intrauterine devices and hormonal contraceptives, and cervical lesions.
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | | | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | - Abraham Birungi
- Department of Pathology, Mbarara University of Science of Science and Technology, Mbarara Uganda
| | - Raymond Atwine
- Department of Pathology, Mbarara University of Science of Science and Technology, Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| | - Thomas C Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, Mbarara, Uganda
| |
Collapse
|
9
|
Cabibi D, Giannone AG, Quattrocchi A, Lo Coco R, Formisano E, Porcasi R, Benfante V, Comelli A, Capra G. High-Risk HPV CISH Detection in Cervical Biopsies with Weak and/or Focal p16 Immunohistochemical Positivity. Int J Mol Sci 2024; 25:5354. [PMID: 38791395 PMCID: PMC11121605 DOI: 10.3390/ijms25105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In cervical biopsies, for diagnosis of Human Papilloma Virus (HPV) related conditions, the immunohistochemical staining for p16 has a diagnostic value only if diffusely and strongly positive, pattern named "block-like". "Weak and/or focal (w/f) p16 expression" is commonly considered nonspecific. In our previous study, we demonstrated the presence of high-risk HPV (hrHPV) DNA by LiPa method in biopsies showing w/f p16 positivity. The aim of the present study was to investigate the presence of hrHPV-DNA by CISH in the areas showing w/f p16 expression. We assessed the presence of hrHPV16, 18, 31, 33, 51 by CISH in a group of 20 cervical biopsies showing w/f p16 expression, some with increased Ki67, and in 10 cases of block-like expression, employed as control. The immunohistochemical p16 expression was also assessed by digital pathology. hrHPV-CISH nuclear positivity was encountered in 12/20 cases of w/f p16 expression (60%). Different patterns of nuclear positivity were identified, classified as punctate, diffuse and mixed, with different epithelial distributions. Our results, albeit in a limited casuistry, show the presence of HPV in an integrated status highlighted by CISH in w/f p16 positive cases. This could suggest the necessity of a careful follow-up of the patients with "weak" and/or "focal" immunohistochemical patterns of p16, mainly in cases of increased Ki67 cell proliferation index, supplemented with molecular biology examinations.
Collapse
Affiliation(s)
- Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Alberto Quattrocchi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Roberta Lo Coco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Formisano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Rossana Porcasi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Giuseppina Capra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
10
|
King RE, Rademacher J, Ward-Shaw ET, Hu R, Bilger A, Blaine-Sauer S, Spurgeon ME, Thibeault SL, Lambert PF. The Larynx is Protected from Secondary and Vertical Papillomavirus Infection in Immunocompetent Mice. Laryngoscope 2024; 134:2322-2330. [PMID: 38084790 PMCID: PMC11006576 DOI: 10.1002/lary.31228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE NA Laryngoscope, 134:2322-2330, 2024.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, WI
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Susan L. Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
11
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
12
|
Molenberghs F, Verschuuren M, Vandeweyer L, Peeters S, Bogers JJ, Novo CP, Vanden Berghe W, De Reu H, Cools N, Schelhaas M, De Vos WH. Lamin B1 curtails early human papillomavirus infection by safeguarding nuclear compartmentalization and autophagic capacity. Cell Mol Life Sci 2024; 81:141. [PMID: 38485766 PMCID: PMC10940392 DOI: 10.1007/s00018-024-05194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lauran Vandeweyer
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sarah Peeters
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Claudina Perez Novo
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
13
|
Mikuličić S, Shamun M, Massenberg A, Franke AL, Freitag K, Döring T, Strunk J, Tenzer S, Lang T, Florin L. ErbB2/HER2 receptor tyrosine kinase regulates human papillomavirus promoter activity. Front Immunol 2024; 15:1335302. [PMID: 38370412 PMCID: PMC10869470 DOI: 10.3389/fimmu.2024.1335302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Merha Shamun
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Annika Massenberg
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Anna-Lena Franke
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tatjana Döring
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Strunk
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Rheinland-Pfalz, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Thorsten Lang
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Lim YX, D'Silva NJ. HPV-associated oropharyngeal cancer: in search of surrogate biomarkers for early lesions. Oncogene 2024; 43:543-554. [PMID: 38191674 PMCID: PMC10873204 DOI: 10.1038/s41388-023-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
The incidence of oropharyngeal cancer (OPSCC) has escalated in the past few decades; this has largely been triggered by high-risk human papillomavirus (HPV). Early cancer screening is needed for timely clinical intervention and may reduce mortality and morbidity, but the lack of knowledge about premalignant lesions for OPSCC poses a significant challenge to early detection. Biomarkers that identify individuals at high risk for OPSCC may act as surrogate markers for precancer but these are limited as only a few studies decipher the multistep progression from HPV infection to OPSCC development. Here, we summarize the current literature describing the multistep progression from oral HPV infection, persistence, and tumor development in the oropharynx. We also examine key challenges that hinder the identification of premalignant lesions in the oropharynx and discuss potential biomarkers for oropharyngeal precancer. Finally, we evaluate novel strategies to improve investigations of the biological process that drives oral HPV persistence and OPSCC, highlighting new developments in the establishment of a genetic progression model for HPV + OPSCC and in vivo models that mimic HPV + OPSCC pathogenesis.
Collapse
Affiliation(s)
- Yvonne X Lim
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Zhang Z, Ma Q, Zhang L, Ma L, Wang D, Yang Y, Jia P, Wu Y, Wang F. Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology. Front Cell Infect Microbiol 2024; 14:1325500. [PMID: 38333037 PMCID: PMC10850380 DOI: 10.3389/fcimb.2024.1325500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
The vaginal microbiota plays a crucial role in female reproductive health and is considered a biomarker for predicting disease outcomes and personalized testing. However, its relationship with human papillomavirus (HPV) infection and cervical cancer is not yet clear. Therefore, this article provides a review of the association between the vaginal microbiota, HPV infection, and cervical cancer. We discuss the composition of the vaginal microbiota, its dysbiosis, and its relationship with HPV infection, as well as potential mechanisms in the development of cervical cancer. In addition, we assess the feasibility of treatment strategies such as probiotics and vaginal microbiota transplantation to modulate the vaginal microbiota for the prevention and treatment of diseases related to HPV infection and cervical cancer. In the future, extensive replication studies are still needed to gain a deeper understanding of the complex relationship between the vaginal microbiota, HPV infection, and cervical cancer, and to clarify the role of the vaginal microbiota as a potential biomarker for predicting disease outcomes, thus providing a theoretical basis for personalized testing.
