1
|
Huang Y, Jia KZ, Zhao W, Zhu LW. Insights into the regulatory mechanisms and application prospects of the transcription factor Cra. Appl Environ Microbiol 2024; 90:e0122824. [PMID: 39494897 PMCID: PMC11577769 DOI: 10.1128/aem.01228-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Cra (catabolite repressor/activator) is a global transcription factor (TF) that plays a pleiotropic role in controlling the transcription of several genes involved in carbon utilization and energy metabolism. Multiple studies have investigated the regulatory mechanism of Cra and its rational use for metabolic regulation, but due to the complexity of its regulation, there remain challenges in the efficient use of Cra. Here, the structure, mechanism of action, and regulatory function of Cra in carbon and nitrogen flow are reviewed. In addition, this paper highlights the application of Cra in metabolic engineering, including the promotion of metabolite biosynthesis, the regulation of stress tolerance and virulence, the use of a Cra-based biosensor, and its coupling with other transcription factors. Finally, the prospects of Cra-related regulatory strategies are discussed. This review provides guidance for the rational design and construction of Cra-based metabolic regulation systems.
Collapse
Affiliation(s)
- Ying Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Kai-Zhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Wei Zhao
- State Key Laboratory of MicrobialTechnology, University, Qingdao, China
| | - Li-Wen Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| |
Collapse
|
2
|
Majdi C, Meffre P, Benfodda Z. Recent advances in the development of bacterial response regulators inhibitors as antibacterial and/or antibiotic adjuvant agent: A new approach to combat bacterial resistance. Bioorg Chem 2024; 150:107606. [PMID: 38968903 DOI: 10.1016/j.bioorg.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.
Collapse
|
3
|
Gaddy KE, Bensch EM, Cavanagh J, Milton ME. Insights into DNA-binding motifs and mechanisms of Francisella tularensis novicida two-component system response regulator proteins QseB, KdpE, and BfpR. Biochem Biophys Res Commun 2024; 722:150150. [PMID: 38805787 DOI: 10.1016/j.bbrc.2024.150150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Two component system bacterial response regulators are typically DNA-binding proteins which enable the genetic regulation of many adaptive bacterial behaviors. Despite structural similarity across response regulator families, there is a diverse array of DNA-binding mechanisms. Bacteria usually encode several dozen two-component system response regulators, but Francisella tularensis only encodes three. Due to their simplified response regulatory network, Francisella species are a model for studying the role of response regulator proteins in virulence. Here, we show that Francisella response regulators QseB, KdpE, and BfpR all utilize different DNA-binding mechanisms. Our evidence suggests that QseB follows a simple mechanism whereby it binds a single inverted repeat sequence with a higher affinity upon phosphorylation. This behavior is independent of whether QseB is a positive or negative regulator of the gene as demonstrated by qseB and priM promoter sequences, respectively. Similarly, KdpE binds DNA more tightly upon phosphorylation, but also exhibits a cooperative binding isotherm. While we propose a KdpE binding site, it is possible that KdpE has a complex DNA-binding mechanism potentially involving multiple copies of KdpE being recruited to a promoter region. Finally, we show that BfpR appears to bind a region of its own promoter sequence with a lower affinity upon phosphorylation. Further structural and enzymatic work will need to be performed to deconvolute the KdpE and BfpR binding mechanisms.
Collapse
Affiliation(s)
- Keegan E Gaddy
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elody M Bensch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
4
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
5
|
Werum V, Ehrmann M. Transcriptome responses of Lactococcus paracarnosus to different gas compositions and co-culture with Brochothrix thermosphacta. Int J Food Microbiol 2024; 421:110803. [PMID: 38908220 DOI: 10.1016/j.ijfoodmicro.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Lactococcus (Lc.) paracarnosus and the phylogenetically closely related Lc. carnosus species are common members of the microbiota in meat stored under modified atmosphere and at low temperature. The effect of these strains on meat spoilage is controversially discussed. While some strains are known to cause spoilage, others are being studied for their potential to suppress the growth of spoilage and pathogenic bacteria. In this study, Lc. paracarnosus DSM 111017T was selected based on a previous study for its ability to suppress the growth of meat spoilers, including Brochothrix thermosphacta. The mechanism by which this bioprotective strain inhibits competing bacteria and how it contributes to spoilage are not yet known. To answer these two questions, we investigated the effect of four different headspace gas mixtures (simulated air (21 % O2/79 % N2); HiOx-MAP (70 % O2/30 % CO2); nonOx-MAP (70 % N2/ 30 % CO2); simulated vacuum (100 % N2) and the presence of Brochothrix (B.) thermosphacta TMW 2.2101 on the growth and transcriptional response of Lc. paracarnosus DSM 111017T when cultured on a meat simulation agar surface at 4 °C. Analysis of genes specifically upregulated by the gas mixtures used revealed metabolic pathways that may lead to different levels of spoilage metabolites production. We propose that under elevated oxygen levels, Lc. paracarnosus preferentially converts pyruvate from glucose and glycerol to uncharged acetoin/diacetyl instead of lactate to counteract acid stress. Due to the potential production of a buttery off-flavour, the strain may not be suitable as a protective culture in meat packaged under high‑oxygen conditions. 70 % N2/ 30 % CO2, simulated vacuum- and the presence of Lc. paracarnosus inhibited the growth of B. thermosphacta TMW 2.2101. However, B. thermosphacta did not affect gene regulation of metabolic pathways in Lc. paracarnosus, and genes previously predicted to be involved in B. thermosphacta growth suppression were not regulated at the transcriptional level. In conclusion, the study indicates that the gas mixture used in packaging significantly affects the metabolism and spoilage potential of Lc. paracarnosus and its ability to inhibit B. thermosphacta growth.
