1
|
Tanaka A, Ishitsuka Y, Ohta H, Takenouchi N, Nakagawa M, Koh KR, Onishi C, Tanaka H, Fujimoto A, Yasunaga JI, Matsuoka M. Integrative analysis of ATAC-seq and RNA-seq for cells infected by human T-cell leukemia virus type 1. PLoS Comput Biol 2025; 21:e1012690. [PMID: 39746113 DOI: 10.1371/journal.pcbi.1012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy (HAM) after a long latent period in a fraction of infected individuals. These HTLV-1-infected cells typically have phenotypes similar to that of CD4+T cells, but the cell status is not well understood. To extract the inherent information of HTLV-1-infected CD4+ cells, we integratively analyzed the ATAC-seq and RNA-seq data of the infected cells. Compared to CD4+T cells from healthy donors, we found anomalous chromatin accessibility in HTLV-1infected CD4+ cells derived from ATL cases in terms of location and sample-to-sample fluctuations in open chromatin regions. Further, by focusing on systematically selected genes near the open chromatin regions, we quantified the difference between the infected CD4+ cells in ATL cases and healthy CD4+T cells in terms of the correlation between the chromatin structures and the gene expressions. Based on a further analysis of chromatin accessibility, we detected TLL1 (Tolloid Like 1) as one of the key genes that exhibit unique gene expressions in ATL cases. A luciferase assay indicated that TLL1 has an isoform-dependent regulatory effect on TGF-β. Overall, this study provides results about the status of HTLV-1-infected cells, which are qualitatively consistent across the different scales of chromatin accessibility, transcription, and immunophenotype.
Collapse
Affiliation(s)
- Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Ishitsuka
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| | - Hiroki Ohta
- Department of Human Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | - Masanori Nakagawa
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Chiho Onishi
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromitsu Tanaka
- Department of Biophysics, Graduate school of Science, Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Echevarria-Lima J, Moles R. Monocyte and Macrophage Functions in Oncogenic Viral Infections. Viruses 2024; 16:1612. [PMID: 39459945 PMCID: PMC11512331 DOI: 10.3390/v16101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Monocytes and macrophages are part of innate immunity and constitute the first line of defense against pathogens. Bone marrow-derived monocytes circulate in the bloodstream for one to three days and then typically migrate into tissues, where they differentiate into macrophages. Circulatory monocytes represent 5% of the nucleated cells in normal adult blood. Following differentiation, macrophages are distributed into various tissues and organs to take residence and maintain body homeostasis. Emerging evidence has highlighted the critical role of monocytes/macrophages in oncogenic viral infections, mainly their crucial functions in viral persistence and disease progression. These findings open opportunities to target innate immunity in the context of oncogenic viruses and to explore their potential as immunotherapies.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Ramona Moles
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mohanty S, Suklabaidya S, Lavorgna A, Ueno T, Fujisawa JI, Ngouth N, Jacobson S, Harhaj EW. The tyrosine kinase KDR is essential for the survival of HTLV-1-infected T cells by stabilizing the Tax oncoprotein. Nat Commun 2024; 15:5380. [PMID: 38918393 PMCID: PMC11199648 DOI: 10.1038/s41467-024-49737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells. Inhibition of KDR specifically induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4 + T cells from HAM/TSP patients. Furthermore, inhibition of KDR triggers the autophagic degradation of Tax resulting in impaired NF-κB activation and diminished viral transmission in co-culture assays. Tax induces the expression of KDR, forms a complex with KDR, and is phosphorylated by KDR. These findings suggest that Tax stability is dependent on KDR activity which could be exploited as a strategy to target Tax in HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Millipore-Sigma, Rockville, MD, USA
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
7
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
8
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
9
|
Xu H, Jia J, Jeong HH, Zhao Z. Deep learning for detecting and elucidating human T-cell leukemia virus type 1 integration in the human genome. PATTERNS (NEW YORK, N.Y.) 2023; 4:100674. [PMID: 36873907 PMCID: PMC9982299 DOI: 10.1016/j.patter.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 02/12/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus, is the causative agent for adult T cell leukemia/lymphoma and many other human diseases. Accurate and high throughput detection of HTLV-1 virus integration sites (VISs) across the host genomes plays a crucial role in the prevention and treatment of HTLV-1-associated diseases. Here, we developed DeepHTLV, the first deep learning framework for VIS prediction de novo from genome sequence, motif discovery, and cis-regulatory factor identification. We demonstrated the high accuracy of DeepHTLV with more efficient and interpretive feature representations. Decoding the informative features captured by DeepHTLV resulted in eight representative clusters with consensus motifs for potential HTLV-1 integration. Furthermore, DeepHTLV revealed interesting cis-regulatory elements in regulation of VISs that have significant association with the detected motifs. Literature evidence demonstrated nearly half (34) of the predicted transcription factors enriched with VISs were involved in HTLV-1-associated diseases. DeepHTLV is freely available at https://github.com/bsml320/DeepHTLV.
Collapse
Affiliation(s)
- Haodong Xu
- Center for Precision Health, School of Biomedical Informatics, UTHealth Science Center at Houston, Houston, TX 77030, USA
| | - Johnathan Jia
- Center for Precision Health, School of Biomedical Informatics, UTHealth Science Center at Houston, Houston, TX 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hyun-Hwan Jeong
- Center for Precision Health, School of Biomedical Informatics, UTHealth Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, UTHealth Science Center at Houston, Houston, TX 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
10
|
Hasegawa A, Murata M, Fujikawa T, Katagiri K, Nagano Y, Masuda T, Kuramitsu M, Nakajima S, Fujisawa JI, Okuma K, Grover P, Kidiga M, Akari H, Kannagi M. Vaccination with short-term-cultured autologous PBMCs efficiently activated STLV-1-specific CTLs in naturally STLV-1-infected Japanese monkeys with impaired CTL responses. PLoS Pathog 2023; 19:e1011104. [PMID: 36730466 PMCID: PMC9928132 DOI: 10.1371/journal.ppat.1011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
A small proportion of human T-cell leukemia virus type-1 (HTLV-1)-infected individuals develop adult T-cell leukemia/lymphoma, a chemotherapy-resistant lymphoproliferative disease with a poor prognosis. HTLV-1-specific cytotoxic T lymphocytes (CTLs), potential anti-tumor/virus effectors, are impaired in adult T-cell leukemia/lymphoma patients. Here, using Japanese monkeys naturally infected with simian T-cell leukemia/T-lymphotropic virus type-1 (STLV-1) as a model, we demonstrate that short-term-cultured autologous peripheral blood mononuclear cells (PBMCs) can serve as a therapeutic vaccine to activate such CTLs. In a screening test, STLV-1-specific CTL activity was detectable in 8/10 naturally STLV-1-infected monkeys. We conducted a vaccine study in the remaining two monkeys with impaired CTL responses. The short-term-cultured PBMCs of these monkeys spontaneously expressed viral antigens, in a similar way to PBMCs from human HTLV-1 carriers. The first monkey was subcutaneously inoculated with three-day-cultured and mitomycin C (MMC)-treated autologous PBMCs, and then boosted with MMC-treated autologous STLV-1-infected cell line cells. The second monkey was inoculated with autologous PBMC-vaccine alone twice. In addition, a third monkey that originally showed a weak STLV-1-specific CTL response was inoculated with similar autologous PBMC-vaccines. In all three vaccinated monkeys, marked activation of STLV-1-specific CTLs and a mild reduction in the STLV-1 proviral load were observed. Follow-up analyses on the two monkeys vaccinated with PBMCs alone indicated that STLV-1-specific CTL responses peaked at 3-4 months after vaccination, and then diminished but remained detectable for more than one year. The significant reduction in the proviral load and the control of viral expression were associated with CTL activation but also diminished 6 and 12 months after vaccination, respectively, suggesting the requirement for a booster. The vaccine-induced CTLs in these monkeys recognized epitopes in the STLV-1 Tax and/or Envelope proteins, and efficiently killed autologous STLV-1-infected cells in vitro. These findings indicated that the autologous PBMC-based vaccine could induce functional STLV-1-specific CTLs in vivo.