Collapse
Affiliation(s)
- Zhemei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Qingmei Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Lei Zhang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Danni Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yongqing Yang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Pengxia Jia
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Yang Wu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Rushiti A, Castellani C, Cerrato A, Fedrigo M, Sbricoli L, Bressan E, Angelini A, Bacci C. The Follow-Up Necessity in Human Papilloma Virus-Positive vs. Human Papilloma Virus-Negative Oral Mucosal Lesions: A Retrospective Study. J Clin Med 2023; 13:58. [PMID: 38202065 PMCID: PMC10779469 DOI: 10.3390/jcm13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Human papilloma virus (HPV) is known as the main cause of cervical cancer. Data also indicate its role in head-neck cancer, especially oropharyngeal cancer. The correlation between high-risk HPV and oral cancer is still controversial. HPV-related lesions of the oral cavity are frequent and, in most cases, benign. The primary aim of this study was to establish if there is a different follow-up necessity between HPV-positive compared to HPV-negative oral lesions. The secondary aim was to evaluate the recurrence of HPV-related lesions. All patients who underwent a surgical procedure of oral biopsy between 2018 and 2022, with ulterior histopathological examination and HPV typing, were examined. A total of 230 patients were included: 75 received traumatic fibroma as diagnosis, 131 HPV-related lesions, 9 proliferative verrucous leukoplakia, and 15 leukoplakia. The frequency and period of follow-up varied in relation to HPV positivity and diagnosis. This study confirms what has already been reported by other authors regarding the absence of recommendations of follow-up necessity in patients with oral mucosal lesions. However, the data demonstrate that there was a statistically significant difference in the sample analyzed regarding the follow-up of HPV-positive vs. HPV-negative patients. It also confirms the low recurrence frequency of HPV-related oral lesions.
Collapse
Affiliation(s)
- Armina Rushiti
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| | - Chiara Castellani
- Cardiovascular Pathology, University of Padova Medical School, University of Padova, 35122 Padova, Italy; (C.C.); (M.F.)
| | - Alessia Cerrato
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| | - Marny Fedrigo
- Cardiovascular Pathology, University of Padova Medical School, University of Padova, 35122 Padova, Italy; (C.C.); (M.F.)
| | - Luca Sbricoli
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| | - Eriberto Bressan
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| | - Annalisa Angelini
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| | - Christian Bacci
- Unit of Oral Pathology and Medicine and Odontostomatological Diagnostics, Section of Clinical Dentistry, Department of Neurosciences, University of Padova, 35122 Padova, Italy; (A.R.); (A.C.); (L.S.); (E.B.); (A.A.)
| |
Collapse
|
17
|
Jain M, Yadav D, Jarouliya U, Chavda V, Yadav AK, Chaurasia B, Song M. Epidemiology, Molecular Pathogenesis, Immuno-Pathogenesis, Immune Escape Mechanisms and Vaccine Evaluation for HPV-Associated Carcinogenesis. Pathogens 2023; 12:1380. [PMID: 38133265 PMCID: PMC10745624 DOI: 10.3390/pathogens12121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.
Collapse
Affiliation(s)
- Meenu Jain
- Department of Microbiology, Viral Research and Diagnostic Laboratory, Gajra Raja Medical College, Gwalior 474009, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Urmila Jarouliya
- SOS in Biochemistry, Jiwaji University, Gwalior 474011 Madhya Pradesh, India;
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA 94305, USA;
| | - Arun Kumar Yadav
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
18
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
19
|
Oubaddou Y, Ben Ali F, Oubaqui FE, Qmichou Z, Bakri Y, Rabii Ameziane RA. The Tumor Suppressor BRCA1/2, Cancer Susceptibility and Genome Instability in Gynecological and Mammary Cancers. Asian Pac J Cancer Prev 2023; 24:3139-3153. [PMID: 37774066 PMCID: PMC10762740 DOI: 10.31557/apjcp.2023.24.9.3139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
BRCA1 and BRCA2 germline alterations highly predispose women to breast and ovarian cancers. They are mostly found within the TNBC (Triple-Negative Breast Cancer) and the HGSOC (High-Grade Serous Ovarian Carcinoma) subsets, known by an aggressive phenotype, the lack of therapeutic targets and poor prognosis. Importantly, there is an increased risk for cervical cancer in BRCA1 and BRCA2 mutation carriers that raises questions about the link between the HPV-driven genome instability and BRCA1 and BRCA2 germline mutations. Clinical, preclinical, and in vitro studies explained the increased risk for breast and ovarian cancers by genome instability resulting from the lack or loss of many functions related to BRCA1 or BRCA2 proteins such as DNA damage repair, stalled forks and R-loops resolution, transcription regulation, cell cycle control, and oxidative stress. In this review, we decipher the relationship between BRCA1/2 alterations and genomic instability leading to gynecomammary cancers through results from patients, mice, and cell lines. Understanding the early events of BRCA1/2-driven genomic instability in gynecomammary cancers would help to find new biomarkers for early diagnosis, improve the sensitivity of emerging therapies such as PARP inhibitors, and reveal new potential therapeutic targets.
Collapse
Affiliation(s)
- Yassire Oubaddou
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima Ezzahrae Oubaqui
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco.
