1
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Hu Z, Tang L, Zhan Y. Cognition as mediator of pulmonary function and risk of sarcopenia among older adults. BMC Public Health 2024; 24:1347. [PMID: 38762539 PMCID: PMC11102626 DOI: 10.1186/s12889-024-18848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND The relationship between lung function and sarcopenia remains ambiguous. The primary aim of this study was to investigate the potential association between lung function and sarcopenia in the older adults, as well as to examine the mediating role of cognitive function in this relationship. METHODS The participants were selected from a nationally representative population-based cohort in China. The peak expiratory flow (PEF) measurement was used to evaluate the lung function in older persons. The sarcopenia was diagnosed using the guidelines of the Asian Working Group for Sarcopenia (AWGS) in 2019. The Cox proportional hazard model was utilized to perform primary analyses of the relationship between PEF and sarcopenia. The mediating effect of cognitive function was evaluated using the counterfactual mediation method. RESULTS This cohort study included 4,011 older adults (average age, 66.6 years; 53.3% males). During a follow-up period of 3.86 years, 349 individuals were diagnosed with sarcopenia. After adjusting for potential confounders, each one-standard-deviation increase in PEF was associated with a 28% reduction in the risk of sarcopenia (hazard ratio [HR]: 0.72; 95% confidence interval [CI]: 0.63, 0.80). There was a significant mediation of cognition for the association between PEF and incident sarcopenia, and the proportion mediated was 12.2% (95% CI: 4.5%, 23.1%). CONCLUSIONS Older adults with impaired lung function are more likely to develop sarcopenia. Nevertheless, cognition can explain only a small portion of this association. Thus, other potential pathways between lung function and sarcopenia must be elucidated.
Collapse
Affiliation(s)
- Zhao Hu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | - Lu Tang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Moura MVN, Mesquita da Conceição Bahia G, Gonçalves Correa M, Araujo Sarges MA, Lobão TA, Sanches EM, Oliveira KRHM, Herculano AM, Bahia CP. Neuroprotective effects of crude extracts, compounds, and isolated molecules obtained from plants in the central nervous system injuries: a systematic review. Front Neurosci 2023; 17:1249685. [PMID: 37766783 PMCID: PMC10520969 DOI: 10.3389/fnins.2023.1249685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The number of people with central nervous system (CNS) injuries increases worldwide and only a few therapies are used to mitigate neurological damage. Crude extracts, compounds, and isolated molecules obtained from plants have neuroprotective effects; however, their actions on the central nervous system are still not fully understood. This systematic review investigated the neuroprotective effects of crude extracts, compound, and isolated molecules obtained from plants in different CNS lesions. This PICO (Population/Problem, Intervention, Control, Outcome) systematic review included in vivo and in vitro studies that used small rodents as experimental models of CNS injuries (P) treated with crude extracts, compounds, and/or isolated molecules obtained from plants (I), compared to non-intervention conditions (C), and that showed a neuroprotective effect (O). Fourteen out of 5,521 studies were selected for qualitative analysis. Several neuroprotective effects (improvement of antioxidant activity, modulation of the inflammatory response, tissue preservation, motor and cognitive recovery) in the brain and spinal cord were reported after treatment with different doses of crude extracts (10 studies), compounds (2 studies), and isolated molecules (2 studies). Crude extracts, compounds, or isolated molecules obtained from plants showed promising neuroprotective effects against several CNS injuries in both the brain and spinal cord, regardless of gender and age, through the modulation of inflammatory activity and oxidative biochemistry, tissue preservation, and recovery of motor and cognitive activity.
