1
|
Kankaka EN, Poon AFY, Quinn TC, Chang LW, Prodger JL, Redd AD. Impact of Variable Sampling on Estimates of HIV-1 Reservoir Formation Dates. J Infect Dis 2024; 230:928-932. [PMID: 38819322 PMCID: PMC11481468 DOI: 10.1093/infdis/jiae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024] Open
Abstract
Timing of human immunodeficiency virus-1 (HIV-1) reservoir formation is important for informing HIV cure efforts. It is unclear how much of the variability seen in dating reservoir formation is due to sampling and gene-specific differences. We used a Bayesian extension of root to tip regression (bayroot) to reestimate formation date distributions in participants from Swedish and South African cohorts, and assessed the impact of variable timing, frequency, and depth of sampling on these estimates. Significant shifts in formation date distributions were only observed with use of faster-evolving genes, while timing, frequency, and depth of sampling had minor or no significant effect on estimates.
Collapse
Affiliation(s)
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Thomas C Quinn
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
- Division of Intramural Research, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Baltimore, MD, USA
| | - Larry W Chang
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew D Redd
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
- Division of Intramural Research, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Baltimore, MD, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Shahid A, Jones BR, Duncan MC, MacLennan S, Dapp MJ, Kuniholm MH, Aouizerat B, Archin NM, Gange S, Ofotokun I, Fischl MA, Kassaye S, Goldstein H, Anastos K, Joy JB, Brumme ZL. A simple phylogenetic approach to analyze hypermutated HIV proviruses reveals insights into their dynamics and persistence during antiretroviral therapy. RESEARCH SQUARE 2024:rs.3.rs-4549934. [PMID: 38947061 PMCID: PMC11213167 DOI: 10.21203/rs.3.rs-4549934/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hypermutated proviruses, which arise in a single HIV replication cycle when host antiviral APOBEC3 proteins introduce extensive G-to-A mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). But, the within-host evolutionary origins of hypermutated sequences are incompletely understood because phylogenetic inference algorithms, which assume that mutations gradually accumulate over generations, incorrectly reconstruct their ancestor-descendant relationships. Using > 1400 longitudinal single-genome-amplified HIV env-gp120 sequences isolated from six women over a median 18 years of follow-up - including plasma HIV RNA sequences collected over a median 9 years between seroconversion and ART initiation, and > 500 proviruses isolated over a median 9 years on ART - we evaluated three approaches for removing hypermutation from nucleotide alignments. Our goals were to 1) reconstruct accurate phylogenies that can be used for molecular dating and 2) phylogenetically infer the integration dates of hypermutated proviruses persisting during ART. Two of the tested approaches (stripping all positions containing putative APOBEC3 mutations from the alignment, or replacing individual putative APOBEC3 mutations in hypermutated sequences with the ambiguous base R) consistently normalized tree topologies, eliminated erroneous clustering of hypermutated proviruses, and brought env-intact and hypermutated proviruses into comparable ranges with respect to multiple tree-based metrics. Importantly, these corrected trees produced integration date estimates for env-intact proviruses that were highly concordant with those from benchmark trees that excluded hypermutated sequences, indicating that the corrected trees can be used for molecular dating. Use of these trees to infer the integration dates of hypermutated proviruses persisting during ART revealed that these spanned a wide age range, with the oldest ones dating to shortly after infection. This indicates that hypermutated proviruses, like other provirus types, begin to be seeded into the proviral pool immediately following infection, and can persist for decades. In two of the six participants, hypermutated proviruses differed from env-intact ones in terms of their age distributions, suggesting that different provirus types decay at heterogeneous rates in some hosts. These simple approaches to reconstruct hypermutated provirus' evolutionary histories, allow insights into their in vivo origins and longevity, towards a more comprehensive understanding of HIV persistence during ART.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R Jones
- Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, USA
| | | | - Nancie M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Margaret A Fischl
- Division of Infectious Diseases, Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey B Joy
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobarrubias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. J Virol 2024; 98:e0165523. [PMID: 38214547 PMCID: PMC10878278 DOI: 10.1128/jvi.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Kyle Cobarrubias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Michael J. Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A. Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adaora Adimora
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Mark H. Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I. Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - the MACS/WIHS combined cohort study (MWCSS)OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- College of Dentistry, New York University, New York, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Joseph SB, Abrahams MR, Moeser M, Tyers L, Archin NM, Council OD, Sondgeroth A, Spielvogel E, Emery A, Zhou S, Doolabh D, Ismail SD, Karim SA, Margolis DM, Pond SK, Garrett N, Swanstrom R, Williamson C. The timing of HIV-1 infection of cells that persist on therapy is not strongly influenced by replication competency or cellular tropism of the provirus. PLoS Pathog 2024; 20:e1011974. [PMID: 38422171 DOI: 10.1371/journal.ppat.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/12/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3' half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART.