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Rabii Ameziane Rabii Ameziane
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
20
|
Clarke MA. HPV Testing and its Role in Cervical Cancer Screening. Clin Obstet Gynecol 2023; 66:448-469. [PMID: 37650662 DOI: 10.1097/grf.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The recognition that persistent infection with carcinogenic human papillomavirus (HPV) is a necessary cause of cervical precancer and cancer has led to the introduction of HPV testing into cervical cancer screening, either as a primary screening test or in conjunction with cervical cytology (i.e., co-testing). HPV testing has much higher sensitivity for detection of cervical precancer and provides greater long-term reassurance if negative compared to cytology. However, most HPV infections are transient, and do not progress to invasive cancer, thus triage tests are required to identify individuals who should be referred to colposcopy for diagnostic evaluation. This chapter begins with a description of the biology, natural history, and epidemiology of HPV as a foundation for understanding the role of HPV in cervical carcinogenesis. This section is followed by a detailed discussion regarding the introduction of HPV-based testing and triage into cervical cancer screening and management. Summarized triage tests include cervical cytology, HPV genotyping, p16/Ki-67 dual stain, and HPV and cellular methylation markers. The final section of this chapter includes an important discussion on cervical cancer disparities, particularly within the United States, followed by concluding remarks.
Collapse
Affiliation(s)
- Megan A Clarke
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
21
|
Ishii Y, Yamaji T, Sekizuka T, Homma Y, Mori S, Takeuchi T, Kukimoto I. Folliculin Prevents Lysosomal Degradation of Human Papillomavirus To Support Infectious Cell Entry. J Virol 2023; 97:e0005623. [PMID: 37167561 PMCID: PMC10231244 DOI: 10.1128/jvi.00056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Human papillomavirus (HPV) infects epithelial basal cells in the mucosa and either proliferates with the differentiation of the basal cells or persists in them. Multiple host factors are required to support the HPV life cycle; however, the molecular mechanisms involved in cell entry are not yet fully understood. In this study, we performed a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) knockout (KO) screen in HeLa cells and identified folliculin (FLCN), a GTPase-activating protein for Rag GTPases, as an important host factor for HPV infection. The introduction of single guide RNAs for the FLCN gene into HeLa, HaCaT, and ectocervical Ect1 cells reduced infection by HPV18 pseudovirions (18PsVs) and 16PsVs. FLCN KO HeLa cells also exhibited strong resistance to infection with 18PsVs and 16PsVs; nevertheless, they remained highly susceptible to infections with vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus. Immunofluorescence microscopy revealed that the numbers of virions binding to the cell surface were slightly increased in FLCN KO cells. However, virion internalization analysis showed that the internalized virions were rapidly degraded in FLCN KO cells. This degradation was blocked by treatment with the lysosome inhibitor bafilomycin A1. Furthermore, the virion degradation phenotype was also observed in Ras-related GTP-binding protein C (RagC) KO cells. These results suggest that FLCN prevents the lysosomal degradation of incoming HPV virions by enhancing lysosomal RagC activity. IMPORTANCE Cell entry by human papillomavirus (HPV) involves a cellular retrograde transport pathway from the endosome to the trans-Golgi network/Golgi apparatus. However, the mechanism by which this viral trafficking is safeguarded is poorly understood. This is the first study showing that the GTPase-activating protein folliculin (FLCN) protects incoming HPV virions from lysosomal degradation and supports infectious cell entry by activating the Rag GTPases, presumably through the suppression of excessive lysosomal biosynthesis. These findings provide new insights into the effects of small GTPase activity regulation on HPV cell entry and enhance our understanding of the HPV degradation pathway.
Collapse
Affiliation(s)
- Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuta Homma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Mac M, DeVico BM, Raspanti SM, Moody CA. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway. J Virol 2023; 97:e0020123. [PMID: 37154769 PMCID: PMC10231177 DOI: 10.1128/jvi.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The human papillomavirus (HPV) life cycle takes place in the stratified epithelium, with the productive phase being activated by epithelial differentiation. The HPV genome is histone-associated, and the life cycle is epigenetically regulated, in part, by histone tail modifications that facilitate the recruitment of DNA repair factors that are required for viral replication. We previously showed that the SETD2 methyltransferase facilitates the productive replication of HPV31 through the trimethylation of H3K36 on viral chromatin. SETD2 regulates numerous cellular processes, including DNA repair via homologous recombination (HR) and alternative splicing, through the recruitment of various effectors to histone H3 lysine 36 trimethylation (H3K36me3). We previously demonstrated that the HR factor Rad51 is recruited to HPV31 genomes and is required for productive replication; however, the mechanism of Rad51 recruitment has not been defined. SET domain containing 2 (SETD2) promotes the HR repair of double-strand breaks (DSBs) in actively transcribed genes through the recruitment of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) to lens epithelium-derived growth factor (LEDGF)-bound H3K36me3, which promotes DNA end resection and thereby allows for the recruitment of Rad51 to damaged sites. In this study, we found that reducing H3K36me3 through the depletion of SETD2 or the overexpression of an H3.3K36M mutant leads to an increase in γH2AX, which is a marker of damage, on viral DNA upon epithelial differentiation. This is coincident with decreased Rad51 binding. Additionally, LEDGF and CtIP are bound to HPV DNA in a SETD2-dependent and H3K36me3-dependent manner, and they are required for productive replication. Furthermore, CtIP depletion increases DNA damage on viral DNA and blocks Rad51 recruitment upon differentiation. Overall, these studies indicate that H3K36me3 enrichment on transcriptionally active viral genes promotes the rapid repair of viral DNA upon differentiation through the LEDGF-CtIP-Rad51 axis. IMPORTANCE The productive phase of the HPV life cycle is restricted to the differentiating cells of the stratified epithelium. The HPV genome is histone-associated and subject to epigenetic regulation, though the manner in which epigenetic modifications contribute to productive replication is largely undefined. In this study, we demonstrate that SETD2-mediated H3K36me3 on HPV31 chromatin promotes productive replication through the repair of damaged DNA. We show that SETD2 facilitates the recruitment of the homologous recombination repair factors CtIP and Rad51 to viral DNA through LEDGF binding to H3K36me3. CtIP is recruited to damaged viral DNA upon differentiation, and, in turn, recruits Rad51. This likely occurs through the end resection of double-strand breaks. SETD2 trimethylates H3K36me3 during transcription, and active transcription is necessary for Rad51 recruitment to viral DNA. We propose that the enrichment of SETD2-mediated H3K36me3 on transcriptionally active viral genes upon differentiation facilitates the repair of damaged viral DNA during the productive phase of the viral life cycle.
