1
|
Sattar MN, Almaghasla MI, Tahir MN, El-Ganainy SM, Chellappan BV, Arshad M, Drou N. High-throughput sequencing discovered diverse monopartite and bipartite begomoviruses infecting cucumbers in Saudi Arabia. FRONTIERS IN PLANT SCIENCE 2024; 15:1375405. [PMID: 39450090 PMCID: PMC11499130 DOI: 10.3389/fpls.2024.1375405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Limited research in Saudi Arabia has devolved into the prevalence and genetic diversity of begomoviruses. Utilizing Illumina MiSeq sequencing, we obtained 21 full-length begomovirus sequences (2.7-2.8 kb) from eight cucumber plants grown in fields and greenhouses. We found that two complete begomovirus genomes were variants of the Boushehr strain of tomato yellow leaf curl virus (TYLCV) with nucleotide (nt) sequence identities of 94.7-95.9%. Another full-length genome was a variant of TYLCV-Iran with 94.6% identity. Five full-length sequences closely matched the DNA-A of watermelon chlorotic stunt virus (WmCSV) isolates with 97.9-98.7% nt sequence identities, while five sequences had their highest nt sequence identities (95.8-96.3%) with the DNA-B of WmCSV isolates. Simultaneously, four sequences were 99.1-99.6% identical to the DNA-A of tomato leaf curl Palampur virus (ToLCPalV). Four sequences matched the DNA-B of ToLCPalV reported from Iran and Saudi Arabia with identities ranging from 96.2-100%. Four plants showed a mixed infection of these begomoviruses. Most ORFs showed evidence of negative selection pressure, suggesting that purifying selection plays a crucial role in shaping the diversity of these begomoviruses. Additionally, potential intra- and interspecies recombination events were detected in the TYLCV and WmCSV DNA-B genomic regions. The ToLCPalV isolates identified in this study formed a cluster with the other ToLCPalV isolates reported from Saudi Arabia, Iran and Iraq, representing a unique lineage distinct from ToLCPalV reported from Southeast Asia. High mutation rate and robust selection facilitated the independent evolution of ToLCPalV without recombination. Overall, this study offers valuable insights into the diversity and evolutionary dynamics of begomoviruses infecting cucumber crops in Al-Ahsa, Saudi Arabia.
Collapse
Affiliation(s)
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Nouman Tahir
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Crespo-Bellido A, Hoyer JS, Burgos-Amengual Y, Duffy S. Phylogeographic analysis of Begomovirus coat and replication-associated proteins. J Gen Virol 2024; 105:002037. [PMID: 39446128 PMCID: PMC11500754 DOI: 10.1099/jgv.0.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Begomoviruses are globally distributed plant pathogens that significantly limit crop production. These viruses are traditionally described according to phylogeographic distribution and categorized into two groups: begomoviruses from the Africa, Asia, Europe and Oceania (AAEO) region and begomoviruses from the Americas. Monopartite begomoviruses are more common in the AAEO region, while bipartite viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene involved in inter-cellular movement and RNA silencing suppression found in AAEO begomoviruses. While these features are generally accepted as lineage-defining, the number of known species has doubled due to sequence-based discovery since 2010. To re-evaluate the geographic groupings after the rapid expansion of the genus, we conducted phylogenetic analyses for begomovirus species representatives of the two longest and most conserved begomovirus proteins: the coat and replication-associated proteins. Both proteins still largely support the broad AAEO and Americas begomovirus groupings, except for sweet potato-infecting begomoviruses that form an independent, well-supported clade for their coat protein regardless of the region they were isolated from. Our analyses do not support more fine-scaled phylogeographic groupings. Monopartite and bipartite genome organizations are broadly interchanged throughout the phylogenies, and the absence of the V2/AV2 gene is highly reflective of the split between Americas and AAEO begomoviruses. We observe significant evidence of recombination within the Americas and within the AAEO region but rarely between the regions. We speculate that increased globalization of agricultural trade, the invasion of polyphagous whitefly vector biotypes and recombination will blur begomovirus phylogeographic delineations in the future.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Yeissette Burgos-Amengual
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Lai HC, Neoh ZY, Tsai WS. Genetic Diversity and Pathogenicity Characterization of Tomato-Infecting Begomoviruses in Taiwan. PLANT DISEASE 2024; 108:2688-2700. [PMID: 38587795 DOI: 10.1094/pdis-12-22-2937-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The tomato yellow leaf curl disease (TYLCD) caused by whitefly (Bemisia tabaci)-transmitted begomoviruses (Geminiviridae) has constrained tomato production in Taiwan since 1981. Lisianthus enation leaf curl virus (LELCV), tomato leaf curl Taiwan virus (ToLCTV), and tomato yellow leaf curl Thailand virus (TYLCTHV) were the major viruses associated with TYLCD. In 2019 to 2020, we investigated TYLCD throughout Taiwan, with a 10 to 100% incidence on tomato fields. Begomovirus sequences were detected in 321 out of 506 collected samples by PCR with primers PAL1v1978B and PAR1c715H. In 2015 to 2016, 59 out of 99 samples collected in Hualien-Taitung areas were also found to have begomovirus sequences. Based on the analysis of 68 viral genomic sequences, six begomoviruses were identified, including LELCV, ToLCTV, TYLCTHV, tomato leaf curl Hsinchu virus, and two new begomoviruses, tentatively named tomato leaf curl Chiayi virus (ToLCCYV) and tomato leaf curl Nantou virus (ToLCNTV). Various isolates of LELCV and TYLCTHV were grouped into four and two strains, respectively. Recombinants were detected in LELCV-A, -C, and -D, ToLCCYV, ToLCNTV, and TYLCTHV-F. Based on virus-specific detection, the majority of TYLCD-associated viruses were mixed-infected by TYLCTHV-B with TYLCTHV-F, LELCV-A, -B, or -D, and/or ToLCTV. Meanwhile, viral DNA-B was mostly associated with TYLCTHV, and all identified DNA-Bs were highly homologous with previous TYLCTHV DNA-B. The pathogenicity of selected begomoviruses was confirmed through agroinfection and whitefly transmission. All tomato plants carrying Ty-1/3 and Ty-2 resistant genes were infected by all LELCV strains and ToLCCYV, although they appeared symptomless, suggesting these viruses could be managed through the use of the resistance pyramid.
Collapse
Affiliation(s)
- Hsuan-Chun Lai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | - Zhuan Yi Neoh
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
4
|
Prasad KSUD, Kavya SS, Sindhura KAV, Muttappagol M, Kruthika R, Basha CRJ, Shankarappa KS, Venkataravanappa V, Lakshminarayana Reddy CN. Molecular characterization of begomovirus and DNA satellites associated with mosaic and leaf curl disease of Jamaica cherry ( Muntingia calabura) in India: Uncovering a new host for chilli leaf curl India virus. Virusdisease 2024; 35:484-495. [PMID: 39464737 PMCID: PMC11502726 DOI: 10.1007/s13337-024-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/23/2024] [Indexed: 10/29/2024] Open
Abstract
Begomoviruses, member of the Geminiviridae family, are responsible for significant economic losses in crops worldwide. Chilli leaf curl India virus (ChiLCINV) is a well-known begomovirus that causes leaf curl disease, primarily affecting plants in the Solanaceae family. In this study, sample from a Jamaica cherry (Muntingia calabura) tree showing typical begomovirus symptoms of mosaic and leaf curling was collected from Nagavara village in the Bengaluru Rural district of Karnataka State, India. The collected sample was designated as the MUT-1 isolate. The association of the begomovirus (DNA-A) and betasatellites with the sample was confirmed by PCR using begomovirus-specific primers, resulting in the expected amplicons of approximately 1.2 kb and 1.3 kb, respectively. No amplification was obtained for DNA-B and alphasatellite specific primers. The complete genome sequence of DNA-A of begomovirus isolate MUT-1 was obtained through rolling circle amplification and compared with other begomoviruses using Sequence Demarcation Tool which revealed that, DNA-A of MUT-1 isolate, (Acc.No. PP475538) showed maximum nucleotide (nt) identity of 98.7-99.4% with chilli leaf curl India virus. Further, sequence of betasattelite (Acc.No. PP493212) of this isolate shared maximum nt identity of 86.5-100% with tomato leaf curl Bangladesh betasatellite (ToLCBDB). Recombination and GC plot analysis showed that the presence of two and three intraspecific recombination event in DNA-A and betasatellite genomic regions, respectively and are derived from the previously reported begomoviruses. This study presents one more evidence of expanding host range for begomoviruses and first record of begomovirus associated with mosaic and leaf curl disease of Jamaica cherry (M. calabura) from India. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00891-w.
