1
|
Zhou LH, Qiu WJ, Que CX, Cheng JH, Zhu RS, Huang JT, Jiang YK, Zhao HZ, Wang X, Cheng XJ, Zhu LP. A novel inherited CARD9 deficiency in an otherwise healthy woman with CNS candidiasis. Clin Immunol 2024; 265:110293. [PMID: 38936523 DOI: 10.1016/j.clim.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.
Collapse
Affiliation(s)
- Ling-Hong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Jia Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Xing Que
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong-Sheng Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Tian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying-Kui Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Li-Ping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
3
|
Angers I, Akik W, Beauchamp A, King IL, Lands LC, Qureshi ST. Card9 Broadly Regulates Host Immunity against Experimental Pulmonary Cryptococcus neoformans 52D Infection. J Fungi (Basel) 2024; 10:434. [PMID: 38921420 PMCID: PMC11204891 DOI: 10.3390/jof10060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor that is downstream of several CLRs. Experimental studies have implicated Card9 in host resistance against C. neoformans; however, the mechanisms that are associated with susceptibility to progressive infection are not well defined. To further characterize the role of Card9 in cryptococcal infection, Card9em1Sq mutant mice that lack exon 2 of the Card9 gene on the Balb/c genetic background were created using CRISPR-Cas9 genome editing technology and intratracheally infected with C. neoformans 52D. Card9em1Sq mice had significantly higher lung and brain fungal burdens and shorter survival after C. neoformans 52D infection. Susceptibility of Card9em1Sq mice was associated with lower pulmonary cytokine and chemokine production, as well as reduced numbers of CD4+ lymphocytes, neutrophils, monocytes, and dendritic cells in the lungs. Histological analysis and intracellular cytokine staining of CD4+ T cells demonstrated a Th2 pattern of immunity in Card9em1Sq mice. These findings demonstrate that Card9 broadly regulates the host inflammatory and immune response to experimental pulmonary infection with a moderately virulent strain of C. neoformans.
Collapse
Affiliation(s)
- Isabelle Angers
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Wided Akik
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Beauchamp
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Irah L. King
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Larry C. Lands
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Salman T. Qureshi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Tomomasa D, Lee BH, Hirata Y, Inoue Y, Majima H, Imanaka Y, Asano T, Katakami T, Lee J, Hijikata A, Worakitchanon W, Yang X, Wang X, Watanabe A, Kamei K, Kageyama Y, Seo GH, Fujimoto A, Casanova JL, Puel A, Morio T, Okada S, Kanegane H. Inherited CARD9 Deficiency Due to a Founder Effect in East Asia. J Clin Immunol 2024; 44:121. [PMID: 38758287 DOI: 10.1007/s10875-024-01724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Beom Hee Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yuki Hirata
- Department of Opthalmology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Majima
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Katakami
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Jina Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Yang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | | | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
5
|
Mizukami K, Dorsey-Oresto A, Raj K, Eringis A, Furrow E, Martin E, Yamanaka D, Kehl A, Kolicheski A, Jagannathan V, Leeb T, Lionakis MS, Giger U. Increased susceptibility to Mycobacterium avium complex infection in miniature Schnauzer dogs caused by a codon deletion in CARD9. Sci Rep 2024; 14:10346. [PMID: 38710903 PMCID: PMC11074286 DOI: 10.1038/s41598-024-61054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Mammals are generally resistant to Mycobacterium avium complex (MAC) infections. We report here on a primary immunodeficiency disorder causing increased susceptibility to MAC infections in a canine breed. Adult Miniature Schnauzers developing progressive systemic MAC infections were related to a common founder, and pedigree analysis was consistent with an autosomal recessive trait. A genome-wide association study and homozygosity mapping using 8 infected, 9 non-infected relatives, and 160 control Miniature Schnauzers detected an associated region on chromosome 9. Whole genome sequencing of 2 MAC-infected dogs identified a codon deletion in the CARD9 gene (c.493_495del; p.Lys165del). Genotyping of Miniature Schnauzers revealed the presence of this mutant CARD9 allele worldwide, and all tested MAC-infected dogs were homozygous mutants. Peripheral blood mononuclear cells from a dog homozygous for the CARD9 variant exhibited a dysfunctional CARD9 protein with impaired TNF-α production upon stimulation with the fungal polysaccharide β-glucan that activates the CARD9-coupled C-type lectin receptor, Dectin-1. While CARD9-deficient knockout mice are susceptible to experimental challenges by fungi and mycobacteria, Miniature Schnauzer dogs with systemic MAC susceptibility represent the first spontaneous animal model of CARD9 deficiency, which will help to further elucidate host defense mechanisms against mycobacteria and fungi and assess potential therapies for animals and humans.
Collapse
Affiliation(s)
- Keijiro Mizukami
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genotyping Development, Yokohama, Kanagawa, Japan.