Collapse
Affiliation(s)
- Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brianna M. DeVico
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophia M. Raspanti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cary A. Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
23
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
24
|
Teka B, Yoshida-Court K, Firdawoke E, Chanyalew Z, Gizaw M, Addissie A, Mihret A, Colbert LE, Napravnik TC, El Alam MB, Lynn EJ, Mezzari M, Anuja J, Kantelhardt EJ, Kaufmann AM, Klopp AH, Abebe T. Cervicovaginal Microbiota Profiles in Precancerous Lesions and Cervical Cancer among Ethiopian Women. Microorganisms 2023; 11:microorganisms11040833. [PMID: 37110255 PMCID: PMC10144031 DOI: 10.3390/microorganisms11040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant dysplasia or invasive cervical cancer compared with that of healthy women. The study comprised 120 Ethiopian women (60 cervical cancer patients who had not received any treatment, 25 patients with premalignant dysplasia, and 35 healthy women). Cervicovaginal specimens were collected using either an Isohelix DNA buccal swab or an Evalyn brush, and ribosomal RNA sequencing was used to characterize the cervicovaginal microbiota. Shannon and Simpson diversity indices were used to evaluate alpha diversity. Beta diversity was examined using principal coordinate analysis of weighted UniFrac distances. Alpha diversity was significantly higher in patients with cervical cancer than in patients with dysplasia and in healthy women (p < 0.01). Beta diversity was also significantly different in cervical cancer patients compared with the other groups (weighted UniFrac Bray-Curtis, p < 0.01). Microbiota composition differed between the dysplasia and cervical cancer groups. Lactobacillus iners was particularly enriched in patients with cancer, and a high relative abundance of Lactobacillus species was identified in the dysplasia and healthy groups, whereas Porphyromonas, Prevotella, Bacteroides, and Anaerococcus species predominated in the cervical cancer group. In summary, we identified differences in cervicovaginal microbiota diversity, composition, and relative abundance between women with cervical cancer, women with dysplasia, and healthy women. Additional studies need to be carried out in Ethiopia and other regions to control for variation in sample collection.
Collapse
Affiliation(s)
- Brhanu Teka
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- Correspondence: ; Tel.: +251-913500065
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ededia Firdawoke
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
| | - Zewditu Chanyalew
- Department of Pathology, St. Paul Hospital Millennium Medical College, Addis Ababa P.O. Box 1271, Ethiopia
| | - Muluken Gizaw
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
- Institute for Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
- NCD Working Group, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
| | - Adamu Addissie
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 34, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Molly B. El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J. Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Mezzari
- Molecular Virology and Microbiology, Baylor College of Medicine Alkek, Center for Molecular Discovery, Houston, TX 77030, USA
| | - Jhingran Anuja
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eva Johanna Kantelhardt
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
- Institute for Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
| | - Andreas M. Kaufmann
- Department of Gynecology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia
- Global Health Working Group, Martin-Luther-University, Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
25
|
Moreno E, Ron R, Serrano-Villar S. The microbiota as a modulator of mucosal inflammation and HIV/HPV pathogenesis: From association to causation. Front Immunol 2023; 14:1072655. [PMID: 36756132 PMCID: PMC9900135 DOI: 10.3389/fimmu.2023.1072655] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Although the microbiota has largely been associated with the pathogenesis of viral infections, most studies using omics techniques are correlational and hypothesis-generating. The mechanisms affecting the immune responses to viral infections are still being fully understood. Here we focus on the two most important sexually transmitted persistent viruses, HPV and HIV. Sophisticated omics techniques are boosting our ability to understand microbiota-pathogen-host interactions from a functional perspective by surveying the host and bacterial protein and metabolite production using systems biology approaches. However, while these strategies have allowed describing interaction networks to identify potential novel microbiota-associated biomarkers or therapeutic targets to prevent or treat infectious diseases, the analyses are typically based on highly dimensional datasets -thousands of features in small cohorts of patients-. As a result, we are far from getting to their clinical use. Here we provide a broad overview of how the microbiota influences the immune responses to HIV and HPV disease. Furthermore, we highlight experimental approaches to understand better the microbiota-host-virus interactions that might increase our potential to identify biomarkers and therapeutic agents with clinical applications.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Rizzato M, Mao F, Chardon F, Lai KY, Villalonga-Planells R, Drexler HCA, Pesenti ME, Fiskin M, Roos N, King KM, Li S, Gamez ER, Greune L, Dersch P, Simon C, Masson M, Van Doorslaer K, Campos SK, Schelhaas M. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry. Nat Commun 2023; 14:355. [PMID: 36683055 PMCID: PMC9868124 DOI: 10.1038/s41467-023-35874-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis.
Collapse
Affiliation(s)
- Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Fuxiang Mao
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | | | | | - Mert Fiskin
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813-5525, USA
| | - Lilo Greune
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Petra Dersch
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Murielle Masson
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany.
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Zeng M, Li X, Jiao X, Cai X, Yao F, Xu S, Huang X, Zhang Q, Chen J. Roles of vaginal flora in human papillomavirus infection, virus persistence and clearance. Front Cell Infect Microbiol 2023; 12:1036869. [PMID: 36683675 PMCID: PMC9848591 DOI: 10.3389/fcimb.2022.1036869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Vaginal flora plays a vital role in human papillomavirus (HPV) infection and progression to cancer. To reveal a role of the vaginal flora in HPV persistence and clearance, 90 patients with HPV infection and 45 healthy individuals were enrolled in this study and their vaginal flora were analyzed. Women with HPV infection were treated with Lactobacillus in the vaginal environment as a supplement to interferon therapy. Our results indicated that patients with high risk HPV (Hr-HPV) 16/18 infection had a significantly higher alpha diversity compared with the healthy control (p < 0.01), while there was no significant difference between the non-Hr-HPV16/18 group and the controls (p > 0.05). Patients with multiple HPV infection had insignificantly higher alpha diversity compared with single HPV infection (p > 0.05). The vaginal flora of patients with HPV infection exhibited different compositions when compared to the healthy controls. The dominant bacteria with the highest prevalence in HPV-positive group were Lactobacillus iners (n = 49, 54.44%), and the top 3 dominant bacteria in the HPV-persistent group were Lactobacillus iners (n = 34, 53.13%), Sneathia amnii (n = 9, 14.06%), and Lactobacillus delbrueckii (n = 3, 4.69%). Patients with HPV clearance had significantly lower alpha diversity, and the flora pattern was also different between groups displaying HPV clearance vs. persistence. The patients with persistent HPV infection had significantly higher levels of Bacteroidaceae, Erysipelotrichaceae, Helicobacteraceae, Neisseriaceae, Streptococcaceae (family level), and Fusobacterium, Bacteroides, Neisseria, and Helicobacter (genus level) than patients who had cleared HPV (p < 0.05). Importance Our study revealed differences in vaginal flora patterns are associated with HPV persistence and its clearance. Interferon plus probiotics can greatly improve virus clearance in some patients. Distinguishing bacterial features associated with HPV clearance in patients would be helpful for early intervention and reverse persistent infection.