Collapse
Affiliation(s)
- K S Uday Durga Prasad
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - S S Kavya
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - Kopparthi Amrutha Valli Sindhura
- Department of Agricultural Entomology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - Mantesh Muttappagol
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - R Kruthika
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - C. R. Jahir Basha
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - K. S. Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot, Bengaluru, Karnataka 560065 India
| | - V. Venkataravanappa
- Division of Plant Protection, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake PO, Bangalore, Karnataka 560089 India
| | - C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| |
Collapse
|
5
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
6
|
Lakshmi V, Kumar A, Sangam S, Akhtar S, Chattopadhyay T. Multiplex PCR for Early Generation Identification of Tomato Segregants Carrying Ty-2, Ty-3 and Ph-3 Resistance Alleles Against Leaf Curl and Late Blight Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01220-8. [PMID: 38900362 DOI: 10.1007/s12033-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Deployment of different natural disease resistance alleles is the most sustainable and eco-friendly way for multiple disease management in tomato. Diagnostic molecular markers are indispensible in this effort as they offer early generation identification of resistance alleles in an environment-independent manner. Moreover, optimized multiplex polymerase chain reaction (PCR) for detecting different disease resistance alleles in a single reaction can speed-up the selection process with cost and labour-effectiveness. Here we report the optimized multiplex detection and stacking of leaf curl disease resistance alleles Ty-2 and Ty-3 along with late blight disease resistance allele Ph-3 in tomato genotypes and F2 segregants. The triplex assay could be replaced by a duplex assay (for Ty-2 and Ty-3 resistance alleles) followed by analysis at Ph-3 locus to achieve further cost-effectiveness. We identified two plants in F2 populations derived from the Arka Samrat (F1) x Kashi Chayan combination to carry the Ty-2, Ty-3 and Ph-3 resistance alleles in homozygous condition. Early generation genotyping also allowed us to identify a few morphologically better segregants, where further marker assisted selection (MAS) should identify superior multiple disease resistant lines. Thus we advocate the utility of multiplex PCR in MAS to address multiple disease resistance breeding in tomato.
Collapse
Affiliation(s)
- Vijaya Lakshmi
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Awnish Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Surabhi Sangam
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Shirin Akhtar
- Department of Horticulture (Vegetable and Floriculture), Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India
| | - Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, 813210, India.
| |
Collapse
|
7
|
Fan YY, Chi Y, Chen N, Cuellar WJ, Wang XW. Role of aminopeptidase N-like in the acquisition of begomoviruses by Bemisia tabaci, the whitefly vector. INSECT SCIENCE 2024; 31:707-719. [PMID: 38369384 DOI: 10.1111/1744-7917.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 02/20/2024]
Abstract
Sri Lankan cassava mosaic virus (SLCMV) is a prominent causative agent of cassava mosaic disease in Asia and relies on the whitefly Bemisia tabaci cryptic complex for its transmission. However, the molecular mechanisms involved in SLCMV transmission by B. tabaci have yet to be understood. In this study, we identified an aminopeptidase N-like protein (BtAPN) in B. tabaci Asia II 1, an efficient vector of SLCMV, which is involved in the SLCMV transmission process. Through the use of glutathione S-transferase pull-down assay and LC-MS/MS analysis, we demonstrated the interaction between BtAPN and the coat protein (CP) of SLCMV. This interaction was further confirmed in vitro, and we observed an induction of BtAPN gene expression following SLCMV infection. By interfering with the function of BtAPN, the quantities of SLCMV were significantly reduced in various parts of B. tabaci Asia II 1, including the whole body, midgut, hemolymph, and primary salivary gland. Furthermore, we discovered that BtAPN is conserved in B. tabaci Middle East-Asia Minor 1 (MEAM1) and interacts with the CP of tomato yellow leaf curl virus (TYLCV), a begomovirus known to cause severe damage to tomato production. Blocking BtAPN with antibody led to a significant reduction in the quantities of TYLCV in whitefly whole body and organs/tissues. These results demonstrate that BtAPN plays a generic role in interacting with the CP of begomoviruses and positively regulates their acquisition by the whitefly.
Collapse
Affiliation(s)
- Yun-Yun Fan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Tianmushan National Nature Reserve Administration, Hangzhou, China
| | - Yao Chi
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Na Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wilmer J Cuellar
- Virology Laboratory, Cassava Program, International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Hayashi S, Souvan JM, Bally J, de Felippes FF, Waterhouse PM. Exploring the source of TYLCV resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1404160. [PMID: 38863537 PMCID: PMC11165019 DOI: 10.3389/fpls.2024.1404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Tomato Yellow Leaf Curl Virus (TYLCV) is one of the most devastating pathogens of tomato, worldwide. It is vectored by the globally prevalent whitefly, Bemisia tabaci, and is asymptomatic in a wide range of plant species that act as a virus reservoir. The most successful crop protection for tomato in the field has been from resistance genes, of which five loci have been introgressed fromwild relatives. Of these, the Ty-1/Ty-3 locus, which encodes an RNA-dependent RNA polymerase 3 (RDR3), has been the most effective. Nevertheless, several TYLCV strains that break this resistance are beginning to emerge, increasing the need for new sources of resistance. Here we use segregation analysis and CRISPR-mediated gene dysfunctionalisation to dissect the differential response of two isolates of Nicotiana benthamiana to TYLCV infection. Our study indicates the presence of a novel non-RDR3, but yet to be identified, TYLCV resistance gene in a wild accession of N. benthamiana. This gene has the potential to be incorporated into tomatoes.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqueline M. Souvan
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Felipe F. de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
10
|
Sun YD, Yokomi R. Genotype Sequencing and Phylogenetic Analysis Revealed the Origins of Citrus Yellow Vein Clearing Virus California Isolates. Viruses 2024; 16:188. [PMID: 38399964 PMCID: PMC10891506 DOI: 10.3390/v16020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The Citrus yellow vein clearing virus (CYVCV) causes a viral disease that has been reported in some citrus-growing regions in countries in Eurasia including Pakistan, India, Türkiye, Iran, China, and South Korea. Recently, CYVCV was detected in a localized urban area in a town in the middle of California's citrus-growing region and marks the first occurrence of the virus in North America. CYVCV has been reported to be spread by aphid and whitefly vectors and is graft and mechanically transmitted. Hence, it is an invasive pathogen that presents a significant threat to the California citrus industry, especially lemons, which are highly symptomatic to CYVCV. To elucidate the origin of the CYVCV California strain, we used long-read sequencing technology and obtained the complete genomes of three California CYVCV isolates, CA1, CA2, and CA3. The sequences of these isolates exhibited intergenomic similarities ranging from 95.4% to 97.4% to 54 publicly available CYVCV genome sequences, which indicated a relatively low level of heterogeneity. However, CYVCV CA isolates formed a distinct clade from the other isolates when aligned against other CYVCV genomes and coat protein gene sequences as shown by the neighbor network analysis. Based on the rooted Maximum Likelihood phylogenetic trees, CYVCV CA isolates shared the most recent common ancestor with isolates from India/South Asia. Bayesian evolutionary inferences resulted in a spatiotemporal reconstruction, suggesting that the CYVCV CA lineage diverged from the Indian lineage possibly around 1995. This analysis placed the origin of all CYVCV to around 1990, with South Asia and/or Middle East as the most plausible geographic source, which matches to the first discovery of CYVCV in Pakistan in 1988. Moreover, the spatiotemporal phylogenetic analysis indicated an additional virus diffusion pathway: one from South Asia to China and South Korea. Collectively, our phylogenetic inferences offer insights into the probable dynamics of global CYVCV dissemination, emphasizing the need for citrus industries and regulatory agencies to closely monitor citrus commodities crossing state and international borders.