Collapse
Affiliation(s)
- Sarah B Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nancie M Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olivia D Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D Ismail
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| |
Collapse
|
6
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. mBio 2023; 14:e0241723. [PMID: 37971267 PMCID: PMC10746175 DOI: 10.1128/mbio.02417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Reeves DB, Mayer BT, deCamp AC, Huang Y, Zhang B, Carpp LN, Magaret CA, Juraska M, Gilbert PB, Montefiori DC, Bar KJ, Cardozo-Ojeda EF, Schiffer JT, Rossenkhan R, Edlefsen P, Morris L, Mkhize NN, Williamson C, Mullins JI, Seaton KE, Tomaras GD, Andrew P, Mgodi N, Ledgerwood JE, Cohen MS, Corey L, Naidoo L, Orrell C, Goepfert PA, Casapia M, Sobieszczyk ME, Karuna ST, Edupuganti S. High monoclonal neutralization titers reduced breakthrough HIV-1 viral loads in the Antibody Mediated Prevention trials. Nat Commun 2023; 14:8299. [PMID: 38097552 PMCID: PMC10721814 DOI: 10.1038/s41467-023-43384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
The Antibody Mediated Prevention (AMP) trials (NCT02716675 and NCT02568215) demonstrated that passive administration of the broadly neutralizing monoclonal antibody VRC01 could prevent some HIV-1 acquisition events. Here, we use mathematical modeling in a post hoc analysis to demonstrate that VRC01 influenced viral loads in AMP participants who acquired HIV. Instantaneous inhibitory potential (IIP), which integrates VRC01 serum concentration and VRC01 sensitivity of acquired viruses in terms of both IC50 and IC80, follows a dose-response relationship with first positive viral load (p = 0.03), which is particularly strong above a threshold of IIP = 1.6 (r = -0.6, p = 2e-4). Mathematical modeling reveals that VRC01 activity predicted from in vitro IC80s and serum VRC01 concentrations overestimates in vivo neutralization by 600-fold (95% CI: 300-1200). The trained model projects that even if future therapeutic HIV trials of combination monoclonal antibodies do not always prevent acquisition, reductions in viremia and reservoir size could be expected.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Bo Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michal Juraska
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Fabian Cardozo-Ojeda
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Raabya Rossenkhan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - James I Mullins
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Nyaradzo Mgodi
- Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myron S Cohen
- Institute for Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Catherine Orrell
- Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paul A Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin Casapia
- Facultad de Medicina Humana, Universidad Nacional de la Amazonia Peru, Iquitos, Peru
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Shelly T Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- GreenLight Biosciences, Medford, MA, USA
| | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Sambaturu N, Fray EJ, Wu F, Zitzmann C, Simonetti FR, Barouch DH, Siliciano JD, Siliciano RF, Ribeiro RM, Perelson AS, Molina-París C, Leitner T. Last in first out: SIV proviruses seeded later in infection are harbored in short-lived CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565539. [PMID: 37961482 PMCID: PMC10635124 DOI: 10.1101/2023.11.03.565539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
HIV can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells of infected individuals and as such is unaffected by antiretroviral therapy (ART). Despite being a major obstacle for eradication efforts, the genetic variation and timing of formation of this latent reservoir remains poorly understood. Previous studies on when virus is deposited in the latent reservoir have come to contradictory conclusions. To reexamine the genetic variation of HIV in CD4+ T cells during ART, we determined the divergence in envelope sequences collected from 10 SIV infected rhesus macaques. We found that the macaques displayed a biphasic decline of the viral divergence over time, where the first phase lasted for an average of 11.6 weeks (range 4-28 weeks). Motivated by recent observations that the HIV-infected CD4+ T cell population is composed of short- and long-lived subsets, we developed a model to study the divergence dynamics. We found that SIV in short-lived cells was on average more diverged, while long-lived cells harbored less diverged virus. This suggests that the long-lived cells harbor virus deposited starting earlier in infection and continuing throughout infection, while short-lived cells predominantly harbor more recent virus. As these cell populations decayed, the overall proviral divergence decline matched that observed in the empirical data. This model explains previous seemingly contradictory results on the timing of virus deposition into the latent reservoir, and should provide guidance for future eradication efforts.
Collapse
Affiliation(s)
- Narmada Sambaturu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carolin Zitzmann
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
9
|
Suanzes P, Navarro J, Rando-Segura A, Álvarez-López P, García J, Descalzo V, Monforte A, Arando M, Rodríguez L, Planas B, Burgos J, Curran A, Buzón MJ, Falcó V. Impact of very early antiretroviral therapy during acute HIV infection on long-term immunovirological outcomes. Int J Infect Dis 2023; 136:100-106. [PMID: 37726066 DOI: 10.1016/j.ijid.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES We aimed to determine if starting antiretroviral therapy (ART) in the first 30 days after acquiring HIV infection has an impact on immunovirological response. METHODS Observational, ambispective study including 147 patients with confirmed acute HIV infection (January/1995-August/2022). ART was defined as very early (≤30 days after the estimated date of infection), early (31-180 days), and late (>180 days). We compared time to viral suppression (viral load [VL] <50 copies/ml) and immune recovery (IR) (CD4+/CD8+ ratio ≥1) according to the timing and type of ART using survival analysis. RESULTS ART was started in 140 (95.2%) patients. ART was very early in 24 (17.1%), early in 77 (55.0%), and late in 39 (27.9%) cases. Integrase strand transfer inhibitor (INSTI)-based regimens were the most used in both the overall population (65%) and the very early ART group (23/24, 95.8%). Median HIV VL and CD4+/CD8+ ratio pre-ART were higher in the very early ART group (P <0.05). Patients in the very early and early ART groups and treated with INSTI-based regimens achieved IR earlier (P <0.05). Factors associated with faster IR were the CD4+/CD8+ ratio pre-ART (hazard ratio: 9.3, 95% CI: 3.1-27.8, P <0.001) and INSTI-based regimens (hazard ratio: 2.4, 95% CI: 1.3-4.2, P = 0.003). CONCLUSIONS The strongest predictors of IR in patients who start ART during AHI are the CD4+/CD8+ ratio pre-ART and INSTI-based ART regimens.
Collapse
Affiliation(s)
- Paula Suanzes
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Ariadna Rando-Segura
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Patricia Álvarez-López
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jorge García
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicente Descalzo
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Arnau Monforte
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maider Arando
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lucía Rodríguez
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bibiana Planas
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquín Burgos
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Adrian Curran
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María José Buzón
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
Yucha R, Litchford ML, Fish CS, Yaffe ZA, Richardson BA, Maleche-Obimbo E, John-Stewart G, Wamalwa D, Overbaugh J, Lehman DA. Higher HIV-1 Env gp120-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity Is Associated with Lower Levels of Defective HIV-1 Provirus. Viruses 2023; 15:2055. [PMID: 37896832 PMCID: PMC10611199 DOI: 10.3390/v15102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
A cure for HIV-1 (HIV) remains unrealized due to a reservoir of latently infected cells that persist during antiretroviral therapy (ART), with reservoir size associated with adverse health outcomes and inversely with time to viral rebound upon ART cessation. Once established during ART, the HIV reservoir decays minimally over time; thus, understanding factors that impact the size of the HIV reservoir near its establishment is key to improving the health of people living with HIV and for the development of novel cure strategies. Yet, to date, few correlates of HIV reservoir size have been identified, particularly in pediatric populations. Here, we employed a cross-subtype intact proviral DNA assay (CS-IPDA) to quantify HIV provirus between one- and two-years post-ART initiation in a cohort of Kenyan children (n = 72), which had a median of 99 intact (range: 0-2469), 1340 defective (range: 172-3.84 × 104), and 1729 total (range: 178-5.11 × 104) HIV proviral copies per one million T cells. Additionally, pre-ART plasma was tested for HIV Env-specific antibody-dependent cellular cytotoxicity (ADCC) activity. We found that pre-ART gp120-specific ADCC activity inversely correlated with defective provirus levels (n = 68, r = -0.285, p = 0.0214) but not the intact reservoir (n = 68, r = -0.0321, p-value = 0.800). Pre-ART gp41-specific ADCC did not significantly correlate with either proviral population (n = 68; intact: r = -0.0512, p-value = 0.686; defective: r = -0.109, p-value = 0.389). This suggests specific host immune factors prior to ART initiation can impact proviruses that persist during ART.