Collapse
Affiliation(s)
- Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
| | - Xiaochun Cai
- Department of Gynecology and Obstetrics, Chenghai District People’s Hospital, Shantou, Guangdong, China
| | - Fen Yao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, Guangdong, China
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shaomin Xu
- Department of Gynecology and Obstetrics, Chenghai District People’s Hospital, Shantou, Guangdong, China
| | - Xiaoshan Huang
- Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianqiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
28
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
29
|
Cruz-Gregorio A, Aranda-Rivera AK. Human Papilloma Virus-Infected Cells. Subcell Biochem 2023; 106:213-226. [PMID: 38159229 DOI: 10.1007/978-3-031-40086-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human papillomavirus (HPV) is associated with infection of different tissues, such as the cervix, anus, vagina, penis, vulva, oropharynx, throat, tonsils, back of the tongue, skin, the lungs, among other tissues. HPV infection may or may not be associated with the development of cancer, where HPVs not related to cancer are defined as low-risk HPVs and are associated with papillomatosis disease. In contrast, high-risk HPVs (HR-HPVs) are associated with developing cancers in areas that HR-HPV infects, such as the cervix. In general, infection of HPV target cells is regulated by specific molecules and receptors that induce various conformational changes of HPV capsid proteins, allowing activation of HPV endocytosis mechanisms and the arrival of the HPV genome to the human cell nucleus. After the transcription of the HPV genome, the HPV genome duplicates exponentially to lodge in a new HPV capsid, inducing the process of exocytosis of HPV virions and thus releasing a new HPV viral particle with a high potential of infection. This infection process allows the HPV viral life cycle to conclude and enables the growth of HPV virions. Understanding the entire infection process has been a topic that researchers have studied and developed for decades; however, there are many things to still understand about HPV infection. A thorough understanding of these HPV infection processes will allow new potential treatments for HPV-associated cancer and papillomatosis. This chapter focuses on HPV infection, the process that will enable HPV to complete its HPV life cycle, emphasizing the critical role of different molecules in allowing this infection and its completion during the HPV viral life cycle.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Kim ET, Kim KD. Topological implications of DNA tumor viral episomes. BMB Rep 2022; 55:587-594. [PMID: 36379513 PMCID: PMC9813422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools. [BMB Reports 2022; 55(12): 587-594].
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63241, Korea,Department of Biomedicine & Drug Development, Jeju National University, Jeju 63241, Korea
| | - Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea,Corresponding author. Tel: +82-31-670-3359; Fax: +82-31-675-3108; E-mail:
| |
Collapse
|
31
|
Molenberghs F, Verschuuren M, Barbier M, Bogers JJ, Cools N, Delputte P, Schelhaas M, De Vos WH. Cells infected with human papilloma pseudovirus display nuclear reorganization and heterogenous infection kinetics. Cytometry A 2022; 101:1035-1048. [PMID: 35668549 DOI: 10.1002/cyto.a.24663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Human papillomaviruses (HPV) are small, non-enveloped DNA viruses, which upon chronic infection can provoke cervical and head-and-neck cancers. Although the infectious life cycle of HPV has been studied and a vaccine is available for the most prevalent cancer-causing HPV types, there are no antiviral agents to treat infected patients. Hence, there is a need for novel therapeutic entry points and a means to identify them. In this work, we have used high-content microscopy to quantitatively investigate the early phase of HPV infection. Human cervical cancer cells and immortalized keratinocytes were exposed to pseudoviruses (PsV) of the widespread HPV type 16, in which the viral genome was replaced by a pseudogenome encoding a fluorescent reporter protein. Using the fluorescent signal as readout, we measured differences in infection between cell lines, which directly correlated with host cell proliferation rate. Parallel multiparametric analysis of nuclear organization revealed that HPV PsV infection alters nuclear organization and inflates promyelocytic leukemia protein body content, positioning these events at the early stage of HPV infection, upstream of viral replication. Time-resolved analysis revealed a marked heterogeneity in infection kinetics even between two daughter cells, which we attribute to differences in viral load. Consistent with the requirement for mitotic nuclear envelope breakdown, pharmacological inhibition of the cell cycle dramatically blunted infection efficiency. Thus, by systematic image-based single cell analysis, we revealed phenotypic alterations that accompany HPV PsV infection in individual cells, and which may be relevant for therapeutic drug screens.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Michaël Barbier
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Simply Complex Lab, UNAM, Bilkent University, Ankara, Turkey
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium.,μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
33
|
High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. BIOLOGY 2022; 11:biology11121691. [PMID: 36552201 PMCID: PMC9775033 DOI: 10.3390/biology11121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Lung cancer is a very prevalent and heterogeneous group of malignancies, and most of them are etiologically associated with tobacco smoking. However, viral infections have been detected in lung carcinomas, with high-risk human papillomaviruses (HR-HPVs) being among them. The role of HR-HPVs in lung cancer has been considered to be controversial. This issue is due to the highly variable presence of this virus in lung carcinomas worldwide, and the low viral load frequently that is detected. In this review, we address the epidemiological and mechanistic findings regarding the role of HR-HPVs in lung cancer. Some mechanisms of HR-HPV-mediated lung carcinogenesis have been proposed, including (i) HPV works as an independent carcinogen in non-smoker subjects; (ii) HPV cooperates with carcinogenic compounds present in tobacco smoke; (iii) HPV promotes initial alterations being after cleared by the immune system through a "hit and run" mechanism. Additional research is warranted to clarify the role of HPV in lung cancer.