Collapse
Affiliation(s)
- Victoria Werum
- Lehrstuhl für Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Matthias Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany.
| |
Collapse
|
6
|
Yousuf B, Pasha R, Pineault N, Ramirez-Arcos S. Modulation of Staphylococcus aureus gene expression during proliferation in platelet concentrates with focus on virulence and platelet functionality. PLoS One 2024; 19:e0307920. [PMID: 39052660 PMCID: PMC11271859 DOI: 10.1371/journal.pone.0307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Staphylococcus aureus is a well-documented bacterial contaminant in platelet concentrates (PCs), a blood component used to treat patients with platelet deficiencies. This bacterium can evade routine PC culture screening and cause septic transfusion reactions. Here, we investigated the gene expression modulation within the PC niche versus trypticase soy media (TSB) of S. aureus CBS2016-05, a strain isolated from a septic reaction, in comparison to PS/BAC/317/16/W, a strain identified during PC screening. RNA-seq analysis revealed upregulation of the capsule biosynthesis operon (capA-H), surface adhesion factors (sasADF), clumping factor A (clfA), protein A (spa), and anaerobic metabolism genes (pflAB, nrdDG) in CBS2016-05 when grown in PCs versus TSB, implying its enhanced pathogenicity in this milieu, in contrast to the PS/BAC/317/16/W strain. Furthermore, we investigated the impact of S. aureus CBS2016-05 on platelet functionality in spiked PCs versus non-spiked PC units. Flow cytometry analyses revealed a significant decrease in glycoprotein (GP) IIb (CD41) and GPIbα (CD42b) expression, alongside increased P-selectin (CD62P) and phosphatidylserine (annexin V) expression in spiked PCs compared to non-spiked PCs (p = 0.01). Moreover, spiked PCs exhibited a drastic reduction in MitoTrack Red FM and Calcein AM positive platelets (87.3% vs. 29.4%, p = 0.0001 and 95.4% vs. 24.7%, p = 0.0001) in a bacterial cell density manner. These results indicated that S. aureus CBS2016-05 triggers platelet activation and apoptosis, and compromises mitochondrial functionality and platelet viability, in contaminated PCs. Furthermore, this study enhanced our understanding of the effects of platelet-bacteria interactions in the unique PC niche, highlighting S. aureus increased pathogenicity and deleterious effect on platelet functionality in a strain specific manner. Our novel insights serve as a platform to improve PC transfusion safety.
Collapse
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Roya Pasha
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
| | - Nicolas Pineault
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
7
|
Long DR, Holmes EA, Lo HY, Penewit K, Almazan J, Hodgson T, Berger NF, Bishop ZH, Lewis JD, Waalkes A, Wolter DJ, Salipante SJ. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog 2024; 20:e1012394. [PMID: 38991026 PMCID: PMC11265673 DOI: 10.1371/journal.ppat.1012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nova F. Berger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Zoe H. Bishop
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Li Q, Fang W, Chen S, Li G, Jiang C, Zhuang Y, Li L, Liu P, Guo X, Hu G, Liu P, Gao X. Characterization of Escherichia coli pathogenicity and drug resistance in yolk peritonitis. Poult Sci 2024; 103:103814. [PMID: 38718538 PMCID: PMC11097060 DOI: 10.1016/j.psj.2024.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, β-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Shupeng Chen
- Jiangxi Agricultural Engineering Vocational college, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Lin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China.
| |
Collapse
|
9
|
Chen G, Zhang H, Yuan M, Huang R, Xiao Y, Qu Y, Ren Y. Physiological responses and molecular mechanisms of biofilm formation induced by extracellular metabolites of euglena in Pseudomonas aeruginosa LNR1 for diesel biodegradation based on transcriptomic and proteomic. ENVIRONMENTAL RESEARCH 2024; 248:118273. [PMID: 38280528 DOI: 10.1016/j.envres.2024.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Diesel, as a toxic and complex pollutant, is one of the main components in oily wastewater, and poses serious threats to the aquatic environment and the health of organisms. Employing environmentally friendly biostimulants to enhance the metabolic functions of microorganisms is currently the optimal choice to improve the biodegradation of oil-containing wastewater efficiency. This study takes Pseudomonas aeruginosa LNR1 as the target, analyzing the physiological responses and molecular mechanisms of biofilm formation when enhanced by the extracellular metabolites of euglena (EME) for diesel degradation. The results show that EME not only induces auto-aggregation behavior of strain LNR1, forming aerobic suspended granule biofilm, but also promotes the secretion of signaling molecules in the quorum sensing (QS) system. Transcriptomic and proteomic analyses indicate that the stimulatory effect of EME on strain LNR1 mainly manifests in biofilm formation, substance transmembrane transport, signal transduction, and other biological processes, especially the QS system in signal transduction, which plays a significant regulatory role in biofilm formation, chemotaxis, and two-component system (TCS). This study collectively unveils the molecular mechanisms of biostimulant EME inducing strain LNR1 to enhance diesel degradation from different aspects, providing theoretical guidance for the practical application of EME in oily wastewater pollution control.
Collapse
Affiliation(s)
- Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huiqun Zhang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Meng Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Rui Huang
- GH Water Supply (Holdings) Co., Ltd., Shenzhen 518021, China
| | - Yibo Xiao
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yujiao Qu
- Protoga Biotechnology Co., Ltd., Shenzhen 518000, China; Microalgae Biosynthesis R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
10
|
Rapsinski GJ, Michaels LA, Hill M, Yarrington KD, Haas AL, D’Amico EJ, Armbruster CR, Zemke A, Limoli D, Bomberger JM. Pseudomonas aeruginosa senses and responds to epithelial potassium flux via Kdp operon to promote biofilm. PLoS Pathog 2024; 20:e1011453. [PMID: 38820569 PMCID: PMC11168685 DOI: 10.1371/journal.ppat.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.