Collapse
Affiliation(s)
- Ryan Yucha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Morgan L. Litchford
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn S. Fish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi P.O. Box 30197, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobamibias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. RESEARCH SQUARE 2023:rs.3.rs-3259040. [PMID: 37645749 PMCID: PMC10462229 DOI: 10.21203/rs.3.rs-3259040/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kyle Cobamibias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nande M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, NC, USA
| | - Margaret A Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adaora Adimora
- Departments of Medicine and Epidemiology, University of North Carolina School of Medicine, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, NY, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Lewis CA, Margolis DM, Browne EP. New Concepts in Therapeutic Manipulation of HIV-1 Transcription and Latency: Latency Reversal versus Latency Prevention. Viruses 2023; 15:1677. [PMID: 37632019 PMCID: PMC10459382 DOI: 10.3390/v15081677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved the prognosis for people living with HIV-1, but a cure remains elusive. The largest barrier to a cure is the presence of a long-lived latent reservoir that persists within a heterogenous mix of cell types and anatomical compartments. Efforts to eradicate the latent reservoir have primarily focused on latency reversal strategies. However, new work has demonstrated that the majority of the long-lived latent reservoir is established near the time of ART initiation, suggesting that it may be possible to pair an intervention with ART initiation to prevent the formation of a sizable fraction of the latent reservoir. Subsequent treatment with latency reversal agents, in combination with immune clearance agents, may then be a more tractable strategy for fully clearing the latent reservoir in people newly initiating ART. Here, we summarize molecular mechanisms of latency establishment and maintenance, ongoing efforts to develop effective latency reversal agents, and newer efforts to design latency prevention agents. An improved understanding of the molecular mechanisms involved in both the establishment and maintenance of latency will aid in the development of new latency prevention and reversal approaches to ultimately eradicate the latent reservoir.
Collapse
Affiliation(s)
- Catherine A. Lewis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M. Margolis
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward P. Browne
- University of North Carolina HIV Cure Center, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Infectious Diseases, Department of Medicine, UNC Chapel Hill School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Kankaka EN, Redd AD, Khan A, Reynolds SJ, Saraf S, Kirby C, Lynch B, Hackman J, Tomusange S, Kityamuweesi T, Jamiru S, Anok A, Buule P, Bruno D, Martens C, Chang LW, Quinn TC, Prodger JL, Poon A. Dating reservoir formation in virologically suppressed people living with HIV-1 in Rakai, Uganda. Virus Evol 2023; 9:vead046. [PMID: 37547379 PMCID: PMC10399970 DOI: 10.1093/ve/vead046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
The timing of the establishment of the HIV latent viral reservoir (LVR) is of particular interest, as there is evidence that proviruses are preferentially archived at the time of antiretroviral therapy (ART) initiation. Quantitative viral outgrowth assays (QVOAs) were performed using Peripheral Blood Mononuclear Cells (PBMC) collected from Ugandans living with HIV who were virally suppressed on ART for >1 year, had known seroconversion windows, and at least two archived ART-naïve plasma samples. QVOA outgrowth populations and pre-ART plasma samples were deep sequenced for the pol and gp41 genes. The bayroot program was used to estimate the date that each outgrowth virus was incorporated into the reservoir. Bayroot was also applied to previously published data from a South African cohort. In the Ugandan cohort (n = 11), 87.9 per cent pre-ART and 56.3 per cent viral outgrowth sequences were unique. Integration dates were estimated to be relatively evenly distributed throughout viremia in 9/11 participants. In contrast, sequences from the South African cohort (n = 9) were more commonly estimated to have entered the LVR close to ART initiation, as previously reported. Timing of LVR establishment is variable between populations and potentially viral subtypes, which could limit the effectiveness of interventions that target the LVR only at ART initiation.
Collapse
Affiliation(s)
- Edward Nelson Kankaka
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Andrew D Redd
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Anzio Rd, Observatory, Cape Town 7925, South Africa
| | - Amjad Khan
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| | - Steven J Reynolds
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Sharada Saraf
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Charles Kirby
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Briana Lynch
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Jada Hackman
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Stephen Tomusange
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Taddeo Kityamuweesi
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Samiri Jamiru
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Aggrey Anok
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Paul Buule
- Research Department, Rakai Health Sciences Program, 4-6 Sanitary Lane, Old Bukoba Road, Kalisizo 256, Uganda
| | - Daniel Bruno
- Genomic Unit, Rocky Mountain Laboratories, NIAID, NIH, 904 South Fourth Street, Hamilton, MT 59840, USA
| | - Craig Martens
- Genomic Unit, Rocky Mountain Laboratories, NIAID, NIH, 904 South Fourth Street, Hamilton, MT 59840, USA
| | - Larry W Chang
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
| | - Thomas C Quinn
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 615 N. Wolfe Street, Baltimore, MD 21211, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, MSC, Bethesda, MD 9806, USA
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| | - Art Poon
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 5K8, Canada
| |
Collapse
|
14
|
Neary J, Fish CS, Cassidy NAJ, Wamalwa D, Langat A, Ngugi E, Benki-Nugent S, Moraa H, Richardson BA, Njuguna I, Slyker JA, Lehman DA, John-Stewart G. Predictors of intact HIV DNA levels among children in Kenya. AIDS 2023; 37:871-876. [PMID: 36723512 PMCID: PMC10079608 DOI: 10.1097/qad.0000000000003499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We determined predictors of both intact (estimate of replication-competent) and total (intact and defective) HIV DNA in the reservoir among children with HIV. DESIGN HIV DNA in the reservoir was quantified longitudinally in children who initiated antiretroviral therapy (ART) at less than 1 year of age using a novel cross-subtype intact proviral DNA assay that measures both intact and total proviruses. Quantitative PCR was used to measure pre-ART cytomegalovirus (CMV) viral load. Linear mixed effects models were used to determine predictors of intact and total HIV DNA levels (log 10 copies/million). RESULTS Among 65 children, median age at ART initiation was 5 months and median follow-up was 5.2 years; 86% of children had CMV viremia pre-ART. Lower pre-ART CD4 + percentage [adjusted relative risk (aRR): 0.87, 95% confidence intervals (95% CI): 0.79-0.97; P = 0.009] and higher HIV RNA (aRR: 1.21, 95% CI: 1.06-1.39; P = 0.004) predicted higher levels of total HIV DNA during ART. Pre-ART CD4 + percentage (aRR: 0.76, 95% CI: 0.65-0.89; P < 0.001), CMV viral load (aRR: 1.16, 95% CI: 1.01-1.34; P = 0.041), and first-line protease inhibitor-based regimens compared with nonnucleoside reverse transcriptase-based regimens (aRR: 1.36, 95% CI: 1.04-1.77; P = 0.025) predicted higher levels of intact HIV DNA. CONCLUSION Pre-ART immunosuppression, first-line ART regimen, and CMV viral load may influence establishment and sustainment of intact HIV DNA in the reservoir.
