1
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
2
|
Van Der Hoek JL, Krommendijk ME, Manohar S, Arens J, Groot Jebbink E. Ex-Vivo Human-Sized Organ Machine Perfusion: A Systematic Review on the Added Value of Medical Imaging for Organ Condition Assessment. Transpl Int 2024; 37:12827. [PMID: 39296469 PMCID: PMC11408214 DOI: 10.3389/ti.2024.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
Machine perfused ex-vivo organs offer an excellent experimental platform, e.g., for studying organ physiology and for conducting pre-clinical trials for drug delivery. One main challenge in machine perfusion is the accurate assessment of organ condition. Assessment is often performed using viability markers, i.e., lactate concentrations and blood gas analysis. Nonetheless, existing markers for condition assessment can be inconclusive, and novel assessment methods remain of interest. Over the last decades, several imaging modalities have given unique insights into the assessment of organ condition. A systematic review was conducted according to accepted guidelines to evaluate these medical imaging methods, focussed on literature that use machine perfused human-sized organs, that determine organ condition with medical imaging. A total of 18 out of 1,465 studies were included that reported organ condition results in perfused hearts, kidneys, and livers, using both conventional viability markers and medical imaging. Laser speckle imaging, ultrasound, computed tomography, and magnetic resonance imaging were used to identify local ischemic regions and quantify intra-organ perfusion. A detailed investigation of metabolic activity was achieved using 31P magnetic resonance imaging and near-infrared spectroscopy. The current review shows that medical imaging is a powerful tool to assess organ condition.
Collapse
Affiliation(s)
- Jan L. Van Der Hoek
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Marleen E. Krommendijk
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Jutta Arens
- Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
3
|
Guo Q, Cai J, Qu Q, Cheang I, Shi J, Pang H, Li X. Association of Blood Trace Elements Levels with Cardiovascular Disease in US Adults: a Cross-Sectional Study from the National Health and Nutrition Examination Survey 2011-2016. Biol Trace Elem Res 2024; 202:3037-3050. [PMID: 37891364 DOI: 10.1007/s12011-023-03913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
We aimed to explore the overall association between trace elements and cardiovascular disease (CVD) and its types in humans. A total of 5101 participants' blood samples from the 2011-2016 National Health and Nutrition Examination Survey were included. Biochemical data were collected from laboratory tests conducted at mobile screening centers. After assessing linearity, weighted logistic regression estimated the association between trace elements and various CVD types. Weighted quantile sum (WQS) regression and quantile-based g-computation (Qgcomp) evaluated the overall relationship between biological trace elements and CVD types. After fully adjusting for confounding factors, the odds ratios of overall CVD morbidity corresponding to the second, third, and fourth quartiles of higher selenium (Se) concentration were 0.711 (95% CI, 0.529-0.956, p = 0.024), 0.734 (95% CI, 0.546-0.987, p = 0.041), and 0.738 (95% CI, 0.554-0.983, p = 0.038), respectively. Moreover, an increase in the concentration of copper (Cu) was associated with an increased risk of stroke (95% CI, 1.012-1.094, p = 0.01), heart failure (95% CI, 1.001-1.095, p = 0.046), and heart attack (95% CI, 1.001-1.083, p = 0.046). As the concentration of trace elements in the body increased, there was a significant positive association between Cu and CVD prevalence. On the other hand, Se and zinc were negatively associated with CVD prevalence. A nonlinear relationship between Se and CVD was found, and an appropriate Se intake may reduce the risk of CVD. Cu levels positively correlated with CVD risk. However, prospective cohort studies are warranted to confirm the causal effects of the micronutrients on CVD and its types.
Collapse
Affiliation(s)
- Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jingshan Cai
- Department of Cardiology, Suzhou University Clinical Testing Center, Affiliated First People's Hospital, Suzhou, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jinjin Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Hui Pang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China.
| |
Collapse
|
4
|
Yim G, Margetaki K, Romano ME, Kippler M, Vafeiadi M, Roumeliotaki T, Bempi V, Farzan SF, Chatzi L, Howe CG. Metal mixture exposures and serum lipid levels in childhood: the Rhea mother-child cohort in Greece. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:688-698. [PMID: 38698271 PMCID: PMC11559660 DOI: 10.1038/s41370-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Growing evidence suggests that cardiovascular disease develops over the lifetime, often beginning in childhood. Metal exposures have been associated with cardiovascular disease and important risk factors, including dyslipidemia, but prior studies have largely focused on adult populations and single metal exposures. OBJECTIVE To investigate the individual and joint impacts of multiple metal exposures on lipid levels during childhood. METHODS This cross-sectional study included 291 4-year-old children from the Rhea Cohort Study in Heraklion, Greece. Seven metals (manganese, cobalt, selenium, molybdenum, cadmium, mercury, and lead) were measured in whole blood using inductively coupled plasma mass spectrometry. Serum lipid levels included total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. To determine the joint and individual impacts of child metal exposures (log2-transformed) on lipid levels, Bayesian kernel machine regression (BKMR) was employed as the primary multi-pollutant approach. Potential effect modification by child sex and childhood environmental tobacco smoke exposure was also evaluated. RESULTS BKMR identified a positive association between the metal mixture and both total and LDL cholesterol. Of the seven metals examined, selenium (median 90.6 [IQR = 83.6, 96.5] µg/L) was assigned the highest posterior inclusion probability for both total and LDL cholesterol. A difference in LDL cholesterol of 8.22 mg/dL (95% CI = 1.85, 14.59) was observed when blood selenium was set to its 75th versus 25th percentile, holding all other metals at their median values. In stratified analyses, the positive association between selenium and LDL cholesterol was only observed among boys or among children exposed to environmental tobacco smoke during childhood. IMPACT STATEMENT Growing evidence indicates that cardiovascular events in adulthood are the consequence of the lifelong atherosclerotic process that begins in childhood. Therefore, public health interventions targeting childhood cardiovascular risk factors may have a particularly profound impact on reducing the burden of cardiovascular disease. Although growing evidence supports that both essential and nonessential metals contribute to cardiovascular disease and risk factors, such as dyslipidemia, prior studies have mainly focused on single metal exposures in adult populations. To address this research gap, the current study investigated the joint impacts of multiple metal exposures on lipid concentrations in early childhood.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA.
| | - Katerina Margetaki
- Clinic of Preventive Medicine and Nutrition, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Vicky Bempi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Division of Environmental Health, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
5
|
Ćirović A, Buha Đorđević A, Ćirović A, Jevtić J, Tasić D, Janković S, Antonijević B, Petrović Z, Orisakwe OE, Tasić N. Trace Element Concentrations in Autopsied Heart Tissues from Patients with Secondary Cardiomyopathy. Biol Trace Elem Res 2024; 202:2442-2449. [PMID: 37747654 DOI: 10.1007/s12011-023-03857-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
Cardiomyopathies (CMP) represent a significant health problem as they have a poor long-term prognosis and often require transplantation. Heavy metals are known to have cardiotoxic effects and some of them, such as cadmium (Cd), are found to be elevated in the urine and blood of individuals with heart diseases; nevertheless, direct measurement of metals (e.g. zinc (Zn) which is necessary for normal heart function), in the myocardium of individuals with CMP has not been performed. Here, we aimed to analyze the levels of a group of metals in the myocardium of the left ventricle in individuals with CMP. At the Institute of Pathology, we collected 52 samples of left ventricle post-mortem, out of which 19 subjects had been diagnosed with CMP (mean age: 72 y ± 10), and 33 subjects had not suffered from any heart disease (mean age: 67 y ± 15). We found out that individuals with CMP had a significantly higher concentrations of lead, nickel, manganese and copper than non-CMP subjects (p = 0.002, p < 0.001, p = 0.011, and p = 0.002). Interestingly, zinc was significantly lower in CMP subjects than in n-CMP individuals (p = 0.017). Our results indicated the involvement of an increased lead, nickel, copper and manganese heart load in individuals with CMP coupled with lower concentrations of zinc.
Collapse
Affiliation(s)
- Ana Ćirović
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
- Center for Toxicological Risk Assessment, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandar Ćirović
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| | - Jovan Jevtić
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Danijela Tasić
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, Banja Luka, RS, Bosnia and Herzegovina
| | - Saša Janković
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zoran Petrović
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11040, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Nebojša Tasić
- Institute for Cardiovascular Diseases Dedinje, 5 Heroja Milana Tepica Street, 11000, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Li LY, Park E, He C, Abbasi AZ, Henderson JT, Fraser PE, Uetrecht JP, Rauth AM, Wu XY. Evaluation of the biodistribution and preliminary safety profile of a novel brain-targeted manganese dioxide-based nanotheranostic system for Alzheimer's disease. Nanotoxicology 2024; 18:315-334. [PMID: 38847611 DOI: 10.1080/17435390.2024.2361687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/03/2024]
Abstract
A novel brain-targeted and reactive oxygen species-activatable manganese dioxide containing nanoparticle system functionalized with anti-amyloid-β antibody (named aAβ-BTRA-NC) developed by our group has shown great promise as a highly selective magnetic resonance imaging (MRI) contrast agent for early detection and multitargeted disease-modifying treatment of Alzheimer's disease (AD). To further evaluate the suitability of the formulation for future clinical application, we investigated the safety, biodistribution, and pharmacokinetic profile of aAβ-BTRA-NC in a transgenic TgCRND8 mouse AD model, wild type (WT) littermate, and CD-1 mice. Dose-ascending studies demonstrated that aAβ-BTRA-NC was well-tolerated by the animals up to 300 μmol Mn/kg body weight [b.w.], 3 times the efficacious dose for early AD detection without apparent adverse effects; Histopathological, hematological, and biochemical analyses indicated that a single dose of aAβ-BTRA-NC did not cause any toxicity in major organs. Immunotoxicity data showed that aAβ-BTRA-NC was safer than commercially available gadolinium-based MRI contrast agents at an equivalent dose of 100 μmol/kg b.w. of metal ions. Intravenously administered aAβ-BTRA-NC was taken up by main organs with the order of liver, kidneys, intestines, spleen, followed by other organs, and cleared after one day to one week post injection. Pharmacokinetic analysis indicated that the plasma concentration profile of aAβ-BTRA-NC followed a 2-compartmental model with faster clearance in the AD mice than in the WT mice. The results suggest that aAβ-BTRA-NC exhibits a strong safety profile as a nanotheranostic agent which warrants more robust preclinical development for future clinical applications.
Collapse
Affiliation(s)
- Lily Yi Li
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Elliya Park
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Chunsheng He
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Azhar Z Abbasi
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T Henderson
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jack P Uetrecht
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Xiao Yu Wu
- Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Shi G, Liu X, Du Y, Tian J. RGD targeted magnetic ferrite nanoparticles enhance antitumor immunotherapeutic efficacy by activating STING signaling pathway. iScience 2024; 27:109062. [PMID: 38660408 PMCID: PMC11039334 DOI: 10.1016/j.isci.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
Manganese has been used in tumor imaging for their ability to provide T1-weighted MRI signal. Recent research find Mn2+ can induce activation of the stimulator of interferon gene (STING) pathway to create an active and favorable tumor immune microenvironment. However, the direct injection of Mn2+ often results in toxicity. In this study, we developed an RGD targeted magnetic ferrite nanoparticle (RGD-MnFe2O4) to facilitate tumor targeted imaging and improve tumor immunotherapy. Magnetic resonance imaging and fluorescence molecular imaging were performed to monitor its in vivo biodistribution. We found that RGD-MnFe2O4 showed active tumor targeting and longer accumulation at tumor sites. Moreover, RGD-MnFe2O4 can activate STING pathway with low toxicity to enhance the PD-L1 expression. Furthermore, combining RGD-MnFe2O4 and anti-PD-L1 antibody (aPD-L1) can treat several types of immunogenic tumors through promoting the accumulation of tumor-infiltrating cytotoxic T cells. In general, our study provides a promising new strategy for the targeted and multifunctional theranostic nanoparticle for the improvement of tumor immunotherapy.