| | - Angella Dorsey-Oresto
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Raj
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Eringis
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Errolyn Martin
- Wildlife Center of North Georgia, Inc., Acworth, GA, USA
| | - Daisuke Yamanaka
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Ana Kolicheski
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Urs Giger
- Section of Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Vetsuisse Faculty, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
6
|
Zhang Z, Li P, Chen Y, Chen Y, Wang X, Shen S, Zhao Y, Zhu Y, Wang T. Mitochondria-mediated ferroptosis induced by CARD9 ablation prevents MDSCs-dependent antifungal immunity. Cell Commun Signal 2024; 22:210. [PMID: 38566195 PMCID: PMC10986078 DOI: 10.1186/s12964-024-01581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Caspase Recruitment Domain-containing protein 9 (CARD9) expressed in myeloid cells has been demonstrated to play an antifungal immunity role in protecting against disseminated candidiasis. Hereditary CARD9 ablation leads to fatal disseminated candidiasis. However, the myeloid cell types and molecular mechanisms implicated in CARD9 protecting against disseminated candidiasis remain wholly elusive. METHODS The role of CARD9 ablation in exacerbating disseminated candidiasis was determined in vivo and in vitro. The molecular mechanism by which CARD9 ablation promotes acute kidney injury in disseminated candidiasis was identified by RNA-sequencing analysis. The expression of mitochondrial proteins and ferroptosis-associated proteins were measured by Quantitative real-time PCR and western blot. RESULTS CARD9 ablation resulted in a reduced proportion of myeloid-derived suppressor cells (MDSCs) and a substantially lower expression of solute carrier family 7 member 11 (SLC7A11) in the kidneys, which increased susceptibility to acute kidney injury and renal ferroptosis during disseminated Candida tropicalis (C. tropicalis) infection. Moreover, CARD9-deficient MDSCs were susceptible to ferroptosis upon stimulation with C. tropicalis, which was attributed to augmented mitochondrial oxidative phosphorylation (OXPHOS) caused by reduced SLC7A11 expression. Mechanistically, C-type lectin receptors (CLRs)-mediated recognition of C. tropicalis promoted the expression of SLC7A11 which was transcriptionally manipulated by the Syk-PKCδ-CARD9-FosB signaling axis in MDSCs. FosB enhanced SLC7A11 transcription by binding to the promoter of SLC7A11 in MDSCs stimulated with C. tropicalis. Mitochondrial OXPHOS, which was negatively regulated by SLC7A11, was responsible for inducing ferroptosis of MDSCs upon C. tropicalis stimulation. Finally, pharmacological inhibition of mitochondrial OXPHOS or ferroptosis significantly increased the number of MDSCs in the kidneys to augment host antifungal immunity, thereby attenuating ferroptosis and acute kidney injury exacerbated by CARD9 ablation during disseminated candidiasis. CONCLUSIONS Collectively, our findings show that CARD9 ablation enhances mitochondria-mediated ferroptosis in MDSCs, which negatively regulates antifungal immunity. We also identify mitochondria-mediated ferroptosis in MDSCs as a new molecular mechanism of CARD9 ablation-exacerbated acute kidney injury during disseminated candidiasis, thus targeting mitochondria-mediated ferroptosis is a novel therapeutic strategy for acute kidney injury in disseminated candidiasis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yanan Zhu
- Department of Endodontic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, 210008, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Ma N, Zhao Y, Tang M, Xia H, Li D, Lu G. Concurrent infection of Exophiala dermatitidis and Angiostrongylus cantonensis in central nervous system of a child with inherited CARD9 deficiency: A case report and literature review. J Mycol Med 2024; 34:101455. [PMID: 38042015 DOI: 10.1016/j.mycmed.2023.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Exophiala dermatitidis is a relatively common environmental black yeast with a worldwide distribution that rarely causes fungal infection. Here, we report a case of a 6-year-old girl with central nervous system (CNS) encephalitis caused by E. dermatitidis and Angiostrongylus cantonensis. E. dermatitidis was identified by both cerebrospinal fluid culture and metagenomic next-generation sequencing (mNGS). Angiostrongylus cantonensis infection was confirmed by an enzyme linked immunosorbent assay (ELISA). Whole exome sequencing showed that this previously healthy girl carried a homozygous CARD9 mutation for c.820dupG (p.D274Gfs*61) that underlies invasive fungal and parasite infections. We chose glucocortieoid pulse therapy and anti-infective therapy based on the initial results of laboratory examination and cranial MRI images. With the aggravation of the disease and the evidence of the subsequent etiologic test, the combination of antifungal antiparasitic treatments (voriconazole, fluorocytosine and amphotericin B) were actively used. Unfortunately, the girl finally died due to severe systemic infection. mNGS performs a potential value for diagnosing rare CNS infections, and autosomal recessive CARD9 deficiency should be considered in patient with fatal invasive fungal infections.
Collapse
Affiliation(s)
- Na Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Yufei Zhao
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Mingze Tang
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., No. 1 Disheng East Road, Beijing 100176, China.
| | - Deyuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China.
| |
Collapse
|
8
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Khamzeh A, Dahlstrand Rudin A, Venkatakrishnan V, Stylianou M, Sanchez Klose FP, Urban CF, Björnsdottir H, Bylund J, Christenson K. High levels of short-chain fatty acids secreted by Candida albicans hyphae induce neutrophil chemotaxis via free fatty acid receptor 2. J Leukoc Biol 2024; 115:536-546. [PMID: 37992073 DOI: 10.1093/jleuko/qiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.
Collapse
Affiliation(s)
- Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammations Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
- Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 58 Gothenburg, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Felix P Sanchez Klose
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| |
Collapse
|
10
|
Lee JS, Kim C. Role of CARD9 in Cell- and Organ-Specific Immune Responses in Various Infections. Int J Mol Sci 2024; 25:2598. [PMID: 38473845 DOI: 10.3390/ijms25052598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The caspase recruitment domain-containing protein 9 (CARD9) is an intracellular adaptor protein that is abundantly expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells. CARD9 plays a critical role in host immunity against infections caused by fungi, bacteria, and viruses. A CARD9 deficiency impairs the production of inflammatory cytokines and chemokines as well as migration and infiltration, thereby increasing susceptibility to infections. However, CARD9 signaling varies depending on the pathogen causing the infection. Furthermore, different studies have reported altered CARD9-mediated signaling even with the same pathogen. Therefore, this review focuses on and elucidates the current literature on varied CARD9 signaling in response to various infectious stimuli in humans and experimental mice models.
Collapse
Affiliation(s)
- Ji Seok Lee
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea
- BK21, Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Zhang FY, Lian N, Li M. Macrophage pyroptosis induced by Candida albicans. Pathog Dis 2024; 82:ftae003. [PMID: 38499444 PMCID: PMC11162155 DOI: 10.1093/femspd/ftae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Candida albicans (C. albicans) is a prevalent opportunistic pathogen that causes mucocutaneous and systemic infections, particularly in immunocompromised individuals. Macrophages play a crucial role in eliminating C. albicans in local and bloodstream contexts, while also regulating antifungal immune responses. However, C. albicans can induce macrophage lysis through pyroptosis, a type of regulated cell death. This process can enable C. albicans to escape from immune cells and trigger the release of IL-1β and IL-18, which can impact both the host and the pathogen. Nevertheless, the mechanisms by which C. albicans triggers pyroptosis in macrophages and the key factors involved in this process remain unclear. In this review, we will explore various factors that may influence or trigger pyroptosis in macrophages induced by C. albicans, such as hypha, ergosterol, cell wall remodeling, and other virulence factors. We will also examine the possible immune response following macrophage pyroptosis.