Collapse
Affiliation(s)
- Jillian Neary
- Department of Epidemiology, University of Washington
| | | | | | - Dalton Wamalwa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Agnes Langat
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Evelyn Ngugi
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | - Hellen Moraa
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Barbra A Richardson
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Irene Njuguna
- Department of Global Health
- Kenyatta National Hospital, Nairobi, Kenya
| | - Jennifer A Slyker
- Department of Epidemiology, University of Washington
- Department of Global Health
| | - Dara A Lehman
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health
| | - Grace John-Stewart
- Department of Epidemiology, University of Washington
- Department of Global Health
- Department of Medicine
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536611. [PMID: 37090500 PMCID: PMC10120704 DOI: 10.1101/2023.04.12.536611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
| | | | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Experimental Medicine Program, University of British Columbia, Vancouver, BC
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby BC
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| |
Collapse
|
16
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
17
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
de Azevedo SSD, Côrtes FH, Villela LM, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Bello G. Comparative HIV-1 Proviral Dynamics in Two Individuals That Maintained Viral Replication Control with or without Antiretroviral Therapy following Superinfection. Viruses 2022; 14:v14122802. [PMID: 36560806 PMCID: PMC9783199 DOI: 10.3390/v14122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022] Open
Abstract
The analysis of the HIV-1 proviral dynamics after superinfection in the context of both natural and antiretroviral therapy (ART)-mediated suppression could yield unique insights into understanding the persistence of viral variants that seeded the infected cells at different times. In this study, we performed a longitudinal analysis of the env diversity of PBMC-associated HIV DNA quasispecies in two HIV controllers (EEC09 and VC32) that were superinfected with subtype F1 viruses several years after primoinfection with subtype B viruses. Patient EEC09 started ART soon after superinfection, while patient VC32 maintained a natural control of virus replication for at least six years following the superinfection. Our analysis revealed no significant temporal changes in the overall proportion of primo-infecting and superinfecting proviral variants over 2-3 years after superinfection in both HIV controllers. Upon the introduction of ART, individual EEC09 displayed no evidence of HIV-infected cell turnover or viral evolution, while subject VC32 displayed some level of HIV-infected cell reseeding and detectable evolution (divergence) of both viral variants. These results confirm that proviral variants that seeded the reservoir at different times throughout infection could persist for long periods under fully suppressive ART or natural viremic control, but the HIV-1 proviral dynamics could be different in both settings.
Collapse
Affiliation(s)
- Suwellen Sardinha Dias de Azevedo
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
- Correspondence: or Auwellendias@gmail; Tel.: +55-21-3865-8147; Fax: +55-21-3865-8173
| | - Fernanda H. Côrtes
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Larissa M. Villela
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
19
|
Alves E, Al-Kaabi M, Keane NM, Leary S, Almeida CAM, Deshpande P, Currenti J, Chopra A, Smith R, Castley A, Mallal S, Kalams SA, Gaudieri S, John M. Adaptation to HLA-associated immune pressure over the course of HIV infection and in circulating HIV-1 strains. PLoS Pathog 2022; 18:e1010965. [PMID: 36525463 PMCID: PMC9803285 DOI: 10.1371/journal.ppat.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marwah Al-Kaabi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M. Keane
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Coral-Ann M. Almeida
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alison Castley
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Tettamanti Boshier FA, Reeves DB, Duke ER, Swan DA, Prlic M, Cardozo-Ojeda EF, Schiffer JT. Substantial uneven proliferation of CD4 + T cells during recovery from acute HIV infection is sufficient to explain the observed expanded clones in the HIV reservoir. J Virus Erad 2022; 8:100091. [PMID: 36582473 PMCID: PMC9792356 DOI: 10.1016/j.jve.2022.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
The HIV reservoir is a population of 1-10 million anatomically dispersed, latently infected memory CD4+ T cells in which HIV DNA is quiescently integrated into human chromosomal DNA. When antiretroviral therapy (ART) is stopped and HIV replication initiates in one of these cells, systemic viral spread resumes, rekindling progression to AIDS. Therefore, HIV latency prevents cure. The detection of many populations of identical HIV sequences at unique integration sites implicates CD4+ T cell proliferation as the critical driver of reservoir sustainment after a prolonged period of effective ART. Initial reservoir formation occurs during the first week of primary infection usually before ART is started. While empirical data indicates that both de novo infection and cellular proliferation generate latently infected cells during early untreated infection, it is not known which of these mechanisms is predominant. We developed a mathematical model that recapitulates the profound depletion and brisk recovery of CD4+ T cells, reservoir creation, and viral load trajectory during primary HIV infection. We extended the model to stochastically simulate individual HIV reservoir clones. This model predicts the first detection of HIV infected clones approximately 5 weeks after infection as has recently been shown in vivo and suggests that substantial, uneven proliferation among clones during the recovery from CD4+ lymphopenia is the most plausible explanation for the observed clonal reservoir distribution during the first year of infection.
Collapse
Affiliation(s)
- Florencia A. Tettamanti Boshier
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Elizabeth R. Duke
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - David A. Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Global Health, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - E. Fabian Cardozo-Ojeda
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA, 98122, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
- Clinical Research Division, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
21
|
HIV proviral genetic diversity, compartmentalization and inferred dynamics in lung and blood during long-term suppressive antiretroviral therapy. PLoS Pathog 2022; 18:e1010613. [PMID: 36331974 PMCID: PMC9668181 DOI: 10.1371/journal.ppat.1010613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The lung is an understudied site of HIV persistence. We isolated 898 subgenomic proviral sequences (nef) by single-genome approaches from blood and lung from nine individuals on long-term suppressive antiretroviral therapy (ART), and characterized genetic diversity and compartmentalization using formal tests. Consistent with clonal expansion as a driver of HIV persistence, identical sequences comprised between 8% to 86% of within-host datasets, though their location (blood vs. lung) followed no consistent pattern. The majority (77%) of participants harboured at least one sequence shared across blood and lung, supporting the migration of clonally-expanded cells between sites. The extent of blood proviral diversity on ART was also a strong indicator of diversity in lung (Spearman's ρ = 0.98, p<0.0001). For three participants, insufficient lung sequences were recovered to reliably investigate genetic compartmentalization. Of the remainder, only two participants showed statistically significant support for compartmentalization when analysis was restricted to distinct proviruses per site, and the extent of compartmentalization was modest in both cases. When all within-host sequences (including duplicates) were considered, the number of compartmentalized datasets increased to four. Thus, while a subset of individuals harbour somewhat distinctive proviral populations in blood and lung, this can simply be due to unequal distributions of clonally-expanded sequences. For two participants, on-ART proviruses were also phylogenetically analyzed in context of plasma HIV RNA populations sampled up to 18 years prior, including pre-ART and during previous treatment interruptions. In both participants, on-ART proviruses represented the most ancestral sequences sampled within-host, confirming that HIV sequences can persist in the body for decades. This analysis also revealed evidence of re-seeding of the reservoir during treatment interruptions. Results highlight the genetic complexity of proviruses persisting in lung and blood during ART, and the uniqueness of each individual's proviral composition. Personalized HIV remission and cure strategies may be needed to overcome these challenges.