Collapse
Affiliation(s)
- Guangyuan Shi
- University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoli Liu
- Northwest University, Xi’an 710127, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Tian
- Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Ou J, Sun Y, Tong J, Tang W, Ma G. The relationship between serum manganese concentration with all-cause and cause-specific mortality: a retrospective and population-based cross-sectional study. BMC Cardiovasc Disord 2024; 24:229. [PMID: 38678176 PMCID: PMC11055268 DOI: 10.1186/s12872-024-03872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The study aimed to explore the association between manganese concentration and all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality in the general population of the United States. METHODS We integrated the data from the National Health and Nutrition Examination Survey from 2011 to 2018. A total of 9,207 subjects were selected based on the inclusion and exclusion criteria. The relationship between manganese concentration and all-cause, CVD-related, and cancer-related mortality was analyzed by constructing a Cox proportional hazard regression model and a restricted cubic spline (RCS) plot. Additionally, subgroup analyses stratified by age, sex, race/ethnicity, hypertension, diabetes mellitus (DM), chronic heart disease, chronic heart failure, angina pectoris, heart attack, stroke, and BMI were further performed. RESULTS In the full adjusted model, compared with the lowest quartile, the adjusted hazard ratios with 95% confidence intervals (CIs) for all-cause, CVD-related, and cancer-related mortality across manganese quartiles were (1.11 (0.87,1.41), 0.96 (0.74, 1.23), and 1.23 (0.96, 1.59); P-value for trend =0.041), (0.86 (0.54, 1.37), 0.87 (0.55, 1.40), and 1.07 (0.67, 1.72); P-value for trend =0.906), and (1.45 (0.92, 2.29), 1.14 (0.70, 1.88), and 1.26 (0.75, 2.11); P-value for trend =0.526), respectively. The RCS curve shown a U-shaped association between manganese concentration and all-cause mortality and CVD-related mortality (P-value for nonlinear <0.05). However, there was an increase and then a decrease in the link between manganese concentration and cancer-related mortality (P-value for nonlinear <0.05). Manganese exposure was positively correlated with sex (correlation coefficient, r =0.19, P-value <0.001) and negatively correlated with age (correlation coefficient, r =-0.11, P-value <0.001) and serum creatinine (correlation coefficient, r =-0.12, P-value <0.001), respectively. CONCLUSIONS Our findings suggest that elevated serum manganese concentrations are associated with all-cause and CVD-related mortality in the U.S. population and that maintenance of serum manganese between 8.67-9.23 µg/L may promote public health.
Collapse
Affiliation(s)
- Jianyun Ou
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Yunfei Sun
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Jie Tong
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Weihong Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, P.R. China.
| |
Collapse
|
9
|
Xiao S, Wang Z, Zuo R, Zhou Y, Wang Z, Chen T, Liu N. Association of serum five heavy metals level with all-cause and cause-specific mortality: a large population-based cohort study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:130-154. [PMID: 38613167 DOI: 10.1080/10934529.2024.2339776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The study aimed to explore the association between five heavy metals exposure (Cadmium, Lead, Mercury, Manganese, and Selenium) and mortality [all-cause, cardiovascular disease (CVD), and cancer-related]. We integrated the data into the National Health and Nutrition Examination Survey from 2011 to 2018 years. A total of 16,092 participants were recruited. The link between heavy metals exposure and mortality was analyzed by constructing a restricted cubic spline (RCS) curve, Cox proportional hazard regression model, and subgroup analysis. The RCS curve was used to show a positive linear relationship between Cadmium, Lead, and all-cause mortality. In contrast, there was a negative linear correlation between Mercury and all-cause mortality. Additionally, Manganese and Selenium also had a J-shaped and L-shaped link with all-cause mortality. The positive linear, positive linear, negative liner, J-shaped, and L-shaped relationships were observed for Cadmium, Lead, Mercury, Manganese, and Selenium and CVD mortality, respectively. Cadmium, Lead, Mercury, and Selenium were observed to exhibit positive linear, U-shaped, negative linear, and L-shaped relationships with cancer-related mortality, respectively. There was an increase and then a decrease in the link between Manganese and cancer-related morality. This study revealed the correlation between the content of different elements and different types of mortality in the U.S. general population.
Collapse
Affiliation(s)
- Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
| | - Ronghua Zuo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhongkai Wang
- Department of Radiology, Center of Interventional Radiology & Vascular Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Tian Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Wu L, Zhang S, Zhang J, Xin Y, Niu P, Li J. Associations of heavy metal mixtures with blood pressure among U.S. adults in NHANES 2017-2018 by four statistical models. Chin Med J (Engl) 2024; 137:628-630. [PMID: 38282382 PMCID: PMC10932526 DOI: 10.1097/cm9.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Luli Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Nutrition, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Junrou Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Zhang Y, Liu M, Yang S, Zhang Y, Ye Z, Wu Q, Li R, Zhou C, He P, Liu C, Jiang J, Liang M, Wang G, Hou FF, Qin X. Positive association between dietary manganese intake and new-onset hypertension: A nationwide cohort study in China. Nutr Metab Cardiovasc Dis 2024; 34:699-705. [PMID: 38161121 DOI: 10.1016/j.numecd.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AND AIM To date, few studies have investigated the association between dietary manganese intake and the risk of hypertension, so the prospective relationship of dietary manganese intake and new-onset hypertension remains uncertain. We aimed to investigate the association between dietary manganese intake and the risk of new-onset hypertension in the general Chinese population. METHODS AND RESULTS This prospective cohort study included 12,177 participants who were free of hypertension at baseline from China Health and Nutrition Survey (CHNS). Dietary intake was measured by 3 consecutive 24-h dietary recalls combined with a household food inventory. The study outcome was new-onset hypertension, defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg or diagnosed by a physician or under antihypertensive treatment during the follow-up. During a median follow-up duration of 6.1 years, 4269 (44.9 per 1000 person-years) participants developed new-onset hypertension. Overall, there was a positive association between dietary manganese intake and new-onset hypertension. The adjusted HRs (95%CIs) of new-onset hypertension were 1.00 (reference), 0.97 (0.87, 1.08), 1.24 (1.10, 1.39) and 1.75 (1.52, 2.01) across the quartiles of dietary manganese intake, respectively. Accordingly, a significantly higher risk of new-onset hypertension (HR, 1.38; 95%CI: 1.27, 1.50) was found in participants in quartiles 3-4 of dietary manganese intake (≥6.0 mg/day), compared with those in quartiles 1-2 (<6.0 mg/day). CONCLUSIONS In the general Chinese population, dietary manganese intake was positively associated with the risk of new hypertension, independent of sodium intake and other important covariates.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Rui Li
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chengzhang Liu
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
| | - Jianping Jiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Min Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Guobao Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
12
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
13
|
Gomes G, Oliveira JL, Costa ML, Mermelstein C, Feitosa NM. Manganese Exposure Induces Cellular Aggregates and the Accumulation of β-Catenin in Skin of Zebrafish Embryos. Zebrafish 2023; 20:160-168. [PMID: 37406179 DOI: 10.1089/zeb.2022.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The effects of manganese (Mn) toxicity in different organs and tissues in humans and other vertebrates have been studied since the beginning of the past century, but most of its cellular effects remain largely unknown. In this study, we studied the effects of Mn in zebrafish, at the cellular level, due to the transparent nature of zebrafish larvae that enables a powerful analysis under the light microscope. The collection of our results shows that environmental concentrations of 0.5 mg/L affect swim bladder inflation; at concentration of 50 and 100 mg/L Mn (1) induces alterations in viability, swim bladder, heart, and size of zebrafish larvae, (2) induces an increase in melanocyte area and the formation of cellular aggregates in the skin, and (3) induces an accumulation of β-Catenin in mesenchymal cells in the caudal fin of zebrafish larvae. Our data suggest that increased levels of Mn induce cell aggregate formation in the skin and the presence of more melanocytes in the zebrafish caudal fin. Interestingly, the adhesion protein β-Catenin was activated in mesenchymal cells near the cell aggregates. These results open important new questions on the role of Mn toxicity on cellular organization and β-Catenin responses in fishes.
Collapse
Affiliation(s)
- Geyse Gomes
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - José Leonardo Oliveira
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de janeiro, Rio de Janeiro, Brazil
| | - Natália Martins Feitosa
- Laboratório Integrado de Biociências Translacionais (LIBT), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de janeiro, Macaé, Brazil
| |
Collapse
|
14
|
Senoro DB, Plasus MMG, Gorospe AFB, Nolos RC, Baaco AT, Lin C. Metals and Metalloid Concentrations in Fish, Its Spatial Distribution in PPC, Philippines and the Attributable Risks. TOXICS 2023; 11:621. [PMID: 37505586 PMCID: PMC10383155 DOI: 10.3390/toxics11070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Fish is an important source of protein in human meals around the world. However, the fish that we are eating may be contaminated with toxicants such as metals and metalloids (MMs), which may pose health risks to consumers. Information on MMs content in fishes and their potential spatial distribution scenarios would provide knowledge to the community to create strategies and protect human health. Hence, this study assessed and determined the health risk levels of MMs in both brackish and marine water fish (BMF) in Puerto Princesa City (PPC), Palawan Province, Philippines. PPC has an existing abandoned open mine pit near the PPC coastline called the "pit lake". The concentrations of As, Ba, Cu, Fe, Mn, Hg, and Zn in fishes were analyzed using portable Olympus Vanta X-ray Fluorescence (pXRF), and the spatial distribution of MMs concentrations in BMF was analyzed using a GIS (geographic information system). Fishes were sampled from fishing boat landing sites and nearby seafood markets. The results revealed that the concentration of MMs in marine fish was generally higher than the brackish water fish. It was recorded that the Hg concentration in marine water fish meat was higher than in brackish water fish meat. The Mn concentration in marine water fish exceeded the permissible limits set by international bodies. An elevated concentration of Mn in BMF was detected across the northern part of PPC, and an elevated concentration of Hg in marine fishes was recorded in the southeast area, where the fish landing sites are located. Ba was also detected in BMF across the southern part of PPC. Moreover, an elevated concentration of Cu was detected in MBF in the northeast and in marine fish in the southeastern area of PPC. Further, this paper elaborates the non-carcinogenic and carcinogenic risks of these fishes to the PPC population and tourists with respect to the MMs content in fish meat.