Collapse
Affiliation(s)
- Glenn J. Rapsinski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
- Division of Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lia A. Michaels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Madison Hill
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania, United States of America
| | - Kaitlin D. Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison L. Haas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Emily J. D’Amico
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Catherine R. Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| | - Anna Zemke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dominique Limoli
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United State of America
| |
Collapse
|
11
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
12
|
Li J, Liu C, Wang S, Mao X. Staphylococcus aureus enters viable-but-nonculturable state in response to chitooligosaccharide stress by altering metabolic pattern and transmembrane transport function. Carbohydr Polym 2024; 330:121772. [PMID: 38368090 DOI: 10.1016/j.carbpol.2023.121772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
Although chitooligosaccharide (COS) has attracted the attention of some researchers due to its good solubility and broad-spectrum antibacterial activity, our study found that Staphylococcus aureus treated with low concentration of COS actively entered the viable-but-nonculturable (VBNC) state to resist this environmental stress. In this study, the transcriptome of VBNC-state S. aureus after COS treatment was analyzed by RNA-sequencing. Compared with the control group, pathway enrichment analysis showed that COS-treated S. aureus adopted a series of adaptive adjustment strategies for survival, including significant up-regulation of the differential genes' expression of such as ABC transporters (metI, tagG), Sec dependent transport pathway (secDF), peptidoglycan synthesis pathway (murG) and alteration of their physiological metabolic patterns, where ATP depletion played a key role in the formation of the VBNC-state S. aureus. Further, by using oxidative phosphorylation uncoupling agent to adjust the initial level of ATP in S. aureus, it was found that the reduction of intracellular ATP level could accelerate the formation of VBNC state. Overall, our results preliminarily elucidated the molecular mechanism of COS inducing the VBNC-state S. aureus. It provided an important theoretical reference for further achieving effective bacterial inactivation by COS.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
13
|
Claudia MV, Javiera AA, Sebastián NS, José FR, Gloria L. Interplay between desiccation and oxidative stress responses in iron-oxidizing acidophilic bacteria. J Biotechnol 2024; 383:64-72. [PMID: 38311245 DOI: 10.1016/j.jbiotec.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Variations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability. However, the tolerance to water stress and the molecular basis of adaptation to it are still largely unknown. The aim of this work was to determine the cellular response to desiccation stress and establish its relationship to oxidative stress response in the acidophilic iron-oxidizing bacteria Acidithiobacillus ferrooxidans ATCC 23270 and Leptospirillum ferriphilum DSM 14647. Results showed that the exposure of cell cultures to desiccation (0-120 min) led to a significant reduction in cell growth, and to an increase in content in reactive oxygen species in both bacteria. However, Leptospirillum ferriphilum turned out to be more tolerant than Acidithiobacillus ferrooxidans. In addition, the pre-treatment of the cell cultures with compatible solutes (trehalose and ectoine), and antioxidants (glutathione and cobalamin) restored all stress parameters to levels exhibited by the control cultures. To evaluate the role of the osmotic and redox homeostasis mechanisms in coping with desiccation stress, the relative expression of a set of selected genes was approached by RT-qPCR experiments in cells exposed to desiccation for 30 min. Results showed a generalized upregulation of genes that code for mechanosensitive channels, and enzymes related to the biosynthesis of compatible solutes and oxidative stress response in both bacteria. These data suggest that acidophiles show variable tolerance to desiccation and allow to establish that water stress can trigger oxidative stress, and thus anti-oxidative protection capability can be a relevant mechanism when cells are challenged by desiccation or other anhydrobiosis states.
Collapse
Affiliation(s)
- Muñoz-Villagrán Claudia
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Acevedo-Arbunic Javiera
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Navarro-Salazar Sebastián
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Fuentes-Rubio José
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Levicán Gloria
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins, Santiago 3363, Chile.
| |
Collapse
|
14
|
Woyda R, Oladeinde A, Endale D, Strickland T, Plumblee Lawrence J, Abdo Z. Genetic Characteristics of Salmonella Isolates Recovered From Reused Broiler Litter Over Three Successive Flocks. J Food Prot 2024; 87:100236. [PMID: 38307462 PMCID: PMC11000695 DOI: 10.1016/j.jfp.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Salmonella infections are a leading cause of bacterial food-borne illness worldwide. Infections are highly associated with the consumption of contaminated food, and in particular, chicken meat. The severity of Salmonella infections depends on the presence of antimicrobial resistance genes and virulence factors. While there are many studies which have investigated Salmonella strains isolated from postharvest chicken samples, there is a gap in our understanding of the genetic properties that influence the persistence of Salmonella in preharvest and in particular their makeup of antimicrobial resistance genes and virulence factors. We used whole genome sequencing and hierarchical clustering to characterize and classify the genetic diversity of Salmonella enterica isolates (n = 55) recovered from the litter of commercial broiler chicken raised in four colocated broiler houses of one integrated farm over three consecutive flocks. The chicken were raised under a newly adopted "No Antibiotics Ever" program, and copper sulfate was administered via drinking water. In-silico serovar prediction identified three S. enterica serovars: Enteritidis (n = 12), Kentucky (n = 40), and Senftenberg (n = 3). Antimicrobial susceptibility testing revealed that only one S. Kentucky isolate was resistant to streptomycin, while the remaining isolates were susceptible to all antibiotics tested. Metal resistance operons, including copper and silver, were identified chromosomally and on plasmids in serovar Senftenberg and Kentucky isolates, respectively, while serovar Enteritidis carried several virulence factors on plasmids. Serovar Kentucky isolates harboring metal resistance operons were the only Salmonella isolates recovered from the litter of third flock cohort. These results suggest that there might be environmental selection for Salmonella strains carrying plasmid-associated metal resistance and virulence genes, which could play a role in their persistence in litter.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA; Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research, USDA, Tifton, Georgia, USA
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA; Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
15
|
Qi W, Jonker MJ, Katsavelis D, de Leeuw W, Wortel M, Ter Kuile BH. The Effect of the Stringent Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resistance. Int J Mol Sci 2024; 25:2582. [PMID: 38473832 DOI: 10.3390/ijms25052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Resistance evolution during exposure to non-lethal levels of antibiotics is influenced by various stress responses of bacteria which are known to affect growth rate. Here, we aim to disentangle how the interplay between resistance development and associated fitness costs is affected by stress responses. We performed de novo resistance evolution of wild-type strains and single-gene knockout strains in stress response pathways using four different antibiotics. Throughout resistance development, the increase in minimum inhibitory concentration (MIC) is accompanied by a gradual decrease in growth rate, most pronounced in amoxicillin or kanamycin. By measuring biomass yield on glucose and whole-genome sequences at intermediate and final time points, we identified two patterns of how the stress responses affect the correlation between MIC and growth rate. First, single-gene knockout E. coli strains associated with reactive oxygen species (ROS) acquire resistance faster, and mutations related to antibiotic permeability and pumping out occur earlier. This increases the metabolic burden of resistant bacteria. Second, the ΔrelA knockout strain, which has reduced (p)ppGpp synthesis, is restricted in its stringent response, leading to diminished growth rates. The ROS-related mutagenesis and the stringent response increase metabolic burdens during resistance development, causing lower growth rates and higher fitness costs.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Drosos Katsavelis
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Meike Wortel
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H Ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
17
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
18
|
Sultan M, Arya R, Chaurasia AK, Kim KK. Sensor histidine kinases kdpD and aauS regulate biofilm and virulence in Pseudomonas aeruginosa PA14. Front Cell Infect Microbiol 2023; 13:1270667. [PMID: 37881370 PMCID: PMC10595159 DOI: 10.3389/fcimb.2023.1270667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant opportunistic human pathogen that utilizes two-component systems (TCSs) to sense pathophysiological signals and coordinate virulence. P. aeruginosa contains 64 sensor histidine kinases (HKs) and 72 response regulators (RRs) that play important roles in metabolism, bacterial physiology, and virulence. However, the role of some TCSs in virulence remains uncharacterized. In this study, we evaluated the virulence potential of some uncharacterized sensor HK and RR knockouts in P. aeruginosa using a Galleria mellonella infection model. Furthermore, we demonstrated that KdpD and AauS HKs regulate virulence by affecting P. aeruginosa biofilm formation and motility. Both ΔkdpD and ΔaauS showed reduced biofilm and motility which were confirmed by restored phenotypes upon complementation. Moreover, ΔkdpD and ΔaauS exhibited increased survival of HeLa cells and G. mellonella during in vivo infection. Altered expression of the transcriptional regulators anR and lasR, along with the virulence genes lasA, pelA, cupA, pqsA, pqsB, pqsC, and pqsD in the mutant strains elucidated the mechanism by which ΔkdpD and ΔaauS affect virulence. These findings confirm that kdpD and aauS play important roles in P. aeruginosa pathogenesis by regulating biofilm formation and motility.
