1
|
Gern OL, Pavlou A, Mulenge F, Busker LM, Ghita L, Aringo A, Costa B, Spanier J, Waltl I, Stangel M, Kalinke U. MAVS signaling shapes microglia responses to neurotropic virus infection. J Neuroinflammation 2024; 21:264. [PMID: 39425188 PMCID: PMC11490141 DOI: 10.1186/s12974-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Viral encephalitis is characterized by a series of immunological reactions that can control virus infection in the brain, but dysregulated responses may cause excessive inflammation and brain damage. Microglia are brain-resident myeloid cells that are specialized in surveilling the local CNS environment and in case of viral brain infection they contribute to the control of the infection and to restriction of viral dissemination. Here, we report that after exposure to neurotropic vesicular stomatitis virus (VSV), murine in vitro microglia cultures showed rapid upregulation of a broad range of pro-inflammatory and antiviral genes, which were stably expressed over the entire 8 h infection period. Additionally, a set of immunomodulatory genes was upregulated between 6 and 8 h post infection. In microglia cultures, the induction of several immune response pathways including cytokine responses was dependent on mitochondrial antiviral-signaling protein (MAVS). Consequently, in Mavs-deficient microglia the control of virus propagation failed as indicated by augmented virus titers and the accumulation of viral transcripts. Thus, in the analyzed in vitro system, MAVS signaling is critically required to achieve full microglia activation and to mediate profound antiviral effects. In Mavs-deficient mice, intranasal VSV instillation caused higher disease severity than in WT mice and virus dissemination was noticed beyond the olfactory bulb. Virus spread to inner regions of the olfactory bulb, i.e., the granular cell layer, correlated with the recruitment of highly inflammatory non-microglia myeloid cells into the olfactory bulb in Mavs-/- mice. Furthermore, increased cytokine levels were detected in the nasal cavity, the olfactory bulb and in other brain regions. Thus, microglial MAVS signaling is critically needed for virus sensing, full microglia activation, and for orchestration of protective immunity in the virus-infected CNS.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Genentech, South San Francisco, CA, USA
| | - Angela Aringo
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany
- Translational Medicine Neuroscience, Biomedical Research, Novartis Pharma AG, Basel, 4056, Switzerland
- Center of Systems Neuroscience, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Centre for Experimental and Clinical Infection Research, TWINCORE, Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
3
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
4
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single-cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. J Virol 2024; 98:e0019424. [PMID: 38567950 PMCID: PMC11092337 DOI: 10.1128/jvi.00194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | | | - Stacey Lapp
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Amanda Metz
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Michelle Lee
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Swati Sharma Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Rafick-Pierre Sékaly
- Emory Vaccine Center, Atlanta, Georgia, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576293. [PMID: 38293140 PMCID: PMC10827181 DOI: 10.1101/2024.01.19.576293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
|
6
|
Camarão AAR, Gern OL, Stegmann F, Mulenge F, Costa B, Saremi B, Jung K, Lepenies B, Kalinke U, Steffen I. Secreted NS1 proteins of tick-borne encephalitis virus and West Nile virus block dendritic cell activation and effector functions. Microbiol Spectr 2023; 11:e0219223. [PMID: 37707204 PMCID: PMC10581055 DOI: 10.1128/spectrum.02192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023] Open
Abstract
The flavivirus non-structural protein 1 (NS1) is secreted from infected cells into the circulation and the serum levels correlate with disease severity. The effect of secreted NS1 (sNS1) on non-infected mammalian immune cells is largely unknown. Here, we expressed recombinant sNS1 proteins of tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) and investigated their effects on dendritic cell (DC) effector functions. Murine bone marrow-derived DCs (BMDCs) showed reduced surface expression of co-stimulatory molecules and decreased release of pro-inflammatory cytokines when treated with sNS1 of TBEV or WNV prior to poly(I:C) stimulation. Transcriptional profiles of BMDCs that were sNS1-exposed prior to poly(I:C) stimulation showed two gene clusters that were downregulated by TBEV or WNV sNS1 and that were associated with innate and adaptive immune responses. Functionally, both sNS1 proteins modulated the capacity for BMDCs to induce specific T-cell responses as indicated by reduced IFN-γ levels in both CD4+ and CD8+ T cells after BMDC co-cultivation. In human monocyte-derived DCs, poly(I:C)-induced upregulation of co-stimulatory molecules and cytokine responses were even more strongly impaired by TBEV sNS1 or WNV sNS1 pretreatment than in the murine system. Our findings indicate that exogenous flaviviral sNS1 proteins interfere with DC-mediated stimulation of T cells, which is crucial for the initiation of cell-mediated adaptive immune responses in human flavivirus infections. Collectively, our data determine soluble flaviviral NS1 as a virulence factor responsible for a dampened immune response to flavivirus infections. IMPORTANCE The effective initiation of protective host immune responses controls the outcome of infection, and dysfunctional T-cell responses have previously been associated with symptomatic human flavivirus infections. We demonstrate that secreted flavivirus NS1 proteins modulate innate immune responses of uninfected bystander cells. In particular, sNS1 markedly reduced the capacity of dendritic cells to stimulate T-cell responses upon activation. Hence, by modulating cellular host responses that are required for effective antigen presentation and initiation of adaptive immunity, sNS1 proteins may contribute to severe outcomes of flavivirus disease.
Collapse
Affiliation(s)
- António A. R. Camarão
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Felix Stegmann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Babak Saremi
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Imke Steffen
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Lu AY, Gustin A, Newhouse D, Gale M. Viral Protein Accumulation of Zika Virus Variants Links with Regulation of Innate Immunity for Differential Control of Viral Replication, Spread, and Response to Interferon. J Virol 2023; 97:e0198222. [PMID: 37162358 PMCID: PMC10231147 DOI: 10.1128/jvi.01982-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
Collapse
Affiliation(s)
- Amy Y. Lu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Palermo E, Alexandridi M, Di Carlo D, Muscolini M, Hiscott J. Virus-like particle - mediated delivery of the RIG-I agonist M8 induces a type I interferon response and protects cells against viral infection. Front Cell Infect Microbiol 2022; 12:1079926. [PMID: 36590581 PMCID: PMC9795031 DOI: 10.3389/fcimb.2022.1079926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Virus-Like Particles (VLPs) are nanostructures that share conformation and self-assembly properties with viruses, but lack a viral genome and therefore the infectious capacity. In this study, we produced VLPs by co-expression of VSV glycoprotein (VSV-G) and HIV structural proteins (Gag, Pol) that incorporated a strong sequence-optimized 5'ppp-RNA RIG-I agonist, termed M8. Treatment of target cells with VLPs-M8 generated an antiviral state that conferred resistance against multiple viruses. Interestingly, treatment with VLPs-M8 also elicited a therapeutic effect by inhibiting ongoing viral replication in previously infected cells. Finally, the expression of SARS-CoV-2 Spike glycoprotein on the VLP surface retargeted VLPs to ACE2 expressing cells, thus selectively blocking viral infection in permissive cells. These results highlight the potential of VLPs-M8 as a therapeutic and prophylactic vaccine platform. Overall, these observations indicate that the modification of VLP surface glycoproteins and the incorporation of nucleic acids or therapeutic drugs, will permit modulation of particle tropism, direct specific innate and adaptive immune responses in target tissues, and boost immunogenicity while minimizing off-target effects.