Collapse
Affiliation(s)
- Yong-Duo Sun
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Raymond Yokomi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| |
Collapse
|
11
|
Iqbal Z, Shafiq M, Sattar MN, Ali I, Khurshid M, Farooq U, Munir M. Genetic Diversity, Evolutionary Dynamics, and Ongoing Spread of Pedilanthus Leaf Curl Virus. Viruses 2023; 15:2358. [PMID: 38140599 PMCID: PMC10747432 DOI: 10.3390/v15122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pedilanthus leaf curl virus (PeLCV) is a monopartite begomovirus (family Geminiviridae) discovered just a few decades ago. Since then, it has become a widely encountered virus, with reports from ca. 25 plant species across Pakistan and India, indicative of its notable evolutionary success. Viruses mutate at such a swift rate that their ecological and evolutionary behaviors are inextricably linked, and all of these behaviors are imprinted on their genomes as genetic diversity. So, all these imprints can be mapped by computational methods. This study was designed to map the sequence variation dynamics, genetic heterogeneity, regional diversity, phylogeny, and recombination events imprinted on the PeLCV genome. Phylogenetic and network analysis grouped the full-length genome sequences of 52 PeLCV isolates into 7 major clades, displaying some regional delineation but lacking host-specific demarcation. The progenitor of PeLCV was found to have originated in Multan, Pakistan, in 1977, from where it spread concurrently to India and various regions of Pakistan. A high proportion of recombination events, distributed unevenly throughout the genome and involving both inter- and intraspecies recombinants, were inferred. The findings of this study highlight that the PeLCV population is expanding under a high degree of genetic diversity (π = 0.073%), a high rate of mean nucleotide substitution (1.54 × 10-3), demographic selection, and a high rate of recombination. This sets PeLCV apart as a distinctive begomovirus among other begomoviruses. These factors could further exacerbate the PeLCV divergence and adaptation to new hosts. The insights of this study that pinpoint the emergence of PeLCV are outlined.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa P.O. Box 55110, Saudi Arabia;
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan;
| | | | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad P.O. Box 38000, Pakistan;
| | - Muhammad Khurshid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore P.O. Box 54590, Pakistan;
| | - Umer Farooq
- Department of Biotechnology, University of Sialkot, Sialkot P.O. Box 51340, Pakistan;
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa P.O. Box 31982, Saudi Arabia;
| |
Collapse
|
12
|
Riahi C, Urbaneja A, Fernández-Muñoz R, Fortes IM, Moriones E, Pérez-Hedo M. Induction of Glandular Trichomes to Control Bemisia tabaci in Tomato Crops: Modulation by the Natural Enemy Nesidiocoris tenuis. PHYTOPATHOLOGY 2023; 113:1677-1685. [PMID: 36998120 DOI: 10.1094/phyto-11-22-0440-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.
Collapse
Affiliation(s)
- Chaymaa Riahi
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, (IVIA), 46113 Moncada, Valencia, Spain
| |
Collapse
|
13
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
14
|
Fiallo-Olivé E, Navas-Castillo J. Begomoviruses: what is the secret(s) of their success? TRENDS IN PLANT SCIENCE 2023; 28:715-727. [PMID: 36805143 DOI: 10.1016/j.tplants.2023.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain.
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
15
|
Al-Roshdi MR, Ammara U, Khan J, Al-Sadi AM, Shahid MS. Artificial microRNA-mediated resistance against Oman strain of tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1164921. [PMID: 37063229 PMCID: PMC10098008 DOI: 10.3389/fpls.2023.1164921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a global spreading begomovirus that is exerting a major restraint on global tomato production. In this transgenic approach, an RNA interference (RNAi)-based construct consisting of sequences of an artificial microRNA (amiRNA), a group of small RNA molecules necessary for plant cell development, signal transduction, and stimulus to biotic and abiotic disease was engineered targeting the AC1/Rep gene of the Oman strain of TYLCV-OM. The Rep-amiRNA constructs presented an effective approach in regulating the expression of the Rep gene against TYLCV as a silencing target to create transgenic Solanum lycopersicum L. plant tolerance against TYLCV infection. Molecular diagnosis by PCR followed by a Southern hybridization analysis were performed to confirm the effectiveness of agrobacterium-mediated transformation in T0/T1-transformed plants. A substantial decrease in virus replication was observed when T1 transgenic tomato plants were challenged with the TYLCV-OM infectious construct. Although natural resistance options against TYLCV infection are not accessible, the current study proposes that genetically transformed tomato plants expressing amiRNA could be a potential approach for engineering tolerance in plants against TYLCV infection and conceivably for the inhibition of viral diseases against different strains of whitefly-transmitted begomoviruses in Oman.
Collapse
|
16
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
17
|
Fortes IM, Pérez-Padilla V, Romero-Rodríguez B, Fernández-Muñoz R, Moyano C, Castillo AG, De León L, Moriones E. Begomovirus Tomato Leaf Curl New Delhi Virus Is Seedborne but Not Seed Transmitted in Melon. PLANT DISEASE 2023; 107:473-479. [PMID: 35771117 DOI: 10.1094/pdis-09-21-1930-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Seed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species Tomato leaf curl New Delhi virus (genus Begomovirus, family Geminiviridae) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon (Cucumis melo L.) seeds of a tomato leaf curl New Delhi virus (ToLCNDV) isolate of the "Spain" strain widely distributed in the Mediterranean area as an alternative mechanism for long-distance spread. PCR amplification detection of ToLCNDV in floral parts and mature seeds of melon plants reveals that this virus is seedborne. "Seedborne" is defined as the ability of a virus to be carried through seeds, which does not necessarily lead to transmission to the next generation. Treatment with a chemical disinfectant significantly reduced the detectable virus associated with melon seeds, suggesting ToLCNDV contamination of the external portion of the seed coat. Also, when the internal fraction of the mature seed (seed cotyledons + embryo) was analyzed by quantitative PCR amplification, ToLCNDV was detectable at low levels, suggesting the potential for viral contamination or infection of the internal portions of seed. However, grow-out studies conducted with melon progeny plants germinated from mature seeds collected from ToLCNDV-infected plants and evaluated at early (1-leaf) or at late (20-leaf) growth stages did not support the transmission of ToLCNDV from seeds to offspring.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Verónica Pérez-Padilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Beatriz Romero-Rodríguez
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Cristina Moyano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Araceli G Castillo
- IHSM, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, E-29071, Málaga, Spain
| | - Leandro De León
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña, km 7.5, E-28040 Madrid, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
18
|
Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance. Cells 2022; 12:cells12010149. [PMID: 36611943 PMCID: PMC9818243 DOI: 10.3390/cells12010149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission.
Collapse
|
19
|
AlHudaib KA, Almaghasla MI, El-Ganainy SM, Arshad M, Drou N, Sattar MN. High-Throughput Sequencing Identified Distinct Bipartite and Monopartite Begomovirus Variants Associated with DNA-Satellites from Tomato and Muskmelon Plants in Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 12:6. [PMID: 36616136 PMCID: PMC9824426 DOI: 10.3390/plants12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7-2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3-1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3-100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99-99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9-100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3-100%, 99.5-100%, and 95.6-99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muhammad N. Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
20
|
Thompson JR. Analysis of the genome of grapevine red blotch virus and related grabloviruses indicates diversification prior to the arrival of Vitis vinifera in North America. J Gen Virol 2022; 103. [PMID: 36205485 DOI: 10.1099/jgv.0.001789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study 163 complete whole-genome sequences of the emerging pathogen grapevine red blotch virus (GRBV; genus Grablovirus, family Geminiviridae) were used to reconstruct phylogenies using Bayesian analyses on time-tipped (heterochronous) data. Using different combinations of priors, Bayes factors identified heterochronous datasets (3×200 million chains) generated from strict clock and exponential tree priors as being the most robust. Substitution rates of 3.2×10-5 subsitutions per site per year (95% HPD 4.3-2.1×10-5) across the whole of the GRBV genome were estimated, suggesting ancestral GRBV diverged from ancestral wild Vitis latent virus 1 around 9 000 years ago, well before the first documented arrival of Vitis vinifera in North America. Whole-genome analysis of GRBV isolates in a single infected field-grown grapevine across 12 years identified 12 single nucleotide polymorphisms none of which were fixed substitutions: an observation not discordant with the in silico estimate. The substitution rate estimated here is lower than those estimated for other geminiviruses and is the first for a woody-host-infecting geminivirus.