Collapse
Affiliation(s)
- Feng-yuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Ni Lian
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
| | - Min Li
- Hospital for Skin Diseases, Institute of Dermatology,Chinese Academy of Medical Sciences & Peking Union Medical College, 12th. JiangWangmiao street, Nanjing, 210042, China
- Center for Global Health, School of Public Health, Nanjing Medical University, 101st. LongMian Avenue, Nanjing, 211166, China
| |
Collapse
|
12
|
Ansai O, Hayashi R, Nakamura A, Sasaki J, Hasegawa A, Deguchi T, Yuki A, Oike N, Ariizumi T, Abe M, Miyazaki Y, Takenouchi T, Kawashima H, Abe R. Deep dermatophytosis caused by Trichophyton rubrum in an elderly patient with CARD9 deficiency: A case report and literature review. J Dermatol 2024; 51:294-300. [PMID: 37804063 DOI: 10.1111/1346-8138.16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
Deep dermatophytosis is an invasive and sometimes life-threatening fungal infection mainly reported in immunocompromised patients. However, a caspase recruitment domain-containing protein 9 (CARD9) deficiency has recently been reported to cause deep dermatophytosis. Herein, we report the first Japanese case of deep dermatophytosis associated with CARD9 deficiency. An 80-year-old Japanese man with tinea corporis presented with subcutaneous nodules on his left sole. Histopathological findings revealed marked epithelioid cell granulomas with filamentous fungal structures in the deep dermis and subcutis, and the patient was diagnosed with deep dermatophytosis. Despite antifungal therapy, the subcutaneous nodule on his left sole gradually enlarged, his left calcaneal bone was invaded, and the patient finally underwent amputation of his left leg. Genetic analysis revealed a homozygous CARD9 c.586 A > G (p. Lys196Glu) variant, suggesting a CARD9 deficiency. Here, we discuss the clinical features of CARD9 deficiency-associated deep dermatophytosis with a case report and review of the literature.
Collapse
Affiliation(s)
- Osamu Ansai
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Anna Nakamura
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Sasaki
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tokiko Deguchi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Yuki
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Abe
- Department of Fungal Infection, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | | | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Eichelberger KR, Paul S, Peters BM, Cassat JE. Candida-bacterial cross-kingdom interactions. Trends Microbiol 2023; 31:1287-1299. [PMID: 37640601 PMCID: PMC10843858 DOI: 10.1016/j.tim.2023.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
While the fungus Candida albicans is a common colonizer of healthy humans, it is also responsible for mucosal infections and severe invasive disease. Understanding the mechanisms that allow C. albicans to exist as both a benign commensal and as an invasive pathogen have been the focus of numerous studies, and recent findings indicate an important role for cross-kingdom interactions on C. albicans biology. This review highlights how C. albicans-bacteria interactions influence healthy polymicrobial community structure, host immune responses, microbial pathogenesis, and how dysbiosis may lead to C. albicans infection. Finally, we discuss how cross-kingdom interactions represent an opportunity to identify new antivirulence compounds that target fungal infections.
Collapse
Affiliation(s)
- Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Liu Y, Shao YH, Zhang JM, Wang Y, Zhou M, Li HQ, Zhang CC, Yu PJ, Gao SJ, Wang XR, Jia LX, Piao CM, Du J, Li YL. Macrophage CARD9 mediates cardiac injury following myocardial infarction through regulation of lipocalin 2 expression. Signal Transduct Target Ther 2023; 8:394. [PMID: 37828006 PMCID: PMC10570328 DOI: 10.1038/s41392-023-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023] Open
Abstract
Immune cell infiltration in response to myocyte death regulates extracellular matrix remodeling and scar formation after myocardial infarction (MI). Caspase-recruitment domain family member 9 (CARD9) acts as an adapter that mediates the transduction of pro-inflammatory signaling cascades in innate immunity; however, its role in cardiac injury and repair post-MI remains unclear. We found that Card9 was one of the most upregulated Card genes in the ischemic myocardium of mice. CARD9 expression increased considerably 1 day post-MI and declined by day 7 post-MI. Moreover, CARD9 was mainly expressed in F4/80-positive macrophages. Card9 knockout (KO) led to left ventricular function improvement and infarct scar size reduction in mice 28 days post-MI. Additionally, Card9 KO suppressed cardiomyocyte apoptosis in the border region and attenuated matrix metalloproteinase (MMP) expression. RNA sequencing revealed that Card9 KO significantly suppressed lipocalin 2 (Lcn2) expression post-MI. Both LCN2 and the receptor solute carrier family 22 member 17 (SL22A17) were detected in macrophages. Subsequently, we demonstrated that Card9 overexpression increased LCN2 expression, while Card9 KO inhibited necrotic cell-induced LCN2 upregulation in macrophages, likely through NF-κB. Lcn2 KO showed beneficial effects post-MI, and recombinant LCN2 diminished the protective effects of Card9 KO in vivo. Lcn2 KO reduced MMP9 post-MI, and Lcn2 overexpression increased Mmp9 expression in macrophages. Slc22a17 knockdown in macrophages reduced MMP9 release with recombinant LCN2 treatment. In conclusion, our results demonstrate that macrophage CARD9 mediates the deterioration of cardiac function and adverse remodeling post-MI via LCN2.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi-Hui Shao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jun-Meng Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ying Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hui-Qin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Cong-Cong Zhang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shi-Juan Gao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xue-Rui Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yu-Lin Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovative Research Center for Cardiovascular Diseases; Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|
15
|
Jayasinghe JNC, Whang I, De Zoysa M. Antifungal Efficacy of Antimicrobial Peptide Octominin II against Candida albicans. Int J Mol Sci 2023; 24:14053. [PMID: 37762357 PMCID: PMC10531694 DOI: 10.3390/ijms241814053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Most clinically isolated Candida albicans strains are drug-resistant, emphasizing the urgent need to discover alternative therapies. In this study, the previously characterized Octominin was modified into a shorter peptide with an 18 amino acid sequence (1GWLIRGAIHAGKAIHGLI18) and named Octominin II. The secondary structure of Octominin II is a random coil with a helical turn and a positive charge (+2.46) with a hydrophobic ratio of 0.46. Octominin II inhibited C. albicans, C. auris, and C. glabrata with minimum inhibitory and fungicidal concentrations against C. albicans of 80 and 120 µg/mL, respectively. Field emission scanning electron microscopy confirmed that Octominin II treatment caused ultra-structural changes in C. albicans cells. Furthermore, membrane permeability results for the fluorescent indicator propidium iodide revealed modifications in cell wall integrity in Octominin II-treated C. albicans. Octominin II treatment increases the production of reactive oxygen species (ROS) in C. albicans. Gene expression studies revealed that Octominin II suppresses virulence genes of C. albicans such as CDR1, TUP1, AGE3, GSC1, SAP2, and SAP9. In addition, a nucleic acid binding assay revealed that Octominin II degraded genomic DNA and total RNA in a concentration-dependent manner. Additionally, Octominin II inhibited and eradicated C. albicans biofilm formation. Octominin II showed relatively less cytotoxicity on raw 264.7 cells (0-200 µg/mL) and hemolysis activity on murine erythrocytes (6.25-100 µg/mL). In vivo studies confirmed that Octominin II reduced the pathogenicity of C. albicans. Overall, the data suggests that Octominin II inhibits C. albicans by employing different modes of action and can be a promising candidate for controlling multidrug-resistant Candida infections.