Collapse
Affiliation(s)
- Maria Vitoria Nava Moura
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Marcio Gonçalves Correa
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Thaís Alves Lobão
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Erica Miranda Sanches
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Karen R. H. Matos Oliveira
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlomagno Pacheco Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
4
|
Li QY, Li XM, Hu HY, Ma YH, Ou YN, Wang AY, Tan L, Yu JT. Associations of Lung Function Decline with Risks of Cognitive Impairment and Dementia: A Meta-Analysis and Systematic Review. J Alzheimers Dis 2023; 92:853-873. [PMID: 36806509 DOI: 10.3233/jad-221136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND There are controversies surrounding the effects of lung function decline on cognitive impairment and dementia. OBJECTIVE We conducted a meta-analysis and systematic review to explore the associations of lung function decline with the risks of cognitive impairment and dementia. METHODS The PubMed, EMBASE, and the Cochrane Library were searched to identify prospective studies published from database inception through January 10, 2023. We pooled relative risk (RR) and 95% confidence intervals (CI) using random-effects models. The Egger test, funnel plots, meta-regression, sensitivity, and subgroup analyses were conducted to detect publication bias and investigate the source of heterogeneity. RESULTS Thirty-three articles with a total of 8,816,992 participants were subjected to meta-analysis. Poorer pulmonary function was associated with an increased risk of dementia (FEV: RR = 1.25 [95% CI, 1.17-1.33]; FVC: RR = 1.40 [95% CI, 1.16-1.69]; PEF: RR = 1.84 [95% CI, 1.37-2.46]). The results of the subgroup analyses were similar to the primary results. Individuals with lung diseases had a higher combined risk of dementia and cognitive impairment (RR = 1.39 [95% CI, 1.20-1.61]). Lung disease conferred an elevated risk of cognitive impairment (RR = 1.37 [95% CI, 1.14-1.65]). The relationship between lung disease and an increased risk of dementia was only shown in total study participants (RR = 1.32 [95% CI, 1.11-1.57]), but not in the participants with Alzheimer's disease (RR = 1.39 [95% CI, 1.00-1.93]) or vascular dementia (RR = 2.11 [95% CI, 0.57-7.83]). CONCLUSION Lung function decline was significantly associated with higher risks of cognitive impairment and dementia. These findings might provide implications for the prevention of cognitive disorders and the promotion of brain health.
Collapse
Affiliation(s)
- Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Mei Li
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao University, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Hussain K, Liu R, Smith RCG, Müller KTJ, Ghorbani M, Macari S, Cleary KLS, Oldham RJ, Foxall RB, James S, Booth SG, Murray T, Dahal LN, Hargreaves CE, Kemp RS, Longley J, Douglas J, Markham H, Chee SJ, Stopforth RJ, Roghanian A, Carter MJ, Ottensmeier CH, Frendéus B, Cutress RI, French RR, Glennie MJ, Strefford JC, Thirdborough SM, Beers SA, Cragg MS. HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy. J Exp Clin Cancer Res 2022; 41:131. [PMID: 35392965 PMCID: PMC8988350 DOI: 10.1186/s13046-022-02294-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.
Collapse
Affiliation(s)
- Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Rena Liu
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Rosanna C G Smith
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Kri T J Müller
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Mohammadmersad Ghorbani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sofia Macari
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Kirstie L S Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Robert J Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Russell B Foxall
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Steven G Booth
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Tom Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Lekh N Dahal
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Chantal E Hargreaves
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Robert S Kemp
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jemma Longley
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - James Douglas
- University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, Hampshire, UK
| | - Hannah Markham
- University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, Hampshire, UK
| | - Serena J Chee
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Richard J Stopforth
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Matthew J Carter
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Christian H Ottensmeier
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Bjorn Frendéus
- Preclinical Research, BioInvent International AB, Sölvegatan 41, 22370, Lund, Sweden
| | - Ramsey I Cutress
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Ruth R French
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin J Glennie
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Jonathan C Strefford
- Cancer Genomics Group, Southampton Experimental Cancer Medicine Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Stephen M Thirdborough
- CRUK Southampton Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
| |
Collapse
|
6
|