Collapse
Affiliation(s)
- Maria Sultan
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Rekha Arya
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
19
|
Alshehri WA, Abulfaraj AA, Alqahtani MD, Alomran MM, Alotaibi NM, Alwutayd K, Aloufi AS, Alshehrei FM, Alabbosh KF, Alshareef SA, Ashy RA, Refai MY, Jalal RS. Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum. AMB Express 2023; 13:92. [PMID: 37646836 PMCID: PMC10469157 DOI: 10.1186/s13568-023-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.
Collapse
Affiliation(s)
- Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, 21955, Makkah, Saudi Arabia
| | - Khulood F Alabbosh
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, 21921, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Mohammed Y Refai
- Department of Biochemistry, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia.
| |
Collapse
|
20
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
21
|
Li L, Ma J, Cheng P, Li M, Yu Z, Song X, Yu Z, Sun H, Zhang W, Wang Z. Roles of two-component regulatory systems in Klebsiella pneumoniae: Regulation of virulence, antibiotic resistance, and stress responses. Microbiol Res 2023; 272:127374. [PMID: 37031567 DOI: 10.1016/j.micres.2023.127374] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen belonging to the Enterobacteriaceae family, which is the leading cause of nosocomial infections. The emergence of hypervirulent and multi-drug resistant K. pneumoniae is a serious health threat. In the process of infection, K. pneumoniae needs to adapt to different environmental conditions, and the two-component regulatory system (TCS) composed of a sensor histidine kinase and response regulator is an important bacterial regulatory system in response to external stimuli. Understanding how K. pneumoniae perceives and responds to complex environmental stimuli provides insights into TCS regulation mechanisms and new targets for drug design. In this review, we analyzed the TCS composition and summarized the regulation mechanisms of TCSs, focusing on the regulation of genes involved in virulence, antibiotic resistance, and stress response. Collectively, these studies demonstrated that several TCSs play important roles in the regulation of virulence, antibiotic resistance and stress responses of K. pneumoniae. A single two-component regulatory system can participate in the regulation of several stress responses, and one stress response process may include several TCSs, forming a complex regulatory network. However, the function and regulation mechanism of some TCSs require further study. Hence, future research endeavors are required to enhance the understanding of TCS regulatory mechanisms and networks in K. pneumoniae, which is essential for the design of novel drugs targeting TCSs.
Collapse
|
22
|
Park S, Dingemans J, Sauer K. Manganese Acts as an Environmental Inhibitor of Pseudomonas aeruginosa Biofilm Development by Inducing Dispersion and Modulating c-di-GMP and Exopolysaccharide Production via RbdA. J Bacteriol 2023; 205:e0000323. [PMID: 37199658 PMCID: PMC10294637 DOI: 10.1128/jb.00003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa causes chronic infections that involve multicellular aggregates called biofilms. Biofilm formation is modulated by the host environment and the presence of cues and/or signals, likely affecting the pool of the bacterial second messenger cyclic diguanylate monophosphate (c-di-GMP). The manganese ion Mn2+ is a divalent metal cation that is essential for pathogenic bacterial survival and replication during the infection in a host organism. In this study, we investigated how Mn2+ alters P. aeruginosa biofilm formation via the regulation of c-di-GMP levels. Exposure to Mn2+ was found to temporally enhance attachment but impair subsequent biofilm development, apparent by reduced biofilm biomass accumulation and lack of microcolony formation due to the induction of dispersion. Moreover, exposure to Mn2+ coincided with reduced production of the exopolysaccharides Psl and Pel, decreased transcriptional abundance of pel and psl, and decreased levels of c-di-GMP. To determine whether the effect of Mn2+ was linked to the activation of phosphodiesterases (PDEs), we screened several PDE mutants for Mn2+-dependent phenotypes (attachment and polysaccharide production) as well as PDE activity. The screen revealed that the PDE RbdA is activated by Mn2+ and is responsible for Mn2+-dependent attachment, inhibition of Psl production, and dispersion. Taken together, our findings suggest Mn2+ is an environmental inhibitor of P. aeruginosa biofilm development that acts through the PDE RbdA to modulate c-di-GMP levels, thereby impeding polysaccharide production and biofilm formation but enhancing dispersion. IMPORTANCE While diverse environmental conditions such as the availability of metal ions have been shown to affect biofilm development, little is known about the mechanism. Here, we demonstrate that Mn2+ affects Pseudomonas aeruginosa biofilm development by stimulating phosphodiesterase RbdA activity to reduce the signaling molecule c-di-GMP levels, thereby hindering polysaccharide production and biofilm formation but enhancing dispersion. Our findings demonstrate that Mn2+ acts as an environmental inhibitor of P. aeruginosa biofilms, further suggesting manganese to be a promising new antibiofilm factor.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Jozef Dingemans
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
23
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
24
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
25
|
Zhang K, Foster L, Buchanan D, Coker VS, Pittman JK, Lloyd JR. The interplay between Cs and K in Pseudanabaena catenata; from microbial bloom control strategies to bioremediation options for radioactive waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130556. [PMID: 37055967 DOI: 10.1016/j.jhazmat.2022.130556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Pseudanabaena dominates cyanobacterial blooms in the First-Generation Magnox Storage Pond (FGMSP) at a UK nuclear site. The fission product Cs is a radiologically significant radionuclide in the pond, and understanding the interactions between Cs and Pseudanabaena spp. is therefore important for determining facility management strategies, as well as improving understanding of microbiological responses to this non-essential chemical analogue of K. This study evaluated the fate of Cs following interactions with Pseudanabaena catenata, a laboratory strain most closely related to that dominating FGMSP blooms. Experiments showed that Cs (1 mM) exposure did not affect the growth of P. catenata, while a high concentration of K (5 mM) caused a significant reduction in cell yield. Scanning transmission X-ray microscopy elemental mapping identified Cs accumulation to discrete cytoplasmic locations within P. catenata cells, indicating a potential bioremediation option for Cs. Proteins related to stress responses and nutrient limitation (K, P) were stimulated by Cs treatment. Furthermore, selected K+ transport proteins were mis-regulated by Cs dosing, which indicates the importance of the K+ transport system for Cs accumulation. These findings enhance understanding of Cs fate and biological responses within Pseudanabaena blooms, and indicate that K exposure might provide a microbial bloom control strategy.