Collapse
Affiliation(s)
- Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Cancer Cell Biology Laboratory, Department of Cancer Biology, Clinical Research Institute, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Megumi Murata
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Tomoka Fujikawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Kuramitsu
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Poonam Grover
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Maureen Kidiga
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Kyoto, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
11
|
Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424. [PMID: 36546414 DOI: 10.1002/jmv.28424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus; whereas HTLV-1 mainly persists in the infected host cell as a provirus, it also causes a malignancy called adult T-cell leukemia/lymphoma (ATLL) in about 5% of infection. HTLV-1 replication is in most cases silent in vivo and viral de novo infection rarely occurs; HTLV-1 rather relies on clonal proliferation of infected T cells for viral propagation as it multiplies the number of the provirus copies. It is mechanistically elusive how leukemic clones emerge during the course of HTLV-1 infection in vivo and eventually cause the onset of ATLL. This review summarizes our current understanding of HTLV-1 persistence and oncogenesis, with the incorporation of recent cutting-edge discoveries obtained by high-throughput sequencing.
Collapse
Affiliation(s)
- Xiaorui Zuo
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruoning Zhou
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sikai Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangyong Ma
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
HTLV-1 infection of donor-derived T cells might promote acute graft-versus-host disease following liver transplantation. Nat Commun 2022; 13:7368. [PMID: 36450748 PMCID: PMC9712688 DOI: 10.1038/s41467-022-35111-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Acute graft versus host disease (aGVHD) is a rare, but severe complication of liver transplantation (LT). It is caused by the activation of donor immune cells in the graft against the host shortly after transplantation, but the contributing pathogenic factors remain unclear. Here we show that human T cell lymphotropic virus type I (HTLV-1) infection of donor T cells is highly associated with aGVHD following LT. The presence of HTLV-1 in peripheral blood and tissue samples from a discovery cohort of 7 aGVHD patients and 17 control patients is assessed with hybridization probes (TargetSeq), mass cytometry (CyTOF), and multiplex immunohistology (IMC). All 7 of our aGVHD patients display detectable HTLV-1 Tax signals by IMC. We identify donor-derived cells based on a Y chromosome-specific genetic marker, EIF1AY. Thus, we confirm the presence of CD4+Tax+EIF1AY+ T cells and Tax+CD68+EIF1AY+ antigen-presenting cells, indicating HTLV-1 infection of donor immune cells. In an independent cohort of 400 patients, we verify that HTLV-1 prevalence correlates with aGVHD incidence, while none of the control viruses shows significant associations. Our findings thus provide new insights into the aetio-pathology of liver-transplantation-associated aGVHD and raise the possibility of preventing aGVHD prior to transplantation.
Collapse
|
13
|
Acute type adult T-cell leukemia cells proliferate in the lymph nodes rather than in peripheral blood. Cancer Gene Ther 2022; 29:1570-1577. [PMID: 35459881 DOI: 10.1038/s41417-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
A massive increase in the number of mature CD4+ T-cells in peripheral blood (PB) is a defining characteristic of acute type of adult T-cell leukemia (ATL). To date, the site of proliferation of ATL cells in the body has been unclear. In an attempt to address this question, we examined the expression of the proliferation marker, Ki-67, in freshly isolated ATL cells from PB and lymph nodes (LNs) of patients with various types of ATL. Our findings reveal that LN-ATL cells display higher expression of the Ki-67 antigen than PB-ATL cells in acute type patients. The gene expression of T-cell quiescence regulators such as Krüppel-like factor 2/6 and forkhead box protein 1 was substantially high in acute type PB-ATL cells. The expression of human telomerase reverse transcriptase, which is involved in T-cell expansion, was significantly low in PB-ATL cells from acute type patients, similar to that in normal resting T-cells. These findings suggest that ATL cells proliferate in the LNs rather than in PB.
Collapse
|
14
|
Establishment of a Cynomolgus Macaque Model of Human T-Cell Leukemia Virus Type 1 (HTLV-1) Infection by Direct Inoculation of Adult T-Cell Leukemia Patient-Derived Cell Lines for HTLV-1 Infection. J Virol 2022; 96:e0133922. [DOI: 10.1128/jvi.01339-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
HTLV-1 was discovered in the 1980s as the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, the precise mechanisms leading to HTLV-1 chronic infection and the onset of the diseases still remain unidentified.
Collapse
|
15
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
16
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Matsuo M, Ueno T, Monde K, Sugata K, Tan BJY, Rahman A, Miyazato P, Uchiyama K, Islam S, Katsuya H, Nakajima S, Tokunaga M, Nosaka K, Hata H, Utsunomiya A, Fujisawa JI, Satou Y. Identification and characterization of a novel enhancer in the HTLV-1 proviral genome. Nat Commun 2022; 13:2405. [PMID: 35504920 PMCID: PMC9065021 DOI: 10.1038/s41467-022-30029-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes adult T-cell leukemia/lymphoma (ATL), a cancer of infected CD4+ T-cells. There is both sense and antisense transcription from the integrated provirus. Sense transcription tends to be suppressed, but antisense transcription is constitutively active. Various efforts have been made to elucidate the regulatory mechanism of HTLV-1 provirus for several decades; however, it remains unknown how HTLV-1 antisense transcription is maintained. Here, using proviral DNA-capture sequencing, we found a previously unidentified viral enhancer in the middle of the HTLV-1 provirus. The transcription factors, SRF and ELK-1, play a pivotal role in the activity of this enhancer. Aberrant transcription of genes in the proximity of integration sites was observed in freshly isolated ATL cells. This finding resolves certain long-standing questions concerning HTLV-1 persistence and pathogenesis. We anticipate that the DNA-capture-seq approach can be applied to analyze the regulatory mechanisms of other oncogenic viruses integrated into the host cellular genome. Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic virus with constantly active antisense transcription from the proviral genome. Here, Matsuo et al. perform proviral DNA-capture followed by high-throughput sequencing and identify a yet unknown viral enhancer in the middle of the HTLV-1 provirus.
Collapse
Affiliation(s)
- Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Paola Miyazato
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kyosuke Uchiyama
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Saiful Islam
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.,Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21702, US
| | - Hiroo Katsuya
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, 849-8501, Japan
| | - Shinsuke Nakajima
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology and Infectious Disease, Kumamoto University Hospital, Kumamoto, 860-8556, Japan.,Cancer Center, Kumamoto University Hospital, Kumamoto, 860-8556, Japan
| | - Hiroyuki Hata
- Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0972, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, 890-0064, Japan.,Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan. .,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
18
|
Legrand N, McGregor S, Bull R, Bajis S, Valencia BM, Ronnachit A, Einsiedel L, Gessain A, Kaldor J, Martinello M. Clinical and Public Health Implications of Human T-Lymphotropic Virus Type 1 Infection. Clin Microbiol Rev 2022; 35:e0007821. [PMID: 35195446 PMCID: PMC8941934 DOI: 10.1128/cmr.00078-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is estimated to affect 5 to 10 million people globally and can cause severe and potentially fatal disease, including adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The burden of HTLV-1 infection appears to be geographically concentrated, with high prevalence in discrete regions and populations. While most high-income countries have introduced HTLV-1 screening of blood donations, few other public health measures have been implemented to prevent infection or its consequences. Recent advocacy from concerned researchers, clinicians, and community members has emphasized the potential for improved prevention and management of HTLV-1 infection. Despite all that has been learned in the 4 decades following the discovery of HTLV-1, gaps in knowledge across clinical and public health aspects persist, impeding optimal control and prevention, as well as the development of policies and guidelines. Awareness of HTLV-1 among health care providers, communities, and affected individuals remains limited, even in countries of endemicity. This review provides a comprehensive overview on HTLV-1 epidemiology and on clinical and public health and highlights key areas for further research and collaboration to advance the health of people with and at risk of HTLV-1 infection.