Collapse
|
9
|
Molecular Mechanism and Role of Japanese Encephalitis Virus Infection in Central Nervous System-Mediated Diseases. Viruses 2022; 14:v14122686. [PMID: 36560690 PMCID: PMC9781168 DOI: 10.3390/v14122686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the most common cause of neurodegenerative disease in Southeast Asia and the Western Pacific region; approximately 1.15 billion people are at risk, and thousands suffer from permanent neurological disorders across Asian countries, with 10-15 thousand people dying each year. JEV crosses the blood-brain barrier (BBB) and forms a complex with receptors on the surface of neurons. GRP78, Src, TLR7, caveolin-1, and dopamine receptor D2 are involved in JEV binding and entry into the neurons, and these receptors also play a role in carcinogenic activity in cells. JEV binds to GRP78, a member of the HSP70 overexpressed on malignant cells to enter neurons, indicating a higher chance of JEV infection in cancer patients. However, JEV enters human brain microvascular endothelial cells via an endocytic pathway mediated by caveolae and the ezrin protein and also targets dopamine-rich areas for infection of the midbrain via altering dopamine levels. In addition, JEV complexed with CLEC5A receptor of macrophage cells is involved in the breakdown of the BBB and central nervous system (CNS) inflammation. CLEC5A-mediated infection is also responsible for the influx of cytokines into the CNS. In this review, we discuss the neuronal and macrophage surface receptors involved in neuronal death.
Collapse
|
10
|
Powassan Virus Induces Structural Changes in Human Neuronal Cells In Vitro and Murine Neurons In Vivo. Pathogens 2022; 11:pathogens11101218. [PMID: 36297275 PMCID: PMC9609669 DOI: 10.3390/pathogens11101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus (TBFV) that can cause severe encephalitis in humans with a case-fatality rate as high as 11%. Patients who survive severe encephalitic disease can develop long-term neurological sequelae that can be debilitating and life-long. In this study, we have sought to characterize a primary human fetal brain neural stem cell system (hNSC), which can be differentiated into neuron and astrocyte co-cultures, to serve as a translational in vitro system for infection with POWV and a comparative mosquito-borne flavivirus (MBFV), West Nile virus (WNV). We found that both viruses are able to infect both cell types in the co-culture and that WNV elicits a strong inflammatory response characterized by increased cytokines IL-4, IL-6, IL-8, TNF-α and IL-1β and activation of apoptosis pathways. POWV infection resulted in fewer cytokine responses, as well as less detectable apoptosis, while neurons infected with POWV exhibited structural aberrations forming in the dendrites. These anomalies are consistent with previous findings in which tick-borne encephalitis virus (TBEV) infected murine primary neurons formed laminal membrane structures (LMS). Furthermore, these structural aberrations are also recapitulated in brain tissue from infected mice. Our findings indicate that POWV is capable of infecting human primary neurons and astrocytes without causing apparent widespread apoptosis, while forming punctate structures reminiscent with LMS in primary human neurons and in vivo.
Collapse
|
11
|
Wang Y, Karki R, Mall R, Sharma BR, Kalathur RC, Lee S, Kancharana B, So M, Combs KL, Kanneganti TD. Molecular mechanism of RIPK1 and caspase-8 in homeostatic type I interferon production and regulation. Cell Rep 2022; 41:111434. [PMID: 36198273 PMCID: PMC9630927 DOI: 10.1016/j.celrep.2022.111434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Type I interferons (IFNs) are essential innate immune proteins that maintain tissue homeostasis through tonic expression and can be upregulated to drive antiviral resistance and inflammation upon stimulation. However, the mechanisms that inhibit aberrant IFN upregulation in homeostasis and the impacts of tonic IFN production on health and disease remain enigmatic. Here, we report that caspase-8 negatively regulates type I IFN production by inhibiting the RIPK1-TBK1 axis during homeostasis across multiple cell types and tissues. When caspase-8 is deleted or inhibited, RIPK1 interacts with TBK1 to drive elevated IFN production, leading to heightened resistance to norovirus infection in macrophages but also early onset lymphadenopathy in mice. Combined deletion of caspase-8 and RIPK1 reduces the type I IFN signaling and lymphadenopathy, highlighting the critical role of RIPK1 in this process. Overall, our study identifies a mechanism to constrain tonic type I IFN during homeostasis which could be targeted for infectious and inflammatory diseases. Wang et al. report the mechanistic regulation of homeostatic type I IFN production by caspase-8 through the RIPK1-TBK1 axis. Hyper-activation of this pathway due to loss of caspase-8 has profound physiological impacts on natural resistance to viral infection and the pathogenesis of lymphadenopathy.
Collapse
|
12
|
Hum NR, Bourguet FA, Sebastian A, Lam D, Phillips AM, Sanchez KR, Rasley A, Loots GG, Weilhammer DR. MAVS mediates a protective immune response in the brain to Rift Valley fever virus. PLoS Pathog 2022; 18:e1010231. [PMID: 35584192 PMCID: PMC9154093 DOI: 10.1371/journal.ppat.1010231] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice. In response to infection, microglia initiated robust transcriptional upregulation of antiviral immune genes, as well as increased levels of activation markers and cytokine secretion that is dependent on mitochondrial antiviral-signaling protein (MAVS) and independent of toll-like receptors 3 and 7. In vivo, Mavs-/- mice displayed enhanced susceptibility to RVFV as determined by increased brain viral burden and higher mortality. Single-cell RNA sequence analysis identified defects in type I interferon and interferon responsive gene expression within microglia in Mavs-/- mice, as well as dysregulated lymphocyte infiltration. The results of this study provide a crucial step towards understanding the precise molecular mechanisms by which RVFV infection is controlled in the brain and will help inform the development of vaccines and antiviral therapies that are effective in preventing encephalitis. Rift Valley fever virus causes severe disease in humans and livestock and in some cases can be fatal. There is concern about the use of Rift Valley fever virus as a bioweapon since it can be transmitted through the air, and there are no vaccines or antiviral treatments. Airborne transmission of the virus causes severe inflammation of the brain, yet little is known about the immune response against the virus in this organ. Here, we investigated the immune response in the brain to Rift Valley fever virus following intranasal infection. We determined that microglia, the resident immune cells of the brain, initiate a robust response to Rift Valley fever virus infection and identified a key immune pathway that is critical for the ability of microglia to respond to infection. When this immune pathway is rendered non-functional, mice have a dysregulated response to infection in the brain. This study provides insight into how the immune response can control Rift Valley fever virus infection of the brain.
Collapse
Affiliation(s)
- Nicholas R. Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Feliza A. Bourguet
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Doris Lam
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ashlee M. Phillips
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kristina R. Sanchez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Gabriela G. Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Dina R. Weilhammer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022; 13:801466. [PMID: 35432292 PMCID: PMC9012491 DOI: 10.3389/fmicb.2022.801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV’s envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297–S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299–K307 and DIII-2V371–R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299–K307 and DIII-2V371–R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV–like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371–R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV–induced neuropathogenesis.