Collapse
|
22
|
Abstract
Genetically-characterizing full-length HIV-1 RNA is critical for identifying genetically-intact genomes and for comparing these RNA genomes to proviral DNA. We have developed a method for sequencing plasma-derived RNA using long-range sequencing (PRLS assay; ∼8.3 kb from gag to the 3′ end or ∼5 kb from integrase to the 3′ end). We employed the gag-3′ PRLS assay to sequence HIV-1 RNA genomes from ART-naive participants during acute/early infection (n = 6) or chronic infection (n = 2). On average, only 65% of plasma-derived genomes were genetically-intact. Defects were found in all genomic regions but were concentrated in env and pol. We compared these genomes to near-full-length proviral sequences from paired peripheral blood mononuclear cell (PBMC) samples for the acute/early group and found that near-identical (>99.98% identical) sequences were identified only during acute infection. For three participants who initiated therapy during acute infection, we used the int-3′ PRLS assay to sequence plasma-derived genomes from an analytical treatment interruption and identified 100% identical genomes between pretherapy and rebound time points. The PRLS assay provides a new level of sensitivity for understanding the genetic composition of plasma-derived HIV-1 RNA from viremic individuals either pretherapy or after treatment interruption, which will be invaluable in assessing possible HIV-1 curative strategies. IMPORTANCE We developed novel plasma-derived RNA using long-range sequencing assays (PRLS assay; 8.3 kb, gag-3′, and 5.0 kb, int-3′). Employing the gag-3′ PRLS assay, we found that 26% to 51% of plasma-derived genomes are genetically-defective, largely as a result of frameshift mutations and deletions. These genetic defects were concentrated in the env region compared to gag and pol, likely a reflection of viral immune escape in env during untreated HIV-1 infection. Employing the int-3′ PRLS assay, we found that analytical treatment interruption (ATI) plasma-derived sequences were identical and genetically-intact. Several sequences from the ATI plasma samples were identical to viral sequences from pretherapy plasma and PBMC samples, indicating that HIV-1 reservoirs established prior to therapy contribute to viral rebound during an ATI. Therefore, near-full-length sequencing of HIV-1 particles is required to gain an accurate picture of the genetic landscape of plasma HIV-1 virions in studies of HIV-1 replication and persistence.
Collapse
|
23
|
Abstract
Efforts to prevent and treat human immunodeficiency virus type 1 (HIV) infection have begun to blunt the spread of HIV infection. Potent, safe, and well-tolerated antiretroviral therapy (ART) allows those infected with HIV to attain a life expectancy similar to that of HIV-uninfected individuals. But the persistence of the quiescent retroviral genome, enforced by the natural proliferative responses of the immune system itself, and a delicate balance of regulators viral expression, mandates lifelong ART suppression to prevent rebound viremia and the return of disease.The approach to HIV eradication that has been studied the most extensively envisions adding therapies to induce the expression of quiescent HIV-1 genomes following the control of viremia by ART, paired with immunotherapies to clear persistent infection. Paired testing of latency reversal and clearance strategies has begun, but the field is still in its infancy and additional obstacles to HIV eradication may emerge. However, there is reason for optimism that together with advances in ART delivery and HIV prevention strategies, efforts in HIV cure research will markedly diminish the effect of the HIV pandemic on society.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, Department of Medicine, and Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Murray JM. Dynamics of latent HIV under clonal expansion. PLoS Pathog 2021; 17:e1010165. [PMID: 34929000 PMCID: PMC8722732 DOI: 10.1371/journal.ppat.1010165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/03/2022] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
The HIV latent reservoir exhibits slow decay on antiretroviral therapy (ART), impacted by homeostatic proliferation and activation. How these processes contribute to the total dynamic while also producing the observed profile of sampled latent clone sizes is unclear. An agent-based model was developed that tracks individual latent clones, incorporating homeostatic proliferation of cells and activation of clones. The model was calibrated to produce observed latent reservoir dynamics as well as observed clonal size profiles. Simulations were compared to previously published latent HIV integration data from 5 adults and 3 children. The model simulations reproduced reservoir dynamics as well as generating residual plasma viremia levels (pVL) consistent with observations on ART. Over 382 Latin Hypercube Sample simulations, the median latent reservoir grew by only 0.3 log10 over the 10 years prior to ART initiation, after which time it decreased with a half-life of 15 years, despite number of clones decreasing at a faster rate. Activation produced a maximum size of genetically intact clones of around one million cells. The individual simulation that best reproduced the sampled clone profile, produced a reservoir that decayed with a 13.9 year half-life and where pVL, produced mainly from proliferation, decayed with a half-life of 10.8 years. These slow decay rates were achieved with mean cell life-spans of only 14.2 months, due to expansion of the reservoir through proliferation and activation. Although the reservoir decayed on ART, a number of clones increased in size more than 4,000-fold. While small sampled clones may have expanded through proliferation, the large sizes exclusively arose from activation. Simulations where homeostatic proliferation contributed more to pVL than activation, produced pVL that was less variable over time and exhibited fewer viral blips. While homeostatic proliferation adds to the latent reservoir, activation can both add and remove latent cells. Latent activation can produce large clones, where these may have been seeded much earlier than when first sampled. Elimination of the reservoir is complicated by expanding clones whose dynamic differ considerably to that of the entire reservoir. The HIV latent reservoir decreases slowly on antiretroviral therapy (ART). However there are cellular processes operating within this reservoir that can expand or contract subpopulations. This means that what is happening at the macro level may not be reflected at the micro level. To investigate this, we analysed published data on HIV latent clone sizes. By constructing an agent model incorporating the processes of cellular activation and proliferation, we were able to show that activation can expand clone sizes significantly even while on ART. Homeostatic proliferation also plays a role in maintaining the reservoir but these clones, though more frequent, are much smaller in size. Our calculations also show that activation and proliferation of the intact latent reservoir can lead to some of these cells becoming virally productive to a level consistent with observed residual viremia during ART. This analysis explains how normal cellular processes restructure the make-up of the latent reservoir and contribute to residual viremia.