Collapse
Affiliation(s)
- J. N. C. Jayasinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup 33662, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
16
|
Fernández-Espejo E. Microorganisms associated with increased risk of Parkinson's disease. Neurologia 2023; 38:495-503. [PMID: 35644845 DOI: 10.1016/j.nrleng.2020.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects more than 7 million people worldwide. Its aetiology is unknown, although the hypothesis of a genetic susceptibility to environmental agents is accepted. These environmental agents include fungi, bacteria, and viruses. Three microorganisms are directly associated with a significantly increased risk of developing Parkinson's disease: the fungal genus Malassezia, the bacterium Helicobacter pylori, and the hepatitis C virus. If the host is vulnerable due to genetic susceptibility or immune weakness, these microorganisms can access and infect the nervous system, causing chronic neuroinflammation with neurodegeneration. Other microorganisms show an epidemiological association with the disease, including the influenza type A, Japanese encephalitis type B, St Louis, and West Nile viruses. These viruses can affect the nervous system, causing encephalitis, which can result in parkinsonism. This article reviews the role of all these microorganisms in Parkinson's disease.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurología Molecular, Universidad de Sevilla, Sevilla, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain.
| |
Collapse
|
17
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Desai JV, Kumar D, Freiwald T, Chauss D, Johnson MD, Abers MS, Steinbrink JM, Perfect JR, Alexander B, Matzaraki V, Snarr BD, Zarakas MA, Oikonomou V, Silva LM, Shivarathri R, Beltran E, Demontel LN, Wang L, Lim JK, Launder D, Conti HR, Swamydas M, McClain MT, Moutsopoulos NM, Kazemian M, Netea MG, Kumar V, Köhl J, Kemper C, Afzali B, Lionakis MS. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 2023; 186:2802-2822.e22. [PMID: 37220746 PMCID: PMC10330337 DOI: 10.1016/j.cell.2023.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA; Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Julie M Steinbrink
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - John R Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Vasiliki Matzaraki
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lakmali M Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Raju Shivarathri
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Emily Beltran
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luciana Negro Demontel
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
19
|
Loh JT, Teo JKH, Kannan S, Verma CS, Lim HH, Lam KP. Disrupting the Dok3-Card9 Interaction with Synthetic Peptides Enhances Antifungal Effector Functions of Human Neutrophils. Pharmaceutics 2023; 15:1780. [PMID: 37513967 PMCID: PMC10383035 DOI: 10.3390/pharmaceutics15071780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Invasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. Card9 is a critical signaling molecule involved in antifungal defense; we have previously identified Dok3 to be a key negative regulator of Card9 activity in neutrophils. In this study, we identified two synthetic peptides derived from the coiled-coil domain of Card9, which can specifically block Dok3-Card9 binding. We showed that these peptides are cell-permeable, non-toxic, and can enhance antifungal cytokine production and the phagocytosis of human neutrophils upon fungal infection. Collectively, these data provide a proof of concept that disrupting the Dok3-Card9 interaction can boost the antifungal effector functions of neutrophils; they further suggest the potential utility of these peptide inhibitors as an immune-based therapeutic to fight fungal infection.
Collapse
Affiliation(s)
- Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore S138648, Singapore
| | - Joey Kay Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore S138648, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Singapore S138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, Singapore S138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore S117558, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore S637551, Singapore
| | - Hong-Hwa Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore S138648, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore S138648, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore S637551, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore S117545, Singapore
| |
Collapse
|
20
|
Tangye SG, Puel A. The Th17/IL-17 Axis and Host Defense Against Fungal Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1624-1634. [PMID: 37116791 DOI: 10.1016/j.jaip.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Chronic mucocutaneous candidiasis (CMC) was recognized as a primary immunodeficiency in the early 1970s. However, for almost 40 years, its genetic etiology remained unknown. The progressive molecular and cellular description of inborn errors of immunity (IEI) with syndromic CMC pointed toward a possible role of IL-17-mediated immunity in protecting against fungal infection and CMC. Since 2011, novel IEI affecting either the response to or production of IL-17A and/or IL-17F (IL-17A/F) in patients with isolated or syndromic CMC provided formal proof of the pivotal role of the IL-17 axis in mucocutaneous immunity to Candida spp, and, to a lesser extent, to Staphylococcus aureus in humans. In contrast, IL-17-mediated immunity seems largely redundant against other common microbes in humans. In this review, we outline the current knowledge of IEI associated with impaired IL-17A/F-mediated immunity, highlighting our current understanding of the role of IL-17A/F in human immunity.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Faculty of Medicine & Health, Darlinghurst, NSW, Australia.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Soriano A, Honore PM, Puerta-Alcalde P, Garcia-Vidal C, Pagotto A, Gonçalves-Bradley DC, Verweij PE. Invasive candidiasis: current clinical challenges and unmet needs in adult populations. J Antimicrob Chemother 2023:7176280. [PMID: 37220664 DOI: 10.1093/jac/dkad139] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Invasive candidiasis (IC) is a serious infection caused by several Candida species, and the most common fungal disease in hospitals in high-income countries. Despite overall improvements in health systems and ICU care in the last few decades, as well as the development of different antifungals and microbiological techniques, mortality rates in IC have not substantially improved. The aim of this review is to summarize the main issues underlying the management of adults affected by IC, focusing on specific forms of the infection: IC developed by ICU patients, IC observed in haematological patients, breakthrough candidaemia, sanctuary site candidiasis, intra-abdominal infections and other challenging infections. Several key challenges need to be tackled to improve the clinical management and outcomes of IC patients. These include the lack of global epidemiological data for IC, the limitations of the diagnostic tests and risk scoring tools currently available, the absence of standardized effectiveness outcomes and long-term data for IC, the timing for the initiation of antifungal therapy and the limited recommendations on the optimal step-down therapy from echinocandins to azoles or the total duration of therapy. The availability of new compounds may overcome some of the challenges identified and increase the existing options for management of chronic Candida infections and ambulant patient treatments. However, early identification of patients that require antifungal therapy and treatment of sanctuary site infections remain a challenge and will require further innovations.