Collapse
Affiliation(s)
- Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Čurlík
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Amod Kulkarni,
| |
Collapse
|
14
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
15
|
Gao Z, Zhang X, Zhang L, Wu S, Ma J, Wang F, Zhou Y, Dai X, Bullitt E, Du Y, Guo JT, Chang J. A yellow fever virus NS4B inhibitor not only suppresses viral replication, but also enhances the virus activation of RIG-I-like receptor-mediated innate immune response. PLoS Pathog 2022; 18:e1010271. [PMID: 35061864 PMCID: PMC8809586 DOI: 10.1371/journal.ppat.1010271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 02/02/2022] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Flavivirus infection of cells induces massive rearrangements of the endoplasmic reticulum (ER) membrane to form viral replication organelles (ROs) which segregates viral RNA replication intermediates from the cytoplasmic RNA sensors. Among other viral nonstructural (NS) proteins, available evidence suggests for a prominent role of NS4B, an ER membrane protein with multiple transmembrane domains, in the formation of ROs and the evasion of the innate immune response. We previously reported a benzodiazepine compound, BDAA, which specifically inhibited yellow fever virus (YFV) replication in cultured cells and in vivo in hamsters, with resistant mutation mapped to P219 of NS4B protein. In the following mechanistic studies, we found that BDAA specifically enhances YFV induced inflammatory cytokine response in association with the induction of dramatic structural alteration of ROs and exposure of double-stranded RNA (dsRNA) in virus-infected cells. Interestingly, the BDAA-enhanced cytokine response in YFV-infected cells is attenuated in RIG-I or MAD5 knockout cells and completely abolished in MAVS knockout cells. However, BDAA inhibited YFV replication at a similar extent in the parent cells and cells deficient of RIG-I, MDA5 or MAVS. These results thus provided multiple lines of biological evidence to support a model that BDAA interaction with NS4B may impair the integrity of YFV ROs, which not only inhibits viral RNA replication, but also promotes the release of viral RNA from ROs, which consequentially activates RIG-I and MDA5. Although the innate immune enhancement activity of BDAA is not required for its antiviral activity in cultured cells, its dual antiviral mechanism is unique among all the reported antiviral agents thus far and warrants further investigation in animal models in future. Emergence and re-emergence of yellow fever (YF) caused by the yellow fever virus (YFV) infection have posed a global public health threat in previously non-epidemic as well as endemic regions. The approximately 30% of mortality rate makes the outbreaks particularly devastating. In addition to the vaccination campaign and mosquito controls, antiviral drugs are important components in the toolbox for combating YF outbreaks. However, only two nucleotide analogue drugs developed for the treatment of other RNA virus infections are currently repurposed for the treatment of YF with uncertain clinical efficacy. BDAA is a benzodiazepine compound discovered as a potent YFV-specific antiviral agent in our laboratory. The work reported herein further demonstrates that BDAA interaction with the YFV NS4B protein may impair the integrity of viral RNA replication organelles, which not only inhibits viral RNA replication, but also results in the leakage of viral RNA into the cytoplasm to activate RIG-I-like RNA receptors and enhances the innate antiviral immune response. The unprecedented antiviral mechanism of BDAA highlights the essential role of the NS4B protein in viral RNA replication and the evasion of host cellular innate immunity.
Collapse
Affiliation(s)
- Zhao Gao
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Xuexiang Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Lin Zhang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Shuo Wu
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Julia Ma
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
17
|
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, Neale G, Vogel P, Kanneganti TD. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 2021; 37:109858. [PMID: 34686350 PMCID: PMC8853634 DOI: 10.1016/j.celrep.2021.109858] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Death
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Hydrazines/pharmacology
- Interferon-gamma/pharmacology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Necroptosis
- Pyroptosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Triazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
18
|
Batool M, Kim MS, Choi S. Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG-I-like receptors. Med Res Rev 2021; 42:399-425. [PMID: 34287999 DOI: 10.1002/med.21845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses, including the coronavirus, develop a unique strategy to evade the host immune response by interrupting the normal function of cytosolic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). RLRs rapidly detect atypical nucleic acids, thereby triggering the antiviral innate immune signaling cascade and subsequently activates the interferons transcription and induction of other proinflammatory cytokines and chemokines. Nonetheless, these receptors are manipulated by viral proteins to subvert the host immune system and sustain the infectivity and replication potential of the virus. RIG-I senses the single-stranded, double-stranded, and short double-stranded RNAs and recognizes the key signature, a 5'-triphosphate moiety, at the blunt end of the viral RNA. Meanwhile, the melanoma differentiation-associated gene 5 (MDA5) is triggered by longer double stranded RNAs, messenger RNAs lacking 2'-O-methylation in their 5'-cap, and RNA aggregates. Therefore, structural insights into the nucleic-acid-sensing and downstream signaling mechanisms of these receptors hold great promise for developing effective antiviral therapeutic interventions. This review highlights the critical roles played by RLRs in viral infections as well as their ligand recognition mechanisms. In addition, we highlight the crosstalk between the toll-like receptors and RLRs and provide a comprehensive overview of RLR-associated diseases as well as the therapeutic potential of RLRs for the development of antiviral-drugs. Moreover, we believe that these RLR-based antivirals will serve as a step toward countering the recent coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| |
Collapse
|
19
|
Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB, Kanneganti TD. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 2021; 22:829-838. [PMID: 33963333 PMCID: PMC8882317 DOI: 10.1038/s41590-021-00937-x] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
The innate immune response is critical for recognizing and controlling infections through the release of cytokines and chemokines. However, severe pathology during some infections, including SARS-CoV-2, is driven by hyperactive cytokine release, or cytokine storm. The innate sensors that activate production of pro-inflammatory cytokines and chemokines during COVID-19 remain poorly characterized. Here we show that both TLR2 and MYD88 expression were associated with COVID-19 disease severity. Mechanistically, TLR2 and MyD88 were required for β-coronavirus–induced inflammatory responses, and TLR2-dependent signaling induced the production of pro-inflammatory cytokines during coronavirus infection independent of viral entry. TLR2 sensed the SARS-CoV-2 envelope protein as its ligand. Additionally, blocking TLR2 signaling in vivo provided protection against the pathogenesis of SARS-CoV-2 infection. Overall, our study provides a critical understanding of the molecular mechanism of β-coronavirus sensing and inflammatory cytokine production, which opens new avenues for therapeutic strategies to counteract the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Min Zheng
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dong Yang
- UTHSC Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elizabeth Fitzpatrick
- UTHSC Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
20
|
Graham JB, Swarts JL, Edwards KR, Voss KM, Green R, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Gale M, Lund JM. Correlation of Regulatory T Cell Numbers with Disease Tolerance upon Virus Infection. Immunohorizons 2021; 5:157-169. [PMID: 33893179 PMCID: PMC8281504 DOI: 10.4049/immunohorizons.2100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
The goal of a successful immune response is to clear the pathogen while sparing host tissues from damage associated with pathogen replication and active immunity. Regulatory T cells (Treg) have been implicated in maintaining this balance as they contribute both to the organization of immune responses as well as restriction of inflammation and immune activation to limit immunopathology. To determine if Treg abundance prior to pathogen encounter can be used to predict the success of an antiviral immune response, we used genetically diverse mice from the collaborative cross infected with West Nile virus (WNV). We identified collaborative cross lines with extreme Treg abundance at steady state, either high or low, and used mice with these extreme phenotypes to demonstrate that baseline Treg quantity predicted the magnitude of the CD8 T cell response to WNV infection, although higher numbers of baseline Tregs were associated with reduced CD8 T cell functionality in terms of TNF and granzyme B expression. Finally, we found that abundance of CD44+ Tregs in the spleen at steady state was correlated with an increased early viral load within the spleen without an association with clinical disease. Thus, we propose that Tregs participate in disease tolerance in the context of WNV infection by tuning an appropriately focused and balanced immune response to control the virus while at the same time minimizing immunopathology and clinical disease. We hypothesize that Tregs limit the antiviral CD8 T cell function to curb immunopathology at the expense of early viral control as an overall host survival strategy.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kristina R Edwards
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Michael Gale
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA; .,Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
22
|
Plasmacytoid Dendritic Cells Mediate Control of Ross River Virus Infection via a Type I Interferon-Dependent, MAVS-Independent Mechanism. J Virol 2021; 95:JVI.01538-20. [PMID: 33361425 DOI: 10.1128/jvi.01538-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1 -/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1 -/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs -/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs -/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs -/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs -/- mice infected with WT virus, and treatment of Mavs -/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs -/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs -/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.