Collapse
|
34
|
Modesto A, Graff Cailleaud P, Blanchard P, Boisselier P, Pointreau Y. [Challenges and limits of therapeutic de-escalation for papillomavirus-related oropharyngeal cancer]. Cancer Radiother 2022; 26:921-924. [PMID: 36030192 DOI: 10.1016/j.canrad.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
The incidence of HPV-related oropharyngeal cancers has been increasing in Western countries for several decades. If they are individualized within the latest TNM classification, the current standards of management do not authorize the management of these patients to be singled out. However, their distinct oncogenesis and their excellent prognosis compared to other patients has allowed the development of several clinical trials based on the question of therapeutic de-escalation. This review of the literature aims to take stock of the elements provided by clinical research in recent years.
Collapse
Affiliation(s)
- A Modesto
- Département de radiothérapie, Institut universitaire du cancer de Toulouse, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France; Centre de recherche du cancer de Toulouse, UMR 1037, Inserm, université Toulouse III Paul-Sabatier, 2, avenue Hubert-Curien, 31100 Toulouse, France.
| | - P Graff Cailleaud
- Radiation oncology department, institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - P Blanchard
- Radiation oncology department, Gustave-Roussy cancer center, oncostat U1018, Inserm, Paris-Saclay university, Villejuif, France
| | - P Boisselier
- Département d'oncologie radiothérapie, Institut du cancer de Montpellier (ICM) - Val d'Aurelle, parc Euromédecine, 208, avenue des Apothicaires, 34090 Montpellier, France
| | - Y Pointreau
- Institut interrégionaL de cancérologie (ILC), centre Jean-Bernard, 9, rue Beauverger, 72000 Le Mans, France
| |
Collapse
|
35
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Therapeutic Vaccines for HPV-Associated Oropharyngeal and Cervical Cancer: The Next De-Intensification Strategy? Int J Mol Sci 2022; 23:ijms23158395. [PMID: 35955529 PMCID: PMC9368783 DOI: 10.3390/ijms23158395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
The rise in human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has prompted a quest for further understanding of the role of high-risk HPV in tumor initiation and progression. Patients with HPV-positive OPSCC (HPV+ OPSCC) have better prognoses than their HPV-negative counterparts; however, current therapeutic strategies for HPV+ OPSCC are overly aggressive and leave patients with life-long sequalae and poor quality of life. This highlights a need for customized treatment. Several clinical trials of treatment de-intensification to reduce acute and late toxicity without compromising efficacy have been conducted. This article reviews the differences and similarities in the pathogenesis and progression of HPV-related OPSCC compared to cervical cancer, with emphasis on the role of prophylactic and therapeutic vaccines as a potential de-intensification treatment strategy. Overall, the future development of novel and effective therapeutic agents for HPV-associated head and neck tumors promises to meet the challenges posed by this growing epidemic.
Collapse
|
37
|
Mo Y, Ma J, Zhang H, Shen J, Chen J, Hong J, Xu Y, Qian C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front Cell Infect Microbiol 2022; 12:909223. [PMID: 35860379 PMCID: PMC9289603 DOI: 10.3389/fcimb.2022.909223] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/20/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is recognized as the main cause of cervical cancer and other malignant cancers. Although early detection and treatment can be achieved by effective HPV screening methods and surgical procedures, the disease load has not been adequately mitigated yet, especially in the underdeveloped areas. Vaccine, being regarded as a more effective solution, is expected to prevent virus infection and the consequent diseases in the phases of both prevention and treatment. Currently, there are three licensed prophylactic vaccines for L1-VLPs, namely bivalent, quadrivalent and nonavalent vaccine. About 90% of HPV infections have been effectively prevented with the implementation of vaccines worldwide. However, no significant therapeutic effect has been observed on the already existed infections and lesions. Therapeutic vaccine designed for oncoprotein E6/E7 activates cellular immunity rather than focuses on neutralizing antibodies, which is considered as an ideal immune method to eliminate infection. In this review, we elaborate on the classification, mechanism, and clinical effects of HPV vaccines for disease prevention and treatment, in order to make improvements to the current situation of HPV vaccines by provoking new ideas.