Collapse
Affiliation(s)
- Nicolas Legrand
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Skye McGregor
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rowena Bull
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sahar Bajis
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Amrita Ronnachit
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Lloyd Einsiedel
- Central Australian Health Service, Alice Springs, Northern Territory, Australia
| | - Antoine Gessain
- Institut Pasteur, Epidemiology and Physiopathology of Oncogenic Viruses Unit, Paris, France
| | - John Kaldor
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
19
|
Miura M, Naito T, Saito M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front Med (Lausanne) 2022; 9:867478. [PMID: 35463007 PMCID: PMC9024061 DOI: 10.3389/fmed.2022.867478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a replication-competent human retrovirus associated with two distinct types of diseases: a malignancy of mature CD4+ T cells called adult T-cell leukemia-lymphoma (ATL) and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It was the first human retrovirus ever associated with a human cancer. Although most HTLV-1-infected individuals remain asymptomatic for life, a subpopulation develops ATL or HAM/TSP. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence suggests that the complex virus-host interactions, as well as the host immune response against HTLV-1 infection, appear to regulate the development of HTLV-1-associated diseases. This review outlines and discusses the current understanding, ongoing developments, and future perspectives of HTLV-1 research.
Collapse
|
20
|
Seki Y, Kitamura T, Tezuka K, Murata M, Akari H, Hamaguchi I, Okuma K. Cytolytic Recombinant Vesicular Stomatitis Viruses Expressing STLV-1 Receptor Specifically Eliminate STLV-1 Env-Expressing Cells in an HTLV-1 Surrogate Model In Vitro. Viruses 2022; 14:v14040740. [PMID: 35458470 PMCID: PMC9030509 DOI: 10.3390/v14040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes serious and intractable diseases in some carriers after infection. The elimination of infected cells is considered important to prevent this onset, but there are currently no means by which to accomplish this. We previously developed “virotherapy”, a therapeutic method that targets and kills HTLV-1-infected cells using a cytolytic recombinant vesicular stomatitis virus (rVSV). Infection with rVSV expressing an HTLV-1 primary receptor elicits therapeutic effects on HTLV-1-infected envelope protein (Env)-expressing cells in vitro and in vivo. Simian T-cell leukemia virus type 1 (STLV-1) is closely related genetically to HTLV-1, and STLV-1-infected Japanese macaques (JMs) are considered a useful HTLV-1 surrogate, non-human primate model in vivo. Here, we performed an in vitro drug evaluation of rVSVs against STLV-1 as a preclinical study. We generated novel rVSVs encoding the STLV-1 primary receptor, simian glucose transporter 1 (JM GLUT1), with or without an AcGFP reporter gene. Our data demonstrate that these rVSVs specifically and efficiently infected/eliminated the STLV-1 Env-expressing cells in vitro. These results indicate that rVSVs carrying the STLV-1 receptor could be an excellent candidate for unique anti-STLV-1 virotherapy; therefore, such antivirals can now be applied to STLV-1-infected JMs to determine their therapeutic usefulness in vivo.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Tomoya Kitamura
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Exotic Disease Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tokyo 187-0022, Japan
| | - Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Megumi Murata
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
| | - Hirofumi Akari
- Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan; (M.M.); (H.A.)
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (Y.S.); (T.K.); (K.T.); (I.H.)
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2381
| |
Collapse
|
21
|
Maksimova V, Smith S, Seth J, Phelps C, Niewiesk S, Satou Y, Green P, Panfil AR. HTLV-1 intragenic viral enhancer influences immortalization phenotype in vitro, but is dispensable for persistence and disease development in animal models. Front Immunol 2022; 13:954077. [PMID: 35958554 PMCID: PMC9359075 DOI: 10.3389/fimmu.2022.954077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative infectious agent of adult T-cell leukemia/lymphoma (ATL) and chronic neurological disease. The disparity between silenced sense transcription versus constitutively active antisense (Hbz) transcription from the integrated provirus is not fully understood. The presence of an internal viral enhancer has recently been discovered in the Tax gene near the 3' long terminal repeat (LTR) of HTLV-1. In vitro, this enhancer has been shown to bind SRF and ELK-1 host transcription factors, maintain chromatin openness and viral gene transcription, and induce aberrant host gene transcription near viral integration sites. However, the function of the viral enhancer in the context of early HTLV-1 infection events remains unknown. In this study, we generated a mutant Enhancer virus (mEnhancer) and evaluated its effects on HTLV-1-mediated in vitro immortalization, establishment of persistent infection with an in vivo rabbit model, and disease development in a humanized immune system (HIS) mouse model. The mEnhancer virus was able to establish persistent infection in rabbits, and there were no significant differences in proviral load or HTLV-1-specific antibody responses over a 25-week study. However, rabbits infected with the mEnhancer virus had significantly decreased sense and antisense viral gene expression at 12-weeks post-infection. HIS mice infected with wt or mEnhancer virus showed similar disease progression, proviral load, and viral gene expression. While mEnhancer virus was able to sufficiently immortalize primary T-lymphocytes in cell culture, the immortalized cells had an altered phenotype (CD8+ T-cells), decreased proviral load, decreased sense and anti-sense gene expression, and altered cell cycle progression compared to HTLV-1.wt immortalized cells (CD4+ T-cells). These results suggest that the HTLV-1 enhancer element alone does not determine persistence or disease development but plays a pivotal role in regulating viral gene expression.