Collapse
Affiliation(s)
- John M. Murray
- School of Mathematics and Statistics, UNSW Sydney, Australia
- * E-mail:
| |
Collapse
|
25
|
HIV Proviral Burden, Genetic Diversity, and Dynamics in Viremic Controllers Who Subsequently Initiated Suppressive Antiretroviral Therapy. mBio 2021; 12:e0249021. [PMID: 34781741 PMCID: PMC8693448 DOI: 10.1128/mbio.02490-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Curing HIV will require eliminating the reservoir of integrated, replication-competent proviruses that persist despite antiretroviral therapy (ART). Understanding the burden, genetic diversity, and longevity of persisting proviruses in diverse individuals with HIV is critical to this goal, but these characteristics remain understudied in some groups. Among them are viremic controllers—individuals who naturally suppress HIV to low levels but for whom therapy is nevertheless recommended. We reconstructed within-host HIV evolutionary histories from longitudinal single-genome amplified viral sequences in four viremic controllers who eventually initiated ART and used this information to characterize the age and diversity of proviruses persisting on therapy. We further leveraged these within-host proviral age distributions to estimate rates of proviral turnover prior to ART. This is an important yet understudied metric, since pre-ART proviral turnover dictates reservoir composition at ART initiation (and thereafter), which is when curative interventions, once developed, would be administered. Despite natural viremic control, all participants displayed significant within-host HIV evolution pretherapy, where overall on-ART proviral burden and diversity broadly reflected the extent of viral replication and diversity pre-ART. Consistent with recent studies of noncontrollers, the proviral pools of two participants were skewed toward sequences that integrated near ART initiation, suggesting dynamic proviral turnover during untreated infection. In contrast, proviruses recovered from the other two participants dated to time points that were more evenly spread throughout infection, suggesting slow or negligible proviral decay following deposition. HIV cure strategies will need to overcome within-host proviral diversity, even in individuals who naturally controlled HIV replication before therapy.
Collapse
|
26
|
Mitchell JL, Pollara J, Dietze K, Edwards RW, Nohara J, N'guessan KF, Zemil M, Buranapraditkun S, Takata H, Li Y, Muir R, Kroon E, Pinyakorn S, Jha S, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Nuntapinit B, Fox L, Tovanabutra S, Paquin-Proulx D, Wieczorek L, Polonis VR, Maldarelli F, Haddad EK, Phanuphak P, Sacdalan CP, Rolland M, Phanuphak N, Ananworanich J, Vasan S, Ferrari G, Trautmann L. Anti-HIV antibody development up to one year after antiretroviral therapy initiation in acute HIV infection. J Clin Invest 2021; 132:150937. [PMID: 34762600 PMCID: PMC8718150 DOI: 10.1172/jci150937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.
Collapse
Affiliation(s)
- Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kenneth Dietze
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Kombo F N'guessan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Supranee Buranapraditkun
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Roshell Muir
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University, Philadelphia, United States of America
| | - Eugene Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Shalini Jha
- Department of Surgery, Duke University Madical Center, Durham, United States of America
| | - Sopark Manasnayakorn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Chottanapund
- Department of Surgery, Bamrasnaradura Infectious Disease Institute, Nonthaburi, Thailand
| | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, United States of America
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Victoria R Polonis
- Department of Vaccine Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, United States of America
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI/NIH, Frederick, United States of America
| | - Elias K Haddad
- Demartment of Medicine, Division of Infectious Diseases & HIV Medicine, Drexel University College of Medicine, Philadelphia, United States of America
| | | | | | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | | | | | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States of America
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, United States of America
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, United States of America
| |
Collapse
|
27
|
Brooks K, Omondi FH, Liang RH, Sudderuddin H, Jones BR, Joy JB, Brumme CJ, Hunter E, Brumme ZL. Proviral Turnover During Untreated HIV Infection Is Dynamic and Variable Between Hosts, Impacting Reservoir Composition on ART. Front Microbiol 2021; 12:719153. [PMID: 34489909 PMCID: PMC8417368 DOI: 10.3389/fmicb.2021.719153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) can persist as an integrated provirus, in a transcriptionally repressed state, within infected cells. This small yet enduring pool of cellular reservoirs that harbor replication-competent HIV is the main barrier to cure. Entry of viral sequences into cellular reservoirs begins shortly after infection, and cells containing integrated proviral DNA are extremely stable once suppressive antiretroviral therapy (ART) is initiated. During untreated HIV infection however, reservoir turnover is likely to be more dynamic. Understanding these dynamics is important because the longevity of the persisting proviral pool during untreated infection dictates reservoir composition at ART initiation. If the persisting proviral pool turns over slowly pre-ART, then HIV sequences seeded into it during early infection would have a high likelihood of persisting for long periods. However, if pre-ART turnover was rapid, the persisting proviral pool would rapidly shift toward recently circulating HIV sequences. One-way to estimate this turnover rate is from the age distributions of proviruses sampled shortly after therapy initiation: this is because, at the time of sampling, the majority of proviral turnover would have already occurred prior to ART. Recently, methods to estimate a provirus’ age from its sequence have made this possible. Using data from 12 individuals with HIV subtype C for whom proviral ages had been determined phylogenetically, we estimated that the average proviral half-life during untreated infection was 0.78 (range 0.45–2.38) years, which is >15 times faster than that of proviral DNA during suppressive ART. We further show that proviral turnover during untreated infection correlates with both viral setpoint and rate of CD4+ T-cell decline during this period. Overall, our results support dynamic proviral turnover pre-ART in most individuals, which helps explain why many individuals’ reservoirs are skewed toward younger HIV sequences. Broadly, our findings are consistent with the notion that active viral replication creates an environment less favorable to proviral persistence, while viral suppression creates conditions more favorable to persistence, where ART stabilizes the proviral pool by dramatically slowing its rate of decay. Strategies to inhibit this stabilizing effect and/or to enhance reservoir turnover during ART could represent additional strategies to reduce the HIV reservoir.
Collapse
Affiliation(s)
- Kelsie Brooks
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - F Harrison Omondi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Richard H Liang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| |
Collapse
|
28
|
Pasternak AO, Vroom J, Kootstra NA, Wit FW, de Bruin M, De Francesco D, Bakker M, Sabin CA, Winston A, Prins JM, Reiss P, Berkhout B. Non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy is associated with lower cell-associated HIV RNA and DNA levels as compared with therapy based on protease inhibitors. eLife 2021; 10:68174. [PMID: 34387543 PMCID: PMC8460250 DOI: 10.7554/elife.68174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022] Open
Abstract
Background: It remains unclear whether combination antiretroviral therapy (ART) regimens differ in their ability to fully suppress human immunodeficiency virus (HIV) replication. Here, we report the results of two cross-sectional studies that compared levels of cell-associated (CA) HIV markers between individuals receiving suppressive ART containing either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI). Methods: CA HIV unspliced RNA and total HIV DNA were quantified in two cohorts (n = 100, n = 124) of individuals treated with triple ART regimens consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) plus either an NNRTI or a PI. To compare CA HIV RNA and DNA levels between the regimens, we built multivariable models adjusting for age, gender, current and nadir CD4+ count, plasma viral load zenith, duration of virological suppression, NRTI backbone composition, low-level plasma HIV RNA detectability, and electronically measured adherence to ART. Results: In both cohorts, levels of CA HIV RNA and DNA strongly correlated (rho = 0.70 and rho = 0.54) and both markers were lower in NNRTI-treated than in PI-treated individuals. In the multivariable analysis, CA RNA in both cohorts remained significantly reduced in NNRTI-treated individuals (padj = 0.02 in both cohorts), with a similar but weaker association between the ART regimen and total HIV DNA (padj = 0.048 and padj = 0.10). No differences in CA HIV RNA or DNA levels were observed between individual NNRTIs or individual PIs, but CA HIV RNA was lower in individuals treated with either nevirapine or efavirenz, compared to PI-treated individuals. Conclusions: All current classes of antiretroviral drugs only prevent infection of new cells but do not inhibit HIV RNA transcription in long-lived reservoir cells. Therefore, these differences in CA HIV RNA and DNA levels by treatment regimen suggest that NNRTIs are more potent in suppressing HIV residual replication than PIs, which may result in a smaller viral reservoir size. Funding: This work was supported by ZonMw (09120011910035) and FP7 Health (305522).