Collapse
Affiliation(s)
- Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Patrick M Honore
- CHU UCL Godinne Namur, UCL Louvain Medical School, Namur, Belgium
| | - Pedro Puerta-Alcalde
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | | | | | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Gaziano R, Sabbatini S, Monari C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023; 11:1211. [PMID: 37317186 DOI: 10.3390/microorganisms11051211] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Vulvovaginal candidiasis (VVC), which is primarily caused by Candida albicans, is an infection that affects up to 75% of all reproductive-age women worldwide. Recurrent VVC (RVVC) is defined as >3 episodes per year and affects nearly 8% of women globally. At mucosal sites of the vagina, a delicate and complex balance exists between Candida spp., host immunity and local microbial communities. In fact, both immune response and microbiota composition play a central role in counteracting overgrowth of the fungus and maintaining homeostasis in the host. If this balance is perturbed, the conditions may favor C. albicans overgrowth and the yeast-to-hyphal transition, predisposing the host to VVC. To date, the factors that affect the equilibrium between Candida spp. and the host and drive the transition from C. albicans commensalism to pathogenicity are not yet fully understood. Understanding the host- and fungus-related factors that drive VVC pathogenesis is of paramount importance for the development of adequate therapeutic interventions to combat this common genital infection. This review focuses on the latest advances in the pathogenic mechanisms implicated in the onset of VVC and also discusses novel potential strategies, with a special focus on the use of probiotics and vaginal microbiota transplantation in the treatment and/or prevention of recurrent VVC.
Collapse
Affiliation(s)
- Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
23
|
Drummond RA. What fungal CNS infections can teach us about neuroimmunology and CNS-specific immunity. Semin Immunol 2023; 67:101751. [PMID: 36989541 DOI: 10.1016/j.smim.2023.101751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/29/2023]
Abstract
Immunity to fungal infections of the central nervous system (CNS) is one of the most poorly understood subjects within the field of medical mycology. Yet, the majority of deaths from invasive fungal infections are caused by brain-tropic fungi. In recent years, there have been several significant discoveries in the regulation of neuroinflammation and the role of the immune system in tissue homeostasis within the CNS. In this review, I highlight five important advances in the neuroimmunology field over the last decade and discuss how we should capitalise on these discoveries to better understand the pathogenesis of fungal CNS infections. In addition, the latest insights into fungal invasion tactics, microglia-astrocyte crosstalk and regulation of antifungal adaptive immune responses are summarised in the context of our contemporary understanding of CNS-specific immunity.
Collapse
|
24
|
Doron I, Kusakabe T, Iliev ID. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Semin Immunol 2023; 67:101757. [PMID: 37003056 PMCID: PMC10192079 DOI: 10.1016/j.smim.2023.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
27
|
Sarden N, Yipp BG. Virus-associated fungal infections and lost immune resistance. Trends Immunol 2023; 44:305-318. [PMID: 36890064 DOI: 10.1016/j.it.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Invasive fungal infections are an increasing threat to human health. Of recent concern is the emergence of influenza- or SARS-CoV-2-virus-associated invasive fungal infections. Understanding acquired susceptibilities to fungi requires consideration of the collective and newly explored roles of adaptive, innate, and natural immunity. Neutrophils are known to provide host resistance, but new concepts are emerging that implicate innate antibodies, the actions of specialized B1 B cell subsets, and B cell-neutrophil crosstalk in mediating antifungal host resistance. Based on emerging evidence, we propose that virus infections impact on neutrophil and innate B cell resistance against fungi, leading to invasive infections. These concepts provide novel approaches to developing candidate therapeutics with the aim of restoring natural and humoral immunity and boosting neutrophil resistance against fungi.
Collapse
Affiliation(s)
- Nicole Sarden
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
30
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
31
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
32
|
Drummond RA, Desai JV, Hsu AP, Oikonomou V, Vinh DC, Acklin JA, Abers MS, Walkiewicz MA, Anzick SL, Swamydas M, Vautier S, Natarajan M, Oler AJ, Yamanaka D, Mayer-Barber KD, Iwakura Y, Bianchi D, Driscoll B, Hauck K, Kline A, Viall NS, Zerbe CS, Ferré EM, Schmitt MM, DiMaggio T, Pittaluga S, Butman JA, Zelazny AM, Shea YR, Arias CA, Ashbaugh C, Mahmood M, Temesgen Z, Theofiles AG, Nigo M, Moudgal V, Bloch KC, Kelly SG, Whitworth MS, Rao G, Whitener CJ, Mafi N, Gea-Banacloche J, Kenyon LC, Miller WR, Boggian K, Gilbert A, Sincock M, Freeman AF, Bennett JE, Hasbun R, Mikelis CM, Kwon-Chung KJ, Belkaid Y, Brown GD, Lim JK, Kuhns DB, Holland SM, Lionakis MS. Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis. J Clin Invest 2022; 132:e159348. [PMID: 36377664 PMCID: PMC9663159 DOI: 10.1172/jci159348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.