Collapse
Affiliation(s)
- Victoria Maksimova
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Susan Smith
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Jaideep Seth
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Cameron Phelps
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Patrick L. Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Amanda R. Panfil,
| |
Collapse
|
22
|
Hiyoshi M, Takahashi N, Eltalkhawy YM, Noyori O, Lotfi S, Panaampon J, Okada S, Tanaka Y, Ueno T, Fujisawa JI, Sato Y, Suzuki T, Hasegawa H, Tokunaga M, Satou Y, Yasunaga JI, Matsuoka M, Utsunomiya A, Suzu S. M-Sec induced by HTLV-1 mediates an efficient viral transmission. PLoS Pathog 2021; 17:e1010126. [PMID: 34843591 PMCID: PMC8659635 DOI: 10.1371/journal.ppat.1010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/09/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag. In the present study, we identified the cellular protein M-Sec as a host factor necessary for de novo infection of human T-cell leukemia virus type 1 (HTLV-1), the causative retrovirus of an aggressive blood cancer known as adult T-cell leukemia/lymphoma. The inhibition or knockdown of M-Sec in infected cells resulted in a reduced viral infection in several culture models and a mouse model. We recently demonstrated a similar role of M-Sec in macrophages infected with another human retrovirus HIV-1, but it has been generally thought that M-Sec is not related to HTLV-1 infection because of the lack of its expression in CD4+ T cells, the major target of HTLV-1. In this study, we revealed that CD4+ T cells of HTLV-1 asymptomatic carriers, but not those of HTLV-1- individuals, expressed M-Sec, and that the viral protein Tax mediated the induction of M-Sec. Thus, M-Sec is a new and useful tool for further understanding the process of HTLV-1 transmission.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (MH); (SS)
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M. Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sameh Lotfi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- * E-mail: (MH); (SS)
| |
Collapse
|
23
|
Yoshie O. CCR4 as a Therapeutic Target for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215542. [PMID: 34771703 PMCID: PMC8583476 DOI: 10.3390/cancers13215542] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CCR4 is a chemokine receptor selectively expressed on normal T cell subsets such as type 2 helper T cells, skin-homing T cells and regulatory T cells, and on skin-associated T cell malignancies such as adult T cell leukemia/lymphoma (ATLL), which is etiologically associated with human T lymphocyte virus type 1 (HTLV-1), and cutaneous T cell lymphomas (CTCLs). Mogamulizumab is a fully humanized and glyco-engineered monoclonal anti-CCR4 antibody used for the treatment of refractory/relapsed ATLL and CTCLs, often resulting in complete remission. The clinical applications of Mogamulizumab are now being extended to solid tumors, exploring the therapeutic effect of regulatory T cell depletion. This review overviews the expression of CCR4 in various T cell subsets, HTLV-1-infected T cells, ATLL and CTCLs, and the clinical applications of Mogamulizumab. Abstract CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Osamu Yoshie
- Health and Kampo Institute, Sendai 981-3205, Japan;
- Kindai University, Osaka 577-8502, Japan
- Aoinosono-Sendai Izumi Long-Term Health Care Facility, Sendai 981-3126, Japan
| |
Collapse
|
24
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
25
|
Cheng X, Joseph A, Castro V, Chen-Liaw A, Skidmore Z, Ueno T, Fujisawa JI, Rauch DA, Challen GA, Martinez MP, Green P, Griffith M, Payton JE, Edwards JR, Ratner L. Epigenomic regulation of human T-cell leukemia virus by chromatin-insulator CTCF. PLoS Pathog 2021; 17:e1009577. [PMID: 34019588 PMCID: PMC8174705 DOI: 10.1371/journal.ppat.1009577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/03/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that causes an aggressive T-cell malignancy and a variety of inflammatory conditions. The integrated provirus includes a single binding site for the epigenomic insulator, CCCTC-binding protein (CTCF), but its function remains unclear. In the current study, a mutant virus was examined that eliminates the CTCF-binding site. The mutation did not disrupt the kinetics and levels of virus gene expression, or establishment of or reactivation from latency. However, the mutation disrupted the epigenetic barrier function, resulting in enhanced DNA CpG methylation downstream of the CTCF binding site on both strands of the integrated provirus and H3K4Me3, H3K36Me3, and H3K27Me3 chromatin modifications both up- and downstream of the site. A majority of clonal cell lines infected with wild type HTLV-1 exhibited increased plus strand gene expression with CTCF knockdown, while expression in mutant HTLV-1 clonal lines was unaffected. These findings indicate that CTCF binding regulates HTLV-1 gene expression, DNA and histone methylation in an integration site dependent fashion. Human T-cell leukemia virus type 1 (HTLV-1) is a cause of leukemia and lymphoma as well as several inflammatory medical disorders. The virus integrates in the host cell DNA, and it has a single binding site for a protein designated CTCF. This protein is important in the regulation of many DNA viruses, as well as many properties of normal and malignant cells. In order to define the role of CTCF binding to HTLV, we analyzed a mutant virus lacking the binding site. We found that this mutation variably affected gene expression, DNA and histone modification, suggesting a key role in regulation of virus replication in infected cells.
Collapse
Affiliation(s)
- Xiaogang Cheng
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Victor Castro
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Alice Chen-Liaw
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Zachary Skidmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Grant A. Challen
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael P. Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Patrick Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - John R. Edwards
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Phamacogenomics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
26
|
Kojima S, Kamada AJ, Parrish NF. Virus-derived variation in diverse human genomes. PLoS Genet 2021; 17:e1009324. [PMID: 33901175 PMCID: PMC8101998 DOI: 10.1371/journal.pgen.1009324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Acquisition of genetic material from viruses by their hosts can generate inter-host structural genome variation. We developed computational tools enabling us to study virus-derived structural variants (SVs) in population-scale whole genome sequencing (WGS) datasets and applied them to 3,332 humans. Although SVs had already been cataloged in these subjects, we found previously-overlooked virus-derived SVs. We detected non-germline SVs derived from squirrel monkey retrovirus (SMRV), human immunodeficiency virus 1 (HIV-1), and human T lymphotropic virus (HTLV-1); these variants are attributable to infection of the sequenced lymphoblastoid cell lines (LCLs) or their progenitor cells and may impact gene expression results and the biosafety of experiments using these cells. In addition, we detected new heritable SVs derived from human herpesvirus 6 (HHV-6) and human endogenous retrovirus-K (HERV-K). We report the first solo-direct repeat (DR) HHV-6 likely to reflect DR rearrangement of a known full-length endogenous HHV-6. We used linkage disequilibrium between single nucleotide variants (SNVs) and variants in reads that align to HERV-K, which often cannot be mapped uniquely using conventional short-read sequencing analysis methods, to locate previously-unknown polymorphic HERV-K loci. Some of these loci are tightly linked to trait-associated SNVs, some are in complex genome regions inaccessible by prior methods, and some contain novel HERV-K haplotypes likely derived from gene conversion from an unknown source or introgression. These tools and results broaden our perspective on the coevolution between viruses and humans, including ongoing virus-to-human gene transfer contributing to genetic variation between humans.
Collapse
Affiliation(s)
- Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
| | - Anselmo Jiro Kamada
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, Yokohama, Japan
- * E-mail:
| |
Collapse
|
27
|
Toppinen M, Sajantila A, Pratas D, Hedman K, Perdomo MF. The Human Bone Marrow Is Host to the DNAs of Several Viruses. Front Cell Infect Microbiol 2021; 11:657245. [PMID: 33968803 PMCID: PMC8100435 DOI: 10.3389/fcimb.2021.657245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
The long-term impact of viruses residing in the human bone marrow (BM) remains unexplored. However, chronic inflammatory processes driven by single or multiple viruses could significantly alter hematopoiesis and immune function. We performed a systematic analysis of the DNAs of 38 viruses in the BM. We detected, by quantitative PCRs and next-generation sequencing, viral DNA in 88.9% of the samples, up to five viruses in one individual. Included were, among others, several herpesviruses, hepatitis B virus, Merkel cell polyomavirus and, unprecedentedly, human papillomavirus 31. Given the reactivation and/or oncogenic potential of these viruses, their repercussion on hematopoietic and malignant disorders calls for careful examination. Furthermore, the implications of persistent infections on the engraftment, regenerative capacity, and outcomes of bone marrow transplantation deserve in-depth evaluation.