Collapse
Affiliation(s)
- Kejing Zhang
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Lynn Foster
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Dawn Buchanan
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Victoria S Coker
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
26
|
Metal-Responsive Transcription Factors Co-Regulate Anti-Sigma Factor (Rsd) and Ribosome Dimerization Factor Expression. Int J Mol Sci 2023; 24:ijms24054717. [PMID: 36902154 PMCID: PMC10003395 DOI: 10.3390/ijms24054717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteria exposed to stress survive by regulating the expression of several genes at the transcriptional and translational levels. For instance, in Escherichia coli, when growth is arrested in response to stress, such as nutrient starvation, the anti-sigma factor Rsd is expressed to inactivate the global regulator RpoD and activate the sigma factor RpoS. However, ribosome modulation factor (RMF) expressed in response to growth arrest binds to 70S ribosomes to form inactive 100S ribosomes and inhibit translational activity. Moreover, stress due to fluctuations in the concentration of metal ions essential for various intracellular pathways is regulated by a homeostatic mechanism involving metal-responsive transcription factors (TFs). Therefore, in this study, we examined the binding of a few metal-responsive TFs to the promoter regions of rsd and rmf through promoter-specific TF screening and studied the effects of these TFs on the expression of rsd and rmf in each TF gene-deficient E. coli strain through quantitative PCR, Western blot imaging, and 100S ribosome formation analysis. Our results suggest that several metal-responsive TFs (CueR, Fur, KdpE, MntR, NhaR, PhoP, ZntR, and ZraR) and metal ions (Cu2+, Fe2+, K+, Mn2+, Na+, Mg2+, and Zn2+) influence rsd and rmf gene expression while regulating transcriptional and translational activities.
Collapse
|
27
|
Zhang S, Hill RT, Wang H. Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001 T, which originated from Permian ground water. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:12-27. [PMID: 37077290 PMCID: PMC10077173 DOI: 10.1007/s42995-023-00164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, Permianibacter aggregans HW001T, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001T was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001T diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001T. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001T was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of P. aggregans to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001T to the changing ancient oceans. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00164-3.
Collapse
Affiliation(s)
- Shuangfei Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Biology Department, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 China
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21201 USA
| | - Hui Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Biology Department, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 China
| |
Collapse
|
28
|
Shaw C, Hess M, Weimer BC. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence 2022; 13:1666-1680. [PMID: 36128741 PMCID: PMC9518994 DOI: 10.1080/21505594.2022.2127196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Two-component systems are ubiquitous signaling mechanisms in bacteria that enable intracellular changes from extracellular cues. These bacterial regulatory systems couple external stimuli to control genetic expression via an autophosphorylation cascade that transduces membrane signals to intracellular locations, thereby allowing bacteria to rapidly adapt to the changing environmental conditions. Well known to control basic cellular processes, it is evident that two-component systems also exercise control over virulence traits, such as motility, secretion systems, and stress responses that impact the complex cascade of networks that alter virulence traits. In the gastrointestinal system, cues for activation of virulence-related two-component systems include metal ions, host-derived metabolites, and gut conditions. The diversity and origin of these cues suggest that the host can exert control over enteric pathogenicity via regulation in the gastrointestinal system. With the rise in multi-drug resistant pathogens, the potential control of pathogenicity with host cues via two-component systems presents a potential alternative to antimicrobials. Though the signaling mechanism itself is well studied, to date there is no systematic review compiling the host-associated cues of two-component systems and virulence traits. This review highlights the direct link between the host gastrointestinal environment and pathogenicity by focusing on two-component systems that are associated with the genetic expression of virulence traits, and that are activated by host-derived cues. The direct link between the host gastrointestinal environment, metabolites, and pathogenicity established in this review both underscores the importance of host-derived cues on bacterial activity and presents an enticing therapeutic target in the fight against antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Matthias Hess
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Poshvina DV, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, Vasilchenko AS. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol 2022; 13:963979. [PMID: 36246291 PMCID: PMC9558223 DOI: 10.3389/fmicb.2022.963979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.