Collapse
Affiliation(s)
- Delia B Senoro
- School of Civil, Environmental and Geological Engineering, Mapua University, Manila 1002, Philippines
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
| | - Maria Mojena G Plasus
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
| | - Alejandro Felipe B Gorospe
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
| | - Ronnel C Nolos
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
- College of Environmental Studies, Marinduque State College, Boac 4900, Philippines
| | - Allaine T Baaco
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
- College of Agriculture, Forestry and Environmental Sciences, Western Philippines University, San Juan 5302, Philippines
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
15
|
Golara A, Kozłowski M, Guzik P, Kwiatkowski S, Cymbaluk-Płoska A. The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer. Int J Mol Sci 2023; 24:10887. [PMID: 37446063 DOI: 10.3390/ijms241310887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium (Se) and manganese (Mn) are essential micronutrients that are important elements of cell metabolism. They are involved in the composition of enzyme systems and regulate enzyme activity. Disturbances in the homeostasis of these micronutrients affect the development of many diseases and carcinogenesis, which can be linked to increased levels of oxidative stress and impaired antioxidant properties of many enzymes. Selenium has a very important function in maintaining immune-endocrine, metabolic and cellular homeostasis. Manganese, on the other hand, is important in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activity. We review the role of selenium and manganese and their effects on tumor growth, metastasis potential and remodeling of the microenvironment. We also describe their role as potential biomarkers in the diagnosis and the potential for the use of Se- and Mn-containing compounds in composition for the treatment of cancer of the reproductive organs.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
16
|
Liu K, Yu D, Xin M, Lü F, Zhang Z, Zhou J, Liu T, Liu X, Song J, Wu H. Exposure to manganese (II) chloride induces developmental toxicity, oxidative stress and inflammatory response in Marine medaka (Oryzias melastigma) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106622. [PMID: 37392728 DOI: 10.1016/j.aquatox.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1β) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.
Collapse
Affiliation(s)
- Kaikai Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Daode Yu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Meili Xin
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Fang Lü
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Zhipeng Zhang
- Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China
| | - Jian Zhou
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China
| | - Tong Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Xiaohui Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Jingjing Song
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| | - Haiyi Wu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| |
Collapse
|
17
|
Janse van Rensburg M, Bester MJ, van Rooy MJ, Oberholzer HM. Adverse effects of copper, manganese and mercury, alone and in mixtures on the aorta and heart of Spraque-Dawley rats. Toxicol Ind Health 2023:7482337231180957. [PMID: 37271738 DOI: 10.1177/07482337231180957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases (CVD) are a common global cause of death and are therefore a major health concern. Inhaled or ingested environmental heavy metals contribute to the development of CVD. The aim of this study was to address the limited information available on the effect of relevant dosages of metals in mixtures. Three metals with reported effects on the cardiovascular system (CVS) were identified, and these metals were copper (Cu), manganese (Mn) and mercury (Hg). In Sprague-Dawley rats, the adverse effects of copper (Cu), manganese (Mn) and mercury (Hg), alone and as part of mixtures, on the blood parameters, the aorta and heart were investigated. Forty-eight male Sprague-Dawley rats were randomly divided into eight groups (n = 6): control, Cu, Mn, Hg, Cu + Mn, Cu + Hg, Mn + Hg and Cu, Mn + Hg. The seven experimental groups received the metal mixtures at 100 times the World Health Organisation (WHO) safety limit for drinking water (2 mg/L for Cu, 0.4 mg/L for Mn and 0.06 mg/L for Hg) via oral gavage for 28 days. After 28 days, compared with the control, red blood cell levels were increased for Cu + Hg. All other measured blood parameters were unchanged. Morphological changes in the tunica media were connective tissue deposition and an abundance of collagen type I in the metal exposed aortic tissues. In the cardiac tissue of metal-exposed rats, changes in the cardiomyocyte and myofibrillar arrangement, with an increase in collagen type I and III was observed. Ultrastructurally, the aortic collagen and elastin band arrangement and the cardiac mitochondrial and myofibrillar arrangement and structures were altered in the experimental groups. These changes indicated that exposure to these metals in rats caused minor changes in the blood parameters, however, the changes in tissue and cellular structure indicated an increased risk for the development of CVD.
Collapse
Affiliation(s)
- M Janse van Rensburg
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| | - M J Bester
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| | - M J van Rooy
- Faculty of Health Sciences, Department of Physiology, University of Pretoria, Arcadia, South Africa
| | - H M Oberholzer
- Faculty of Health Sciences, Department of Anatomy, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
18
|
Carrasco-Rios M, Ortolá R, Sotos-Prieto M, Graciani A, Rodríguez-Artalejo F, Banegas JR, García-Esquinas E. Association of blood manganese concentrations with 24-h based brachial and central blood pressure, and pulse-wave velocity. ENVIRONMENTAL RESEARCH 2023; 225:115625. [PMID: 36894115 DOI: 10.1016/j.envres.2023.115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Potential environmental determinants of BP and hypertension in older adults are far less known than their lifestyle risk factors. Manganese (Mn) is an essential element for life that may induce changes in blood pressure (BP), but the direction of the association is unclear. We aimed to examine the association of blood manganese (bMn) with 24-h-based brachial, central BP (cBP), and pulse-wave velocity (PWV). With this purpose, we analyzed data from 1009 community-living adults aged >65 years without BP medication. bMn was measured using inductively-coupled plasma-mass spectrometry and 24-h BP with validated devices. The association of bMn (median: 6.77 μg/L; IQR: 5.59-8.27) with daytime brachial and central systolic (SBP) and with diastolic BP (DBP) was non-linear, with BP increases up to around the median of Mn and then stabilization or slight rightward decrease. Mean BP differences (95% confidence interval) comparing Mn Q2 to Q5 (vs Q1 quintile) for brachial daytime SBP were 2.56 (0.22; 4.90), 3.59 (1.22; 5.96), 3.14 (0.77; 5.51) and 1.72 (-0.68; 4.11) mmHg, respectively; and 2.22 (0.70, 3.73), 2.55 (1.01, 4.08), 2.45 (0.91; 3.98), and 1.68 (0.13; 3.24), respectively, for DBP. Daytime central-pressures showed a similar dose-response relationship with bMn as daytime brachial-pressures. The association with nighttime BP was linearly positive for brachial BPs, and only increasing for Q5 for cBP. Regarding PWV, a tendency to significant linear increase along bMn levels was observed (p-trend = 0.042). The present findings extend the scarce evidence on the association between Mn and brachial BP to 2 other vascular parameters, suggesting Mn levels as a candidate risk factor for increasing levels of both brachial and cBPs in older adults, yet further research is needed with larger cohort studies in adults at all age ranges.
Collapse
Affiliation(s)
- M Carrasco-Rios
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain
| | - R Ortolá
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M Sotos-Prieto
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Environmental Health and Nutrition, Harvard T.H. Chan School of Public Health. Boston, MA, USA
| | - A Graciani
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - F Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMDEA Food Institute. CEI UAM+CSIC, Madrid, Spain
| | - J R Banegas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - E García-Esquinas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
19
|
Borghese MM, Fisher M, Ashley-Martin J, Fraser WD, Trottier H, Lanphear B, Johnson M, Helewa M, Foster W, Walker M, Arbuckle TE. Individual, Independent, and Joint Associations of Toxic Metals and Manganese on Hypertensive Disorders of Pregnancy: Results from the MIREC Canadian Pregnancy Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:47014. [PMID: 37079392 PMCID: PMC10117658 DOI: 10.1289/ehp10825] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Toxic metals, such as lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg), may be associated with a higher risk of gestational hypertension and preeclampsia, whereas manganese (Mn) is an essential metal that may be protective. OBJECTIVES We estimated the individual, independent, and joint associations of Pb, Cd, As, Hg, and Mn on the risk of developing gestational hypertension and preeclampsia in a cohort of Canadian women. METHODS Metal concentrations were analyzed in first and third trimester maternal blood (n = 1,560 ). We measured blood pressure after 20 wk gestation to diagnose gestational hypertension, whereas proteinuria and other complications defined preeclampsia. We estimated individual and independent (adjusted for coexposure) relative risks (RRs) for each doubling of metal concentrations and examined interactions between toxic metals and Mn. We used quantile g-computation to estimate the joint effect of trimester-specific exposures. RESULTS Each doubling of third trimester Pb (RR = 1.54 ; 95% CI: 1.06, 2.22) and first trimester blood As (RR = 1.25 ; 95% CI: 1.01, 1.58) was independently associated with a higher risk of developing preeclampsia. First trimester blood As (RR = 3.40 ; 95% CI: 1.40, 8.28) and Mn (RR = 0.63 ; 95% CI: 0.42, 0.94) concentrations were associated with a higher and lower risk, respectively, of developing gestational hypertension. Mn modified the association with As such that the deleterious association with As was stronger at lower concentrations of Mn. First trimester urinary dimethylarsinic acid concentrations were not associated with gestational hypertension (RR = 1.31 ; 95% CI: 0.60, 2.85) or preeclampsia (RR = 0.92 ; 95% CI: 0.68, 1.24). We did not observe overall joint effects for blood metals. DISCUSSION Our results confirm that even low blood Pb concentrations are a risk factor for preeclampsia. Women with higher blood As concentrations combined with lower Mn in early pregnancy were more likely to develop gestational hypertension. These pregnancy complications impact maternal and neonatal health. Understanding the contribution of toxic metals and Mn is of public health importance. https://doi.org/10.1289/EHP10825.
Collapse
Affiliation(s)
- Michael M. Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - William D. Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Helen Trottier
- Department of Social and Preventive Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Markey Johnson
- Water and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Warren Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Mark Walker
- Department of Obstetrics, Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Singh T, Joshi S, Kershaw LE, Dweck MR, Semple SI, Newby DE. Manganese-Enhanced Magnetic Resonance Imaging of the Heart. J Magn Reson Imaging 2023; 57:1011-1028. [PMID: 36314991 PMCID: PMC10947173 DOI: 10.1002/jmri.28499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 02/23/2023] Open
Abstract
Manganese-based contrast media were the first in vivo paramagnetic agents to be used in magnetic resonance imaging (MRI). The uniqueness of manganese lies in its biological function as a calcium channel analog, thus behaving as an intracellular contrast agent. Manganese ions are taken up by voltage-gated calcium channels in viable tissues, such as the liver, pancreas, kidneys, and heart, in response to active calcium-dependent cellular processes. Manganese-enhanced magnetic resonance imaging (MEMRI) has therefore been used as a surrogate marker for cellular calcium handling and interest in its potential clinical applications has recently re-emerged, especially in relation to assessing cellular viability and myocardial function. Calcium homeostasis is central to myocardial contraction and dysfunction of myocardial calcium handling is present in various cardiac pathologies. Recent studies have demonstrated that MEMRI can detect the presence of abnormal myocardial calcium handling in patients with myocardial infarction, providing clear demarcation between the infarcted and viable myocardium. Furthermore, it can provide more subtle assessments of abnormal myocardial calcium handling in patients with cardiomyopathies and being excluded from areas of nonviable cardiomyocytes and severe fibrosis. As such, MEMRI offers exciting potential to improve cardiac diagnoses and provide a noninvasive measure of myocardial function and contractility. This could be an invaluable tool for the assessment of both ischemic and nonischemic cardiomyopathies as well as providing a measure of functional myocardial recovery, an accurate prediction of disease progression and a method of monitoring treatment response. EVIDENCE LEVEL: 5: TECHNICAL EFFICACY: STAGE 5.