Collapse
Affiliation(s)
- Yicheng Mo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiabing Ma
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Hongtao Zhang
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Junjie Shen
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jun Chen
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Juan Hong
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Yanmin Xu
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
- *Correspondence: Yanmin Xu, ; Cheng Qian,
| | - Cheng Qian
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Yanmin Xu, ; Cheng Qian,
| |
Collapse
|
38
|
Morante AV, Baboolal DD, Simon X, Pan ECY, Meneses PI. Human Papillomavirus Minor Capsid Protein L2 Mediates Intracellular Trafficking into and Passage beyond the Endoplasmic Reticulum. Microbiol Spectr 2022; 10:e0150522. [PMID: 35608352 PMCID: PMC9241893 DOI: 10.1128/spectrum.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) consist of two capsid proteins: major capsid protein L1 and minor capsid protein L2. The L2 protein has been shown to be involved in intracellular trafficking events that lead to the deposition of the viral DNA into the nucleus. In this study, we investigate the role of HPV16 L2 residues 43-DQILQ-47 during intracellular trafficking in human keratinocytes. We demonstrate that the highly conserved amino acids aspartic acid, isoleucine, and leucine are involved with the intracellular trafficking of the virus. Amino acid substitution of the isoleucine and leucine residues with alanine residues results in a significant decrease in infectivity of the pseudovirions without any changes to the binding or internalization of the virus. The pseudovirions containing these substitutions exhibit an altered trafficking pattern and do not deposit the viral pseudogenome into the nucleus. Instead, these mutated pseudovirions display a lack of interaction with syntaxin 18, an ER SNARE protein, are unable to progress past the endoplasmic reticulum (ER) and are redirected to the lysosomes. The results of this study help to elucidate the role and potential involvement of the 43-DQILQ-47 sequence during intracellular trafficking, specifically during trafficking beyond the ER. IMPORTANCE High-risk types of human papillomaviruses (HPVs), such as HPV16, are highly associated with cervical, anogenital, and oropharyngeal cancers. The minor capsid protein L2 is essential for the intracellular trafficking of the viral DNA to the nucleus. This study investigates the role of amino acid residues 43-DQILQ-47 of the HPV16 L2 protein in the intracellular trafficking of the virus. Understanding how the virus traffics through the cell is a key factor in the development of additional preventative antiviral therapies. This study illustrates, through modification of the 43-DQILQ-47 sequence in pseudovirions, the importance of the 43-DQILQ-47 sequence in the trafficking of the virus beyond the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anthony V. Morante
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | - Xavier Simon
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | | |
Collapse
|
39
|
Zheng Y, Li X, Jiao Y, Wu C. High-Risk Human Papillomavirus Oncogenic E6/E7 mRNAs Splicing Regulation. Front Cell Infect Microbiol 2022; 12:929666. [PMID: 35832386 PMCID: PMC9271614 DOI: 10.3389/fcimb.2022.929666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
High-risk human papillomavirus infection may develop into a persistent infection that is highly related to the progression of various cancers, including cervical cancer and head and neck squamous cell carcinomas. The most common high-risk subtypes are HPV16 and HPV18. The oncogenic viral proteins expressed by high-risk HPVs E6/E7 are tightly involved in cell proliferation, differentiation, and cancerous transformation since E6/E7 mRNAs are derived from the same pre-mRNA. Hence, the alternative splicing in the E6/E7-coding region affects the balance of the E6/E7 expression level. Interrupting the balance of E6 and E7 levels results in cell apoptosis. Therefore, it is crucial to understand the regulation of E6/E7 splice site selection and the interaction of splicing enhancers and silencers with cellular splicing factors. In this review, we concluded the relationship of different E6/E7 transcripts with cancer progression, the known splicing sites, and the identified cis-regulatory elements within high-risk HPV E6/E7-coding region. Finally, we also reviewed the role of various splicing factors in the regulation of high-risk HPV oncogenic E6/E7 mRNA splicing.
Collapse
Affiliation(s)
- Yunji Zheng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yisheng Jiao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
- *Correspondence: Chengjun Wu,
| |
Collapse
|
40
|
Chondroitin Sulfate Proteoglycans Are De Facto Cellular Receptors for Human Papillomavirus 16 under High Serum Conditions. J Virol 2022; 96:e0185721. [DOI: 10.1128/jvi.01857-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) have previously been identified as primary attachment factors for the initial binding of human papillomaviruses (HPVs) prior to infection. Here, we demonstrate that
in vitro
, HPV binding to HSPGs is strongly dependent on the surrounding experimental conditions, including the concentration of fetal bovine serum (FBS).
Collapse
|
41
|
Holubekova V, Kolkova Z, Kasubova I, Samec M, Mazurakova A, Koklesova L, Kubatka P, Rokos T, Kozubik E, Biringer K, Kudela E. Interaction of cervical microbiome with epigenome of epithelial cells: Significance of inflammation to primary healthcare. Biomol Concepts 2022; 13:61-80. [PMID: 35245973 DOI: 10.1515/bmc-2022-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
One pillar of the predictive, preventive, and personalized medicine framework strategies is the female health. The evaluation of women's lifestyle and dietary habits in context with genetic and modifiable risk factors may reflect the prevention of cervical cancer before the occurrence of clinical symptoms and prediction of cervical lesion behavior. The main aim of this review is to analyze publications in the field of precision medicine that allow the use of research knowledge of cervical microbiome, epigenetic modifications, and inflammation in potential application in clinical practice. Personalized approach in evaluating patient's risk of future development of cervical abnormality should consider the biomarkers of the local microenvironment characterized by the microbial composition, epigenetic pattern of cervical epithelium, and presence of chronic inflammation. Novel sequencing techniques enable a more detailed characterization of actual state in cervical epithelium. Better understanding of all changes in multiomics level enables a better assessment of disease prognosis and selects the eligible targeted therapy in personalized medicine. Restoring of healthy vaginal microflora and reversing the outbreak of cervical abnormality can be also achieved by dietary habits as well as uptake of prebiotics, probiotics, synbiotics, microbial transplantation, and others.
Collapse
Affiliation(s)
- Veronika Holubekova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Zuzana Kolkova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Ivana Kasubova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Marek Samec
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| |
Collapse
|
42
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
43
|
Comprehensive multiomic characterization of human papillomavirus-driven recurrent respiratory papillomatosis reveals distinct molecular subtypes. Commun Biol 2021; 4:1416. [PMID: 34931021 PMCID: PMC8688513 DOI: 10.1038/s42003-021-02942-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a debilitating neoplastic disorder of the upper aerodigestive tract caused by chronic infection with low-risk human papillomavirus types 6 or 11. Patients with severe RRP can require hundreds of lifetime surgeries to control their disease and pulmonary papillomatosis can be fatal. Here we report the comprehensive genomic and transcriptomic characterization of respiratory papillomas. We discovered and characterized distinct subtypes with transcriptional resemblance to either a basal or differentiated cell state that associate with disease aggressiveness and differ in key molecular, immune and APOBEC mutagenesis profiles. Through integrated comparison with high-risk HPV-associated head and neck squamous cell carcinoma, our analysis revealed divergent molecular and immune papilloma subtypes that form independent of underlying genomic alterations. Cumulatively our results support the development of dysregulated cellular proliferation and suppressed anti-viral immunity through distinct programs of squamous cell differentiation and associated expression of low-risk HPV genes. These analyses provide insight into the pathogenesis of respiratory papillomas and provide a foundation for the development of therapeutic strategies. Cem Sievers et al. performed genomic and transcriptomic analysis in human recurrent respiratory papillomatosis (RRP). They found that RRP harbors few genomic alterations, but that distinct transcriptional subtypes correlate with HPV gene expression and frequency of clinically-indicated interventions.