Collapse
Affiliation(s)
- Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Diana S. Dilbaryan
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey P. Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | | | | | - Eugene A. Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
- *Correspondence: Alexey S. Vasilchenko
| |
Collapse
|
30
|
Shami AY, Abulfaraj AA, Refai MY, Barqawi AA, Binothman N, Tashkandi MA, Baeissa HM, Baz L, Abuauf HW, Ashy RA, Jalal RS. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Front Microbiol 2022; 13:990169. [PMID: 36187977 PMCID: PMC9524394 DOI: 10.3389/fmicb.2022.990169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
Collapse
Affiliation(s)
- Ashwag Y. Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aminah A. Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science—King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- *Correspondence: Rewaa S. Jalal,
| |
Collapse
|
31
|
Truong-Bolduc QC, Wang Y, Hooper DC. Role of Staphylococcus aureus Tet38 in Transport of Tetracycline and Its Regulation in a Salt Stress Environment. J Bacteriol 2022; 204:e0014222. [PMID: 35699453 PMCID: PMC9295565 DOI: 10.1128/jb.00142-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus Tet38 efflux pump has multiple functions, including conferring resistance to tetracycline and other compounds and enabling internalization and survival within epithelial cells. In this study, we evaluated the effects of sodium and potassium on tet38 expression. These monovalent cations are known to play a role in transport by the related S. aureus TetK and B. subtilis TetL transporters. tet38 transcription decreased with increasing sodium concentrations by means of direct repression by the salt stress-dependent KdpD/E regulator. tet38 transcription increased 20-fold and tetracycline minimum inhibitory concentration (MIC) increased 4-fold in a ΔkdpD mutant. KdpE bound specifically to the tet38 promoter. Under extreme salt stress, the survival of S. aureus with intact tet38 was reduced compared to that of a Δtet38 mutant. To study the effect of sodium on Tet38 function, we generated constructs overexpressing tet38 and tetK and introduced them into Escherichia coli TO114, which is deficient in major sodium transporters. Tet38 tetracycline efflux was directly demonstrated in a fluorescence assay, and tetracycline efflux of both Tet38 and TetK was abolished by the protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In contrast, NaCl inhibited efflux by Tet38 but not TetK, whereas KCl inhibited efflux by TetK but not Tet38. Cell-associated Na increased with heterologous overexpression of Tet38. These data indicate that S. aureus Tet38 is a tetracycline efflux pump regulated by the KdpD/E regulator. Under salt stress, S. aureus adjusted its survival in part by reducing the expression of tet38 through KdpD/E. The mechanisms by which Tet38 is detrimental to salt tolerance in S. aureus and inhibited by sodium remain to be determined. IMPORTANCE This study shows that S. aureus Tet38 is a tetracycline efflux pump regulated by KdpD/E regulator. These findings are the first direct demonstration of Tet38-mediated tetracycline efflux, which had previously been inferred from its ability to confer tetracycline resistance. Under salt stress, S. aureus adjusts its survival in part by reducing the expression of tet38 through KdpD/E. We demonstrated the differences in the respective functions of S. aureus Tet38 and other tetracycline efflux transporters (S. aureus TetK, B. subtilis TetL) regarding their transport of tetracycline and Na+/K+. Notably, sodium selectively reduced tetracycline efflux by Tet38, and potassium selectively reduced tetracycline efflux by TetK. The multiple functions of Tet38 emphasize its importance in bacterial adaptation to and survival in diverse environments.
Collapse
Affiliation(s)
- Q. C. Truong-Bolduc
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Wang
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. C. Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Zhu Y, Han Y, Liu G, Bian Z, Yan X, Li Y, Long H, Yu G, Wang Y. Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. THE ISME JOURNAL 2022; 16:1717-1729. [PMID: 35319020 PMCID: PMC9213462 DOI: 10.1038/s41396-022-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Interspecific and intraspecific communication systems of microorganisms are involved in the regulation of various stress responses in microbial communities. Although the significance of signaling molecules in the ubiquitous family Xanthomonadaceae has been reported, the role bacterial communications play and their internal mechanisms are largely unknown. Here, we use Lysobacter enzymogenes, a member of Xanthomonadaceae, to identify a novel potassium ion import system, LeKdpXFABC. This import system participates in the indole-mediated interspecies signaling pathway and matters in environmental adaptation. Compared with the previously reported kdpFABC of Escherichia coli, LekdpXFABC contains a novel indispensable gene LekdpX and is directly regulated by the indole-related two-component system QseC/B. QseC autophosphorylation is involved in this process. The operon LekdpXFABC widely exists in Xanthomonadaceae. Moreover, indole promotes antimicrobial product production at the early exponential phase. Further analyses show that indole enhances potassium ion adsorption on the cell surface by upregulating the production of O-antigenic polysaccharides. Finally, we confirm that LeKdpXFABC mediation by indole is subject to the intraspecific signaling molecules DSFs, of which the biosynthesis genes always exist together with LekdpXFABC. Therefore, as a new idea, the signal collaborative strategy of indole and DSFs might ensure the persistent fitness advantage of Xanthomonadaceae in variable environments.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Guanglei Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zeran Bian
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiayi Yan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hongan Long
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guanshuo Yu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
33
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
34
|
The PTS
Ntr
-KdpDE-KdpFABC Pathway Contributes to Low Potassium Stress Adaptation and Competitive Nodulation of Sinorhizobium fredii. mBio 2022; 13:e0372121. [PMID: 35491828 PMCID: PMC9239096 DOI: 10.1128/mbio.03721-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In all ecological niches, potassium is actively consumed by diverse prokaryotes and their interacting eukaryote hosts. It is only just emerging that potassium is a key player in host-pathogen interactions, and the role of potassium in mutualistic interactions remains largely unknown.
Collapse
|
35
|
Tan X, Dai X, Chen T, Wu Y, Yang D, Zheng Y, Chen H, Wan X, Yang Y. Complete Genome Sequence Analysis of Ralstonia solanacearum Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants. Front Microbiol 2022; 13:830900. [PMID: 35273586 PMCID: PMC8904134 DOI: 10.3389/fmicb.2022.830900] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum–peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut–R. solanacearum interaction and develop targeted control strategies in the future.
Collapse
Affiliation(s)
- Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
36
|
Ali M, Gu T, Yu X, Bashir A, Wang Z, Sun X, Ashraf NM, Li L. Identification of the Genes of the Plant Pathogen Pseudomonas syringae MB03 Required for the Nematicidal Activity Against Caenorhabditis elegans Through an Integrated Approach. Front Microbiol 2022; 13:826962. [PMID: 35356513 PMCID: PMC8959697 DOI: 10.3389/fmicb.2022.826962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
Nematicidal potential of the common plant pathogen Pseudomonas syringae has been recently identified against Caenorhabditis elegans. The current study was designed to investigate the detailed genetic mechanism of the bacterial pathogenicity by applying comparative genomics, transcriptomics, mutant library screening, and protein expression. Results showed that P. syringae strain MB03 could kill C. elegans in the liquid assay by gut colonization. The genome of P. syringae MB03 was sequenced and comparative analysis including multi locus sequence typing, and genome-to-genome distance placed MB03 in phylogroup II of P. syringae. Furthermore, comparative genomics of MB03 with nematicidal strains of Pseudomonas aeruginosa (PAO1 and PA14) predicted 115 potential virulence factors in MB03. However, genes for previously reported nematicidal metabolites, such as phenazine, pyochelin, and pyrrolnitrin, were found absent in the MB03 genome. Transcriptomics analysis showed that the growth phase of the pathogen considerably affected the expression of virulence factors, as genes for the flagellum, glutamate ABC transporter, phoP/phoQ, fleS/fleR, type VI secretion system, and serralysin were highly up-regulated when stationary phase MB03 cells interacted with C. elegans. Additionally, screening of a transposon insertion mutant library led to the identification of other nematicidal genes such as acnA, gltP, oprD, and zapE. Finally, the nematicidal activity of selected proteins was confirmed by heterologous expression in Escherichia coli.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Tong Gu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xun Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lin Li,
| |
Collapse
|
37
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
38
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
39
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
40
|
What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021; 204:11. [PMID: 34878588 DOI: 10.1007/s00203-021-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.