Collapse
Affiliation(s)
- Mari Toppinen
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.,Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Diogo Pratas
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal.,Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
| | - Klaus Hedman
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria F Perdomo
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
28
|
Ahmadi Ghezeldasht S, Shamsian SAA, Gholizadeh Navashenaq J, Miri R, Ashrafi F, Mosavat A, Rezaee SA. HTLV-1 oncovirus-host interactions: From entry to the manifestation of associated diseases. Rev Med Virol 2021; 31:e2235. [PMID: 33742509 DOI: 10.1002/rmv.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Human T lymphotropic virus type-1 (HTLV-1) is a well-known human oncovirus, associated with two life-threatening diseases, adult T cell leukaemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The study of this oncogenic virus is significant from two different aspects. First, HTLV-1 can be considered as a neglected public health problem, which may spread slowly worldwide. Second, the incidence of HTLV-1 associated diseases due to oncogenic effects and deterioration of the immune system towards autoimmune diseases are not fully understood. Furthermore, knowledge about viral routes of transmission is important for considering potential interventions, treatments or vaccines in endemic regions. In this review, novel characteristics of HTLV-1, such as the unusual infectivity of virions through the virological synapse, are discussed in the context of the HTLV-1 associated diseases (ATL and HAM/TSP).
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Akbar Shamsian
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | | | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Izaki M, Yasunaga JI, Nosaka K, Sugata K, Utsunomiya H, Suehiro Y, Shichijo T, Yamada A, Sugawara Y, Hibi T, Inomata Y, Akari H, Melamed A, Bangham C, Matsuoka M. In vivo dynamics and adaptation of HTLV-1-infected clones under different clinical conditions. PLoS Pathog 2021; 17:e1009271. [PMID: 33524072 PMCID: PMC7877780 DOI: 10.1371/journal.ppat.1009271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression. HTLV-1 spreads in vivo through two routes: de novo infection and clonal proliferation of infected cells. Reverse transcriptase inhibitors and integrase inhibitors do not influence the PVL in HTLV-1-infected individuals, indicating that clonal proliferation is dominant to maintain and increase PVL in vivo in the chronic phase. It is assumed that the host immune responses are critical factors for clonal proliferation. We found that HTLV-1-infected clones dramatically changed during de novo infection whereas the clones in the chronic phase survived long-term after transplantation, indicating that HTLV-1-infected clones are selected for survival in vivo. Surprisingly, depletion of CD8+ cells had a small impact on PVL in a STLV-1 infected Japanese macaque, but modified the clonality of infected cells. The cells after depletion of CD8+ cells showed a higher proliferative activity during short-term in vitro culture. This study reveals that intrinsic attributes of selected clones contribute to clonal proliferation of infected cells.
Collapse
Affiliation(s)
- Mikiko Izaki
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hayato Utsunomiya
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asami Yamada
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiko Sugawara
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
32
|
Hirons A, Khoury G, Purcell DFJ. Human T-cell lymphotropic virus type-1: a lifelong persistent infection, yet never truly silent. THE LANCET. INFECTIOUS DISEASES 2020; 21:e2-e10. [PMID: 32986997 DOI: 10.1016/s1473-3099(20)30328-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Human T-cell lymphotropic virus type-1 (HTLV-1) has a large global burden and in some key communities, such as Indigenous Australians living in remote areas, greater than 45% of people are infected. Despite HTLV-1 causing serious malignancy and myelopathic paraparesis, and a significant association with a range of inflammatory comorbidities and secondary infections that shorten lifespan, few biomedical interventions are available. HTLV-1 starkly contrasts with other blood-borne sexually transmitted viral infections, such as, HIV, hepatitis B virus, and hepatitis C virus, with no antiviral treatments that reduce virus-infected cells, no rapid diagnostics or biomarker assays suitable for use in remote settings, and no effective vaccine. We review how the replication strategies and molecular properties of HTLV-1 establish a long-term stealthy viral pathogenesis through a fine-tuned balance of persistence, immune cell dysfunction, and proliferation of proviral infected cells that collectively present robust barriers to treatment and prevention. An understanding of the nature of the HTLV-1 provirus and opposing actions of viral-coded negative-sense HBZ and positive-sense regulatory proteins Tax, p12 and its cleaved product p8, and p30, is needed to improve the biomedical tools for preventing transmission and improving the long-term health of people with this lifelong infection.
Collapse
Affiliation(s)
- Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Georges Khoury
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Damian F J Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
The Nature of the HTLV-1 Provirus in Naturally Infected Individuals Analyzed by the Viral DNA-Capture-Seq Approach. Cell Rep 2020; 29:724-735.e4. [PMID: 31618639 DOI: 10.1016/j.celrep.2019.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
The retrovirus human T-cell leukemia virus type 1 (HTLV-1) integrates into the host DNA, achieves persistent infection, and induces human diseases. Here, we demonstrate that viral DNA-capture sequencing (DNA-capture-seq) is useful to characterize HTLV-1 proviruses in naturally virus-infected individuals, providing comprehensive information about the proviral structure and the viral integration site. We analyzed peripheral blood from 98 naturally HTLV-1-infected individuals and found that defective proviruses were present not only in patients with leukemia, but also in those with other clinical entities. We further demonstrated that clones with defective-type proviruses exhibited a higher degree of clonal abundance than those with full-length proviruses. The frequency of defective-type proviruses in HTLV-1-infected humanized mice was lower than that in infected individuals, indicating that defective proviruses were rare at the initial phase of infection but preferentially selected during persistent infection. These results demonstrate the robustness of viral DNA-capture-seq for HTLV-1 infection and suggest potential applications for other virus-associated cancers in humans.
Collapse
|
34
|
Nozuma S, Kubota R, Jacobson S. Human T-lymphotropic virus type 1 (HTLV-1) and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2020; 26:652-663. [PMID: 32705480 PMCID: PMC7532128 DOI: 10.1007/s13365-020-00881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is an inflammatory disease of the spinal cord and clinically characterized by progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. The interaction between the host immune response and HTLV-1-infected cells regulates the development of HAM/TSP. HTLV-1 preferentially infects CD4+ T cells and is maintained by proliferation of the infected T cells. HTLV-1-infected cells rarely express viral antigens in vivo; however, they easily express the antigens after short-term culture. Therefore, such virus-expressing cells may lead to activation and expansion of antigen-specific T cell responses. Infected T cells with HTLV-1 and HTLV-1-specific CD8+ cytotoxic T lymphocytes invade the central nervous system and produce various proinflammatory cytokines and chemokines, leading to neuronal damage and degeneration. Therefore, cellular immune responses to HTLV-1 have been considered to play important roles in disease development of HAM/TSP. Recent studies have clarified the viral strategy for persistence in the host through genetic and epigenetic changes by HTLV-1 and host immune responses including T cell function and differentiation. Newly developed animal models could provide the opportunity to uncover the precise pathogenesis and development of clinically effective treatment. Several molecular target drugs are undergoing clinical trials with promising efficacy. In this review, we summarize recent advances in the immunopathogenesis of HAM/TSP and discuss the perspectives of the research on this disease.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cell Proliferation/drug effects
- Cytokines/biosynthesis
- Cytokines/immunology
- Disease Models, Animal
- Host-Pathogen Interactions/immunology
- Human T-lymphotropic virus 1/drug effects
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Immunity, Cellular/drug effects
- Immunologic Factors/therapeutic use
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Lymphocyte Activation/drug effects
- Neurons/drug effects
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Neuroprotective Agents/therapeutic use
- Paraparesis, Tropical Spastic/drug therapy
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Urinary Incontinence/drug therapy
- Urinary Incontinence/immunology
- Urinary Incontinence/pathology
- Urinary Incontinence/virology
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Hong W, Cheng W, Zheng T, Jiang N, Xu R. AHR is a tunable knob that controls HTLV-1 latency-reactivation switching. PLoS Pathog 2020; 16:e1008664. [PMID: 32678826 PMCID: PMC7367443 DOI: 10.1371/journal.ppat.1008664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Establishing latent infection but retaining the capability to reactivate in certain circumstance is an ingenious tactic for retroviruses to persist in vivo while evading host immune surveillance. Many evidences indicate that Human T-cell leukemia virus type 1 (HTLV-1) is not completely silent in vivo. However, signals that trigger HTLV-1 latency-reactivation switching remain poorly understood. Here, we show that aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a critical role in HTLV-1 plus-strand expression. Importantly, HTLV-1 reactivation could be tunably manipulated by modulating the level of AHR ligands. Mechanistically, activated AHR binds to HTLV-1 LTR dioxin response element (DRE) site (CACGCATAT) and drives plus-strand transcription. On the other hand, persistent activation of nuclear factor kappa B (NF-κB) pathway constitutes one key prerequisite for AHR overexpression in HTLV-1 infected T-cells, setting the stage for the advent of AHR signaling. Our findings suggest that HTLV-1 might achieve its reactivation in vivo when encountering environmental, dietary, microbial and metabolic cues that induce sufficient AHR signaling. HTLV-1 is considered largely latent in vivo because viral products were rarely detected in freshly isolated PBMCs of infected individuals. However, the existence of strong HTLV-1-specific immune response in most infected individuals suggests that the virus should not be completely silent in vivo. Since viral gene expression plays a critical role in cell transformation and de novo infection, a novel insight into where and how HTLV-1 achieves its reactivation in vivo is essential for developing new therapeutic approaches. AHR is a ligand-activated transcription factor that regulates intricate transcriptional programs in response to environmental, dietary, microbial and metabolic cues. It has been reported that AHR is constitutively overexpressed in HTLV-1-infected T-cells. Nevertheless, the functional role of AHR in HTLV-1 pathogenesis is still obscure. In this study, we show that activated AHR can directly bind to HTLV-1 LTR DRE site (CACGCATAT) and drive HTLV-1 plus-strand transcription. Importantly, HTLV-1 latency-reactivation-latency switching could be manipulated in MT-1 cells by adding and removing additional kynurenine (a well-known AHR ligand). Moreover, we explicate that the persistent NF-κB activation is critical for AHR overexpression in HTLV-1-infected T-cells. These results imply that constitutive AHR overexpression in infected T-cells endues HTLV-1 the potential to reactivate from latency when the level of AHR ligands reaches a certain threshold. Accordingly, we propose that HTLV-1 might achieve its reactivation in certain parts of the body that are prone to accumulate AHR ligands.