Collapse
|
44
|
Mikuličić S, Strunk J, Florin L. HPV16 Entry into Epithelial Cells: Running a Gauntlet. Viruses 2021; 13:v13122460. [PMID: 34960729 PMCID: PMC8706107 DOI: 10.3390/v13122460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.
Collapse
|
45
|
Carobeli LR, Meirelles LEDF, Damke GMZF, Damke E, de Souza MVF, Mari NL, Mashiba KH, Shinobu-Mesquita CS, Souza RP, da Silva VRS, Gonçalves RS, Caetano W, Consolaro MEL. Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics 2021; 13:pharmaceutics13122057. [PMID: 34959339 PMCID: PMC8705941 DOI: 10.3390/pharmaceutics13122057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common causes of cancer-related deaths in women worldwide. Despite advances in current therapies, women with advanced or recurrent disease present poor prognosis. Photodynamic therapy (PDT) has emerged as an effective therapeutic alternative to treat oncological diseases such as cervical cancer. Phthalocyanines (Pcs) are considered good photosensitizers (PS) for PDT, although most of them present high levels of aggregation and are lipophilic. Despite many investigations and encouraging results, Pcs have not been approved as PS for PDT of invasive cervical cancer yet. This review presents an overview on the pathophysiology of cervical cancer and summarizes the most recent developments on the physicochemical properties of Pcs and biological results obtained both in vitro in tumor-bearing mice and in clinical tests reported in the last five years. Current evidence indicates that Pcs have potential as pharmaceutical agents for anti-cervical cancer therapy. The authors firmly believe that Pc-based formulations could emerge as a privileged scaffold for the establishment of lead compounds for PDT against different types of cervical cancer.
Collapse
Affiliation(s)
- Lucimara R. Carobeli
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Lyvia E. de F. Meirelles
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Gabrielle M. Z. F. Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Maria V. F. de Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Natália L. Mari
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Kayane H. Mashiba
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Cristiane S. Shinobu-Mesquita
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Raquel P. Souza
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Vânia R. S. da Silva
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
| | - Renato S. Gonçalves
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (R.S.G.); (W.C.)
| | - Márcia E. L. Consolaro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá 87020-900, PR, Brazil; (L.R.C.); (L.E.d.F.M.); (G.M.Z.F.D.); (E.D.); (M.V.F.d.S.); (N.L.M.); (K.H.M.); (C.S.S.-M.); (R.P.S.); (V.R.S.d.S.)
- Correspondence: ; Tel.: +55-44-3011-5455
| |
Collapse
|
46
|
Doorbar J, Zheng K, Aiyenuro A, Yin W, Walker CM, Chen Y, Egawa N, Griffin HM. Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Curr Opin Virol 2021; 51:96-105. [PMID: 34628359 DOI: 10.1016/j.coviro.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion. These lesions may be considered as self-regulating homeostatic structures, with epithelial cells of the hair follicles and sweat glands, which are proposed targets of the Beta and Mu papillomaviruses, showing similar restrictions to their expansion across the epithelium as a whole. In the absence of immune control, which facilitates deregulated viral gene expression, such lesions can expand, leading to problematic papillomatosis in afflicted individuals. By contrast, he high-risk Alpha HPV types can undergo deregulated viral gene expression in immunocompetent hosts at a number of body sites, including the cervical transformation zone (TZ) where they can drive the formation of neoplasia. Homeostasis at the TZ is poorly understood, but involves two adjacent epithelial cell population, one of which has the potential to stratify and to produce a multilayed squamous epithelium. This process of metaplasia involves a specialised cell type known as the reserve cell, which has for several decades been considered as the cell of origin of cervical cancer. It is becoming clear that during evolution, HPV gene products have acquired functions directly linked to their requirements to modify the normal processes of epithelial homestasis at their various sites of infection. These protein functions are beginning to provide new insight into homeostasis regulation at different body sites, and are likely to be central to our understanding of HPV epithelial tropisms.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom.
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Caroline M Walker
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Yuwen Chen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Heather M Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| |
Collapse
|
47
|
New C, Lee ZY, Tan KS, Wong AHP, Wang DY, Tran T. Tetraspanins: Host Factors in Viral Infections. Int J Mol Sci 2021; 22:11609. [PMID: 34769038 PMCID: PMC8583825 DOI: 10.3390/ijms222111609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.
Collapse
Affiliation(s)
- ChihSheng New
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kai Sen Tan
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Singapore
| | - Amanda Huee-Ping Wong
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - De Yun Wang
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
48
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
49
|
Warburton A, Della Fera AN, McBride AA. Dangerous Liaisons: Long-Term Replication with an Extrachromosomal HPV Genome. Viruses 2021; 13:1846. [PMID: 34578427 PMCID: PMC8472234 DOI: 10.3390/v13091846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Papillomaviruses cause persistent, and usually self-limiting, infections in the mucosal and cutaneous surfaces of the host epithelium. However, in some cases, infection with an oncogenic HPV can lead to cancer. The viral genome is a small, double-stranded circular DNA molecule that is assembled into nucleosomes at all stages of infection. The viral minichromosome replicates at a low copy number in the nucleus of persistently infected cells using the cellular replication machinery. When the infected cells differentiate, the virus hijacks the host DNA damage and repair pathways to replicate viral DNA to a high copy number to generate progeny virions. This strategy is highly effective and requires a close association between viral and host chromatin, as well as cellular processes associated with DNA replication, repair, and transcription. However, this association can lead to accidental integration of the viral genome into host DNA, and under certain circumstances integration can promote oncogenesis. Here we describe the fate of viral DNA at each stage of the viral life cycle and how this might facilitate accidental integration and subsequent carcinogenesis.
Collapse
Affiliation(s)
| | | | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.); (A.N.D.F.)
| |
Collapse
|
50
|
Škubník J, Bejček J, Pavlíčková VS, Rimpelová S. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules 2021; 26:molecules26185627. [PMID: 34577097 PMCID: PMC8469069 DOI: 10.3390/molecules26185627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Collapse
|