Collapse
Affiliation(s)
- Trisha Singh
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Shruti Joshi
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Lucy E Kershaw
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Marc R Dweck
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - Scott I Semple
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| | - David E Newby
- BHF/University Centre for Cardiovascular ScienceUniversity of EdinburghUK
- Edinburgh Heart CentreRoyal Infirmary of EdinburghUK
- Edinburgh ImagingUniversity of EdinburghUK
| |
Collapse
|
21
|
Relationship between Occupational Metal Exposure and Hypertension Risk Based on Conditional Logistic Regression Analysis. Metabolites 2022; 12:metabo12121259. [PMID: 36557298 PMCID: PMC9784465 DOI: 10.3390/metabo12121259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Occupational exposure is a significant source of metal contact; previous studies have been limited regarding the effect of occupational metal exposure on the development of hypertension. This study was conducted to assess the levels of exposure of certain metals (chromium (Cr), iron (Fe), manganese (Mn), and nickel (Ni)) in hypertensive and non-hypertensive workers and to assess the relationship between the risk of hypertension and metal exposure level. Our study included 138 hypertensive patients as case groups and 138 non-hypertensive participants as controls. The exposure risk level was divided according to the limit value after collecting and testing the metal dust in the workshop. Considering the influence of single- and poly-metal, single factor analysis and conditional logistic regression analysis of poly-metal were carried out. The results of the model indicated that the incidence of hypertension increased with an increase in Cr exposure level, and the risk of hypertension was 1.85 times higher in the highest exposure than in the lowest exposure (95% CI: 1.20−2.86, p < 0.05). Mn has the same effect as Cr. There was no significant correlation between Fe or Ni and hypertension. Our findings suggested that Cr and Mn exposure in the work environment might increase the risk of hypertension, while no effect of Fe and Ni on blood pressure was found. Prospective study designs in larger populations are needed to confirm our findings.
Collapse
|
22
|
Xie Y, Liu F, Zhang X, Jin Y, Li Q, Shen H, Fu H, Mao J. Benefits and risks of essential trace elements in chronic kidney disease: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1400. [PMID: 36660676 PMCID: PMC9843383 DOI: 10.21037/atm-22-5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background and Objective Chronic kidney disease (CKD) is an important public health concern. With the decline of renal function, CKD patients gradually progress to end-stage kidney disease and need to undergo dialysis or kidney transplantation to maintain life, bringing a heavy economic burden to the family and society. Therefore, it is necessary to effectively prevent and delay the progression of CKD. Essential trace elements play an indispensable role in CKD, and the objective of this study is to systematically review their benefits in the disease and summarize the risks of their excess. Methods The keywords "trace elements", "chronic kidney disease", "dialysis", "inflammation", and "fibrosis" and their combinations were used to search for relevant literature published in the PubMed database and Web of Science. We then summarized the role of trace element abnormalities in CKD patients in anemia, oxidative stress, inflammation, and chronic fibrosis, and the risk of their excess. Key Content and Findings Imbalance of essential trace elements is a common complication of CKD and a risk factor for CKD progression, cardiovascular events, and death. This article reviews the effects of essential trace elements (iron, zinc, selenium, copper, iodine, and manganese) on CKD. We analyze literature and discuss the advantages and disadvantages of various essential trace elements. Conclusions Research shows CKD patients have an imbalance of essential trace elements, and treatment based on these is an important direction for future exploration. A knowledge of the homeostasis of trace elements is important to improving the prognosis of CKD patients and delaying the progression of the disease.
Collapse
Affiliation(s)
- Yi Xie
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojing Zhang
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yanyan Jin
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiuyu Li
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
23
|
Andrews FV, Branscum A, Hystad P, Smit E, Afroz S, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. A prospective study of arsenic and manganese exposures and maternal blood pressure during gestation. ENVIRONMENTAL RESEARCH 2022; 214:113845. [PMID: 35830911 PMCID: PMC9629670 DOI: 10.1016/j.envres.2022.113845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnancy is a sensitive time for maternal cardiovascular functioning and exposures to arsenic or manganese may adversely affect blood pressure (BP). OBJECTIVES This study examined the associations between arsenic and manganese exposures and maternal BP measured during pregnancy. Effect modification by pre-pregnancy body mass index (BMI) was evaluated. METHODS Pregnant women (N = 1522) were recruited for a prospective cohort study in Bangladesh (2008-2011). Exposure to arsenic and manganese was measured in drinking water at <16 weeks gestation and toenails at one-month postpartum. Systolic and diastolic BP were measured monthly. Linear mixed models estimated mean BP and differences in mean BP over gestation for arsenic or manganese exposures and adjusted for covariates. RESULTS Arsenic levels had an increasing dose-response association with maternal BP after 25 weeks gestation. Effect modification was observed for BMI. Participants with lower BMI (<23 kg/m2) exposed to 50 μg/L arsenic had 2.83 mmHg (95% CI:1.74-3.92) greater mean systolic and 1.96 mmHg (95% CI: 1.02-2.91 mmHg) diastolic BP compared to those exposed to ≤ 1 μg/L arsenic at 40 weeks gestation. Participants with higher BMI (≥23 kg/m2) showed a greater mean systolic BP of 5.72 mmHg (95% CI: 3.18-8.27 mmHg) and diastolic BP change of 6.09 mmHg (95% CI: 4.02-8.16 mmHg) at 40 weeks gestation when exposed to 50 μg/L compared to ≤ 1 μg/L arsenic. Participants with lower BMI exposed to drinking water manganese in the 2nd quartile (181-573 μg/L) had 1.04 mmHg higher mean diastolic BP (95% CI: 0.01-2.07 mmHg) at 40 weeks gestation compared to those in the 1st quartile (0.5-180 μg/L). CONCLUSION Arsenic exposures during pregnancy were consistently associated with increased average maternal systolic and diastolic BP. The effect of manganese on BP was less consistent.
Collapse
Affiliation(s)
- Faye V Andrews
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, Portland, OR, USA.
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | - David C Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, MA, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
24
|
Liu Y, Yu L, Zhu M, Lin W, Liu Y, Li M, Zhang Y, Ji H, Wang J. Associations of exposure to multiple metals with blood pressure and hypertension: A cross-sectional study in Chinese preschool children. CHEMOSPHERE 2022; 307:135985. [PMID: 35964715 DOI: 10.1016/j.chemosphere.2022.135985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals might be a risk factor for hypertension, which contributes largely to the global burden of disease and mortality. However, relevant epidemiological studies of associations between metals exposure with hypertension among preschoolers are limited. This study aimed to explore the associations of urine metals with blood pressure and hypertension among Chinese preschoolers. A total of 1220 eligible participants who had urine metals measurement, blood pressure measurements, and relevant covariates were included in this cross-sectional study. Urine concentrations of metals were measured by inductively coupled plasma mass spectrometer. The single and multiple metals regression models were used to investigate the associations of urine metal with blood pressure and the risk of hypertension after adjusting for potential confounders. We observed urine concentrations of chromium, iron, and barium were negatively associated with levels of systolic blood pressure, diastolic blood pressure and the risk of hypertension in the single metal model (all P-FDR adjustment <0.05). Significant associations of urine chromium concentrations with systolic blood pressure, diastolic blood pressure and the risk of hypertension were found in the multi-metal model (β or OR (95% confidence interval) was -3.07 (-5.12, -1.02), -2.25 (-4.29, -0.22), and 0.51 (0.26, 0.97) for 3rd quartile, compared with 1st quartile, respectively). The same association was found for barium concentrations in the multi-metal model, while none of the associations among iron quartiles was significant. In addition, urine chromium, iron and barium may have joint effects on systolic blood pressure, diastolic blood pressure and hypertension. Children's age and body mass index could modify the associations of chromium, iron, and barium concentrations with blood pressure. Our findings suggested that exposure to chromium, iron, and barium was inversely associated with blood pressure and hypertension among preschool children. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, 44200, China
| | - Lili Yu
- Dianjiang Traditional Chinese Medical Hospital, Chongqing, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Meiqin Zhu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wei Lin
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yang Liu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Mingzhu Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Hubei University of Medicine, Shiyan, Hubei, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Hongxian Ji
- Department of Child Health, Shiyan Maternal and Child Health Hospital, Shiyan, 44200, China
| | - Jing Wang
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, 44200, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
25
|
Carreras-Gallo N, Cáceres A, Balagué-Dobón L, Ruiz-Arenas C, Andrusaityte S, Carracedo Á, Casas M, Chatzi L, Grazuleviciene R, Gutzkow KB, Lepeule J, Maitre L, Nieuwenhuijsen M, Slama R, Stratakis N, Thomsen C, Urquiza J, Wright J, Yang T, Escaramís G, Bustamante M, Vrijheid M, Pérez-Jurado LA, González JR. The early-life exposome modulates the effect of polymorphic inversions on DNA methylation. Commun Biol 2022; 5:455. [PMID: 35550596 PMCID: PMC9098634 DOI: 10.1038/s42003-022-03380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10−22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome. Analysis of the relationship between presence of common DNA sequence inversions and DNA methylation patterns suggests a role for environmental exposures (such as food intake) in mediating inversion state-specific methylation patterns.
Collapse
Affiliation(s)
| | - Alejandro Cáceres
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | | | - Carlos Ruiz-Arenas
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Maribel Casas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Johanna Lepeule
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Léa Maitre
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Remy Slama
- Institut national de la santé et de la recherche médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Nikos Stratakis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Geòrgia Escaramís
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Biomedical Science, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain.,Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona, Spain
| | - Mariona Bustamante
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Genetics Service, Hospital del Mar, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
26
|
Wang M, Tian Y, Yu P, Li N, Deng Y, Li L, Kang H, Chen D, Wang H, Liu Z, Liang J. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26950-26959. [PMID: 34865185 PMCID: PMC8989826 DOI: 10.1007/s11356-021-17054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
To investigate the correlation between maternal manganese and iron concentrations and the risk of CHD among their infant. A multi-center hospital-based case control study was conducted in China. There were 322 cases and 333 controls have been selected from pregnant women who received prenatal examinations. Correlations between CHDs and maternal manganese and iron concentrations were estimated by conditional logistic regression. Moreover, the interaction between manganese and iron on CHDs was analyzed. Compared with the controls, mothers whose hair manganese concentration was 3.01 μg/g or more were more likely to have a child with CHD than those with a lower concentration. The adjusted OR was 2.68 (95%CI = 1.44-4.99). The results suggested that mothers whose iron content was 52.95 μg/g or more had a significantly higher risk of having a child with CHD (aOR = 2.87, 95%CI = 1.54-5.37). No interaction between maternal manganese and iron concentrations was observed in the multiplicative or additive model. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD (OR = 7.02). Women with excessive manganese concentrations have a significantly increased risk of having offspring with CHDs. The high maternal iron status also correlates with CHDs. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD.
Collapse
Affiliation(s)
- Meixian Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Tian
- Liupanshui Maternal and Child Health Care Hospital, Liupanshui Children's Hospital, Liupanshui, Guizhou, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Kang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dapeng Chen
- Chenghua District Maternal and Child Health Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hui Wang
- Mianyang Maternal and Child Health Care Hospital, Mianyang, Sichuan, China
| | - Zhen Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Liang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Hall RC, Qin J, Laney V, Ayat N, Lu ZR. Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS APPLIED BIO MATERIALS 2022; 5:451-458. [PMID: 35148050 DOI: 10.1021/acsabm.1c01259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MRI is increasingly utilized for the diagnosis of liver disease and focal liver lesions. Although liver-targeted gadolinium-based contrast agents (GBCAs) have high efficacy, there continue to be safety concerns regarding release of toxic Gd(III) ions. Herein, Mn(EOB-PC2A) is synthesized as a nongadolinium alternative for liver-specific MRI. Mn(EOB-PC2A) has an r1 relaxivity of 2.8 mM-1 s-1 in Dulbecco's phosphate-buffered saline (DPBS) and 5.9 mM-1 s-1 in saline containing human serum albumin at 1.5 T. It has a strong uptake in hepatocytes with minimal toxicity and demonstrated robust liver-specific enhancement at a dose of 60 μmol/kg. Mn(EOB-PC2A) is a promising liver-specific contrast agent for liver MRI.