Collapse
|
23
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Vanderheiden A, Edara VV, Floyd K, Kauffman RC, Mantus G, Anderson E, Rouphael N, Edupuganti S, Shi PY, Menachery VD, Wrammert J, Suthar MS. Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARS-CoV-2 Neutralizing Antibodies. ACTA ACUST UNITED AC 2020; 131:e116. [PMID: 33215858 DOI: 10.1002/cpim.116] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 is a recently emerged human coronavirus that has escalated to a pandemic. There are currently no approved vaccines for SARS-CoV-2, which causes severe respiratory illness or death. Defining the antibody response to SARS-CoV-2 will be essential for understanding disease progression, long-term immunity, and vaccine efficacy. Here we describe two methods for evaluating the neutralization capacity of SARS-CoV-2 antibodies. The basic protocol is a focus reduction neutralization test (FRNT), which involves immunostaining infected cells with a chromogen deposit readout. The alternate protocol is a modification of the FRNT that uses an infectious clone-derived SARS-CoV-2 virus expressing a fluorescent reporter. These protocols are adapted for use in a high-throughput setting, and are compatible with large-scale vaccine studies or clinical testing. © 2020 Wiley Periodicals LLC Basic Protocol: Focus reduction neutralization test Alternate Protocol: mNeonGreen-based focus reduction neutralization test (FRNT-mNG).
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Katharine Floyd
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Kauffman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Grace Mantus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Evan Anderson
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia
| | - Nadine Rouphael
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia
| | - Sri Edupuganti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Vineet D Menachery
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
25
|
Fiacre L, Pagès N, Albina E, Richardson J, Lecollinet S, Gonzalez G. Molecular Determinants of West Nile Virus Virulence and Pathogenesis in Vertebrate and Invertebrate Hosts. Int J Mol Sci 2020; 21:ijms21239117. [PMID: 33266206 PMCID: PMC7731113 DOI: 10.3390/ijms21239117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird–mosquito–bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Collapse
Affiliation(s)
- Lise Fiacre
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit Bourg, Guadeloupe, France; (N.P.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Jennifer Richardson
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
- Correspondence: ; Tel.: +33-1-43967376
| | - Gaëlle Gonzalez
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (L.F.); (J.R.); (G.G.)
| |
Collapse
|
26
|
Host genetic susceptibility to viral infections: the role of type I interferon induction. Genes Immun 2020; 21:365-379. [PMID: 33219336 PMCID: PMC7677911 DOI: 10.1038/s41435-020-00116-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The innate immune response is the major front line of defense against viral infections. It involves hundreds of genes with antiviral properties which expression is induced by type I interferons (IFNs) and are therefore called interferon stimulated genes (ISGs). Type I IFNs are produced after viral recognition by pathogen recognition receptors, which trigger a cascade of activation events. Human and mouse studies have shown that defective type I IFNs induction may hamper the ability to control viral infections. In humans, moderate to high-effect variants have been identified in individuals with particularly severe complications following viral infection. In mice, functional studies using knock-out alleles have revealed the specific role of most genes of the IFN pathway. Here, we review the role of the molecular partners of the type I IFNs induction pathway and their implication in the control of viral infections and of their complications.
Collapse
|
27
|
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2020; 184:149-168.e17. [PMID: 33278357 PMCID: PMC7674074 DOI: 10.1016/j.cell.2020.11.025] [Citation(s) in RCA: 917] [Impact Index Per Article: 229.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Patrick Schreiner
- The Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
28
|
Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, Schreiner P, Neale G, Vogel P, Webby R, Jonsson CB, Kanneganti TD. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.29.361048. [PMID: 33140051 PMCID: PMC7605562 DOI: 10.1101/2020.10.29.361048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the JAK/STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Evan Peter Williams
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | | - Patrick Schreiner
- The Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Richard Webby
- Department of Infectious Disease, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Colleen Beth Jonsson
- Department of Microbiology, Immunology, & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | | |
Collapse
|
29
|
Kendall BL, Grabowski JM, Rosenke R, Pulliam M, Long DR, Scott DP, Offerdahl DK, Bloom ME. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl Trop Dis 2020; 14:e0008683. [PMID: 33017410 PMCID: PMC7561187 DOI: 10.1371/journal.pntd.0008683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens. Powassan disease has greatly increased in frequency since its discovery in Powassan, Ontario in 1958. Powassan virus (lineage I; POWV) and Powassan virus lineage II (deer tick virus; DTV) are endemic to North America and there were 133 reported cases between 2009 and 2018, the majority since 2016. Nymphal and adult Ixodes scapularis ticks are thought to be the primary vectors of POWV/DTV to humans. However, little is known regarding DTV infection of male Ixodes ticks or their potential as vectors. In this study we characterized LGTV, a model tick-borne flavivirus, and DTV infection and propagation in male I. scapularis salivary gland cultures using an ex vivo organ culture system. This work provides insight into potential flavivirus transmission by the male I. scapularis tick.