Collapse
Affiliation(s)
- Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Present address: Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1140, New Zealand
| |
Collapse
|
21
|
Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil EJ, Jahan SMH, Lee KY, Tsai CW, Dao HT, Hoat TX, Aye TT, Win NK, Lee J, Kim SM, Lee S. Emergence of Asian endemic begomoviruses as a pandemic threat. FRONTIERS IN PLANT SCIENCE 2022; 13:970941. [PMID: 36247535 PMCID: PMC9554542 DOI: 10.3389/fpls.2022.970941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.
Collapse
Affiliation(s)
- Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | | | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chi-Wei Tsai
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Hang Thi Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Tin-Tin Aye
- Department of Entomology, Yezin Agricultural University, Yezin, Myanmar
| | - Nang Kyu Win
- Department of Plant Pathology, Yezin Agricultural University, Yezin, Myanmar
| | - Jangha Lee
- Crop Breeding Research Center, NongWoo Bio, Yeoju, South Korea
| | - Sang-Mok Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
22
|
How To Be a Successful Monopartite Begomovirus in a Bipartite-Dominated World: Emergence and Spread of Tomato Mottle Leaf Curl Virus in Brazil. J Virol 2022; 96:e0072522. [PMID: 36043875 PMCID: PMC9517693 DOI: 10.1128/jvi.00725-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses are members of the family Geminiviridae, a large and diverse group of plant viruses characterized by a small circular single-stranded DNA genome encapsidated in twinned quasi-icosahedral virions. Cultivated tomato (Solanum lycopersicum L.) is particularly susceptible and is infected by >100 bipartite and monopartite begomoviruses worldwide. In Brazil, 25 tomato-infecting begomoviruses have been described, most of which are bipartite. Tomato mottle leaf curl virus (ToMoLCV) is one of the most important of these and was first described in the late 1990s but has not been fully characterized. Here, we show that ToMoLCV is a monopartite begomovirus with a genomic DNA similar in size and genome organization to those of DNA-A components of New World (NW) begomoviruses. Tomato plants agroinoculated with the cloned ToMoLCV genomic DNA developed typical tomato mottle leaf curl disease symptoms, thereby fulfilling Koch's postulates and confirming the monopartite nature of the ToMoLCV genome. We further show that ToMoLCV is transmitted by whiteflies, but not mechanically. Phylogenetic analyses placed ToMoLCV in a distinct and strongly supported clade with other begomoviruses from northeastern Brazil, designated the ToMoLCV lineage. Genetic analyses of the complete sequences of 87 ToMoLCV isolates revealed substantial genetic diversity, including five strain groups and seven subpopulations, consistent with a long evolutionary history. Phylogeographic models generated with partial or complete sequences predicted that the ToMoLCV emerged in northeastern Brazil >700 years ago, diversifying locally and then spreading widely in the country. Thus, ToMoLCV emerged well before the introduction of MEAM1 whiteflies, suggesting that the evolution of NW monopartite begomoviruses was facilitated by local whitefly populations and the highly susceptible tomato host. IMPORTANCE Worldwide, diseases of tomato caused by whitefly-transmitted geminiviruses (begomoviruses) cause substantial economic losses and a reliance on insecticides for management. Here, we describe the molecular and biological properties of tomato mottle leaf curl virus (ToMoLCV) from Brazil and establish that it is a NW monopartite begomovirus indigenous to northeastern Brazil. This answered a long-standing question regarding the genome of this virus, and it is part of an emerging group of these viruses in Latin America. This appears to be driven by widespread planting of the highly susceptible tomato and by local and exotic whiteflies. Our extensive phylogenetic studies placed ToMoLCV in a distinct strongly supported clade with other begomoviruses from northeastern Brazil and revealed new insights into the origin of Brazilian begomoviruses. The novel phylogeographic analysis indicated that ToMoLCV has had a long evolutionary history, emerging in northeastern Brazil >700 years ago. Finally, the tools used here (agroinoculation system and ToMoLCV-specific PCR test) and information on the biology of the virus (host range and whitefly transmission) will be useful in developing and implementing integrated pest management (IPM) programs targeting ToMoLCV.
Collapse
|
23
|
Lai X, Wang H, Wu C, Zheng W, Leng J, Zhang Y, Yan L. Comparison of Potato Viromes Between Introduced and Indigenous Varieties. Front Microbiol 2022; 13:809780. [PMID: 35602024 PMCID: PMC9114672 DOI: 10.3389/fmicb.2022.809780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Viral disease in potatoes has been a major problem in potato production worldwide. In addition to the potential risk of introducing new diseases in new areas, viral-disease epidemics/pandemics can be initiated by “spillover” of indigenous viruses from infected alternative hosts into introduced cultivars. To investigate the tendency of potential viral infection/resistance, we analyzed the viromes of introduced and indigenous varieties of potatoes among different tissues using RNA-seq libraries. Bioinformatics analyses revealed that potato viruses PVM, PVY, and PVS were dominant and the most frequently identified viruses infecting potato virus-free plants in the field, and showed an infection bias between introduced and indigenous cultivars. PVY and PVS were the major viruses in introduced varieties, whereas PVM showed an extraordinarily high percentage in the indigenous variety. Other three common viruses, PVH, potato mop-top virus, and potato leafroll virus were identified specifically in the indigenous variety. There was a tendency for tissue-specific infection and sequence variation in viruses: underground parts (tubers, roots) harbored more unusual viruses, and tubers harbored relatively more variation with a high frequency of single nucleotide polymorphisms than other tissues. Taken together, our study provides a comprehensive overview of the composition, distribution, and sequence variation of viruses between introduced and indigenous varieties of potatoes.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caiyun Wu
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Wen Zheng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Jing Leng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| | - Yizheng Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Xichang, China
| |
Collapse
|
24
|
The tomato yellow leaf curl virus C4 protein alters the expression of plant developmental genes correlating to leaf upward cupping phenotype in tomato. PLoS One 2022; 17:e0257936. [PMID: 35551312 PMCID: PMC9098041 DOI: 10.1371/journal.pone.0257936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus in the family Geminiviridae, is efficiently transmitted by the whitefly, Bemisia tabaci, and causes serious economic losses to tomato crops around the world. TYLCV-infected tomato plants develop distinctive symptoms of yellowing and leaf upward cupping. In recent years, excellent progress has been made in the characterization of TYLCV C4 protein function as a pathogenicity determinant in experimental plants, including Nicotiana benthamiana and Arabidopsis thaliana. However, the molecular mechanism leading to disease symptom development in the natural host plant, tomato, has yet to be characterized. The aim of the current study was to generate transgenic tomato plants expressing the TYLCV C4 gene and evaluate differential gene expression through comparative transcriptome analysis between the transgenic C4 plants and the transgenic green fluorescent protein (Gfp) gene control plants. Transgenic tomato plants expressing TYLCV C4 developed phenotypes, including leaf upward cupping and yellowing, that are similar to the disease symptoms expressed on tomato plants infected with TYLCV. In a total of 241 differentially expressed genes identified in the transcriptome analysis, a series of plant development-related genes, including transcription factors, glutaredoxins, protein kinases, R-genes and microRNA target genes, were significantly altered. These results provide further evidence to support the important function of the C4 protein in begomovirus pathogenicity. These transgenic tomato plants could serve as basic genetic materials for further characterization of plant receptors that are interacting with the TYLCV C4.
Collapse
|
25
|
The invasion biology of tomato begomoviruses in Costa Rica reveals neutral synergism that may lead to increased disease pressure and economic loss. Virus Res 2022; 317:198793. [DOI: 10.1016/j.virusres.2022.198793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
|
26
|
Gambley C, Nimmo P, McDonald J, Campbell P. The Establishment and Spread of a Newly Introduced Begomovirus in a Dry Tropical Environment Using Tomato Yellow Leaf Curl Virus as a Case Study. PLANTS 2022; 11:plants11060776. [PMID: 35336658 PMCID: PMC8952566 DOI: 10.3390/plants11060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
Early detection of tomato yellow leaf curl virus (TYLCV) in a previously unaffected tomato production district in Australia allowed its spread to be evaluated spatially and temporally. The population dynamics of the TYLCV vector, Bemisia argentifolii (silverleaf whitefly, SLW), were also evaluated. The district is a dry tropical environment with a clear break to commercial production during the summer wet season. The incidence of TYLCV within crops and its prevalence through the district was influenced by weather, location, vector movements, and the use of Ty-1 virus-resistant hybrids. Rainfall had an important influence, with late summer and early autumn rain suppressing the levels of SLW and, by contrast, a dry summer supporting faster population growth. The use of Ty-1 hybrids appears to have reduced the incidence of TYLCV in this district. There was limited use of Ty-1 hybrids during 2013, and by season end, crops had moderate levels of SLW and high virus incidence. The 2015 and early 2016 season had high SLW populations, but TYLCV incidence was lower than in 2013, possibly due to the widespread adoption of the Ty-1 hybrids reducing virus spread. This study provides valuable epidemiology data for future incursions of begomoviruses, and other viruses spread by SLW.