Collapse
Affiliation(s)
- Ryan C Hall
- Department of Biomedical Engineering, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jingcan Qin
- Department of Biomedical Engineering, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Victoria Laney
- Department of Biomedical Engineering, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nadia Ayat
- Department of Biomedical Engineering, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Osteogenic Differentiation of Human Mesenchymal Stem Cells Modulated by Surface Manganese Chemistry in SLA Titanium Implants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5339090. [PMID: 35071596 PMCID: PMC8776456 DOI: 10.1155/2022/5339090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The manganese (Mn) ion has recently been probed as a potential candidate element for the surface chemistry modification of titanium (Ti) implants in order to develop a more osteogenic surface with the expectation of taking advantage of its strong binding affinity to the integrins on bone-forming cells. However, the exact mechanism of how Mn enhances osteogenesis when introduced into the surface of Ti implants is not clearly understood. This study investigated the corrosion resistance and potential osteogenic capacity of a Mn-incorporated Ti surface as determined by electrochemical measurement and examining the behaviors of human mesenchymal stem cells (MSCs) in a clinically available sandblasted/acid-etched (SLA) oral implant surface intended for future biomedical applications. The surface that resulted from wet chemical treatment exhibited the formation of a Mn-containing nanostructured TiO2 anatase thin film in the SLA implant and improved corrosion resistance. The Mn-incorporated SLA surface displayed sustained Mn ion release and enhanced osteogenesis-related MSC function, which enhanced early cellular events such as spreading, focal adhesion, and mRNA expression of critical adhesion-related genes and promoted full human MSC differentiation into mature osteoblasts. Our findings indicate that surface Mn modification by wet chemical treatment is an effective approach to produce a Ti implant surface with increased osteogenic capacity through the promotion of the osteogenic differentiation of MSCs. The improved corrosion resistance of the resultant surface is yet another important benefit of being able to provide favorable osseointegration interface stability with an increased barrier effect.
Collapse
|
29
|
Pankau C, Nadolski J, Tanner H, Cryer C, Di Girolamo J, Haddad C, Lanning M, Miller M, Neely D, Wilson R, Whittinghill B, Cooper RL. Examining the effect of manganese on physiological processes: Invertebrate models. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109209. [PMID: 34628058 PMCID: PMC8922992 DOI: 10.1016/j.cbpc.2021.109209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Manganese (Mn2+ as MnSO4 &/or MnCl2) is a common and essential element for maintaining life in plants and animals and is found in soil, fresh waters and marine waters; however, over exposure is toxic to organisms. MnSO4 is added to soil for agricultural purposes and people are exposed to Mn2+ in the mining industry. Hypermanganesemia in mammals is associated with neurological issues mimicking Parkinson's disease (PD) and appears to target dopaminergic neural circuits. However, it also seems that hypermanganesemia can affect many aspects of health besides dopaminergic synapses. We examined the effect on development, behavior, survival, cardiac function, and glutamatergic synaptic transmission in the Drosophila melanogaster. In addition, we examined the effect of Mn2+ on a sensory proprioceptive organ and nerve conduction in a marine crustacean and synaptic transmission at glutamatergic neuromuscular junctions of freshwater crayfish. A dose-response effect of higher Mn2+ retards development, survival and cardiac function in larval Drosophila and survival in larvae and adults. MnSO4 as well as MnCl2 blocks stretch activated responses in primary proprioceptive neurons in a dose-response manner. Mn2+ blocks glutamatergic synaptic transmission in Drosophila as well as crayfish via presynaptic action. This study is relevant in demonstrating the effects of Mn2+ on various physiological functions in order to learn more about acute and long-term consequences Mn2+ exposure.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA
| | - Hannah Tanner
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Carlie Cryer
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John Di Girolamo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christine Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Matthew Lanning
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mason Miller
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Devan Neely
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Reece Wilson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
30
|
Shi L, Yuan Y, Xiao Y, Long P, Li W, Yu Y, Liu Y, Liu K, Wang H, Zhou L, Yang H, Li X, He M, Wu T. Associations of plasma metal concentrations with the risks of all-cause and cardiovascular disease mortality in Chinese adults. ENVIRONMENT INTERNATIONAL 2021; 157:106808. [PMID: 34365319 DOI: 10.1016/j.envint.2021.106808] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to metals/metalloids from both the natural environment and anthropogenic sources have a complex influence on human health. However, relatively few studies have explored the relations of exposure to multiple metals/metalloids with mortality. Therefore, this prospective study aims to examine the relations of multiple metal/metalloids exposures with all-cause and cardiovascular disease (CVD) mortality. METHODS A total of 6155 participants within the Dongfeng-Tongji (DF-TJ) cohort were involved in this analysis, which were followed for mortality until December 31, 2018. We applied inductively coupled plasma mass spectrometry (ICP-MS) to measure baseline plasma concentrations of 23 metals. We utilized Cox regression models to calculate the hazard ratios (HRs) for all-cause and CVD mortality associated with metal concentrations. We proposed plasma metal score to assess the simultaneous exposure to multiple metals through summing each metal concentration weighted by the regression coefficients with all-cause mortality. RESULTS During the follow-up (mean duration, 9.8 years), we ascertained 876 deaths, including 416 deaths of CVD (157 deaths of coronary heart disease and 259 deaths of stroke). In the multiple-metals model, after adjusting for potential confounders, plasma copper, molybdenum, and vanadium were positively associated with all-cause mortality, whereas manganese, selenium, and thallium were negatively associated with the risk of all-cause mortality, with adjusted HRs (95% Confidence Interval, CI) of the fourth quartiles were 1.73 (1.42-2.11, P-trend < 0.001) for copper, 1.33 (1.09-1.63, P-trend = 0.005) for molybdenum, 1.43 (1.16-1.77, P-trend < 0.001) for vanadium, 0.74 (0.58-0.94, P-trend = 0.005) for manganese, 0.68 (0.56-0.83, P-trend < 0.001) for selenium, and 0.74 (0.59-0.92, P-trend = 0.002) for thallium, respectively. Positive associations were observed between plasma copper, molybdenum, vanadium concentrations and CVD mortality, whereas negative associations were found for plasma selenium and thallium concentrations with CVD mortality in the multiple-metals model. Compared with the first quartiles, the HRs of fourth quartiles were 1.94 (1.45-2.58, P-trend < 0.001) for copper, 1.72 (1.26-2.35, P-trend < 0.001) for molybdenum, 1.81 (1.32-2.47, P-trend < 0.001) for vanadium, 0.67 (0.50-0.89, P-trend = 0.003) for selenium, and 0.58 (0.41-0.81, P-trend < 0.001) for thallium, respectively. The plasma metal score was significantly associated with higher risks of all-cause and CVD death in dose-response fashions. When compared with the first quartiles of plasma metal score, the HRs of fourth quartiles were 2.16 (1.76-2.64; P-trend < 0.001) for all-cause mortality and 3.00 (2.24-4.02; P-trend < 0.001) for CVD mortality. CONCLUSIONS The study indicated that several plasma metals/metalloids were key determinants and predictors of all-cause and CVD death in the Chinese population. Our findings highlighted the importance to comprehensively assess and monitor multiple metals/metalloids exposures.
Collapse
Affiliation(s)
- Limei Shi
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiulou Li
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Nutrients and Dietary Approaches in Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease: A Narrative Review. Nutrients 2021; 13:nu13114150. [PMID: 34836405 PMCID: PMC8622886 DOI: 10.3390/nu13114150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of morbidity and mortality in developed countries. The prevalence of CVD is much higher in patients with type 2 diabetes mellitus (T2DM), who may benefit from lifestyle changes, which include adapted diets. In this review, we provide the role of different groups of nutrients in patients with T2DM and CVD, as well as dietary approaches that have been associated with better and worse outcomes in those patients. Many different diets and supplements have proved to be beneficial in T2DM and CVD, but further studies, guidelines, and dietary recommendations are particularly required for patients with both diseases.
Collapse
|
32
|
Xu J, Engel LS, Rhoden J, Jackson WB, Kwok RK, Sandler DP. The association between blood metals and hypertension in the GuLF study. ENVIRONMENTAL RESEARCH 2021; 202:111734. [PMID: 34303682 PMCID: PMC8578391 DOI: 10.1016/j.envres.2021.111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Both essential and non-essential metals come from natural and anthropogenic sources. Metals can bioaccumulate in humans and may impact human health, including hypertension. METHODS Blood metal (cadmium, lead, mercury, manganese, and selenium) concentrations were measured at baseline for a sample of participants in the Gulf Long-Term Follow-up (GuLF) Study. The GuLF Study is a prospective cohort study focused on potential health effects following the 2010 Deepwater Horizon oil spill. Hypertension was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure or taking anti-hypertensive medications. A total of 957 participants who had blood measurement for at least one metal, baseline blood pressure measurements, information on any anti-hypertensive medication use, and relevant covariates were included in this cross-sectional analysis. We used Poisson regression to explore the association between individual blood metal levels and hypertension. Quantile-based g-computation was used to investigate the association between the metal mixture and hypertension. We also explored the association between individual blood metal levels and continuous blood pressure measurements using general linear regression. RESULTS Comparing the highest quartile of blood metals with the lowest (Q4vs1), the hypertension prevalence ratio (PR) was 0.92 (95 % confidence interval (CI) = 0.73,1.15) for cadmium, 0.86 (95%CI = 0.66,1.12) for lead, 0.89 (95%CI = 0.71,1.12) for mercury, 1.00 (95%CI = 0.80,1.26) for selenium, and 1.22 (95%CI = 0.95,1.57) for manganese. We observed some qualitative differences across race and BMI strata although none of these differences were statistically significant. In stratified analyses, the PR (Q4vs1) for mercury was 0.69 (95%CI = 0.53, 0.91) in White participants and 1.29 (95%CI = 0.86,1.92) in Black participants (p for interaction = 0.5). The PR (Q4vs1) for manganese was relatively higher in Black participants (PR = 1.37, 95%CI = 0.92,2.05) than in White participants (PR = 1.15, 95%CI = 0.83,1.60, p for interaction = 0.5), with a suggestive dose-response among Blacks. After stratifying by obesity (BMI ≥30 and < 30), positive associations of of hypertension with cadmium (PR [Q4vs1] = 1.19, 95%CI = 0.91,1.56, p for interaction = 0.5), lead (PR [Q4vs1] = 1.14, 95%CI = 0.84,1.55, p for interaction = 1.0) and manganese (PR = 1.25, 95%CI = 0.93,1.68, p for interaction = 0.8) were observed in participants with BMI≥30, but not in participants with BMI<30. The joint effect of the metal mixture was 0.96 (95%CI = 0.73,1.27). We did not observe clear associations between blood metal levels and continuous blood pressure measurements. CONCLUSION We did not find overall cross-sectional associations between blood cadmium, lead, mercury, selenium levels and hypertension or blood pressure. We found some evidence suggesting that manganese might be positively associated with risk of hypertension. Associations varied somewhat by race and BMI.