Collapse
Affiliation(s)
- Benjamin L. Kendall
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Mikayla Pulliam
- Microscopy Unit, Research and Technologies Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Daniel R. Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| |
Collapse
|
30
|
O’Ketch M, Williams S, Larson C, Uhrlaub JL, Wong R, Hall B, Deshpande NR, Schenten D. MAVS regulates the quality of the antibody response to West-Nile Virus. PLoS Pathog 2020; 16:e1009009. [PMID: 33104760 PMCID: PMC7644103 DOI: 10.1371/journal.ppat.1009009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
A key difference that distinguishes viral infections from protein immunizations is the recognition of viral nucleic acids by cytosolic pattern recognition receptors (PRRs). Insights into the functions of cytosolic PRRs such as the RNA-sensing Rig-I-like receptors (RLRs) in the instruction of adaptive immunity are therefore critical to understand protective immunity to infections. West Nile virus (WNV) infection of mice deficent of RLR-signaling adaptor MAVS results in a defective adaptive immune response. While this finding suggests a role for RLRs in the instruction of adaptive immunity to WNV, it is difficult to interpret due to the high WNV viremia, associated exessive antigen loads, and pathology in the absence of a MAVS-dependent innate immune response. To overcome these limitations, we have infected MAVS-deficient (MAVSKO) mice with a single-round-of-infection mutant of West Nile virus. We show that MAVSKO mice failed to produce an effective neutralizing antibody response to WNV despite normal antibody titers against the viral WNV-E protein. This defect occurred independently of antigen loads or overt pathology. The specificity of the antibody response in infected MAVSKO mice remained unchanged and was still dominated by antibodies that bound the neutralizing lateral ridge (LR) epitope in the DIII domain of WNV-E. Instead, MAVSKO mice produced IgM antibodies, the dominant isotype controlling primary WNV infection, with lower affinity for the DIII domain. Our findings suggest that RLR-dependent signals are important for the quality of the humoral immune response to WNV.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antibody Formation
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Female
- Immunity, Humoral
- Immunity, Innate/immunology
- Immunoglobulin M
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Signal Transduction/immunology
- West Nile Fever/immunology
- West Nile Fever/virology
- West Nile virus/pathogenicity
Collapse
Affiliation(s)
- Marvin O’Ketch
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Spencer Williams
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Larson
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Wong
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Brenna Hall
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominik Schenten
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
31
|
Graham JB, Swarts JL, Menachery VD, Gralinski LE, Schäfer A, Plante KS, Morrison CR, Voss KM, Green R, Choonoo G, Jeng S, Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Gale M, Heise MT, Baric RS, Lund JM. Immune Predictors of Mortality After Ribonucleic Acid Virus Infection. J Infect Dis 2020; 221:882-889. [PMID: 31621854 PMCID: PMC7107456 DOI: 10.1093/infdis/jiz531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Virus infections result in a range of clinical outcomes for the host, from asymptomatic to severe or even lethal disease. Despite global efforts to prevent and treat virus infections to limit morbidity and mortality, the continued emergence and re-emergence of new outbreaks as well as common infections such as influenza persist as a health threat. Challenges to the prevention of severe disease after virus infection include both a paucity of protective vaccines as well as the early identification of individuals with the highest risk that may require supportive treatment. METHODS We completed a screen of mice from the Collaborative Cross (CC) that we infected with influenza, severe acute respiratory syndrome-coronavirus, and West Nile virus. RESULTS The CC mice exhibited a range of disease manifestations upon infections, and we used this natural variation to identify strains with mortality after infection and strains exhibiting no mortality. We then used comprehensive preinfection immunophenotyping to identify global baseline immune correlates of protection from mortality to virus infection. CONCLUSIONS These data suggest that immune phenotypes might be leveraged to identify humans at highest risk of adverse clinical outcomes upon infection, who may most benefit from intensive clinical interventions, in addition to providing insight for rational vaccine design.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of Texas Medical Center, Galveston, Texas, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth S Plante
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Clayton R Morrison
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Gabrielle Choonoo
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Sophia Jeng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA.,OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
33
|
Flavivirus Nonstructural Protein NS5 Dysregulates HSP90 to Broadly Inhibit JAK/STAT Signaling. Cells 2020; 9:cells9040899. [PMID: 32272626 PMCID: PMC7226784 DOI: 10.3390/cells9040899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/β. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase-HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection.
Collapse
|
34
|
Zhou D, Li Q, Jia F, Zhang L, Wan S, Li Y, Song Y, Chen H, Cao S, Ye J. The Japanese Encephalitis Virus NS1' Protein Inhibits Type I IFN Production by Targeting MAVS. THE JOURNAL OF IMMUNOLOGY 2020; 204:1287-1298. [PMID: 31996459 DOI: 10.4049/jimmunol.1900946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne Flavivirus that causes severe neurologic disease in humans. NS1' is a NS1-related protein only reported in the Japanese encephalitis serogroup members of Flavivirus It is produced through programmed -1 ribosomal frameshift in NS2A. Our previous study demonstrated that JEV NS1' could antagonize type I IFN (IFN-I) production, but the mechanism is still unclear. In the current study, we found that JEV NS1' inhibits the expression of MAVS, and knockdown of MAVS hampers inhibition of IFN-β induction by NS1', suggesting that JEV NS1' inhibits IFN-I production by targeting MAVS. This finding is further supported by the result of the in vivo assay that showed the similar mortality caused by NS1'-deficient virus and its wild type virus in MAVS-deficient mice. Based on our previous sequencing results of noncoding RNA in JEV-infected cells, microRNA-22 (miR-22) was identified to be a key regulator for MAVS expression during JEV infection. Furthermore, we demonstrated that JEV NS1' could induce the expression of miR-22 by increasing the binding of transcriptional factors, CREB and c-Rel, to the promoter elements of miR-22. Taken together, our results reveal a novel mechanism by which JEV NS1' antagonizes host MAVS by regulating miR-22, thereby inhibiting the IFN-I production and facilitating viral replication.
Collapse
Affiliation(s)
- Dengyuan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Qiuyan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Fan Jia
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430070, Hubei, People's Republic of China
| | - Luping Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Yunchuan Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China; and
| |
Collapse
|
35
|
Graham JB, Swarts JL, Thomas S, Voss KM, Sekine A, Green R, Ireton RC, Gale M, Lund JM. Immune Correlates of Protection From West Nile Virus Neuroinvasion and Disease. J Infect Dis 2020; 219:1162-1171. [PMID: 30371803 DOI: 10.1093/infdis/jiy623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A challenge to the design of improved therapeutic agents and prevention strategies for neuroinvasive infection and associated disease is the lack of known natural immune correlates of protection. A relevant model to study such correlates is offered by the Collaborative Cross (CC), a panel of recombinant inbred mouse strains that exhibit a range of disease manifestations upon infection. METHODS We performed an extensive screen of CC-F1 lines infected with West Nile virus (WNV), including comprehensive immunophenotyping, to identify groups of lines that exhibited viral neuroinvasion or neuroinvasion with disease and lines that remained free of WNV neuroinvasion and disease. RESULTS Our data reveal that protection from neuroinvasion and disease is multifactorial and that several immune outcomes can contribute. Immune correlates identified include decreased suppressive activity of regulatory T cells at steady state, which correlates with peripheral restriction of the virus. Further, a rapid contraction of WNV-specific CD8+ T cells in the brain correlated with protection from disease. CONCLUSIONS These immune correlates of protection illustrate additional networks and pathways of the WNV immune response that cannot be observed in the C57BL/6 mouse model. Additionally, correlates of protection exhibited before infection, at baseline, provide insight into phenotypic differences in the human population that may predict clinical outcomes upon infection.