Collapse
|
27
|
Marchant WG, Gautam S, Dutta B, Srinivasan R. Whitefly-Mediated Transmission and Subsequent Acquisition of Highly Similar and Naturally Occurring Tomato Yellow Leaf Curl Virus Variants. PHYTOPATHOLOGY 2022; 112:720-728. [PMID: 34370554 DOI: 10.1094/phyto-06-21-0248-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids, resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (variant #2 and variant #4) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than that of variant #2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.
Collapse
Affiliation(s)
- Wendy G Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
28
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
29
|
Adhab M, Alkuwaiti NA. Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. GEMINIVIRUS : DETECTION, DIAGNOSIS AND MANAGEMENT 2022:171-185. [DOI: 10.1016/b978-0-323-90587-9.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
30
|
Ohshima K, Kawakubo S, Muraoka S, Gao F, Ishimaru K, Kayashima T, Fukuda S. Genomic Epidemiology and Evolution of Scallion Mosaic Potyvirus From Asymptomatic Wild Japanese Garlic. Front Microbiol 2021; 12:789596. [PMID: 34956155 PMCID: PMC8692251 DOI: 10.3389/fmicb.2021.789596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Scallion mosaic virus (ScaMV) belongs to the turnip mosaic virus phylogenetic group of potyvirus and is known to infect domestic scallion plants (Allium chinense) in China and wild Japanese garlic (Allium macrostemon Bunge) in Japan. Wild Japanese garlic plants showing asymptomatic leaves were collected from different sites in Japan during 2012–2015. We found that 73 wild Japanese garlic plants out of 277 collected plants were infected with ScaMV, identified by partial genomic nucleotide sequences of the amplified RT-PCR products using potyvirus-specific primer pairs. Sixty-three ScaMV isolates were then chosen, and those full genomic sequences were determined. We carried out evolutionary analyses of the complete polyprotein-coding sequences and four non-recombinogenic regions of partial genomic sequences. We found that 80% of ScaMV samples have recombination-like genome structure and identified 12 recombination-type patterns in the genomes of the Japanese ScaMV isolates. Furthermore, we found two non-recombinant-type patterns in the Japanese population. Because the wild plants and weeds may often serve as reservoirs of viruses, it is important to study providing the exploratory investigation before emergence in the domestic plants. This is possibly the first epidemiological and evolutionary study of a virus from asymptomatic wild plants.
Collapse
Affiliation(s)
- Kazusato Ohshima
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shusuke Kawakubo
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Satoshi Muraoka
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Fangluan Gao
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kanji Ishimaru
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Kayashima
- Institute of Wild Onion Science, Saga University, Saga, Japan.,Department of School Education Course, Faculty of Education, Saga University, Saga, Japan
| | - Shinji Fukuda
- Department of Biological Resource Science, Faculty of Agriculture, Saga University, Saga, Japan.,Institute of Wild Onion Science, Saga University, Saga, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.,Saga University Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Saga, Japan
| |
Collapse
|
31
|
Caraballo DA, Lema C, Novaro L, Gury-Dohmen F, Russo S, Beltrán FJ, Palacios G, Cisterna DM. A Novel Terrestrial Rabies Virus Lineage Occurring in South America: Origin, Diversification, and Evidence of Contact between Wild and Domestic Cycles. Viruses 2021; 13:v13122484. [PMID: 34960753 PMCID: PMC8707302 DOI: 10.3390/v13122484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Universitaria-Pabellón II, Buenos Aires C1428EHA, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053ABH, Argentina
- Correspondence:
| | - Cristina Lema
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| | - Laura Novaro
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Federico Gury-Dohmen
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Susana Russo
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Daniel M. Cisterna
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| |
Collapse
|
32
|
Rieux A, Campos P, Duvermy A, Scussel S, Martin D, Gaudeul M, Lefeuvre P, Becker N, Lett JM. Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history. Sci Rep 2021; 11:21280. [PMID: 34711837 PMCID: PMC8553777 DOI: 10.1038/s41598-021-00518-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.
Collapse
Affiliation(s)
- Adrien Rieux
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France.
| | - Paola Campos
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | | - Sarah Scussel
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
- Herbier national (P), Muséum national d'Histoire Naturelle, CP39, 57 Rue Cuvier, 75005, Paris, France
| | | | - Nathalie Becker
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | |
Collapse
|
33
|
Zhao W, Zhou Y, Zhou X, Wang X, Ji Y. Host GRXC6 restricts Tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathog 2021; 17:e1009844. [PMID: 34398921 PMCID: PMC8389846 DOI: 10.1371/journal.ppat.1009844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Geminiviruses cause serious symptoms and devastating losses in crop plants. With a circular, single-stranded DNA genome, geminiviruses multiply their genomic DNA in the nucleus, requiring the nuclear shuttling of viral proteins and viral genomic DNAs. Many host factors, acting as proviral or antiviral factors, play key roles in geminivirus infections. Here, we report the roles of a tomato glutaredoxin (GRX), SlGRXC6, in the infection of Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus. The V2 protein of TYLCV specifically and preferentially interacts with SlGRXC6 among the 55-member tomato GRX family that are broadly involved in oxidative stress responses, plant development, and pathogen responses. We show that overexpressed SlGRXC6 increases the nuclear accumulation of V2 by inhibiting its nuclear export and, in turn, inhibits trafficking of the V1 protein and viral genomic DNA. Conversely, the silenced expression of SlGRXC6 leads to an enhanced susceptibility to TYLCV. SlGRXC6 is also involved in symptom development as we observed a positive correlation where overexpression of SlGRXC6 promotes while knockdown of SlGRXC6 expression inhibits plant growth. We further showed that SlGRXC6 works with SlNTRC80, a tomato NADPH-dependent thioredoxin reductase, to regulate plant growth. V2 didn’t interact with SlNTRC80 but competed with SlNTR80 for binding to SlGRXC6, suggesting that the V2-disrupted SlGRXC6-SlNTRC80 interaction is partially responsible for the virus-caused symptoms. These results suggest that SlGRXC6 functions as a host restriction factor that inhibits the nuclear trafficking of viral components and point out a new way to control TYLCV infection by targeting the V2-SlGRXC6 interaction. Geminiviruses infect numerous crops, induce a wide range of symptoms, and cause tremendous crop losses annually. Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus, is a causative agent leading to one of the most devastating tomato diseases in the world. As a single-stranded DNA virus, genomic replication occurs in the nucleus and therefore, the nuclear shuttling is a critical step of viral infection. The V2 protein of TYLCV is involved in symptom development and viral trafficking, among other steps, and hijacks host proteins for executing its functions. Nevertheless, host factors involved in the V2-mediated functions are not well addressed. We show that tomato GRXC6 (SlGRXC6) functions as a restriction factor of TYLCV infection by interacting with and preventing V2 from moving out of the nucleus, leading to the inhibited V2-mediated nuclear export of V1 and the V1-viral DNA complex. SlGRXC6 also contributes to symptom development via its interaction with SINTRC80. V2 sequesters SlGRXC6 from forming the SlGRXC6-SlNTRC80 complex and regulates plant growth. Our work, therefore, identified a new host partner of V2 and revealed the mechanisms whereby V2 functions as a pathogenicity determinant and can be targeted for virus control.
Collapse
Affiliation(s)
- Wenhao Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yijun Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail: (XZ); (XW); (YJ)
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (XW); (YJ)
| | - Yinghua Ji
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (XZ); (XW); (YJ)
| |
Collapse
|
34
|
Zhang JR, Liu SS, Pan LL. Enhanced Age-Related Resistance to Tomato Yellow Leaf Curl Virus in Tomato Is Associated With Higher Basal Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:685382. [PMID: 34394140 PMCID: PMC8358113 DOI: 10.3389/fpls.2021.685382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most notorious plant pathogens affecting the production of tomato worldwide. While the occurrence of age-related resistance (ARR) against TYLCV has been reported, the factors impacting its development remain unknown. We conducted a series of experiments with three tomato cultivars that vary in basal resistance to TYLCV to explore factors involved in the development of ARR. Our data indicate that ARR is more pronounced in tomato cultivars with higher basal resistance. Additionally, increased plant biomass in older plants does not contribute to ARR. Virus source plants with a younger age at initial inoculation facilitates virus acquisition by whiteflies. Finally, an analysis on plant hormones suggests that salicylic acid (SA) may play a major role in the development of ARR in tomato against TYLCV. These findings provide new insights into the developmental resistance in tomato against TYLCV as well as clues for the deployment of ARR in the management of diseases caused by TYLCV.