Collapse
|
41
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
42
|
Cholo MC, Matjokotja MT, Osman AG, Anderson R. Role of the kdpDE Regulatory Operon of Mycobacterium tuberculosis in Modulating Bacterial Growth in vitro. Front Genet 2021; 12:698875. [PMID: 34394188 PMCID: PMC8358298 DOI: 10.3389/fgene.2021.698875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteria use K+-uptake transporters differentially for adaptation in varying growth conditions. In Mycobacterium tuberculosis, two K+-uptake systems, the Trk comprising the CeoB and CeoC proteins and the Kdp consisting of the two-component system (TCS), KdpDE and KdpFABC, have been characterized, but their selective utilization during bacterial growth has not been completely explored. In the current study, the roles of the M. tuberculosis KdpDE regulatory system alone and in association with the Trk transporters in bacterial growth were investigated by evaluating the growth of M. tuberculosis KdpDE-deletion and KdpDE/Trk (KT)-double knockout mutant strains in planktonic culture under standard growth conditions. The KT-double knockout mutant strain was first constructed using homologous recombination procedures and was evaluated together with the KdpDE-deletion mutant and the wild-type (WT) strains with respect to their rates of growth, K+-uptake efficiencies, and K+-transporter gene expression during planktonic growth. During growth at optimal K+ concentrations and pH levels, selective deletion of the TCS KdpDE (KdpDE-deletion mutant) led to attenuation of bacterial growth and an increase in bacterial K+-uptake efficiency, as well as dysregulated expression of the kdpFABC and trk genes. Deletion of both the KdpDE and the Trk systems (KT-double knockout) also led to severely attenuated bacterial growth, as well as an increase in bacterial K+-uptake efficiency. These results demonstrate that the KdpDE regulatory system plays a key role during bacterial growth by regulating K+ uptake via modulation of the expression and activities of both the KdpFABC and Trk systems and is important for bacterial growth possibly by preventing cytoplasmic K+ overload.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Maborwa T Matjokotja
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ayman G Osman
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
43
|
Marunga J, Goo E, Kang Y, Hwang I. Identification of a Genetically Linked but Functionally Independent Two-Component System Important for Cell Division of the Rice Pathogen Burkholderia glumae. Front Microbiol 2021; 12:700333. [PMID: 34276634 PMCID: PMC8281045 DOI: 10.3389/fmicb.2021.700333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial two-component regulatory systems control the expression of sets of genes to coordinate physiological functions in response to environmental cues. Here, we report a genetically linked but functionally unpaired two-component system (TCS) comprising the sensor kinase GluS (BGLU_1G13350) and the response regulator GluR (BGLU_1G13360), which is critical for cell division in the rice pathogen Burkholderia glumae BGR1. The gluR null mutant, unlike the gluS mutant, formed filamentous cells in Lysogeny Broth medium and was sensitive to exposure to 42°C. Expression of genes responsible for cell division and cell-wall (dcw) biosynthesis in the gluR mutant was elevated at transcription levels compared with the wild type. GluR-His bound to the putative promoter regions of ftsA and ftsZ is involved in septum formation, indicating that repression of genes in the dcw cluster by GluR is critical for cell division in B. glumae. The gluR mutant did not form filamentous cells in M9 minimal medium, whereas exogenous addition of glutamine or glutamate to the medium induced filamentous cell formation. These results indicate that glutamine and glutamate influence GluR-mediated cell division in B. glumae, suggesting that GluR controls cell division of B. glumae in a nutrition-dependent manner. These findings provide insight into how the recognition of external signals by TCS affects the sophisticated molecular mechanisms involved in controlling bacterial cell division.
Collapse
Affiliation(s)
- Joan Marunga
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yongsung Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Abstract
Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Therefore, maintaining intracellular potassium homeostasis during bacterial infection is a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport to fulfill nutritional and chemiosmotic requirements, and potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes, such as renal function, muscle contraction, and neuronal transmission; however, potassium flux also contributes to critical immunological and antimicrobial processes, such as cytokine production and inflammasome activation. Here, we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.
Collapse
|
45
|
Kashyap S, Sharma P, Capalash N. Potential genes associated with survival of Acinetobacter baumannii under ciprofloxacin stress. Microbes Infect 2021; 23:104844. [PMID: 34098109 DOI: 10.1016/j.micinf.2021.104844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that has acquired resistance to all available drugs. The rise in multi-drug resistance in A. baumannii has been exacerbated by its ability to tolerate antibiotics due to the persister cells, which are phenotypic variants of normal cells that can survive various stress conditions, resulting in chronicity of infection. In the present study we observed that A. baumannii formed persister cells against lethal concentration of ciprofloxacin in exponential phase. The transcriptome of A. baumannii was analyzed after exposure to high concentration of ciprofloxacin (50X MIC) to determine the possible mechanisms of survival. Transcriptome analysis showed differential expression of 146 genes, of which 101 were up-regulated and 45 were down-regulated under ciprofloxacin stress. Differentially expressed genes that might be important for persistence against ciprofloxacin were involved in DNA repair, phenylacetic acid degradation, leucine catabolism, HicAB toxin-antitoxin system and ROS response (iron-sulfur clusters, hemerythrin-like metal binding and Kdp). recA, umuD and ddrR genes involved in SOS response were also up-regulated. Knockout of umuD showed significant decrease in persister cells formation while they were completely eradicated in recA mutant strain. The differentially expressed genes highlighted in the study merit further investigation as therapeutic targets for effective control of A. baumannii infections.