Collapse
Affiliation(s)
- Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Jessica L Swarts
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Sunil Thomas
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Kathleen M Voss
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Aimee Sekine
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Renee C Ireton
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Global Health, School of Medicine and School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
36
|
Inflammation During Virus Infection: Swings and Roundabouts. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121364 DOI: 10.1007/978-981-15-1045-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Inflammation constitutes a concerted series of cellular and molecular responses that follow disturbance of systemic homeostasis, by either toxins or infectious organisms. Leukocytes modulate inflammation through production of secretory mediators, like cytokines and chemokines, which work in an autocrine and/or paracrine manner. These mediators can either promote or attenuate the inflammatory response and depending on differential temporal and spatial expression play a crucial role in the outcome of infection. Even though the objective is clearance of the pathogen with minimum damage to host, the pathogenesis of multiple human pathogenic viruses has been suggested to emanate from a dysregulation of the inflammatory response, sometimes with fatal consequences. This review discusses the nature and the outcome of inflammatory response, which is triggered in the human host subsequent to infection by single-sense plus-strand RNA viruses. In view of such harmful effects of a dysregulated inflammatory response, an exogenous regulation of these reactions by either interference or supplementation of critical regulators has been suggested. Currently multiple such factors are being tested for their beneficial and adverse effects. A successful use of such an approach in diseases of viral etiology can potentially protect the affected individual without directly affecting the virus life cycle. Further, such approaches whenever applicable would be useful in mitigating death and/or debility that is caused by the infection of those viruses which have proven particularly difficult to control by either prophylactic vaccines and/or therapeutic strategies using specific antiviral drugs.
Collapse
|
37
|
Liao KC, Chuo V, Fagg WS, Bradrick SS, Pompon J, Garcia-Blanco MA. The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biol 2019; 17:366-380. [PMID: 31829086 DOI: 10.1080/15476286.2019.1703069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNβ transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNβ activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNβ induction. Consistently, ectopic expression of RIG-I activates stronger IFNβ induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - W Samuel Fagg
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.,Department of Surgery, Transplant Division, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
38
|
Zimmerman MG, Bowen JR, McDonald CE, Young E, Baric RS, Pulendran B, Suthar MS. STAT5: a Target of Antagonism by Neurotropic Flaviviruses. J Virol 2019; 93:e00665-19. [PMID: 31534033 PMCID: PMC6854481 DOI: 10.1128/jvi.00665-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Flaviviruses are a diverse group of arthropod-borne viruses responsible for numerous significant public health threats; therefore, understanding the interactions between these viruses and the human immune response remains vital. West Nile virus (WNV) and Zika virus (ZIKV) infect human dendritic cells (DCs) and can block antiviral immune responses in DCs. Previously, we used mRNA sequencing and weighted gene coexpression network analysis (WGCNA) to define molecular signatures of antiviral DC responses following activation of innate immune signaling (RIG-I, MDA5, or type I interferon [IFN] signaling) or infection with WNV. Using this approach, we found that several genes involved in T cell cosignaling and antigen processing were not enriched in DCs during WNV infection. Using cis-regulatory sequence analysis, STAT5 was identified as a regulator of DC activation and immune responses downstream of innate immune signaling that was not activated during either WNV or ZIKV infection. Mechanistically, WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and interleukin-4 (IL-4), but not granulocyte-macrophage colony-stimulating factor (GM-CSF), signaling. Unexpectedly, dengue virus serotypes 1 to 4 (DENV1 to DENV4) and the yellow fever 17D vaccine strain (YFV-17D) did not antagonize STAT5 phosphorylation. In contrast to WNV, ZIKV inhibited JAK1 and TYK2 phosphorylation following type I IFN treatment, suggesting divergent mechanisms used by these viruses to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert the immune response in infected DCs.IMPORTANCE Flaviviruses are a diverse group of insect-borne viruses responsible for numerous significant public health threats. Previously, we used a computational biology approach to define molecular signatures of antiviral DC responses following activation of innate immune signaling or infection with West Nile virus (WNV). In this work, we identify STAT5 as a regulator of DC activation and antiviral immune responses downstream of innate immune signaling that was not activated during either WNV or Zika virus (ZIKV) infection. WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and IL-4, but not GM-CSF, signaling. However, other related flaviviruses, dengue virus serotypes 1 to 4 and the yellow fever 17D vaccine strain, did not antagonize STAT5 phosphorylation. Mechanistically, WNV and ZIKV showed differential inhibition of Jak kinases upstream of STAT5, suggesting divergent countermeasures to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert antiviral immune responses in human DCs.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Zimmerman MG, Bowen JR, McDonald CE, Pulendran B, Suthar MS. West Nile Virus Infection Blocks Inflammatory Response and T Cell Costimulatory Capacity of Human Monocyte-Derived Dendritic Cells. J Virol 2019; 93:e00664-19. [PMID: 31534040 PMCID: PMC6854506 DOI: 10.1128/jvi.00664-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus and the leading cause of mosquito-borne encephalitis in the United States. Recent studies in humans have found that dysfunctional T cell responses strongly correlate with development of severe WNV neuroinvasive disease. However, the contributions of human dendritic cells (DCs) in priming WNV-specific T cell immunity remains poorly understood. Here, we demonstrate that human monocyte derived DCs (moDCs) support productive viral replication following infection with a pathogenic strain of WNV. Antiviral effector gene transcription was strongly induced during the log phase of viral growth, while secretion of type I interferons (IFN) occurred with delayed kinetics. Activation of RIG-I like receptor (RLR) or type I IFN signaling prior to log phase viral growth significantly diminished viral replication, suggesting that early activation of antiviral programs can block WNV infection. In contrast to the induction of antiviral responses, WNV infection did not promote transcription or secretion of proinflammatory (interleukin-6 [IL-6], granulocyte-macrophage colony-stimulating factor [GM-CSF], CCL3, CCL5, and CXCL9) or T cell modulatory (IL-4, IL-12, and IL-15) cytokines. There was also minimal induction of molecules associated with antigen presentation and T cell priming, including the costimulatory molecules CD80, CD86, and CD40. Functionally, WNV-infected moDCs dampened allogenic CD4 and CD8 T cell activation and proliferation. Combining these observations, we propose a model whereby WNV subverts human DC activation to compromise priming of WNV-specific T cell immunity.IMPORTANCE West Nile virus (WNV) is an encephalitic flavivirus that remains endemic in the United States. Previous studies have found dysfunctional T cell responses correlate to severe disease outcomes during human WNV infection. Here, we sought to better understand the ability of WNV to program human dendritic cells (DCs) to prime WNV-specific T cell responses. While productive infection of monocyte-derived DCs activated antiviral and type I interferon responses, molecules associated with inflammation and programming of T cells were minimally induced. Functionally, WNV-infected DCs dampened T cell activation and proliferation during an allogeneic response. Combined, our data support a model whereby WNV infection of human DCs compromises WNV-specific T cell immunity.