Collapse
|
35
|
Xavier CAD, Nogueira AM, Bello VH, Watanabe LFM, Barbosa TMC, Alves Júnior M, Barbosa L, Beserra-Júnior JEA, Boari A, Calegario R, Gorayeb ES, Honorato Júnior J, Koch G, Lima GSDA, Lopes C, de Mello RN, Pantoja K, Silva FN, Ramos Sobrinho R, Santana EN, da Silva JWP, Krause-Sakate R, Zerbini FM. Assessing the diversity of whiteflies infesting cassava in Brazil. PeerJ 2021; 9:e11741. [PMID: 34316398 PMCID: PMC8286705 DOI: 10.7717/peerj.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. Methods We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. Results A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.
Collapse
Affiliation(s)
- Cesar A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | - Miguel Alves Júnior
- Faculdade de Engenharia Agronômica, Universidade Federal do Pará, Altamira, PA, Brazil
| | - Leonardo Barbosa
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Renata Calegario
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Silva Gorayeb
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Jaime Honorato Júnior
- Centro Multidisciplinar do Campus de Barra, Universidade Federal do Oeste da Bahia, Barra, BA, Brazil
| | - Gabriel Koch
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Cristian Lopes
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Fábio Nascimento Silva
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Roberto Ramos Sobrinho
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, AL, Brazil
| | | | | | | | - Francisco M Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
36
|
Fan YY, Zhong YW, Zhao J, Chi Y, Bouvaine S, Liu SS, Seal SE, Wang XW. Bemisia tabaci Vesicle-Associated Membrane Protein 2 Interacts with Begomoviruses and Plays a Role in Virus Acquisition. Cells 2021; 10:1700. [PMID: 34359870 PMCID: PMC8306474 DOI: 10.3390/cells10071700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.
Collapse
Affiliation(s)
- Yun-Yun Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| | - Yu-Wei Zhong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK;
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK;
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.F.); (Y.-W.Z.); (J.Z.); (Y.C.); (S.-S.L.)
| |
Collapse
|
37
|
Mori T, Takenaka K, Domoto F, Aoyama Y, Sera T. Development of a method to rapidly assess resistance/susceptibility of Micro-Tom tomatoes to Tomato yellow leaf curl virus via agroinoculation of cotyledons. BMC Res Notes 2021; 14:237. [PMID: 34162412 PMCID: PMC8220776 DOI: 10.1186/s13104-021-05651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Tomato yellow leaf curl virus (TYLCV) is one of the pathogens severely damaging tomato crops. Therefore, methods to treat or prevent TYLCV infection need to be developed. For this purpose, a method to conveniently and quickly assess infection of tomatoes by TYLCV is desired. In the present study, we established a quick method to evaluate TYLCV infection using cotyledons of Micro-Tom, a miniature tomato cultivar. Results First, we constructed a binary plasmid harboring 1.5 copies of the TYLCV genome and transformed Agrobacterium with the plasmid. By injecting agroinoculum from the resulting transformant into the branches of Micro-Tom, we confirmed the susceptibility of Micro-Tom to TYLCV. To shorten the evaluation process of TYLCV infection further, we agroinoculated cotyledons of Micro-Tom 10 days after sowing seeds. We consistently observed typical symptoms of TYLCV infection on true leaves 10 days after agroinoculation. Molecular analysis detected TYLCV progeny DNA in all leaves demonstrating symptoms 6 days after agroinoculation. Therefore, our new protocol enabled assessment of TYLCV infection within 20 days after sowing seeds. Thus, agroinoculation of Micro-Tom cotyledons will accelerate the process of screening TYLCV-resistant Micro-Toms and enable screening of larger numbers of plants more quickly, contributing to the development of TYLCV-resistant tomatoes. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05651-3.
Collapse
Affiliation(s)
- Tomoaki Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kosuke Takenaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fumiya Domoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yasuhiro Aoyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. .,Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
38
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
39
|
Gut-Expressed Vitellogenin Facilitates the Movement of a Plant Virus across the Midgut Wall in Its Insect Vector. mSystems 2021; 6:e0058121. [PMID: 34100642 PMCID: PMC8269243 DOI: 10.1128/msystems.00581-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant viruses across the midgut barrier remains largely uncharacterized. Begomoviruses, many of which are disease agents of some major crops worldwide, are persistently transmitted by whiteflies (Bemisia tabaci). Here, in order to identify whitefly midgut proteins that interact with a devastating begomovirus, tomato yellow leaf curl virus (TYLCV), we performed midgut-specific TYLCV coat protein (CP) immunoprecipitation followed by high-throughput mass spectrometry proteomic analysis. We find that vitellogenin (Vg), a critical insect reproductive protein that has been considered to be synthesized by the fat body, is also synthesized by and interacts with TYLCV CP in the whitefly midgut. TYLCV appears to be internalized into midgut epithelial cells as a complex with Vg through endocytosis. Virus-containing vesicles then deliver the virus-Vg complexes to early endosomes for intracellular transport. Systematic silencing of Vg or midgut-specific immune blocking of Vg inhibited virus movement across the midgut wall and decreased viral acquisition and transmission by whitefly. Our findings show that a functional Vg protein is synthesized in the midgut of an insect and suggest a novel Vg mechanism that facilitates virus movement across the midgut barrier of its insect vector. IMPORTANCE An essential step in the life cycle of many viruses is transmission to a new host by insect vectors, and one critical step in the transmission of persistently transmitted viruses is overcoming the midgut barrier to enter vectors and complete their cycle. Most viruses enter vector midgut epithelial cells via specific interaction between viral structural proteins and vector cell surface receptor complexes. Tomato yellow leaf curl virus (TYLCV) is persistently transmitted by the whitefly Bemisia tabaci between host plants. Here, we find that TYLCV coat protein interacts with vitellogenin (Vg) in the whitefly midgut. This interaction is required for the movement of the virus crossing the midgut wall and thus facilitates viral acquisition and transmission by whitefly. This study reveals a novel mechanism of virus overcoming the insect midgut barrier and provides new insights into the function of Vg beyond serving as nutrition for developing embryos in insects.
Collapse
|
40
|
Identification of the Begomoviruses Squash Leaf Curl Virus and Watermelon Chlorotic Stunt Virus in Various Plant Samples in North America. Viruses 2021; 13:v13050810. [PMID: 33946382 PMCID: PMC8147125 DOI: 10.3390/v13050810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Geminiviruses are a group of plant-infecting viruses with single-stranded DNA genomes. Within this family, viruses in the genus Begomovirus are known to have a worldwide distribution causing a range of severe diseases in a multitude of dicotyledonous plant species. Begomoviruses are transmitted by the whitefly Bemisia tabaci, and their ssDNA genomes can be either monopartite or bipartite. As part of a viral survey, various plants including those in the families Alliaceae, Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Malvaceae, Oleaceae and Solanaceae were sampled and screened for begomoviruses using both a high-throughput sequencing and a begomovirus-specific primer pair approach. Based on the sequences derived using these approaches, the full-length genome of various begomoviruses were amplified from plants using abutting primers. Squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified in Cactaceae (n = 25), Solanaceae (n = 7), Cucurbitaceae (n = 2) and Lamiaceae (n = 1) samples. WCSV is an Old World bipartite begomovirus that has only recently been discovered infecting watermelons in the Americas. Our discovery of WCSV in the USA is the first indication that it has reached this country and indicates that this virus might be widespread throughout North America. Phylogenetic analysis suggests WCSV was introduced to the New World twice. The detection of begomoviruses in cactus plants suggests possible spillover events from agricultural areas into native vegetation. Since WCSV and SLCV have previously been found in mixed infections, pseudo-recombination infection experiments were conducted. We demonstrate that WCSV DNA-B is successfully trans-replicated by SLCV DNA-A despite very low degree of similarity between the replication-associated iterative sequences present in their common region, an essential feature for binding of the replication associated protein. This study highlights the importance of viral surveys for the detection of spillover events into native vegetation, but also suggests the need for more surveillance of WCSV in the USA, as this virus is a serious threat to watermelon cultivation in the Middle East.