Collapse
Affiliation(s)
| | | | - Amy P. Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Donald C. Vinh
- Division of Infectious Diseases, McGill University Health Centre (MUHC), and Infectious Disease Susceptibility Program, Research Institute-MUHC, Montreal, Quebec, Canada
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Sarah L. Anzick
- Research Technologies Branches, NIAID, NIH, Hamilton, Montana, USA
| | | | | | | | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - David Bianchi
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Brian Driscoll
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ken Hauck
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | | | | | - Christa S. Zerbe
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Yvonne R. Shea
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Cameron Ashbaugh
- Division of Infectious Diseases, UCSF, San Francisco, California, USA
| | - Maryam Mahmood
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Zelalem Temesgen
- Division of Hospital Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Masayuki Nigo
- Division of Infectious Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Varsha Moudgal
- Department of Internal Medicine, St. Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Karen C. Bloch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean G. Kelly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cindy J. Whitener
- Division of Infectious Diseases, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Neema Mafi
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | | | - Lawrence C. Kenyon
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William R. Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Andrea Gilbert
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | - Alexandra F. Freeman
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Rodrigo Hasbun
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
- Department of Pharmacy, University of Patras, Patras, Greece
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, Maryland, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
33
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
34
|
Danne C, Michaudel C, Skerniskyte J, Planchais J, Magniez A, Agus A, Michel ML, Lamas B, Da Costa G, Spatz M, Oeuvray C, Galbert C, Poirier M, Wang Y, Lapière A, Rolhion N, Ledent T, Pionneau C, Chardonnet S, Bellvert F, Cahoreau E, Rocher A, Arguello RR, Peyssonnaux C, Louis S, Richard ML, Langella P, El-Benna J, Marteyn B, Sokol H. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut 2022; 72:1081-1092. [PMID: 36167663 DOI: 10.1136/gutjnl-2022-326917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/04/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVES Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.
Collapse
Affiliation(s)
- Camille Danne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France .,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Michaudel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Bruno Lamas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Gregory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Cyriane Oeuvray
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Galbert
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maxime Poirier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Yazhou Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Alexia Lapière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Tatiana Ledent
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS PASS, Plateforme Postgénomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, INSERM, UMS PASS, Plateforme Postgénomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Floriant Bellvert
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Edern Cahoreau
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Amandine Rocher
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11INBS-0010), 31077 Toulouse, France
| | - Rafael Rose Arguello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, CNRS, Université de Paris, Laboratoire d'excellence GR-Ex, Paris, France
| | - Sabine Louis
- Institut Cochin, INSERM, CNRS, Université de Paris, Laboratoire d'excellence GR-Ex, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France .,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, F-75012 Paris, France.,Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
35
|
Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis. Nat Commun 2022; 13:5545. [PMID: 36138043 PMCID: PMC9500047 DOI: 10.1038/s41467-022-33327-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The β-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Nicolas Millet
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Norma V. Solis
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Diane Aguilar
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Michail S. Lionakis
- grid.419681.30000 0001 2164 9667Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD USA
| | - Robert T. Wheeler
- grid.21106.340000000121820794Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME USA
| | - Nicholas Jendzjowsky
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Marc Swidergall
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
36
|
Maraki S, Katzilakis N, Neonakis I, Stafylaki D, Meletiadis J, Hamilos G, Stiakaki E. Exophiala dermatitidis Central Line-Associated Bloodstream Infection in a Child with Ewing's Sarcoma: Case Report and Literature Review on Paediatric Infections. Mycopathologia 2022; 187:595-602. [PMID: 35994217 DOI: 10.1007/s11046-022-00658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Exophiala dermatitidis is a dematiaceous, ubiquitous, dimorphic fungus, which can cause a wide range of invasive diseases in both immunocompromised and immunocompetent hosts. Bloodstream infections due to E. dermatitidis are rarely encountered in clinical practice, especially in pediatric patients. We describe a case of central line-associated bloodstream infection due to E. dermatitidis in a 4.5-year-old boy with Ewing's sarcoma. The fungus was isolated from blood specimens taken from the Hickman line. The isolate was identified by its phenotypic characteristics, by MALDI-TOF and by using molecular methods. The infection was successfully treated with voriconazole and catheter removal. The literature was also reviewed on pediatric infections caused by E. dermatitidis, focusing on clinical manifestations and challenges associated with diagnosis and management.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece.
| | - Nikolaos Katzilakis
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| | - Ioannis Neonakis
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Hamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion and Laboratory of Blood Diseases and Childhood Cancer Biology, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
37
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
38
|
Khan YW, Williams KW. Inborn Errors of Immunity Associated with Elevated IgE. Ann Allergy Asthma Immunol 2022; 129:552-561. [PMID: 35872242 DOI: 10.1016/j.anai.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the characteristic clinical and laboratory features of inborn errors of immunity that are associated with elevated IgE levels DATA SOURCE: Primary peer-reviewed literature. STUDY SELECTION Original research articles reviewed include interventional studies, retrospective studies, case-control studies, cohort studies and review articles related to the subject matter. RESULTS An extensive literature review was completed to allow for comprehensive evaluation of several monogenic inborn errors of immunity. This review includes a description of the classic clinical features, common infections, characteristic laboratory findings, specific diagnostic methods (when applicable), and genetic basis of disease of each syndrome. A comprehensive flow diagram was created to assist them in the diagnosis and evaluation of patients with elevated IgE levels who may require evaluation for an IEI. CONCLUSION IEI should be considered in patients with elevated IgE levels, especially if they have recurrent infections, eczematous dermatitis, malignancy, lymphoproliferation, autoimmunity, and/or connective tissue abnormalities.