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Li G, Adam A, Luo H, Shan C, Cao Z, Fontes-Garfias CR, Sarathy VV, Teleki C, Winkelmann ER, Liang Y, Sun J, Bourne N, Barrett ADT, Shi PY, Wang T. An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. NPJ Vaccines 2019; 4:48. [PMID: 31815005 PMCID: PMC6883050 DOI: 10.1038/s41541-019-0143-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4+ and CD8+ T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3'-UTR (ZIKV-3'UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zengguo Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Camila R. Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Vanessa V. Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Cody Teleki
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Evandro R. Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Alan D. T. Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
41
|
de Marcken M, Dhaliwal K, Danielsen AC, Gautron AS, Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci Signal 2019; 12:12/605/eaaw1347. [DOI: 10.1126/scisignal.aaw1347] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human blood CD14+monocytes are bone marrow–derived white blood cells that sense and respond to pathogens. Although innate immune activation by RNA viruses preferentially occurs through intracellular RIG-I–like receptors, other nucleic acid recognition receptors, such as Toll-like receptors (TLRs), play a role in finely programming the final outcome of virus infection. Here, we dissected how human monocytes respond to infection with either Coxsackie (CV), encephalomyocarditis (EMCV), influenza A (IAV), measles (MV), Sendai (SV), or vesicular stomatitis (VSV) virus. We found that in monocytes, type I interferon (IFN) and cytokine responses to infection were RNA virus specific and differentially involved TLR7 and TLR8, which sense single-stranded RNA. These TLRs activated distinct signaling cascades in monocytes, which correlated with differences in the production of cytokines involved in the polarization of CD4+T helper cells. Furthermore, we found that TLR7 signaling specifically increased expression of the transcription factor FOSL1, which reduced IL-27 and TNFα production by monocytes. TLR7, but not TLR8, activation of monocytes also stimulated Ca2+flux that prevented type I IFN responses. Our work demonstrates that in human monocytes, TLR7 and TLR8 triggered different signaling pathways that contribute to distinct phenotypes during RNA virus infection. In addition, we defined individual targets within these pathways that promoted specific T helper and antiviral responses.
Collapse
Affiliation(s)
- Marine de Marcken
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Khushwant Dhaliwal
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
42
|
Evasion of Innate and Intrinsic Antiviral Pathways by the Zika Virus. Viruses 2019; 11:v11100970. [PMID: 31652496 PMCID: PMC6833475 DOI: 10.3390/v11100970] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022] Open
Abstract
The Zika virus (ZIKV) is a recently emerged mosquito-borne flavivirus that, while typically asymptomatic, can cause neurological symptoms in adults and birth defects in babies born to infected mothers. The interactions of ZIKV with many different pathways in the human host ultimately determine successful virus replication and ZIKV-induced pathogenesis; however, the molecular mechanisms of such host-ZIKV interactions have just begun to be elucidated. Here, we summarize the recent advances that defined the mechanisms by which ZIKV antagonizes antiviral innate immune signaling pathways, with a particular focus on evasion of the type I interferon response in the human host. Furthermore, we describe emerging evidence that indicated the contribution of several cell-intrinsic mechanisms to an effective restriction of ZIKV infection, such as nonsense-mediated mRNA decay, stress granule formation, and "reticulophagy", a type of selective autophagy. Finally, we summarize the recent work that identified strategies by which ZIKV modulated these intrinsic antiviral responses.
Collapse
|
43
|
Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 2019; 37:6640-6647. [PMID: 31542262 DOI: 10.1016/j.vaccine.2019.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
Variations in the composition of commensal gut microbiota have been reported to be major contributors to differences in responses to vaccination among individuals. In chickens, there is limited information on the role of gut microbiota in responses to vaccination. The current study studied the role of gut microbiota in cell- and antibody-mediated immune responses to vaccination with a whole inactivated avian influenza virus, subtype H9N2. A total of 166 one-day-old specific pathogen free layer chickens (SPF) were randomly assigned to treatments, where a combination of antibiotic depletion, and probiotics (a combination of five Lactobacillus species) or fecal microbial transplant (FMT) reconstitution were used to study the dynamics of cell- and antibody-mediated immune responses to primary and secondary vaccinations at days 15 and 29 of age, respectively. Overall, at days 7 and 14 post primary vaccination (p.p.v.), administration of probiotics to non-depleted chickens resulted in significantly higher mean hemagglutination (HI) titre compared to antibiotic treated chickens. Furthermore, at day 21 p.p.v., chickens treated with probiotics or FMT post-antibiotic treatment showed a significantly higher mean HI titre compared to non-depleted chickens treated with probiotics. At day 7 p.p.v., a significantly higher virus specific IgM and IgG titres were observed in non-depleted chickens administered with probiotics compared to antibiotic depleted chickens, and a significantly higher IgG titre was observed in chickens treated with FMT following antibiotic treatment compared to only antibiotic treatment. Analysis of interferon gamma expression in splenocytes to assess cell-mediated immune responses showed a significantly lower expression in antibiotic-treated chickens compared to non-depleted chickens and FMT reconstituted chickens. Taken together, the current study suggests that shifts in the composition of gut microbiota of chickens may result in changes in cell- and antibody-mediated immune responses to vaccination against influenza viruses. Further studies will be needed to highlight the mechanisms involved in this modulation.