Collapse
|
41
|
Yan Z, Wolters AMA, Navas-Castillo J, Bai Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021; 9:740. [PMID: 33916319 PMCID: PMC8066563 DOI: 10.3390/microorganisms9040740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl virus (TYLCV) and a group of related begomoviruses is an important disease which in recent years has caused serious economic problems in tomato (Solanum lycopersicum) production worldwide. Spreading of the vectors, whiteflies of the Bemisia tabaci complex, has been responsible for many TYLCD outbreaks. In this review, we summarize the current knowledge of TYLCV and TYLV-like begomoviruses and the driving forces of the increasing global significance through rapid evolution of begomovirus variants, mixed infection in the field, association with betasatellites and host range expansion. Breeding for host plant resistance is considered as one of the most promising and sustainable methods in controlling TYLCD. Resistance to TYLCD was found in several wild relatives of tomato from which six TYLCV resistance genes (Ty-1 to Ty-6) have been identified. Currently, Ty-1 and Ty-3 are the primary resistance genes widely used in tomato breeding programs. Ty-2 is also exploited commercially either alone or in combination with other Ty-genes (i.e., Ty-1, Ty-3 or ty-5). Additionally, screening of a large collection of wild tomato species has resulted in the identification of novel TYLCD resistance sources. In this review, we focus on genetic resources used to date in breeding for TYLCVD resistance. For future breeding strategies, we discuss several leads in order to make full use of the naturally occurring and engineered resistance to mount a broad-spectrum and sustainable begomovirus resistance.
Collapse
Affiliation(s)
- Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Weinberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| |
Collapse
|
42
|
Roques L, Desbiez C, Berthier K, Soubeyrand S, Walker E, Klein EK, Garnier J, Moury B, Papaïx J. Emerging strains of watermelon mosaic virus in Southeastern France: model-based estimation of the dates and places of introduction. Sci Rep 2021; 11:7058. [PMID: 33782446 PMCID: PMC8007712 DOI: 10.1038/s41598-021-86314-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/16/2021] [Indexed: 11/09/2022] Open
Abstract
Where and when alien organisms are successfully introduced are central questions to elucidate biotic and abiotic conditions favorable to the introduction, establishment and spread of invasive species. We propose a modelling framework to analyze multiple introductions by several invasive genotypes or genetic variants, in competition with a resident population, when observations provide knowledge on the relative proportions of each variant at some dates and places. This framework is based on a mechanistic-statistical model coupling a reaction–diffusion model with a probabilistic observation model. We apply it to a spatio-temporal dataset reporting the relative proportions of five genetic variants of watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) in infections of commercial cucurbit fields. Despite the parsimonious nature of the model, it succeeds in fitting the data well and provides an estimation of the dates and places of successful introduction of each emerging variant as well as a reconstruction of the dynamics of each variant since its introduction.
Collapse
Affiliation(s)
- L Roques
- INRAE, BioSP, 84914, Avignon, France.
| | - C Desbiez
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | - K Berthier
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | | | - E Walker
- INRAE, BioSP, 84914, Avignon, France
| | - E K Klein
- INRAE, BioSP, 84914, Avignon, France
| | - J Garnier
- Laboratoire de Mathématiques (LAMA), CNRS and Université de Savoie-Mont Blanc, Chambéry, France
| | - B Moury
- INRAE, Pathologie Végétale, 84140, Montfavet, France
| | - J Papaïx
- INRAE, BioSP, 84914, Avignon, France
| |
Collapse
|
43
|
Li J, Wang JC, Ding TB, Chu D. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. FRONTIERS IN PLANT SCIENCE 2021; 12:672400. [PMID: 34135928 PMCID: PMC8201402 DOI: 10.3389/fpls.2021.672400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
In China, Tomato chlorosis virus (ToCV) and Tomato yellow leaf curl virus (TYLCV) are widely present in tomato plants. The epidemiology of these viruses is intimately associated with their vector, the whitefly (Bemisia tabaci MED). However, how a ToCV+TYLCV mixed infection affects viral acquisition by their vector remains unknown. In this study, we examined the growth parameters of tomato seedlings, including disease symptoms and the heights and weights of non-infected, singly infected and mixed infected tomato plants. Additionally, the spatio-temporal dynamics of the viruses in tomato plants, and the viral acquisition and transmission by B. tabaci MED, were determined. The results demonstrated that: (i) ToCV+TYLCV mixed infections induced tomato disease synergism, resulting in a high disease severity index and decreased stem heights and weights; (ii) as the disease progressed, TYLCV accumulated more in upper leaves of TYLCV-infected tomato plants than in lower leaves, whereas ToCV accumulated less in upper leaves of ToCV-infected tomato plants than in lower leaves; (iii) viral accumulation in ToCV+TYLCV mixed infected plants was greater than in singly infected plants; and (iv) B. tabaci MED appeared to have a greater TYLCV, but a lower ToCV, acquisition rate from mixed infected plants compared with singly infected plants. However, mixed infections did not affect transmission by whiteflies. Thus, ToCV+TYLCV mixed infections may induce synergistic disease effects in tomato plants.
Collapse
|
44
|
Rasmussen DA, Grünwald NJ. Phylogeographic Approaches to Characterize the Emergence of Plant Pathogens. PHYTOPATHOLOGY 2021; 111:68-77. [PMID: 33021879 DOI: 10.1094/phyto-07-20-0319-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phylogeography combines geographic information with phylogenetic and population genomic approaches to infer the evolutionary history of a species or population in a geographic context. This approach has been instrumental in understanding the emergence, spread, and evolution of a range of plant pathogens. In particular, phylogeography can address questions about where a pathogen originated, whether it is native or introduced, and when and how often introductions occurred. We review the theory, methods, and approaches underpinning phylogeographic inference and highlight applications providing novel insights into the emergence and spread of select pathogens. We hope that this review will be useful in assessing the power, pitfalls, and opportunities presented by various phylogeographic approaches.
Collapse
Affiliation(s)
- David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | - Niklaus J Grünwald
- Horticultural Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
45
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
46
|
Marchant WG, Legarrea S, Smeda JR, Mutschler MA, Srinivasan R. Evaluating Acylsugars-Mediated Resistance in Tomato against Bemisia tabaci and Transmission of Tomato Yellow Leaf Curl Virus. INSECTS 2020; 11:insects11120842. [PMID: 33260730 PMCID: PMC7760652 DOI: 10.3390/insects11120842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci, is a major pest of cultivated tomato. Whitefly feeding-related injuries and transmission of viruses including tomato yellow leaf curl virus (TYLCV) cause serious losses. Management strategy includes planting resistant cultivars/hybrids. However, TYLCV resistance is incomplete and whiteflies on TYLCV-resistant cultivars/hybrids are managed by insecticides. Acylsugars'-mediated resistance against whiteflies has been introgressed from wild solanums into cultivated tomato. This study evaluated acylsugar-producing tomato lines with quantitative trait loci (QTL) containing introgressions from Solanum pennellii LA716, known to alter acylsugars' levels or chemistry. Evaluated acylsugar-producing lines were the benchmark line CU071026, QTL6/CU071026-a CU071026 sister line with QTL6, and three other CU071026 sister lines with varying QTLs-FA2/CU71026, FA7/CU071026, and FA2/FA7/CU071026. Non-acylsugar tomato hybrid Florida 47 (FL47) was also evaluated. Acylsugars' amounts in FA7/CU071026 and FA2/FA7/CU071026 were 1.4 to 2.2 times greater than in other acylsugar-producing lines. Short chain fatty acid, i-C5, was dominant in all acylsugar-producing lines. Long chain fatty acids, n-C10 and n-C12, were more abundant in FA7/CU071026 and FA2/FA7/CU071026 than in other acylsugar-producing lines. Whiteflies preferentially settled on non-acylsugar hybrid FL47 leaves over three out of five acylsugar-producing lines, and whiteflies settled 5 to 85 times more on abaxial than adaxial leaf surface of FL47 than on acylsugar-producing lines. Whiteflies' survival was 1.5 to 1.9 times lower on acylsugar-producing lines than in FL47. Nevertheless, whiteflies' developmental time was up to 12.5% shorter on acylsugar-producing lines than on FL47. TYLCV infection following whitefly-mediated transmission to acylsugar-producing lines was 1.4 to 2.8 times lower than FL47, and TYLCV acquisition by whiteflies from acylsugar-producing lines was up to 77% lower than from FL47. However, TYLCV accumulation in acylsugar-producing lines following infection and TYLCV loads in whiteflies upon acquisition from acylsugar-producing lines were not different from FL47. Combining TYLCV resistance with acylsugars'-mediated whitefly resistance in cultivated tomato could substantially benefit whiteflies and TYLCV management.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (W.G.M.); (S.L.)
| | - Saioa Legarrea
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (W.G.M.); (S.L.)
| | - John R. Smeda
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, 257 Emerson Hall, Ithaca, NY 30602, USA; (J.R.S.); (M.A.M.)
| | - Martha A. Mutschler
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, 257 Emerson Hall, Ithaca, NY 30602, USA; (J.R.S.); (M.A.M.)