Collapse
Affiliation(s)
- Yasmin W Khan
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, South Carolina, USA.
| |
Collapse
|
39
|
Jeantin L, Plu I, Amador MDM, Maillart E, Lanternier F, Pourcher V, Davy V. Pearls & Oy-Sters: Spinal Cord Candidiasis Linked to CARD9 Deficiency Masquerading as a Longitudinally Extensive Transverse Myelitis. Neurology 2022; 99:475-479. [PMID: 35794021 DOI: 10.1212/wnl.0000000000200992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lina Jeantin
- Department of neurology, Pitie Salpetriere University Hospital, AP-HP, 47-83 bd de l'hopital, 75013 Paris, France
| | - Isabelle Plu
- Department of pathology, Pitie Salpetriere University Hospital, AP-HP, 47-83 bd de l'hopital, 75013 Paris, France
| | - Maria Del Mar Amador
- Department of neurology, Pitie Salpetriere University Hospital, AP-HP, 47-83 bd de l'hopital, 75013 Paris, France
| | - Elisabeth Maillart
- Department of neurology, Pitie Salpetriere University Hospital, AP-HP, 47-83 bd de l'hopital, 75013 Paris, France
| | - Fanny Lanternier
- Universite de Paris, Infectious Diseases Unit, Necker-Enfants Malades University Hospital, AP-HP, Imagine Institute, Paris, France.,Institut Pasteur, Centre National de Reference Mycoses invasives et Antifongiques, unité de mycologie moleculaire, CNRS, Paris, France
| | - Valérie Pourcher
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), AP-HP, Hôpital Pitié Salpêtrière, Service des Maladies infectieuses et tropicales, Paris, France
| | - Vincent Davy
- Department of neurology, Pitie Salpetriere University Hospital, AP-HP, 47-83 bd de l'hopital, 75013 Paris, France
| |
Collapse
|
40
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
41
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Li DD, Jawale CV, Zhou C, Lin L, Trevejo-Nunez GJ, Rahman SA, Mullet SJ, Das J, Wendell SG, Delgoffe GM, Lionakis MS, Gaffen SL, Biswas PS. Fungal sensing enhances neutrophil metabolic fitness by regulating antifungal Glut1 activity. Cell Host Microbe 2022; 30:530-544.e6. [PMID: 35316647 PMCID: PMC9026661 DOI: 10.1016/j.chom.2022.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/10/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Combating fungal pathogens poses metabolic challenges for neutrophils, key innate cells in anti-Candida albicans immunity, yet how host-pathogen interactions cause remodeling of the neutrophil metabolism is unclear. We show that neutrophils mediate renal immunity to disseminated candidiasis by upregulating glucose uptake via selective expression of glucose transporter 1 (Glut1). Mechanistically, dectin-1-mediated recognition of β-glucan leads to activation of PKCδ, which triggers phosphorylation, localization, and early glucose transport by a pool of pre-formed Glut1 in neutrophils. These events are followed by increased Glut1 gene transcription, leading to more sustained Glut1 accumulation, which is also dependent on the β-glucan/dectin-1/CARD9 axis. Card9-deficient neutrophils show diminished glucose incorporation in candidiasis. Neutrophil-specific Glut1-ablated mice exhibit increased mortality in candidiasis caused by compromised neutrophil phagocytosis, reactive oxygen species (ROS), and neutrophil extracellular trap (NET) formation. In human neutrophils, β-glucan triggers metabolic remodeling and enhances candidacidal function. Our data show that the host-pathogen interface increases glycolytic activity in neutrophils by regulating Glut1 expression, localization, and function.
Collapse
Affiliation(s)
- De-Dong Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chetan V Jawale
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunsheng Zhou
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Lin
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Giraldina J Trevejo-Nunez
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed A Rahman
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Mullet
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G Wendell
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Viens AL, Timmer KD, Alexander NJ, Barghout R, Milosevic J, Hopke A, Atallah NJ, Scherer AK, Sykes DB, Irimia D, Mansour MK. TLR Signaling Rescues Fungicidal Activity in Syk-Deficient Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1664-1674. [PMID: 35277418 PMCID: PMC8976732 DOI: 10.4049/jimmunol.2100599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
An impaired neutrophil response to pathogenic fungi puts patients at risk for fungal infections with a high risk of morbidity and mortality. Acquired neutrophil dysfunction in the setting of iatrogenic immune modulators can include the inhibition of critical kinases such as spleen tyrosine kinase (Syk). In this study, we used an established system of conditionally immortalized mouse neutrophil progenitors to investigate the ability to augment Syk-deficient neutrophil function against Candida albicans with TLR agonist signaling. LPS, a known immunomodulatory molecule derived from Gram-negative bacteria, was capable of rescuing effector functions of Syk-deficient neutrophils, which are known to have poor fungicidal activity against Candida species. LPS priming of Syk-deficient mouse neutrophils demonstrates partial rescue of fungicidal activity, including phagocytosis, degranulation, and neutrophil swarming, but not reactive oxygen species production against C. albicans, in part due to c-Fos activation. Similarly, LPS priming of human neutrophils rescues fungicidal activity in the presence of pharmacologic inhibition of Syk and Bruton's tyrosine kinase (Btk), both critical kinases in the innate immune response to fungi. In vivo, neutropenic mice were reconstituted with wild-type or Syk-deficient neutrophils and challenged i.p. with C. albicans. In this model, LPS improved wild-type neutrophil homing to the fungal challenge, although Syk-deficient neutrophils did not persist in vivo, speaking to its crucial role on in vivo persistence. Taken together, we identify TLR signaling as an alternate activation pathway capable of partially restoring neutrophil effector function against Candida in a Syk-independent manner.
Collapse
Affiliation(s)
- Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA;
| | - Kyle D Timmer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | | | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Alex Hopke
- Harvard Medical School, Boston, MA
- Shriners Burns Hospital, Boston, MA; and
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, MA
| | - Natalie J Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Allison K Scherer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Daniel Irimia
- Harvard Medical School, Boston, MA
- Shriners Burns Hospital, Boston, MA; and
- Center for Engineering in Medicine and Surgery, Department of Surgery, Harvard Medical School, Boston, MA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA;
- Harvard Medical School, Boston, MA
| |
Collapse
|
44
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
45
|
Mody P, Wada P, Bloch KC, Lionakis MS, White KD, Maris AS, Snyder T, Steinhauer J, Humphries R. Gram stain to the rescue: a case report of cerebral phaeohyphomycosis by Cladophialophora bantiana in an immunocompetent 24-year-old. BMC Infect Dis 2022; 22:13. [PMID: 34983414 PMCID: PMC8725554 DOI: 10.1186/s12879-021-07008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Fungal brain abscesses in immunocompetent patients are exceedingly rare. Cladophialophora bantiana is the most common cause of cerebral phaeohyphomycosis, a dematiaceous mold. Radiological presentation can mimic other disease states, with diagnosis through surgical aspiration and growth of melanized fungi in culture. Exposure is often unknown, with delayed presentation and diagnosis. CASE PRESENTATION We present a case of cerebral phaeohyphomycosis in a 24-year-old with no underlying conditions or risk factors for disease. He developed upper respiratory symptoms, fevers, and headaches over the course of 2 months. On admission, he underwent brain MRI which demonstrated three parietotemporal rim-enhancing lesions. Stereotactic aspiration revealed a dematiaceous mold on staining and the patient was treated with liposomal amphotericin B, 5-flucytosine, and posaconazole prior to culture confirmation. He ultimately required surgical excision of the brain abscesses and prolonged course of antifungal therapy, with clinical improvement. CONCLUSIONS Culture remains the gold standard for diagnosis of infection. Distinct microbiologic findings can aid in identification and guide antimicrobial therapy. While little guidance exists on treatment, patients have had favorable outcomes with surgery and combination antifungal therapy. In improving awareness, clinicians may accurately diagnose disease and initiate appropriate therapy in a more timely manner.