Collapse
Affiliation(s)
- Weihao Hong
- School of Medicine, Huaqiao University, Quanzhou, China
- Fujian Provincial Key Laboratory of Molecular Medicine & Xiamen Key Lab of Marine and Gene Drugs, Xiamen, China
| | - Wenzhao Cheng
- School of Medicine, Huaqiao University, Quanzhou, China
- Fujian Provincial Key Laboratory of Molecular Medicine & Xiamen Key Lab of Marine and Gene Drugs, Xiamen, China
- Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen, China
| | - Tingjin Zheng
- School of Medicine, Huaqiao University, Quanzhou, China
- Fujian Provincial Key Laboratory of Molecular Medicine & Xiamen Key Lab of Marine and Gene Drugs, Xiamen, China
- Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen, China
| | - Nan Jiang
- School of Medicine, Huaqiao University, Quanzhou, China
- Fujian Provincial Key Laboratory of Molecular Medicine & Xiamen Key Lab of Marine and Gene Drugs, Xiamen, China
| | - Ruian Xu
- School of Medicine, Huaqiao University, Quanzhou, China
- Fujian Provincial Key Laboratory of Molecular Medicine & Xiamen Key Lab of Marine and Gene Drugs, Xiamen, China
- Engineering Research Center of Molecular Medicine, Ministry of Education, Xiamen, China
- * E-mail:
| |
Collapse
|
36
|
Yasunaga JI. Strategies of Human T-Cell Leukemia Virus Type 1 for Persistent Infection: Implications for Leukemogenesis of Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2020; 11:979. [PMID: 32508789 PMCID: PMC7248384 DOI: 10.3389/fmicb.2020.00979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 01/21/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection in vivo in two distinct ways: de novo infection and clonal proliferation of infected cells. Two viral genes, Tax and HTLV-1 bZIP factor (HBZ) play critical roles in viral transcription and promotion of T-cell proliferation, respectively. Tax is a potent transactivator not only for viral transcription but also for many cellular oncogenic pathways, such as the NF-κB pathway. HBZ is a suppressor of viral transcription and has the potential to change the immunophenotype of infected cells, conferring an effector regulatory T cell (eTreg)-like signature (CD4+ CD25+ CCR4+ TIGIT+ Foxp3+) and enhancing the proliferation of this subset. Reports that mice transgenic for either gene develop malignant tumors suggest that both Tax and HBZ are involved in leukemogenesis by HTLV-1. However, the immunogenicity of Tax is very high, and its expression is generally suppressed in vivo. Recently, it was found that Tax can be expressed transiently in a small subpopulation of adult T-cell leukemia-lymphoma (ATL) cells and plays a critical role in maintenance of the overall population. HBZ is expressed in almost all infected cells except for the rare Tax-expressing cells, and activates the pathways associated with cell proliferation. These findings indicate that HTLV-1 fine-tunes the expression of viral genes to control the mode of viral propagation. The interplay between Tax and HBZ is the basis of a sophisticated strategy to evade host immune surveillance and increase transmission - and can lead to ATL as a byproduct.
Collapse
Affiliation(s)
- Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
37
|
The Complex Relationship between HTLV-1 and Nonsense-Mediated mRNA Decay (NMD). Pathogens 2020; 9:pathogens9040287. [PMID: 32326562 PMCID: PMC7238105 DOI: 10.3390/pathogens9040287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Before the establishment of an adaptive immune response, retroviruses can be targeted by several cellular host factors at different stages of the viral replication cycle. This intrinsic immunity relies on a large diversity of antiviral processes. In the case of HTLV-1 infection, these active innate host defense mechanisms are debated. Among these mechanisms, we focused on an RNA decay pathway called nonsense-mediated mRNA decay (NMD), which can target multiple viral RNAs, including HTLV-1 unspliced RNA, as has been recently demonstrated. NMD is a co-translational process that depends on the RNA helicase UPF1 and regulates the expression of multiple types of host mRNAs. RNA sensitivity to NMD depends on mRNA organization and the ribonucleoprotein (mRNP) composition. HTLV-1 has evolved several means to evade the NMD threat, leading to NMD inhibition. In the early steps of infection, NMD inhibition favours the production of HTLV-1 infectious particles, which may contribute to the survival of the fittest clones despite genome instability; however, its direct long-term impact remains to be investigated.
Collapse
|
38
|
Matsuoka M, Mesnard JM. HTLV-1 bZIP factor: the key viral gene for pathogenesis. Retrovirology 2020; 17:2. [PMID: 31915026 PMCID: PMC6950816 DOI: 10.1186/s12977-020-0511-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. The HTLV-1 bZIP factor (HBZ) gene is constantly expressed in HTLV-1 infected cells and ATL cells. HBZ protein suppresses transcription of the tax gene through blocking the LTR recruitment of not only ATF/CREB factors but also CBP/p300. HBZ promotes transcription of Foxp3, CCR4, and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). Thus, HBZ is critical for the immunophenotype of infected cells and ATL cells. HBZ also functions in its RNA form. HBZ RNA suppresses apoptosis and promotes proliferation of T cells. Since HBZ RNA is not recognized by cytotoxic T cells, HTLV-1 has a clever strategy for avoiding immune detection. HBZ plays central roles in maintaining infected T cells in vivo and determining their immunophenotype.