Collapse
Affiliation(s)
- Jing Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Rhoden
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - W Braxton Jackson
- Social & Scientific Systems, Inc., DLH Holdings Company, Durham, NC, USA
| | - Richard K Kwok
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA; Office of the Director, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
33
|
Politis MD, Freedman JC, Haynes EN, Sanders AP. Association of Manganese Biomarker Concentrations with Blood Pressure and Kidney Parameters among Healthy Adolescents: NHANES 2013-2018. CHILDREN (BASEL, SWITZERLAND) 2021; 8:846. [PMID: 34682111 PMCID: PMC8534392 DOI: 10.3390/children8100846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Deficiency or excess exposure to manganese (Mn), an essential mineral, may have potentially adverse health effects. The kidneys are a major organ of Mn site-specific toxicity because of their unique role in filtration, metabolism, and excretion of xenobiotics. We hypothesized that Mn concentrations were associated with poorer blood pressure (BP) and kidney parameters such as estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), and albumin creatinine ratio (ACR). We conducted a cross-sectional analysis of 1931 healthy U.S. adolescents aged 12-19 years participating in National Health and Nutrition Examination Survey cycles 2013-2014, 2015-2016, and 2017-2018. Blood and urine Mn concentrations were measured using inductively coupled plasma mass spectrometry. Systolic and diastolic BP were calculated as the average of available readings. eGFR was calculated from serum creatinine using the Bedside Schwartz equation. We performed multiple linear regression, adjusting for age, sex, body mass index, race/ethnicity, and poverty income ratio. We observed null relationships between blood Mn concentrations with eGFR, ACR, BUN, and BP. In a subset of 691 participants, we observed that a 10-fold increase in urine Mn was associated with a 16.4 mL/min higher eGFR (95% Confidence Interval: 11.1, 21.7). These exploratory findings should be interpreted cautiously and warrant investigation in longitudinal studies.
Collapse
Affiliation(s)
- Maria D. Politis
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jacob C. Freedman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Erin N. Haynes
- Department of Epidemiology Preventative Medicine and Environmental Health, College of Public Health, University of Kentucky, Lexington, KY 40506, USA;
| | - Alison P. Sanders
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Xiao S, Zhou Y, Liu T, Hu Y, Wu Q, Pan Q, Wang X, Liu A, Liu J, Zhu H, Yin T, Pan D. The association between manganese exposure with cardiovascular disease in older adults: NHANES 2011-2018. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1221-1227. [PMID: 34474652 DOI: 10.1080/10934529.2021.1973823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The aim of the current study was to explore possible connections between manganese exposure and the prevalence of cardiovascular disease (CVD) in older US adults. The relationship between serum manganese levels and CVD was explored in 2427 people aged 60 years and over using data from the National Health and Nutrition Examination Survey (NHANES) (2011-2018). Multivariate linear regression analysis was performed to investigate associations between CVD risk factors and serum manganese concentration. The relationship between manganese levels and the prevalence of CVD was probed using generalized linear models and restricted cubic spline curves. Stratified subgroup analysis was subsequently constructed to rule out spurious interactions between variables and manganese. Compared with the lowest quartile, the modified odds ratios (ORs) with 95% confidence intervals (CIs) for CVD prevalence across the manganese quartiles were 0.71 (OR: 0.51; CI: 1.00), 0.70 (0.50, 0.99), and 0.49 (0.34, 0.72). In the full adjusted model, a prominent negative relationship was observed between serum manganese concentration and CVD. A restricted cubic spline curve was used to show a nonlinear negative relationship between manganese concentration and CVD. In summary, manganese levels are negatively correlated with the risk of CVD in a nation-wide study of older US adults.
Collapse
Affiliation(s)
- Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Hu
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinyuan Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotong Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ailin Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
35
|
Zhao H, Pan Y, Wang C, Guo Y, Yao N, Wang H, Li B. The Effects of Metal Exposures on Charlson Comorbidity Index Using Zero-Inflated Negative Binomial Regression Model: NHANES 2011-2016. Biol Trace Elem Res 2021; 199:2104-2111. [PMID: 32816137 DOI: 10.1007/s12011-020-02331-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND With the rising incidence of chronic diseases, and the increase of aging population has led to multimorbidity a serious public health problem. The aim of this study was to explore the association between metal exposures and Charlson comorbidity index (CCI), which will provide valuable information for improving quality of life and reducing mortality. METHODS The study sample consists of three continuous cycles (2011-2016) of the National Health and Nutrition Examination Survey (NHANES), and 4901 eligible subjects were included in the study. Zero-inflated negative binomial (ZINB) model was utilized to investigate the effects in metal exposures on CCI, which includes spot urine (arsenic, mercury, and cadmium), whole blood (manganese, selenium, and lead), and serum (copper and zinc). RESULTS In count part (CCI ≥ 0), holding other variables constant, the expected change in CCI for a one-unit increase in blood selenium is 0.997 (RR = 0.997, p = 0.017). In logit part (CCI = 0), the log odds of having CCI equals zero would increase by 0.659, 1.073, and 0.963 for every additional urinary cadmium (OR = 0.659, p = 0.007), blood lead (OR = 1.073, p = 0.023), blood manganese (OR = 0.963, p = 0.025), respectively. CONCLUSIONS Our findings indicated that cadmium and manganese were likely to increase mortality. Inversely, selenium and lead might be positive on people's health. The findings may be extremely essential for preventing diseases and improving life quality.
Collapse
Affiliation(s)
- Hantong Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Yingan Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Changcong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Yinpei Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Han Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Avenue, Changchun, 130021, People's Republic of China.
| |
Collapse
|
36
|
Assessment of Concentrations of Heavy Metals in Postmyocardial Infarction Patients and Patients Free from Cardiovascular Event. Cardiol Res Pract 2021; 2021:9546358. [PMID: 33604084 PMCID: PMC7868144 DOI: 10.1155/2021/9546358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) constitute the first cause of death among the population of developing and developed countries. Atherosclerosis, which is a disorder with multifactorial etiopathogenesis, underlies most CVDs. The available literature includes ample research studies on the influence of classic cardiovascular (CV) risk factors. However, environmental exposure to heavy metals, among other substances, is still an unappreciated risk factor of CVDs. This study aimed to assess the concentration of some heavy metals (copper (Cu), zinc (Zn), manganese (Mn), cobalt (Co), and iron (Fe)) in the blood serum of postmyocardial infarction (post-MI) patients and patients free from myocardial infarction (MI) as well as estimate the relationship between the occurrence of MI and increased concentration of heavy metals. The concentration of heavy metals (Cu, Zn, Mn, Co, and Fe) was assessed using the inductively coupled plasma mass spectrometry technique in a group of 146 respondents divided into two groups: post-MI group (study group (SG), n = 74) and group without cardiovascular event (CVE) having a low CV risk (control group (CG), n = 72). The concentration of the analyzed heavy metals was higher in SG. All the heavy metals showed a significant diagnostic value (p < 0.001). The highest value of area under the curve (AUC) was observed for manganese (Mn) (0.955; 95% confidence interval (CI) = 0.922–0.988), while the lowest value was found for zinc (Zn) (0.691; 95% CI = 0.599–0.782). In one-dimensional models, high concentrations of each of the analyzed heavy metals significantly increased the chances of having MI from 7-fold (Cu) to 128-fold (Mn). All the models containing a particular metal showed a significant and high discrimination value for MI occurrence (AUC 0.72–0.92). Higher concentrations of Cu, Zn, Mn, Co, and Fe were found to considerably increase the chances of having MI. Considering the increasingly higher environmental exposure to heavy metals in recent times, their concentrations can be distinguished as a potential risk factor of CVDs.
Collapse
|
37
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Queiroz HM, Ying SC, Abernathy M, Barcellos D, Gabriel FA, Otero XL, Nóbrega GN, Bernardino AF, Ferreira TO. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. ENVIRONMENT INTERNATIONAL 2021; 146:106284. [PMID: 33264733 PMCID: PMC8382573 DOI: 10.1016/j.envint.2020.106284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Manganese (Mn) is an abundant element in terrestrial and coastal ecosystems and an essential micronutrient in the metabolic processes of plants and animals. Mn is generally not considered a potentially toxic element due to its low content in both soil and water. However, in coastal ecosystems, the Mn dynamic (commonly associated with the Fe cycle) is mostly controlled by redox processes. Here, we assessed the potential contamination of the Rio Doce estuary (SE Brazil) by Mn after the world's largest mine tailings dam collapse, potentially resulting in chronic exposure to local wildlife and humans. Estuarine soils, water, and fish were collected and analyzed seven days after the arrival of the tailings in 2015 and again two years after the dam collapse in 2017. Using a suite of solid-phase analyses including X-ray absorption spectroscopy and sequential extractions, our results indicated that a large quantity of MnII arrived in the estuary in 2015 bound to Fe oxyhydroxides. Over time, dissolved Mn and Fe were released from soils when FeIII oxyhydroxides underwent reductive dissolution. Due to seasonal redox oscillations, both Fe and Mn were then re-oxidized to FeIII, MnIII, and MnIV and re-precipitated as poorly crystalline Fe oxyhydroxides and poorly crystalline Mn oxides. In 2017, redox conditions (Eh: -47 ± 83 mV; pH: 6.7 ± 0.5) favorable to both Fe and Mn reduction led to an increase (~880%) of dissolved Mn (average for 2015: 66 ± 130 µg L-1; 2017: 582 ± 626 µg L-1) in water and a decrease (~75%, 2015: 547 ± 498 mg kg-1; 2017: 135 ± 80 mg kg-1) in the total Mn content in soils. The crystalline Fe oxyhydroxides content significantly decreased while the fraction of poorly ordered Fe oxides increased in the soils limiting the role of Fe in Mn retention. The high concentration of dissolved Mn found within the estuary two years after the arrival of mine tailings indicates a possible chronic contamination scenario, which is supported by the high levels of Mn in two species of fish living in the estuary. Our work suggests a high risk to estuarine biota and human health due to the rapid Fe and Mn biogeochemical dynamic within the impacted estuary.
Collapse
Affiliation(s)
- Hermano M Queiroz
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Samantha C Ying
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Macon Abernathy
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Diego Barcellos
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Fabricio A Gabriel
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Xosé L Otero
- Department of Edaphology and Agricultural Chemistry - CRETUS, Faculty of Biology, Universidade de Santiago de Compostela, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Gabriel N Nóbrega
- Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry, Federal Fluminense University, Niterói, Brazil
| | - Angelo F Bernardino
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Tiago O Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
39
|
Spath NB, Singh T, Papanastasiou G, Kershaw L, Baker AH, Janiczek RL, Gulsin GS, Dweck MR, McCann G, Newby DE, Semple SI. Manganese-enhanced magnetic resonance imaging in dilated cardiomyopathy and hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2020:jeaa273. [PMID: 33200175 DOI: 10.1093/ehjci/jeaa273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023] Open
Abstract
AIMS The aim of this study is to quantify altered myocardial calcium handling in non-ischaemic cardiomyopathy using magnetic resonance imaging. METHODS AND RESULTS Patients with dilated cardiomyopathy (n = 10) or hypertrophic cardiomyopathy (n = 17) underwent both gadolinium and manganese contrast-enhanced magnetic resonance imaging and were compared with healthy volunteers (n = 20). Differential manganese uptake (Ki) was assessed using a two-compartment Patlak model. Compared with healthy volunteers, reduction in T1 with manganese-enhanced magnetic resonance imaging was lower in patients with dilated cardiomyopathy [mean reduction 257 ± 45 (21%) vs. 288 ± 34 (26%) ms, P < 0.001], with higher T1 at 40 min (948 ± 57 vs. 834 ± 28 ms, P < 0.0001). In patients with hypertrophic cardiomyopathy, reductions in T1 were less than healthy volunteers [mean reduction 251 ± 86 (18%) and 277 ± 34 (23%) vs. 288 ± 34 (26%) ms, with and without fibrosis respectively, P < 0.001]. Myocardial manganese uptake was modelled, rate of uptake was reduced in both dilated and hypertrophic cardiomyopathy in comparison with healthy volunteers (mean Ki 19 ± 4, 19 ± 3, and 23 ± 4 mL/100 g/min, respectively; P = 0.0068). In patients with dilated cardiomyopathy, manganese uptake rate correlated with left ventricular ejection fraction (r2 = 0.61, P = 0.009). Rate of myocardial manganese uptake demonstrated stepwise reductions across healthy myocardium, hypertrophic cardiomyopathy without fibrosis and hypertrophic cardiomyopathy with fibrosis providing absolute discrimination between the healthy myocardium and fibrosed myocardium (mean Ki 23 ± 4, 19 ± 3, and 13 ± 4 mL/100 g/min, respectively; P < 0.0001). CONCLUSION The rate of manganese uptake in both dilated and hypertrophic cardiomyopathy provides a measure of altered myocardial calcium handling. This holds major promise for the detection and monitoring of dysfunctional myocardium, with the potential for early intervention and prognostication.