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 310223, USA
- Correspondence: ; Tel.: +770-229-3099
| |
Collapse
|
47
|
Prasad A, Sharma N, Hari-Gowthem G, Muthamilarasan M, Prasad M. Tomato Yellow Leaf Curl Virus: Impact, Challenges, and Management. TRENDS IN PLANT SCIENCE 2020; 25:897-911. [PMID: 32371058 DOI: 10.1016/j.tplants.2020.03.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most studied plant viral pathogens because it is the most damaging virus for global tomato production. In order to combat this global threat, it is important that we understand the biology of TYLCV and devise management approaches. The prime objective of this review is to highlight management strategies for efficiently tackling TYLCV epidemics and global spread. For that purpose, we focus on the impact TYLCV has on worldwide agriculture and the role of recent advances for our understanding of TYLCV interaction with its host and vector. Another important focus is the role of recombination and mutations in shaping the evolution of TYLCV genome and geographical distribution.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
48
|
Deep Sequencing of Small RNAs in the Whitefly Bemisia tabaci Reveals Novel MicroRNAs Potentially Associated with Begomovirus Acquisition and Transmission. INSECTS 2020; 11:insects11090562. [PMID: 32842525 PMCID: PMC7564577 DOI: 10.3390/insects11090562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Summary The whitefly (Bemisia tabaci), a notorious insect vector, transmits hundreds of viruses causing serious yield losses in a diverse food and fiber crops including beans, cassava, cotton, cucurbits, pepper, sweet potato and tomato, and results in billions of U.S. dollars of economic losses annually worldwide. To investigate the molecular mechanisms regulating gene expression in whitefly that is associated with begomovirus transmission, we conducted small RNA sequencing and compared the microRNA (miRNA) profiles between viruliferous whiteflies feeding on tomato plants infected with a begomovirus, tomato yellow leaf curl virus (TYLCV), and those whiteflies feeding on uninfected plants. We uncovered a comprehensive microRNA genetic regulatory system in whiteflies that may be involved in virus acquisition and transmission. Interestingly, correlating the expression profile of miRNAs and their target transcript expression in our earlier transcriptome study, we found miRNA expression was inversely correlated with predicted target gene expression in over 50% of all cases. This fundamental understanding will help identify new target sequences that could be used to improve RNA interference technology for whitefly control. These analyses could also serve as a model to study gene regulation in other systems involving arthropod transmission of viruses to plants and animals. Abstract The whitefly Bemisia tabaci (Gennadius) is a notorious insect vector that transmits hundreds of plant viruses, affecting food and fiber crops worldwide, and results in the equivalent of billions of U.S. dollars in crop loss annually. To gain a better understanding of the mechanism in virus transmission, we conducted deep sequencing of small RNAs on the whitefly B. tabaci MEAM1 (Middle East-Asia Minor 1) that fed on tomato plants infected with tomato yellow leaf curl virus (TYLCV). Overall, 160 miRNAs were identified, 66 of which were conserved and 94 were B. tabaci-specific. Among the B. tabaci-specific miRNAs, 67 were newly described in the present study. Two miRNAs, with predicted targets encoding a nuclear receptor (Bta05482) and a very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2 (Bta10702), respectively, were differentially expressed in whiteflies that fed on TYLCV-infected versus uninfected plants. To better understand the regulatory effects of identified miRNAs and their target genes, we correlated expression profiles of miRNAs and their target transcripts and found that, interestingly, miRNA expression was inversely correlated with the expression of ~50% of the predicted target genes. These analyses could serve as a model to study gene regulation in other systems involving arthropod transmission of viruses to plants and animals.
Collapse
|
49
|
Desbiez C, Wipf-Scheibel C, Millot P, Berthier K, Girardot G, Gognalons P, Hirsch J, Moury B, Nozeran K, Piry S, Schoeny A, Verdin E. Distribution and evolution of the major viruses infecting cucurbitaceous and solanaceous crops in the French Mediterranean area. Virus Res 2020; 286:198042. [PMID: 32504705 DOI: 10.1016/j.virusres.2020.198042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Plant viral diseases represent a significant burden to plant health, and their highest impact in Mediterranean agriculture is on vegetables grown under intensive horticultural practices. In order to understand better virus evolution and emergence, the most prevalent viruses were mapped in the main cucurbitaceous (melon, squashes) and solanaceous (tomato, pepper) crops and in some wild hosts in the French Mediterranean area, and virus diversity, evolution and population structure were studied through molecular epidemiology approaches. Surveys were performed in summer 2016 and 2017, representing a total of 1530 crop samples and 280 weed samples. The plant samples were analysed using serological and molecular approaches, including high-throughput sequencing (HTS). The viral species and their frequency in crops were quite similar to those of surveys conducted ten years before in the same areas. Contrary to other Mediterranean countries, aphid-transmitted viruses remain the most prevalent in France whereas whitefly-transmitted ones have not yet emerged. However, HTS analysis of viral evolution revealed the appearance of undescribed viral variants, especially for watermelon mosaic virus (WMV) in cucurbits, or variants not present in France before, as for cucumber mosaic virus (CMV) in solanaceous crops. Deep sequencing also revealed complex virus populations within individual plants with frequent recombination or reassortment. The spatial genetic structure of cucurbit aphid-borne yellows virus (CABYV) was related to the landscape structure, whereas in the case of WMV, the recurrence of introduction events and probable human exchanges of plant material resulted in complex spatial pattern of genetic variation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Judith Hirsch
- INRAE, Pathologie Végétale, F-84140, Montfavet, France
| | - Benoît Moury
- INRAE, Pathologie Végétale, F-84140, Montfavet, France
| | | | - Sylvain Piry
- INRAE, Pathologie Végétale, F-84140, Montfavet, France; CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Eric Verdin
- INRAE, Pathologie Végétale, F-84140, Montfavet, France
| |
Collapse
|
50
|
Ghorbani Faal P, Farsi M, Seifi A, Mirshamsi Kakhki A. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol Biol Rep 2020; 47:3369-3376. [PMID: 32297291 DOI: 10.1007/s11033-020-05409-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Plant viruses are the most significant factors associated with massive economical losses in agricultural industries worldwide. Accordingly, many studies are dedicated to making virus-resistant crop varieties each year due to the ever-changing nature of viruses. Recently genome engineering methods have been used to confer interference against eukaryotic viruses. Research results on genome editing technics, in particular, CRISPR-Cas9, promises a feasible solution to make virus-resistant crops. In this research, we explored the possibility of utilizing CRISPR-Cas9 to obtain TYLCV resistant tomato varieties. Moreover, to overcome any potential off-target effects of Cas9, we used an inducible promoter to initiate Cas9 activity in case of the virus attack. Cas9 vector was transformed by the rgsCaM promoter, known as an endogenous silencer of RNAi and overexpressed after a virus attack. The golden gate cloning method was applied to construct sgRNAs. Intergenic region and coat protein-coding sequences of TYLCV were used to design sgRNAs. Infiltrated sensitive Money Maker varieties analyzed by real-time PCR, showed a significant reduction or delayed accumulation of viral DNA compared to the control plants. This result demonstrates the efficiency of using an inducible promoter in CRISPR-Cas9 constructs.
Collapse
Affiliation(s)
- Parisa Ghorbani Faal
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Farsi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Seifi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|