Collapse
Affiliation(s)
- Shruti Kashyap
- Department of Biotechnology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
46
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Comparison of Transcriptional Responses and Metabolic Alterations in Three Multidrug-Resistant Model Microorganisms, Staphylococcus aureus ATCC BAA-39, Escherichia coli ATCC BAA-196, and Acinetobacter baumannii ATCC BAA-1790, on Exposure to Iodine-Containing Nano-micelle Drug FS-1. mSystems 2021; 6:6/2/e01293-20. [PMID: 33727401 PMCID: PMC8547003 DOI: 10.1128/msystems.01293-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iodine is one of the oldest antimicrobial agents. Until now, there have been no reports on acquiring resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of the action, however, remain unclear. The aim of this study was to perform a holistic analysis and comparison of gene regulation in three phylogenetically distant multidrug-resistant reference strains representing pathogens associated with nosocomial infections from the ATCC culture collection: Escherichia coli BAA-196, Staphylococcus aureus BAA-39, and Acinetobacter baumannii BAA-1790. These cultures were treated by a 5-min exposure to sublethal concentrations of the iodine-containing drug FS-1 applied in the late lagging phase and the middle of the logarithmic growth phase. Complete genome sequences of these strains were obtained in the previous studies. Gene regulation was studied by total RNA extraction and Ion Torrent sequencing followed by mapping the RNA reads against the reference genome sequences and statistical processing of read counts using the DESeq2 algorithm. It was found that the treatment of bacteria with FS-1 profoundly affected the expression of many genes involved in the central metabolic pathways; however, alterations of the gene expression profiles were species specific and depended on the growth phase. Disruption of respiratory electron transfer membrane complexes, increased penetrability of bacterial cell walls, and osmotic and oxidative stresses leading to DNA damage were the major factors influencing the treated bacteria.IMPORTANCE Infections caused by antibiotic-resistant bacteria threaten public health worldwide. Combinatorial therapy in which antibiotics are administered together with supplementary drugs improving susceptibility of pathogens to the regular antibiotics is considered a promising way to overcome this problem. An induction of antibiotic resistance reversion by the iodine-containing nano-micelle drug FS-1 has been reported recently. This drug is currently under clinical trials in Kazakhstan against multidrug-resistant tuberculosis. The effects of released iodine on metabolic and regulatory processes in bacterial cells remain unexplored. The current work provides an insight into gene regulation in the antibiotic-resistant nosocomial reference strains treated with iodine-containing nanoparticles. This study sheds light on unexplored bioactivities of iodine and the mechanisms of its antibacterial effect when applied in sublethal concentrations. This knowledge will aid in the future design of new drugs against antibiotic-resistant infections.
Collapse
|
49
|
Glucose-6-Phosphate Acts as an Extracellular Signal of SagS To Modulate Pseudomonas aeruginosa c-di-GMP Levels, Attachment, and Biofilm Formation. mSphere 2021; 6:6/1/e01231-20. [PMID: 33568456 PMCID: PMC8544897 DOI: 10.1128/msphere.01231-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In Pseudomonas aeruginosa, the orphan two-component sensor SagS contributes both to transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug-tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment since glucose-6-phosphate likewise enhanced biofilm formation and also enhanced the expression of select biofilm marker genes. Moreover, exposure to glucose-6-phosphate coincided with decreased swarming motility but increased cellular cyclic-di-GMP (c-di-GMP) levels in biofilms. No such response was noted for compounds modulating attachment and biofilm formation in a manner independent of SagS. Modulation of c-di-GMP in response to glucose-6-phosphate was due to the diguanylate cyclase NicD, with NicD also being required for enhanced biofilm formation. The latter was independent of the sensory domain of NicD but dependent on NicD activity, SagS, and the interaction between NicD and SagS. Our findings indicate that glucose-6-phosphate likely mimics a signal or conditions sensed by SagS to activate its motile-sessile switch function. In addition, our findings provide new insight into the interfaces between the ligand-mediated two-component system signaling pathway and c-di-GMP levels.IMPORTANCE Pathogens sense and respond to signals and cues present in their environment, including host-derived small molecules to modulate the expression of their virulence repertoire. Here, we demonstrate that the opportunistic pathogen Pseudomonas aeruginosa responds to glucose-6-phosphate. Since glucose-6-phosphate is primarily made available due to cell lysis, it is likely that glucose-6-phosphate represents a cross-kingdom cell-to-cell signal that enables P. aeruginosa to adapt to the (nutrient-poor) host environment by enhancing biofilm formation, cyclic-di-GMP, and the expression of genes linked to biofilm formation in a concentration- and SagS-dependent manner.
Collapse
|
50
|
Dutta A, Batish M, Parashar V. Structural basis of KdpD histidine kinase binding to the second messenger c-di-AMP. J Biol Chem 2021; 296:100771. [PMID: 33989637 PMCID: PMC8214093 DOI: 10.1016/j.jbc.2021.100771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
The KdpDE two-component system regulates potassium homeostasis and virulence in various bacterial species. The KdpD histidine kinases (HK) of this system contain a universal stress protein (USP) domain which binds to the second messenger cyclic-di-adenosine monophosphate (c-di-AMP) for regulating transcriptional output from this two-component system in Firmicutes such as Staphylococcus aureus. However, the structural basis of c-di-AMP specificity within the KdpD-USP domain is not well understood. Here, we resolved a 2.3 Å crystal structure of the S. aureus KdpD-USP domain (USPSa) complexed with c-di-AMP. Binding affinity analyses of USPSa mutants targeting the observed USPSa:c-di-AMP structural interface enabled the identification of the sequence residues that are required for c-di-AMP specificity. Based on the conservation of these residues in other Firmicutes, we identified the binding motif, (A/G/C)XSXSX2N(Y/F), which allowed us to predict c-di-AMP binding in other KdpD HKs. Furthermore, we found that the USPSa domain contains structural features distinct from the canonical standalone USPs that bind ATP as a preferred ligand. These features include inward-facing conformations of its β1-α1 and β4-α4 loops, a short α2 helix, the absence of a triphosphate-binding Walker A motif, and a unique dual phospho-ligand binding mode. It is therefore likely that USPSa-like domains in KdpD HKs represent a novel subfamily of the USPs.
Collapse
Affiliation(s)
- Anirudha Dutta
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|