Collapse
Affiliation(s)
- N B Spath
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - T Singh
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - G Papanastasiou
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - L Kershaw
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - A H Baker
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
| | - R L Janiczek
- Department of Clinical Imaging, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - G S Gulsin
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - M R Dweck
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - G McCann
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - D E Newby
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SB, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - S I Semple
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SA, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
40
|
Gao P, Tian Y, Xie Q, Zhang L, Yan Y, Xu D. Manganese exposure induces permeability in renal glomerular endothelial cells via the Smad2/3-Snail-VE-cadherin axis. Toxicol Res (Camb) 2020; 9:683-692. [PMID: 33178429 DOI: 10.1093/toxres/tfaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient. However, it is well established that Mn overexposure causes nervous system diseases. In contrast, there are few reports on the effects of Mn exposure on glomerular endothelium. In the present study, the potential effects of Mn exposure on glomerular endothelium were evaluated. Sprague Dawley rats were used as a model of Mn overexposure by intraperitoneal injection of MnCl2·H2O at 25 mg/kg body weight. Mn exposure decreased expression of vascular endothelial-cadherin, a key component of adherens junctions, and increased exudate from glomeruli in Sprague Dawley rats. Human renal glomerular endothelial cells were cultured with different concentration of Mn. Exposure to 0.2 mM Mn increased permeability of human renal glomerular endothelial cell monolayers and decreased vascular endothelial-cadherin expression without inducing cytotoxicity. In addition, Mn exposure increased phosphorylation of mothers against decapentaplegic homolog 2/3 and upregulated expression of zinc finger protein SNAI1, a negative transcriptional regulator of vascular endothelial-cadherin. Our data suggest Mn exposure may contribute to development of glomerular diseases by inducing permeability of glomerular endothelium.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Yutian Tian
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Qi Xie
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| | - Liang Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, Shandong, China
| | - Yongjian Yan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan 250014, Shandong, China
| |
Collapse
|
41
|
Nwanaji-Enwerem JC, Colicino E, Specht AJ, Gao X, Wang C, Vokonas P, Weisskopf MG, Boyer EW, Baccarelli AA, Schwartz J. Individual species and cumulative mixture relationships of 24-hour urine metal concentrations with DNA methylation age variables in older men. ENVIRONMENTAL RESEARCH 2020; 186:109573. [PMID: 32361261 PMCID: PMC7363532 DOI: 10.1016/j.envres.2020.109573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Globally, toxic metal exposures are a well-recognized risk factor for many adverse health outcomes. DNA methylation-based measures of biological aging are predictive of disease, but have poorly understood relationships with metal exposures. OBJECTIVE We performed a pilot study examining the relationships of 24-h urine metal concentrations with three novel DNA methylation-based measures of biological aging: DNAmAge, GrimAge, and PhenoAge. METHODS We utilized a previously established urine panel of five common metals [arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg)] found in a subset of the elderly US Veterans Affairs Normative Aging Study cohort (N = 48). The measures of DNA methylation-based biological age were calculated using CpG sites on the Illumina HumanMethylation450 BeadChip. Bayesian Kernel Machine Regression (BKMR) was used to determine metals most important to the aging outcomes and the relationship of the cumulative metal mixture with the outcomes. Individual relationships of important metals with the biological aging outcomes were modeled using fully-adjusted linear models controlling for chronological age, renal function, and lifestyle/environmental factors. RESULTS Mn was selected as important to PhenoAge. A 1 ng/mL increase in urine Mn was associated with a 9.93-year increase in PhenoAge (95%CI: 1.24, 18.61, p = 0.03). The cumulative urine metal mixture was associated with increases in PhenoAge. Compared to a model where each metal in the mixture is set to its 50th percentile value, every one-unit increase of the cumulative mixture with each metal at its 70th percentile was associated with a 2.53-year increase in PhenoAge (95%CI: 0.10, 4.96, P<0.05). CONCLUSION Our results add novel evidence that metals detected in urine are associated with increases in biological aging and suggest that these DNA methylation-based measures may be useful for identifying individuals at-risk for diseases related to toxic metal exposures. Further research is necessary to confirm these findings more broadly.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Belfer Center for Science and International Affairs, Harvard Kennedy School of Government, Department of Environmental Health, Harvard T.H. Chan School of Public Health, and MD/PhD Program, Harvard Medical School, Boston, MA, USA.
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron J Specht
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xu Gao
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward W Boyer
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Ho CC, Chen YC, Yet SF, Weng CY, Tsai HT, Hsu JF, Lin P. Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137243. [PMID: 32147111 DOI: 10.1016/j.scitotenv.2020.137243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) has been associated with vascular diseases in epidemiological studies. We have demonstrated previously that exposure to ambient PM2.5 caused pulmonary vascular remodeling in mice and increased vascular smooth muscle cells (VSMCs) viability. Here, we further demonstrated that exposure of mice to ambient PM2.5 increased urinary 8‑hydroxy‑2'‑deoxyguanosine (8-OHdG) and cytokines concentrations in the broncheoalveolar lavage. The objective of the present study was to identify the PM2.5 components related to vascular dysfunction. Exposure to PM2.5 collected from various areas and seasons in Taiwan significantly increased viability, oxidative stress, and inflammatory cytokines secretion in VSMCs. The mass concentrations of benz[a]anthracene (BaA), benzo[e]pyrene (BeP), perylene, dibenzo[a,e]pyrene, molybdenum, zinc (Zn), vanadium (V), and nickel in the PM2.5 were significantly associated with increased viability of VSMCs. These components, except BaA and BeP, also were significantly associated with chemokine (CC motif) ligand 5 (CCL5) concentrations in the VSMCs. The effects of V and Zn on cell viability and CCL5 expression, respectively, were verified. In addition, the mass concentrations of sulfate and manganese (Mn) in PM2.5 were significantly correlated with increased oxidative stress; this correlation was also confirmed. After extraction, the inorganic fraction of PM2.5 increased cell viability and oxidative stress, but the organic fraction of PM2.5 increased only cell viability, which was inhibited by an aryl hydrocarbon receptor antagonist. These data suggest that controlling the emission of Zn, V, Mn, sulfate, and PAHs may prevent the occurrence of PM2.5-induced vascular diseases.
Collapse
Affiliation(s)
- Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ti Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
43
|
Huang S, Liu Z, Ge X, Luo X, Zhou Y, Li D, Li L, Chen X, Huang L, Cheng H, Hou Q, Zan G, Tan Y, Liu C, Zou Y, Yang X. Occupational exposure to manganese and risk of creatine kinase and creatine kinase-MB elevation among ferromanganese refinery workers. Am J Ind Med 2020; 63:394-401. [PMID: 32112445 DOI: 10.1002/ajim.23097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Elevated exposure to manganese (Mn) could induce cardiovascular dysfunction. However, limited research is available on the effects of occupational Mn exposure on myocardial enzymes. We aimed to evaluate the relationships between Mn exposure and myocardial enzyme elevation among Mn-exposed workers. METHODS Data were from a follow-up investigation of a Mn-exposed workers healthy cohort in 2017. A total of 744 workers were divided into low-exposure and high-exposure groups according to Mn time-weighted average (Mn-TWA) of less than or equal to 0.15 mg/m3 or greater than 0.15 mg/m3 , respectively. Serum levels of myocardial enzymes, including creatine kinase (CK) and creatine kinase-MB (CK-MB), lactic dehydrogenase, α-hydroxybutyrate dehydrogenase, and aspartate transaminase, were assessed, as well as airborne Mn exposure levels. RESULTS After adjustment for sex, body mass index, seniority, education, current smoking status, current drinking status, and hypertension, Mn-TWA levels were positively associated with the risk of CK elevation (odds ratio [OR] = 1.47 (95% confidence interval [CI]: 1.18-1.83) per interquartile range [IQR] increase), and risk of CK-MB elevation [OR = 1.57 (95% CI: 1.03-2.38) per IQR increase]. In a stratified analysis, Mn-TWA levels were positively correlated with CK elevation in workers of seniority greater than 19 years, male workers, current smokers, and drinkers. CONCLUSION Our results suggest that occupational exposure to Mn is associated with increased risk of CK and CK-MB elevation. The potential mechanisms of the associations between airborne exposure to Mn and increased risk of these myocardial enzyme elevations warrant further investigation.
Collapse
Affiliation(s)
- Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Zhenfang Liu
- Department of HematologyThe First Affiliated Hospital of Guangxi Medical UniversityNanning Guangxi China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Yanting Zhou
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Defu Li
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Yanli Tan
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
| | - Yunfeng Zou
- Department of Toxicology, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanning Guangxi China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public HealthGuangxi Medical UniversityNanning Guangxi China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanning Guangxi China
- Center for Genomic and Personalized MedicineGuangxi Medical UniversityNanning Guangxi China
| |
Collapse
|
44
|
Abstract
Iron oxide nanoparticles have been extensively utilised as negative (T2) contrast agents in magnetic resonance imaging. In the past few years, researchers have also exploited their application as positive (T1) contrast agents to overcome the limitation of traditional Gd3+ contrast agents. To provide T1 contrast, these particles must present certain physicochemical properties with control over the size, morphology and surface of the particles. In this review, we summarise the reported T1 iron oxide nanoparticles and critically revise their properties, synthetic protocols and application, not only in MRI but also in multimodal imaging. In addition, we briefly summarise the most important nanoparticulate Gd and Mn agents to evaluate whether T1 iron oxide nanoparticles can reach Gd/Mn contrast capabilities.
Collapse
|
45
|
Yang AM, Lo K, Zheng TZ, Yang JL, Bai YN, Feng YQ, Cheng N, Liu SM. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis Transl Med 2020; 6:251-259. [PMID: 33336170 PMCID: PMC7729107 DOI: 10.1016/j.cdtm.2020.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) and environmental degradation are leading global health problems of our time. Recent studies have linked exposure to heavy metals to the risks of CVD and diabetes, particularly in populations from low- and middle-income countries, where concomitant rapid development occurs. In this review, we 1) assessed the totality, quantity, and consistency of the available epidemiological studies, linking heavy metal exposures to the risk of CVD (including stroke and coronary heart disease); 2) discussed the potential biological mechanisms underlying some tantalizing observations in humans; and 3) identified gaps in our knowledge base that must be investigated in future work. An accumulating body of evidence from both experimental and observational studies implicates exposure to heavy metals, in a dose-response manner, in the increased risk of CVD. The limitations of most existing studies include insufficient statistical power, lack of comprehensive assessment of exposure, and cross-sectional design. Given the widespread exposure to heavy metals, an urgent need has emerged to investigate these putative associations of environmental exposures, either independently or jointly, with incident CVD outcomes prospectively in well-characterized cohorts of diverse populations, and to determine potential strategies to prevent and control the impacts of heavy metal exposure on the cardiometabolic health outcomes of individuals and populations.