Collapse
Affiliation(s)
- Perceus Mody
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, 1301 Medical Center Dr., TVC 4524, Nashville, TN, 37232, USA.
| | - Paul Wada
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen C Bloch
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Annapolis, MD, USA.,Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Annapolis, MD, USA
| | - Katie D White
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander S Maris
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, 1301 Medical Center Dr., TVC 4524, Nashville, TN, 37232, USA
| | - Tonya Snyder
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, 1301 Medical Center Dr., TVC 4524, Nashville, TN, 37232, USA
| | - Jennifer Steinhauer
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, 1301 Medical Center Dr., TVC 4524, Nashville, TN, 37232, USA
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, 1301 Medical Center Dr., TVC 4524, Nashville, TN, 37232, USA
| |
Collapse
|
46
|
Mohamed SH, Nyazika TK, Ssebambulidde K, Lionakis MS, Meya DB, Drummond RA. Fungal CNS Infections in Africa: The Neuroimmunology of Cryptococcal Meningitis. Front Immunol 2022; 13:804674. [PMID: 35432326 PMCID: PMC9010970 DOI: 10.3389/fimmu.2022.804674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 01/13/2023] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of central nervous system (CNS) fungal infections in humans, with the majority of cases reported from the African continent. This is partly due to the high burden of HIV infection in the region and reduced access to standard-of-care including optimal sterilising antifungal drug treatments. As such, CM is responsible for 10-15% of all HIV-related mortality, with a large proportion being preventable. Immunity to the causative agent of CM, Cryptococcus neoformans, is only partially understood. IFNγ producing CD4+ T-cells are required for the activation of myeloid cells, especially macrophages, to enable fungal killing and clearance. However, macrophages may also act as a reservoir of the fungal yeast cells, shielding them from host immune detection thus promoting latent infection or persistent chronic inflammation. In this chapter, we review the epidemiology and pathogenesis of CNS fungal infections in Africa, with a major focus on CM, and the antifungal immune pathways operating to protect against C. neoformans infection. We also highlight the areas of research and policy that require prioritisation to help reduce the burden of CNS fungal diseases in Africa.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tinashe K Nyazika
- Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kenneth Ssebambulidde
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David B Meya
- College of Health Sciences, Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
47
|
Frank D, Carpino N. Induction and analysis of systemic C. albicans infections in mice. Methods Cell Biol 2022; 168:315-327. [DOI: 10.1016/bs.mcb.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Candida tropicalis Infection Modulates the Gut Microbiome and Confers Enhanced Susceptibility to Colitis in Mice. Cell Mol Gastroenterol Hepatol 2021; 13:901-923. [PMID: 34890843 PMCID: PMC8804274 DOI: 10.1016/j.jcmgh.2021.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We previously showed that abundance of Candida tropicalis is significantly greater in Crohn's disease patients compared with first-degree relatives without Crohn's disease. The aim of this study was to determine the effects and mechanisms of action of C tropicalis infection on intestinal inflammation and injury in mice. METHODS C57BL/6 mice were inoculated with C tropicalis, and colitis was induced by administration of dextran sodium sulfate in drinking water. Disease severity and intestinal permeability subsequently were evaluated by endoscopy, histology, quantitative reverse-transcription polymerase chain reaction, as well as 16S ribosomal RNA and NanoString analyses (NanoString Technologies, Seattle, WA). RESULTS Infected mice showed more severe colitis, with alterations in gut mucosal helper T cells (Th)1 and Th17 cytokine expression, and an increased frequency of mesenteric lymph node-derived group 2 innate lymphoid cells compared with uninfected controls. Gut microbiome composition, including changes in the mucin-degrading bacteria, Akkermansia muciniphila and Ruminococcus gnavus, was altered significantly, as was expression of several genes affecting intestinal epithelial homeostasis in isolated colonoids, after C tropicalis infection compared with uninfected controls. In line with these findings, fecal microbiome transplantation of germ-free recipient mice using infected vs uninfected donors showed altered expression of several tight-junction proteins and increased susceptibility to dextran sodium sulfate-induced colitis. CONCLUSIONS C tropicalis induces dysbiosis that involves changes in the presence of mucin-degrading bacteria, leading to altered tight junction protein expression with increased intestinal permeability and followed by induction of robust Th1/Th17 responses, which ultimately lead to an accelerated proinflammatory phenotype in experimental colitic mice.
Collapse
|
49
|
CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited. J Clin Immunol 2021; 42:336-349. [PMID: 34791587 PMCID: PMC10108093 DOI: 10.1007/s10875-021-01173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.
Collapse
|
50
|
Affiliation(s)
- George R Thompson
- From the Department of Medicine, Division of Infectious Diseases, and the Department of Medical Microbiology and Immunology, University of California, Davis, Sacramento (G.R.T.); and the Department of Medicine, Division of Infectious Disease and International Medicine, Program in Adult Transplant Infectious Disease, University of Minnesota, Minneapolis (J.-A.H.Y.)
| | - Jo-Anne H Young
- From the Department of Medicine, Division of Infectious Diseases, and the Department of Medical Microbiology and Immunology, University of California, Davis, Sacramento (G.R.T.); and the Department of Medicine, Division of Infectious Disease and International Medicine, Program in Adult Transplant Infectious Disease, University of Minnesota, Minneapolis (J.-A.H.Y.)
| |
Collapse
|