Collapse
|
44
|
McGuckin Wuertz K, Treuting PM, Hemann EA, Esser-Nobis K, Snyder AG, Graham JB, Daniels BP, Wilkins C, Snyder JM, Voss KM, Oberst A, Lund J, Gale M. STING is required for host defense against neuropathological West Nile virus infection. PLoS Pathog 2019; 15:e1007899. [PMID: 31415679 DOI: 10.1371/journal.ppat.1007899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
West Nile Virus (WNV), an emerging and re-emerging RNA virus, is the leading source of arboviral encephalitic morbidity and mortality in the United States. WNV infections are acutely controlled by innate immunity in peripheral tissues outside of the central nervous system (CNS) but WNV can evade the actions of interferon (IFN) to facilitate CNS invasion, causing encephalitis, encephalomyelitis, and death. Recent studies indicate that STimulator of INterferon Gene (STING), canonically known for initiating a type I IFN production and innate immune response to cytosolic DNA, is required for host defense against neurotropic RNA viruses. We evaluated the role of STING in host defense to control WNV infection and pathology in a murine model of infection. When challenged with WNV, STING knock out (-/-) mice displayed increased morbidity and mortality compared to wild type (WT) mice. Virologic analysis and assessment of STING activation revealed that STING signaling was not required for control of WNV in the spleen nor was WNV sufficient to mediate canonical STING activation in vitro. However, STING-/- mice exhibited a clear trend of increased viral load and virus dissemination in the CNS. We found that STING-/- mice exhibited increased and prolonged neurological signs compared to WT mice. Pathological examination revealed increased lesions, mononuclear cellular infiltration and neuronal death in the CNS of STING-/- mice, with sustained pathology after viral clearance. We found that STING was required in bone marrow derived macrophages for early control of WNV replication and innate immune activation. In vivo, STING-/- mice developed an aberrant T cell response in both the spleen and brain during WNV infection that linked with increased and sustained CNS pathology compared to WT mice. Our findings demonstrate that STING plays a critical role in immune programming for the control of neurotropic WNV infection and CNS disease.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America.,Department of Defense; United States Army Medical Department, San Antonio, TX, United States of America
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Emily A Hemann
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Annelise G Snyder
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica B Graham
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States of America
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Kathleen M Voss
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| | - Jennifer Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Michael Gale
- Department of Global Health, University of Washington, Seattle, WA, United States of America.,Department of Immunology, University of Washington, Seattle, WA, United States of America.,Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
45
|
RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection. Nat Commun 2019; 10:3649. [PMID: 31409781 PMCID: PMC6692387 DOI: 10.1038/s41467-019-11250-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
RIG-I-Like Receptors (RLRs) RIG-I, MDA5, and LGP2, are vital pathogen recognition receptors in the defense against RNA viruses. West Nile Virus (WNV) infections continue to grow in the US. Here, we use a systems biology approach to define the contributions of each RLR in the innate immune response to WNV. Genome-wide RNAseq and bioinformatics analyses of macrophages from mice lacking either RLR reveal that the RLRs drive distinct immune gene activation and response polarization to mediate an M1/inflammatory signature while suppressing the M2/wound healing phenotype. While LGP2 functions to modulate inflammatory signaling, RIG-I and MDA5 together are essential for M1 macrophage polarization in vivo and the control of WNV infection through potential downstream control of ATF4 and SMAD4 to regulate target gene expression for cell polarization. These analyses reveal the RLR-driven signature of macrophage polarization, innate immune protection, and immune programming against WNV infection.
Collapse
|
46
|
Dendritic cell-associated MAVS is required to control West Nile virus replication and ensuing humoral immune responses. PLoS One 2019; 14:e0218928. [PMID: 31242236 PMCID: PMC6594639 DOI: 10.1371/journal.pone.0218928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a critical innate immune signaling protein that directs the actions of the RIG-I-like receptor (RLR) signaling pathway of RNA virus recognition and initiation of anti-viral immunity against West Nile virus (WNV). In the absence of MAVS, mice die more rapidly after infection with the pathogenic WNV-Texas (TX) strain, but also produce elevated WNV-specific IgG concomitant with increased viral burden. Here we investigated whether there was a B cell intrinsic role for MAVS during the development of protective humoral immunity following WNV infection. MAVS-/- mice survived infection from the non-pathogenic WNV-Madagascar (MAD) strain, with limited signs of disease. Compared to wildtype (WT) controls, WNV-MAD-infected MAVS-/- mice had elevated serum neutralizing antibodies, splenic germinal center B cells, plasma cells and effector T cells. We found that when rechallenged with the normally lethal WNV-TX, MAVS-/- mice previously infected with WNV-MAD were protected from disease. Thus, protective humoral and cellular immune responses can be generated in absence of MAVS. Mice with a conditional deletion of MAVS only in CD11c+ dendritic cells phenocopied MAVS whole body knockout mice in their humoral responses to WNV-MAD, displaying elevated virus titers and neutralizing antibodies. Conversely, a B cell-specific deletion of MAVS had no effect on immune responses to WNV-MAD compared to WT controls. Thus, MAVS in dendritic cells is required to control WNV replication and thereby regulate downstream humoral immune responses.
Collapse
|
47
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
48
|
West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells. J Virol 2019; 93:JVI.01778-18. [PMID: 30626670 DOI: 10.1128/jvi.01778-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus of global importance. Neuroinvasive WNV infection results in encephalitis and can lead to prolonged neurological impairment or death. Type I interferon (IFN-I) is crucial for promoting antiviral defenses through the induction of antiviral effectors, which function to restrict viral replication and spread. However, our understanding of the antiviral response to WNV infection is mostly derived from analysis of bulk cell populations. It is becoming increasingly apparent that substantial heterogeneity in cellular processes exists among individual cells, even within a seemingly homogenous cell population. Here, we present WNV-inclusive single-cell RNA sequencing (scRNA-seq), an approach to examine the transcriptional variation and viral RNA burden across single cells. We observed that only a few cells within the bulk population displayed robust transcription of IFN-β mRNA, and this did not appear to depend on viral RNA abundance within the same cell. Furthermore, we observed considerable transcriptional heterogeneity in the IFN-I response, with genes displaying high unimodal and bimodal expression patterns. Broadly, IFN-stimulated genes negatively correlated with viral RNA abundance, corresponding with a precipitous decline in expression in cells with high viral RNA levels. Altogether, we demonstrated the feasibility and utility of WNV-inclusive scRNA-seq as a high-throughput technique for single-cell transcriptomics and WNV RNA detection. This approach can be implemented in other models to provide insights into the cellular features of protective immunity and identify novel therapeutic targets.IMPORTANCE West Nile virus (WNV) is a clinically relevant pathogen responsible for recurrent epidemics of neuroinvasive disease. Type I interferon is essential for promoting an antiviral response against WNV infection; however, it is unclear how heterogeneity in the antiviral response at the single-cell level impacts viral control. Specifically, conventional approaches lack the ability to distinguish differences across cells with varying viral abundance. The significance of our research is to demonstrate a new technique for studying WNV infection at the single-cell level. We discovered extensive variation in antiviral gene expression and viral abundance across cells. This protocol can be applied to primary cells or in vivo models to better understand the underlying cellular heterogeneity following WNV infection for the development of targeted therapeutic strategies.
Collapse
|
49
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
50
|
Lesteberg KE, Beckham JD. Immunology of West Nile Virus Infection and the Role of Alpha-Synuclein as a Viral Restriction Factor. Viral Immunol 2018; 32:38-47. [PMID: 30222521 DOI: 10.1089/vim.2018.0075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) is a single-stranded RNA flavivirus and is a major cause of viral encephalitis worldwide. Experimental models of WNV infection in mice are commonly used to define acute neuroinflammatory responses in the brain. Alpha-synuclein (Asyn) is a protein of primarily neuronal origin and is a major cause of Parkinson's disease (PD), a disorder characterized by loss of dopaminergic neurons. Both WNV and PD pathologies are largely mediated by inflammation of the central nervous system (neuroinflammation) and have overlapping inflammatory pathways. In this review, we highlight the roles of the immune system in both diseases while comparing and contrasting both protective and pathogenic roles of immune cells and their effector proteins. Additionally, we review the current literature showing that Asyn is an important mediator of the immune response with diverging roles in PD (pathogenic) and WNV disease (neuroprotective).
Collapse
Affiliation(s)
- Kelsey E Lesteberg
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - John David Beckham
- 1 Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado.,2 Division of Neuroimmunology and Neurological Infections, Department of Neurology, University of Colorado School of Medicine , Aurora, Colorado.,3 Veterans Administration, Eastern Colorado Health System , Denver, Colorado
| |
Collapse
|