Collapse
Affiliation(s)
- Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan. .,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | |
Collapse
|
39
|
Rocamonde B, Carcone A, Mahieux R, Dutartre H. HTLV-1 infection of myeloid cells: from transmission to immune alterations. Retrovirology 2019; 16:45. [PMID: 31870397 PMCID: PMC6929313 DOI: 10.1186/s12977-019-0506-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Auriane Carcone
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
40
|
Jégado B, Kashanchi F, Dutartre H, Mahieux R. STLV-1 as a model for studying HTLV-1 infection. Retrovirology 2019; 16:41. [PMID: 31843020 PMCID: PMC6915939 DOI: 10.1186/s12977-019-0503-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies demonstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 represents a unique tool used for performing clinical studies, vaccine studies as well as basic science.
Collapse
Affiliation(s)
- Brice Jégado
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
41
|
Miura M, Dey S, Ramanayake S, Singh A, Rueda DS, Bangham CRM. Kinetics of HTLV-1 reactivation from latency quantified by single-molecule RNA FISH and stochastic modelling. PLoS Pathog 2019; 15:e1008164. [PMID: 31738810 PMCID: PMC6886867 DOI: 10.1371/journal.ppat.1008164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 12/02/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023] Open
Abstract
The human T cell leukemia virus HTLV-1 establishes a persistent infection in vivo in which the viral sense-strand transcription is usually silent at a given time in each cell. However, cellular stress responses trigger the reactivation of HTLV-1, enabling the virus to transmit to a new host cell. Using single-molecule RNA FISH, we measured the kinetics of the HTLV-1 transcriptional reactivation in peripheral blood mononuclear cells (PBMCs) isolated from HTLV-1+ individuals. The abundance of the HTLV-1 sense and antisense transcripts was quantified hourly during incubation of the HTLV-1-infected PBMCs ex vivo. We found that, in each cell, the sense-strand transcription occurs in two distinct phases: the initial low-rate transcription is followed by a phase of rapid transcription. The onset of transcription peaked between 1 and 3 hours after the start of in vitro incubation. The variance in the transcription intensity was similar in polyclonal HTLV-1+ PBMCs (with tens of thousands of distinct provirus insertion sites), and in samples with a single dominant HTLV-1+ clone. A stochastic simulation model was developed to estimate the parameters of HTLV-1 proviral transcription kinetics. In PBMCs from a leukemic subject with one dominant T-cell clone, the model indicated that the average duration of HTLV-1 sense-strand activation by Tax (i.e. the rapid transcription) was less than one hour. HTLV-1 antisense transcription was stable during reactivation of the sense-strand. The antisense transcript HBZ was produced at an average rate of ~0.1 molecules per hour per HTLV-1+ cell; however, between 20% and 70% of HTLV-1-infected cells were HBZ-negative at a given time, the percentage depending on the individual subject. HTLV-1-infected cells are exposed to a range of stresses when they are drawn from the host, which initiate the viral reactivation. We conclude that whereas antisense-strand transcription is stable throughout the stress response, the HTLV-1 sense-strand reactivation is highly heterogeneous and occurs in short, self-terminating bursts.
Collapse
Affiliation(s)
- Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Supravat Dey
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - David S. Rueda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Rauch DA, Conlon KC, Janakiram M, Brammer JE, Harding JC, Ye BH, Zang X, Ren X, Olson S, Cheng X, Miljkovic MD, Sundaramoorthi H, Joseph A, Skidmore ZL, Griffith O, Griffith M, Waldmann TA, Ratner L. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood 2019; 134:1406-1414. [PMID: 31467059 PMCID: PMC6839957 DOI: 10.1182/blood.2019002038] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors are a powerful new tool in the treatment of cancer, with prolonged responses in multiple diseases, including hematologic malignancies, such as Hodgkin lymphoma. However, in a recent report, we demonstrated that the PD-1 inhibitor nivolumab led to rapid progression in patients with adult T-cell leukemia/lymphoma (ATLL) (NCT02631746). We obtained primary cells from these patients to determine the cause of this hyperprogression. Analyses of clonality, somatic mutations, and gene expression in the malignant cells confirmed the report of rapid clonal expansion after PD-1 blockade in these patients, revealed a previously unappreciated origin of these malignant cells, identified a novel connection between ATLL cells and tumor-resident regulatory T cells (Tregs), and exposed a tumor-suppressive role for PD-1 in ATLL. Identifying the mechanisms driving this alarming outcome in nivolumab-treated ATLL may be broadly informative for the growing problem of rapid progression with immune checkpoint therapies.
Collapse
Affiliation(s)
- Daniel A Rauch
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Murali Janakiram
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan E Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH; and
| | - John C Harding
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Sydney Olson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Xiaogang Cheng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Hemalatha Sundaramoorthi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ancy Joseph
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Obi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Institutes of Health, Bethesda, MD
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
43
|
Millen S, Gross C, Donhauser N, Mann MC, Péloponèse JM, Thoma-Kress AK. Collagen IV (COL4A1, COL4A2), a Component of the Viral Biofilm, Is Induced by the HTLV-1 Oncoprotein Tax and Impacts Virus Transmission. Front Microbiol 2019; 10:2439. [PMID: 31708905 PMCID: PMC6819499 DOI: 10.3389/fmicb.2019.02439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent for Adult T-Cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 infects CD4+ T-cells via cell-to-cell transmission requiring reorganization of the cytoskeleton and expression of the viral transactivator and oncoprotein Tax. Viruses spread at the virological synapse (VS), a virus-induced specialized cell-cell contact, by polarized budding into synaptic clefts, and by cell surface transfer of viral biofilms (VBs). Since little is known about Tax’s role in formation of the VB, we asked which component of the VB is regulated by Tax and important for HTLV-1 transmission. Collagens are not only structural proteins of the extracellular matrix and basal membrane but also represent an important component of the VB. Here, we report that among the collagens known to be present in VBs, COL4 is specifically upregulated in the presence of HTLV-1 infection. Further, we found that transient expression of Tax is sufficient to induce COL4A1 and COL4A2 transcripts in Jurkat and CCRF-CEM T-cells, while robust induction of COL4 protein requires continuous Tax expression as shown in Tax-transformed T-cell lines. Repression of Tax led to a significant reduction of COL4A1/A2 transcripts and COL4 protein. Mechanistically, luciferase-based promoter studies indicate that Tax activates the COL4A2 and, to a less extent, the COL4A1 promoter. Imaging showing partial co-localization of COL4 with the viral Gag protein in VBs at the VS and transfer of COL4 and Gag to target cells suggests a role of COL4 in VB formation. Strikingly, in chronically infected C91-PL cells, knockout of COL4A2 impaired Gag transfer between infected T-cells and acceptor T-cells, while release of virus-like particles was unaffected. Taken together, we identified COL4 (COL4A1, COL4A2) as a component of the VB and a novel cellular target of Tax with COL4A2 appearing to impact virus transmission. Thus, this study is the first to provide a link between Tax’s activity and VB formation by hijacking COL4 protein functions.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Gross
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Norbert Donhauser
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie C Mann
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jean-Marie Péloponèse
- IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Bangham CRM, Miura M, Kulkarni A, Matsuoka M. Regulation of Latency in the Human T Cell Leukemia Virus, HTLV-1. Annu Rev Virol 2019; 6:365-385. [PMID: 31283437 DOI: 10.1146/annurev-virology-092818-015501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human T cell leukemia virus persists in vivo in 103 to 106 clones of T lymphocytes that appear to survive for the lifetime of the host. The plus strand of the provirus is typically transcriptionally silent in freshly isolated lymphocytes, but the strong, persistently activated cytotoxic T lymphocyte (CTL) response to the viral antigens indicates that the virus is not constantly latent in vivo. There is now evidence that the plus strand is transcribed in intense intermittent bursts that are triggered by cellular stress, modulated by hypoxia and glycolysis, and inhibited by polycomb repressive complex 1 (PRC1). The minus-strand gene hbz is transcribed at a lower, more constant level but is silent in a proportion of infected cells at a given time. Viral genes in the sense and antisense strands of the provirus play different respective roles in latency and de novo infection: Expression of the plus-strand gene tax is essential for de novo infection, whereas hbz appears to facilitate survival of the infected T cell clone in vivo.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Michi Miura
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Anurag Kulkarni
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan;
| |
Collapse
|
45
|
Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition. Proc Natl Acad Sci U S A 2019; 116:20104-20114. [PMID: 31527246 PMCID: PMC6778204 DOI: 10.1073/pnas.1907154116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Normal cells can be transformed into cancer cells by viral oncogenes. Reversion of a viral human cancer cell, however, into a differentiated cell by viral oncogene inhibition has not been described. Merkel cell carcinoma (MCC) is a neuroendocrine cancer caused by Merkel cell polyomavirus (MCV) that encodes a T antigen oncogene. When MCV+ MCC cells with T antigen knockdown are cocultured with keratinocytes, the MCC phenotype converts to a differentiated neuronal phenotype and loses Merkel cell factor Sox2 and Atoh1 expression. MCV large T activates Sox2 and Atoh1 by its ability to inhibit retinoblastoma. Sox2 inhibition similarly induced this phenotypic conversion of MCC. These findings suggest that MCV induces cancer by dysregulating embryonic Merkel cell differentiation pathways. Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20. Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor.