Collapse
Affiliation(s)
- Alexander O Pasternak
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jelmer Vroom
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ferdinand Wnm Wit
- Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marijn de Bruin
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Davide De Francesco
- Institute for Global Health, University College London, London, United Kingdom
| | - Margreet Bakker
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Caroline A Sabin
- Institute for Global Health, University College London, London, United Kingdom
| | - Alan Winston
- Medicine, Imperial College London, London, United Kingdom
| | - Jan M Prins
- Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, New Caledonia
| | - Peter Reiss
- Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ben Berkhout
- Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
29
|
Ismail SD, Pankrac J, Ndashimye E, Prodger JL, Abrahams MR, Mann JFS, Redd AD, Arts EJ. Addressing an HIV cure in LMIC. Retrovirology 2021; 18:21. [PMID: 34344423 PMCID: PMC8330180 DOI: 10.1186/s12977-021-00565-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.
Collapse
Affiliation(s)
- Sherazaan D Ismail
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Joshua Pankrac
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
| | - Emmanuel Ndashimye
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Center for AIDS Research Uganda Laboratories, Joint Clinical Research Centre, Kampala, Uganda
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Jamie F S Mann
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | - Andrew D Redd
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Eric J Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A5C1, Canada.
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
30
|
Pasternak AO, Psomas CK, Berkhout B. Predicting Post-treatment HIV Remission: Does Size of the Viral Reservoir Matter? Front Microbiol 2021; 12:648434. [PMID: 33717047 PMCID: PMC7952863 DOI: 10.3389/fmicb.2021.648434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function. However, due to the persistence of long-lived HIV reservoirs, therapy interruption almost inevitably leads to a fast viral rebound. A small percentage of individuals who are able to control HIV replication for extended periods after therapy interruption are of particular interest because they may represent a model of long-term HIV remission without ART. These individuals are characterized by a limited viral reservoir and low reservoir measures can predict post-treatment HIV remission. However, most individuals with a low reservoir still experience fast viral rebound. In this Perspective, we discuss the possible reasons behind this and propose to develop an integral profile, composed of viral and host biomarkers, that could allow the accurate prediction of post-treatment HIV remission. We also propose to incorporate information on the chromatin context of the proviral integration sites into the characterization of the HIV reservoir, as this likely influences the reactivation capacity of latent proviruses and, together with the actual number of intact proviruses, contributes to the replication competence of the reservoir.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christina K Psomas
- Department of Infectious Diseases and Internal Medicine, European Hospital, Marseille, France
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
HIV-1 Latency and Viral Reservoirs: Existing Reversal Approaches and Potential Technologies, Targets, and Pathways Involved in HIV Latency Studies. Cells 2021; 10:cells10020475. [PMID: 33672138 PMCID: PMC7926981 DOI: 10.3390/cells10020475] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Eradication of latent human immunodeficiency virus (HIV) infection is a global health challenge. Reactivation of HIV latency and killing of virus-infected cells, the so-called "kick and kill" or "shock and kill" approaches, are a popular strategy for HIV cure. While antiretroviral therapy (ART) halts HIV replication by targeting multiple steps in the HIV life cycle, including viral entry, integration, replication, and production, it cannot get rid of the occult provirus incorporated into the host-cell genome. These latent proviruses are replication-competent and can rebound in cases of ART interruption or cessation. In general, a very small population of cells harbor provirus, serve as reservoirs in ART-controlled HIV subjects, and are capable of expressing little to no HIV RNA or proteins. Beyond the canonical resting memory CD4+ T cells, HIV reservoirs also exist within tissue macrophages, myeloid cells, brain microglial cells, gut epithelial cells, and hematopoietic stem cells (HSCs). Despite a lack of active viral production, latently HIV-infected subjects continue to exhibit aberrant cellular signaling and metabolic dysfunction, leading to minor to major cellular and systemic complications or comorbidities. These include genomic DNA damage; telomere attrition; mitochondrial dysfunction; premature aging; and lymphocytic, cardiac, renal, hepatic, or pulmonary dysfunctions. Therefore, the arcane machineries involved in HIV latency and its reversal warrant further studies to identify the cryptic mechanisms of HIV reservoir formation and clearance. In this review, we discuss several molecules and signaling pathways, some of which have dual roles in maintaining or reversing HIV latency and reservoirs, and describe some evolving strategies and possible approaches to eliminate viral reservoirs and, ultimately, cure/eradicate HIV infection.
Collapse
|
32
|
Ferreira RC, Prodger JL, Redd AD, Poon AFY. Quantifying the clonality and dynamics of the within-host HIV-1 latent reservoir. Virus Evol 2021; 7:veaa104. [PMID: 33505711 PMCID: PMC7816690 DOI: 10.1093/ve/veaa104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among people living with human immunodeficiency virus type 1 (HIV-1), the long-term persistence of a population of cells carrying transcriptionally silent integrated viral DNA (provirus) remains the primary barrier to developing an effective cure. Ongoing cell division via proliferation is generally considered to be the driving force behind the persistence of this latent HIV-1 reservoir. The contribution of this mechanism (clonal expansion) is supported by the observation that proviral sequences sampled from the reservoir are often identical. This outcome is quantified as the ‘clonality’ of the sample population, e.g. the fraction of provirus sequences observed more than once. However, clonality as a quantitative measure is inconsistently defined and its statistical properties are not well understood. In this Reflections article, we use mathematical and phylogenetic frameworks to formally examine the inherent problems of using clonality to characterize the dynamics and proviral composition of the reservoir. We describe how clonality is not adequate for this task due to the inherent complexity of how infected cells are ‘labeled’ by proviral sequences—the outcome of a sampling process from the evolutionary history of active viral replication before treatment—as well as variation in cell birth and death rates among lineages and over time. Lastly, we outline potential directions in statistical and phylogenetic research to address these issues.