Collapse
Affiliation(s)
- Ai-Min Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Kenneth Lo
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA.,Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, USA
| | - Jing-Li Yang
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Na Bai
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ying-Qing Feng
- Department of Cardiology and Endocrinology, Guangdong Provincial People's Hospital, Guandong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ning Cheng
- Department of Epidemiology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Si-Min Liu
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China.,Centre for Global Cardiometabolic Health, Department of Epidemiology, Surgery, and Medicine, Brown University, Providence, RI 02903, USA
| |
Collapse
|
46
|
Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072204. [PMID: 32218329 PMCID: PMC7178168 DOI: 10.3390/ijerph17072204] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/29/2022]
Abstract
The problem of environmental pollution is a global concern as it affects the entire ecosystem. There is a cyclic revolution of pollutants from industrial waste or anthropogenic sources into the environment, farmlands, plants, livestock and subsequently humans through the food chain. Most of the toxic metal cases in Africa and other developing nations are a result of industrialization coupled with poor effluent disposal and management. Due to widespread mining activities in South Africa, pollution is a common site with devastating consequences on the health of animals and humans likewise. In recent years, talks on toxic metal pollution had taken center stage in most scientific symposiums as a serious health concern. Very high levels of toxic metals have been reported in most parts of South African soils, plants, animals and water bodies due to pollution. Toxic metals such as Zinc (Zn), Lead (Pb), Aluminium (Al), Cadmium (Cd), Nickel (Ni), Iron (Fe), Manganese (Mn) and Arsenic (As) are major mining effluents from tailings which contaminate both the surface and underground water, soil and food, thus affecting biological function, endocrine systems and growth. Environmental toxicity in livestock is traceable to pesticides, agrochemicals and toxic metals. In this review, concerted efforts were made to condense the information contained in literature regarding toxic metal pollution and its implications in soil, water, plants, animals, marine life and human health.
Collapse
Affiliation(s)
- Uchenna Okereafor
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
- Correspondence: ; Tel.: +27-7475-16904
| | - Mamookho Makhatha
- Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park 2006, South Africa;
| | - Nkemdinma Uche-Okereafor
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Tendani Sebola
- Department of Biotechnology & Food Technology, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa; (N.U.-O.); (T.S.)
| | - Vuyo Mavumengwana
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
47
|
Zhang ZY, Carmeli C, Ponte B, Pruijm M, Ackermann D, Ehret G, Guessous I, Petrović D, Pechère-Bertschi A, Vogt B, Martin PY, Burnier M, Lenglet S, Augsburger M, Thomas A, Bochud M. Ambulatory Blood Pressure in Relation to Plasma and Urinary Manganese. Hypertension 2020; 75:1133-1139. [PMID: 32114854 DOI: 10.1161/hypertensionaha.119.13649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The association of blood pressure (BP) with manganese-an essential trace element required for human health-remains poorly studied. In 734 randomly recruited Swiss participants (mean age, 47.5 years; 51.4% women), we related ambulatory BP to 2 biomarkers, plasma manganese (pMn) and the urinary manganese (uMn) excretion. To allow for diurnal variation, we assessed BP and uMn over 24 hours and during wakefulness and sleep, using split urine samples. Twenty-four-hour, daytime, and nighttime systolic/diastolic BPs averaged 119.8/78.1, 123.8/81.2, and 107.0/68.3 mm Hg; the corresponding median uMn were 199.5, 83.0, and 51.5 μmol and median pMn, 0.52 μg/L. In analyses dichotomized by the median of the biomarkers, greater pMn was associated with higher 24-hour systolic/diastolic BP (+4.1/+2.3 mm Hg; P≤0.0003), greater daytime uMn with lower daytime BP (-3.5/-1.9 mm Hg; P≤0.0067), and greater nighttime uMn with higher nighttime BP (+2.9/+1.2 mm Hg; P≤0.046). In multivariable-adjusted analyses, significance (P≤0.030) was retained for the positive association of 24-hour and daytime diastolic BP with pMn and for systolic BP in relation to uMn at night. The association sizes for a 2-fold increment in the biomarkers amounting to 0.77 mm Hg (95% CI, 0.08-1.47 mm Hg), 0.97 (CI, 0.20-1.76) and 1.33 (CI, 0.20-2.50 mm Hg), respectively. In conclusion, there were positive associations between diastolic BP and pMn over 24 hours and during daytime and between systolic BP and uMn at night.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- From the Department of Epidemiology and Health Systems, Center for Primary Care and Public Health-Unisanté (Z.-Y.Z., C.C., B.P., D.P., M. Bochud), University of Lausanne, Switzerland.,Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium (Z.-Y.Z.)
| | - Cristian Carmeli
- From the Department of Epidemiology and Health Systems, Center for Primary Care and Public Health-Unisanté (Z.-Y.Z., C.C., B.P., D.P., M. Bochud), University of Lausanne, Switzerland
| | - Belen Ponte
- From the Department of Epidemiology and Health Systems, Center for Primary Care and Public Health-Unisanté (Z.-Y.Z., C.C., B.P., D.P., M. Bochud), University of Lausanne, Switzerland.,Division of Nephrology (B.P., P.-Y.M.), Geneva University Hospitals, Switzerland
| | - Menno Pruijm
- Division of Nephrology and Hypertension, Lausanne University Hospital (M.P., M. Burnier), University of Lausanne, Switzerland
| | - Daniel Ackermann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Switzerland (D.A., B.V.)
| | - Georg Ehret
- Division of Cardiology (G.E.), Geneva University Hospitals, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Department of Primary Care Medicine (I.G.), Geneva University Hospitals, Switzerland
| | - Dušan Petrović
- From the Department of Epidemiology and Health Systems, Center for Primary Care and Public Health-Unisanté (Z.-Y.Z., C.C., B.P., D.P., M. Bochud), University of Lausanne, Switzerland
| | | | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Switzerland (D.A., B.V.)
| | - Pierre-Yves Martin
- Division of Nephrology (B.P., P.-Y.M.), Geneva University Hospitals, Switzerland
| | - Michel Burnier
- Division of Nephrology and Hypertension, Lausanne University Hospital (M.P., M. Burnier), University of Lausanne, Switzerland
| | - Sébastien Lenglet
- Faculty Unit of Toxicology, CURML, Lausanne University Hospital, Faculty of Biology and Medicine (S.L., M.A., A.T.), University of Lausanne, Switzerland
| | - Marc Augsburger
- Faculty Unit of Toxicology, CURML, Lausanne University Hospital, Faculty of Biology and Medicine (S.L., M.A., A.T.), University of Lausanne, Switzerland
| | - Aurelien Thomas
- Faculty Unit of Toxicology, CURML, Lausanne University Hospital, Faculty of Biology and Medicine (S.L., M.A., A.T.), University of Lausanne, Switzerland
| | - Murielle Bochud
- From the Department of Epidemiology and Health Systems, Center for Primary Care and Public Health-Unisanté (Z.-Y.Z., C.C., B.P., D.P., M. Bochud), University of Lausanne, Switzerland
| |
Collapse
|
48
|
Smythers AL, Perry NL, Kolling DR. Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Zhong Q, Jiang CX, Zhang C, Zhang Q, Qin QR, Wang XD, Huang F. Urinary Metal Concentrations and the Incidence of Hypertension Among Adult Residents Along the Yangtze River, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:490-500. [PMID: 31363802 DOI: 10.1007/s00244-019-00655-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Metals from the natural environment have potential hypertension effects. However, relevant studies on this topic are few. A total of 1358 adults aged 18-74 years from Chizhou, Maanshan, and Tongling of Anhui Province participated in the baseline study from 2014 to 2015. The follow-up study was performed from 2016 to 2017. Inductively coupled plasma optical emission spectrometry (7000 DV) was used to measure urinary Cr, Mn, Fe, Cu, and Zn of residents. Urinary concentrations of Cd determined via TAS-900 atomic absorption spectrophotometry at 228.8 nm wavelength. A total of 275 hypertension cases were identified. After adjusting for sociodemographic factors and risk factors for hypertension, four metals (Cd, Cr, Cu, and Mn) were significantly associated with hypertension in the single-metal model. Upon including all metals in the same model, the hazard ratios of the highest quartiles Cd and Cu compared with the reference group were 1.42 (95% confidence interval [CI] 1.09-2.02) and 1.56 (95% CI 1.16-2.09) for cases of hypertension. Our findings suggested that high levels of Cd and Cu might increase the incidence of hypertension. Further studies involving larger population should be conducted to confirm these findings.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Epidemiology and Biostatistics Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan Districts, Hefei, 230032, Anhui, People's Republic of China
| | - Chun-Xiao Jiang
- Department of Epidemiology and Biostatistics Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan Districts, Hefei, 230032, Anhui, People's Republic of China
| | - Chi Zhang
- Department of Epidemiology and Biostatistics Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan Districts, Hefei, 230032, Anhui, People's Republic of China
| | - Qian Zhang
- Department of Epidemiology and Biostatistics Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan Districts, Hefei, 230032, Anhui, People's Republic of China
| | - Qi-Rong Qin
- Ma'anshan Center for Disease Control and Provention, Ma'anshan, Anhui, People's Republic of China
| | - Xiao-Dong Wang
- Yian Center for Disease Control and Provention, Tongling, Anhui, People's Republic of China
| | - Fen Huang
- Department of Epidemiology and Biostatistics Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Shushan Districts, Hefei, 230032, Anhui, People's Republic of China.
- Central Laboratory of Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
50
|
Spath NB, Thompson G, Baker AH, Dweck MR, Newby DE, Semple SIK. Manganese-enhanced MRI of the myocardium. Heart 2019; 105:1695-1700. [PMID: 31337670 PMCID: PMC6855794 DOI: 10.1136/heartjnl-2019-315227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Gadolinium-based contrast media are widely used in cardiovascular MRI to identify and to highlight the intravascular and extracellular space. After gadolinium, manganese has the second highest paramagnetic moment and was one of the first MRI contrast agents assessed in humans. Over the last 50 years, manganese-enhanced MRI (MEMRI) has emerged as a complementary approach enabling intracellular myocardial contrast imaging that can identify functional myocardium through its ability to act as a calcium analogue. Early progress was limited by its potential to cause myocardial depression. To overcome this problem, two clinical formulations of manganese were developed using either chelation (manganese dipyridoxyl diphosphate) or coadministration with a calcium compound (EVP1001-1, Eagle Vision Pharmaceuticals). Preclinical studies have demonstrated the efficacy of MEMRI in quantifying myocardial infarction and detecting myocardial viability as well as tracking altered contractility and calcium handling in cardiomyopathy. Recent clinical data suggest that MEMRI has exciting potential in the quantification of myocardial viability in ischaemic cardiomyopathy, the early detection of abnormalities in myocardial calcium handling, and ultimately, in the development of novel therapies for myocardial infarction or heart failure by actively quantifying viable myocardium. The stage is now set for wider clinical translational study of this novel and promising non-invasive imaging modality.
Collapse
Affiliation(s)
- Nick B Spath
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Gerard Thompson
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Scott I K Semple
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|