Collapse
|
46
|
Pentosan Polysulfate Demonstrates Anti-human T-Cell Leukemia Virus Type 1 Activities In Vitro and In Vivo. J Virol 2019; 93:JVI.00413-19. [PMID: 31167921 DOI: 10.1128/jvi.00413-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection causes T-cell leukemia and inflammatory diseases, most notably including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The underlying mechanism for the pathogenesis of HAM/TSP remains unclear. According to a recent clinical trial, a humanized antibody that targets CCR4+ cells ameliorates inflammation by reducing the number of infected cells in the central nervous system; this result suggests that the transmigration of HTLV-1-infected cells plays a crucial role in HAM/TSP. Partly due to the blood-brain barrier, current treatments for HAM/TSP are mostly palliative. Pentosan polysulfate (PPS), a semisynthetic glycosaminoglycan, has recently been used to treat HAM/TSP and was found to alleviate the symptoms. In this study, we investigated the effect of PPS on HTLV-1-infected cells and provide evidence for its efficacy in HAM/TSP. PPS was cytotoxic to certain HTLV-1-infected cells and significantly suppressed HTLV-1 virion production. PPS also efficiently inhibited HTLV-1 cell-cell transmission in T cells. In addition, PPS blocked HTLV-1 infection of primary endothelial cells (human umbilical vascular endothelial cells) and suppressed the subsequent induction of proinflammatory cytokine expression. Furthermore, PPS was found to inhibit the adhesion and transmigration of HTLV-1-infected cells. We also confirmed the anti-HTLV-1 effect of PPS in vivo using two mouse models. PPS blocked HTLV-1 infection in a mouse model with peripheral blood mononuclear cell (PBMC)-humanized NOD-scid IL2Rgammanull (huPBMC NSG) mice. PPS was also found to suppress the development of dermatitis and lung damage in HTLV-1 bZIP factor (HBZ)-transgenic (HBZ-Tg) mice, an HTLV-1 transgenic mouse model in which the mice develop systemic inflammation.IMPORTANCE HTLV-1 is the first human retrovirus to have been identified and is endemic in certain areas worldwide. HTLV-1 infection leads to the development of an inflammatory disease called HAM/TSP, a myelopathy characterized by slowly progressive spastic paraparesis. There have been no effective therapeutics available for HAM/TSP, but recently, a semisynthetic glycosaminoglycan, named pentosan polysulfate (PPS), has been found to alleviate the symptoms of HAM/TSP. Here we conducted a comprehensive study on the effect of PPS both in vitro and in vivo PPS demonstrated anti-HTLV-1 potential in infected cell lines, as shown by its suppressive effects on HTLV-1 replication and transmission and on the transmigration of infected T cells. Moreover, results obtained from two HTLV-1 mouse models demonstrate that PPS inhibits HTLV-1 infection and inflammation development in vivo Our work offers insights into the treatment of HAM/TSP by PPS and also suggests its possible use for treating other HTLV-1-induced inflammatory diseases.
Collapse
|
47
|
Raboso-Gallego J, Casado-García A, Isidro-Hernández M, Vicente-Dueñas C. Epigenetic Priming in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:137. [PMID: 31380372 PMCID: PMC6652134 DOI: 10.3389/fcell.2019.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/28/2023] Open
Abstract
Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a “hit-and-run” way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.
Collapse
Affiliation(s)
- Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
48
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
49
|
[Astute strategies of HTLV-1 with driven viral genes]. Uirusu 2019; 69:37-46. [PMID: 32938893 DOI: 10.2222/jsv.69.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the world's first retrovirus with pathogenicity to cause adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases,such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. As the virological characteristic, HTLV-1 can transmit efficiently only through cell-to-cell contact. Spread of infection and viral persistence is ingeniously driven by several viral genes as exemplified by HTLV-1 bZIP factor (HBZ) and tax. After the infection, the virus promotes proliferation and immortalization of the infected cells with acculturating immunophenotype into effector/memory T cells. In addition, HBZ enhances expression of co-inhibitory receptors on the surface of infected cells, potentially leading to suppression of host immune responses. These viral strategies can also result in unforeseen by-product, the pathogenicity of HTLV-1-associated diseases. In this review, with recent progress of HTLV-1 researches, we focus on astute regulation systems of the viral genes developed by HTLV-1.
Collapse
|
50
|
Futsch N, Prates G, Mahieux R, Casseb J, Dutartre H. Cytokine Networks Dysregulation during HTLV-1 Infection and Associated Diseases. Viruses 2018; 10:v10120691. [PMID: 30563084 PMCID: PMC6315340 DOI: 10.3390/v10120691] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a neural chronic inflammation, called HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and of a malignant lymphoproliferation, called the adult T-cell leukemia/lymphoma (ATLL). The mechanisms through which the HTLV-1 induces these diseases are still unclear, but they might rely on immune alterations. HAM/TSP is associated with an impaired production of pro-inflammatory cytokines and chemokines, such as IFN-γ, TNF-α, CXCL9, or CXCL10. ATLL is associated with high levels of IL-10 and TGF-β. These immunosuppressive cytokines could promote a protumoral micro-environment. Moreover, HTLV-1 infection impairs the IFN-I production and signaling, and favors the IL-2, IL-4, and IL-6 expression. This contributes both to immune escape and to infected cells proliferation. Here, we review the landscape of cytokine dysregulations induced by HTLV-1 infection and the role of these cytokines in the HTLV-1-associated diseases progression.
Collapse
Affiliation(s)
- Nicolas Futsch
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Gabriela Prates
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Renaud Mahieux
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| | - Jorge Casseb
- Institute of Tropical Medicine of São Paulo, São Paulo, SP 05403-000, Brazil.
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, São Paulo, SP 01246-100, Brazil.
| | - Hélène Dutartre
- Équipe Oncogenèse Rétrovirale, Equipe Labellisée «FRM», CIRI-Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, Labex Ecofect, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|