Collapse
Affiliation(s)
- Roux-Cil Ferreira
- Department of Pathology and Laboratory Medicine, Western University, 1151 Richmond Street London, ON, Canada
| | - Jessica L Prodger
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street London, ON, Canada
| | - Andrew D Redd
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane Rockville, MD 20852, USA.,Department of Medicine, Johns Hopkins School of Medicine, 600 N. Wolfe Street Baltimore, MD 21205-2196, USA
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine, Western University, 1151 Richmond Street London, ON, Canada
| |
Collapse
|
33
|
Cohn LB, Chomont N, Deeks SG. The Biology of the HIV-1 Latent Reservoir and Implications for Cure Strategies. Cell Host Microbe 2020; 27:519-530. [PMID: 32272077 DOI: 10.1016/j.chom.2020.03.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antiretroviral therapy (ART) inhibits HIV replication but is not curative. During ART, the integrated HIV genome persists indefinitely within CD4+ T cells and perhaps other cells. Here, we describe the mechanisms thought to contribute to its persistence during treatment and highlight findings from numerous recent studies describing the importance of cell proliferation in that process. Continued progress elucidating the biology will enhance our ability to develop effective curative interventions.
Collapse
Affiliation(s)
- Lillian B Cohn
- Chan Zuckerberg Biohub, San Francisco, CA; Department of Medicine, University of California, San Francisco, CA
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
34
|
Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc Natl Acad Sci U S A 2020; 117:32066-32077. [PMID: 33239444 DOI: 10.1073/pnas.2020617117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.
Collapse
|
35
|
Warren JA, Zhou S, Xu Y, Moeser MJ, MacMillan DR, Council O, Kirchherr J, Sung JM, Roan NR, Adimora AA, Joseph S, Kuruc JD, Gay CL, Margolis DM, Archin N, Brumme ZL, Swanstrom R, Goonetilleke N. The HIV-1 latent reservoir is largely sensitive to circulating T cells. eLife 2020; 9:57246. [PMID: 33021198 PMCID: PMC7593086 DOI: 10.7554/elife.57246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Matthew J Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | | | - Olivia Council
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jennifer Kirchherr
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Julia M Sung
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nadia R Roan
- Department of Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, San Francisco, United States
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Sarah Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Cynthia L Gay
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nancie Archin
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
36
|
Asokan M, Dias J, Liu C, Maximova A, Ernste K, Pegu A, McKee K, Shi W, Chen X, Almasri C, Promsote W, Ambrozak DR, Gama L, Hu J, Douek DC, Todd JP, Lifson JD, Fourati S, Sekaly RP, Crowley AR, Ackerman ME, Ko SH, Kilam D, Boritz EA, Liao LE, Best K, Perelson AS, Mascola JR, Koup RA. Fc-mediated effector function contributes to the in vivo antiviral effect of an HIV neutralizing antibody. Proc Natl Acad Sci U S A 2020; 117:18754-18763. [PMID: 32690707 PMCID: PMC7414046 DOI: 10.1073/pnas.2008236117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Treatment of HIV infection with either antiretroviral (ARV) therapy or neutralizing monoclonal antibodies (NAbs) leads to a reduction in HIV plasma virus. Both ARVs and NAbs prevent new rounds of viral infection, but NAbs may have the additional capacity to accelerate the loss of virus-infected cells through Fc gamma receptor (FcγR)-mediated effector functions, which should affect the kinetics of plasma-virus decline. Here, we formally test the role of effector function in vivo by comparing the rate and timing of plasma-virus clearance in response to a single-dose treatment with either unmodified NAb or those with either reduced or augmented Fc function. When infused into viremic simian HIV (SHIV)-infected rhesus macaques, there was a 21% difference in slope of plasma-virus decline between NAb and NAb with reduced Fc function. NAb engineered to increase FcγRIII binding and improve antibody-dependent cellular cytotoxicity (ADCC) in vitro resulted in arming of effector cells in vivo, yet led to viral-decay kinetics similar to NAbs with reduced Fc function. These studies show that the predominant mechanism of antiviral activity of HIV NAbs is through inhibition of viral entry, but that Fc function can contribute to the overall antiviral activity, making them distinct from standard ARVs.
Collapse
Affiliation(s)
- Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892;
| | - Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Anna Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Krisha McKee
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Cassandra Almasri
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Wanwisa Promsote
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Andrew R Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Divya Kilam
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Laura E Liao
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - John R Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892;
| |
Collapse
|
37
|
Grossman Z, Singh NJ, Simonetti FR, Lederman MM, Douek DC, Deeks SG. 'Rinse and Replace': Boosting T Cell Turnover To Reduce HIV-1 Reservoirs. Trends Immunol 2020; 41:466-480. [PMID: 32414695 DOI: 10.1016/j.it.2020.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.
Collapse
Affiliation(s)
- Zvi Grossman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- 'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
38
|
Differences in HIV Markers between Infected Individuals Treated with Different ART Regimens: Implications for the Persistence of Viral Reservoirs. Viruses 2020; 12:v12050489. [PMID: 32349381 PMCID: PMC7290301 DOI: 10.3390/v12050489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
In adherent individuals, antiretroviral therapy (ART) suppresses HIV replication, restores immune function, and prevents the development of AIDS. However, ART is not curative and has to be followed lifelong. Persistence of viral reservoirs forms the major obstacle to an HIV cure. HIV latent reservoirs persist primarily by cell longevity and proliferation, but replenishment by residual virus replication despite ART has been proposed as another potential mechanism of HIV persistence. It is a matter of debate whether different ART regimens are equally potent in suppressing HIV replication. Here, we summarized the current knowledge on the role of ART regimens in HIV persistence, focusing on differences in residual plasma viremia and other virological markers of the HIV reservoir between infected individuals treated with combination ART composed of different antiretroviral drug classes.
Collapse
|
39
|
Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV, Gay CL, Goonetilleke N, Joseph SB, Swanstrom R, Turner AMW, Wahl A. Curing HIV: Seeking to Target and Clear Persistent Infection. Cell 2020; 181:189-206. [PMID: 32220311 PMCID: PMC7896558 DOI: 10.1016/j.cell.2020.03.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection persists despite years of antiretroviral therapy (ART). To remove the stigma and burden of chronic infection, approaches to eradicate or cure HIV infection are desired. Attempts to augment ART with therapies that reverse viral latency, paired with immunotherapies to clear infection, have advanced into the clinic, but the field is still in its infancy. We review foundational studies and highlight new insights in HIV cure research. Together with advances in ART delivery and HIV prevention strategies, future therapies that clear HIV infection may relieve society of the affliction of the HIV pandemic.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health, Chapel Hill, NC 27599, USA.
| | - Nancie M Archin
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph J Eron
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Cynthia L Gay
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Nilu Goonetilleke
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah B Joseph
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ronald Swanstrom
- Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|