Inuzuka H, Liu J, Wei W, Rezaeian AH. PROTACs technology for treatment of Alzheimer's disease: Advances and perspectives. ACTA MATERIA MEDICA 2022; 1:24-41. [PMID: 35237768 PMCID: PMC8887676 DOI: 10.15212/amm-2021-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurodegenerative diseases (NDs) are characteristic with progression of neuron degeneration, resulting in dysfunction of cognition and mobility. Many neurodegenerative diseases are because of proteinopathies that results from unusual protein accumulations and aggregations. The aggregation of misfolded proteins like β-amyloid, α-synuclein, tau, and polyglutamates are hallmarked in Alzheimer's disease (AD), which are undruggable targets, and usually do not respond to conventional small-molecule agents. Therefore, developing novel technology and strategy for reducing the levels of protein aggregates would be critical for treatment of AD. Recently, the emerging proteolysis targeting chimeras (PRPTACs) technology has been significantly considered for artificial and selective degradation of aberrant target proteins. These engineered bifunctional molecules engage target proteins to be degraded by either the cellular degradation machinery in the ubiquitin-proteasome system (UPS) or via the autophagy-lysosome degradation pathway. Although the application of PROTACs technology is preferable than oligonucleotide and antibodies for treatment of NDs, many limitations such as their pharmacokinetic properties, tissue distribution and cell permeabilities, still need to be corrected. Herein, we review the recent advances in PROTACs technology with their limitation for pharmaceutical targeting of aberrant proteins involved in Alzheimer's diseases. We also review therapeutic potential of dysregulated signaling such as PI3K/AKT/mTOR axis for the management of AD.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Corresponding author. Contact: ,
| |
Collapse
|
7
|
Parent MB, Ferreira-Neto HC, Kruemmel AR, Althammer F, Patel AA, Keo S, Whitley KE, Cox DN, Stern JE. Heart failure impairs mood and memory in male rats and down-regulates the expression of numerous genes important for synaptic plasticity in related brain regions. Behav Brain Res 2021; 414:113452. [PMID: 34274373 DOI: 10.1016/j.bbr.2021.113452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Chronic heart failure (HF) is a serious disorder that afflicts more than 26 million patients worldwide. HF is comorbid with depression, anxiety and memory deficits that have serious implications for quality of life and self-care in patients who have HF. Still, there are few studies that have assessed the effects of severely reduced ejection fraction (≤40 %) on cognition in non-human animal models. Moreover, limited information is available regarding the effects of HF on genetic markers of synaptic plasticity in brain areas critical for memory and mood regulation. We induced HF in male rats and tested mood and anxiety (sucrose preference and elevated plus maze) and memory (spontaneous alternation and inhibitory avoidance) and measured the simultaneous expression of 84 synaptic plasticity-associated genes in dorsal (DH) and ventral hippocampus (VH), basolateral (BLA) and central amygdala (CeA) and prefrontal cortex (PFC). We also included the hypothalamic paraventricular nucleus (PVN), which is implicated in neurohumoral activation in HF. Our results show that rats with severely reduced ejection fraction recapitulate behavioral symptoms seen in patients with chronic HF including, increased anxiety and impaired memory in both tasks. HF also downregulated several synaptic-plasticity genes in PFC and PVN, moderate decreases in DH and CeA and minimal effects in BLA and VH. Collectively, these findings identify candidate brain areas and molecular mechanisms underlying HF-induced disturbances in mood and memory.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Sreinick Keo
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Zhang QL, Li HW, Dong ZX, Yang XJ, Lin LB, Chen JY, Yuan ML. Comparative transcriptomic analysis of fireflies (Coleoptera: Lampyridae) to explore the molecular adaptations to fresh water. Mol Ecol 2020; 29:2676-2691. [PMID: 32512643 DOI: 10.1111/mec.15504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Aquatic insects are well adapted to freshwater environments, but the molecular basis of these adaptations remains largely unknown. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of several species are aquatic. Here, larval and adult transcriptomes from Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) were generated to test whether the genes associated with metabolic efficiency and morphology have undergone adaptive evolution to fresh water. The aquatic fireflies had a significantly lower ratio of nonsynonymous to synonymous substitutions than the terrestrial insects, indicating a genomewide evolutionary constraint in the aquatic fireflies. We identified 341 fast-evolving genes and 116 positively selected genes in the aquatic fireflies. Of these, 76 genes exhibiting both fast evolution and positive selection were primarily involved in ATP production, energy metabolism and the hypoxia response. We identified 7,271 differentially expressed genes (DEGs) in A. leii (adults versus larvae) and 8,309 DEGs in L. praetexta (adults versus larvae). DEGs specific to the aquatic firefly (n = 1,445) were screened via interspecific comparisons (A. leii versus L. praetexta) and were significantly enriched for genes involved in metabolic efficiency (e.g., ATP production, hypoxia, and immune responses) and certain aspects of morphology (e.g., cuticle chitin, tracheal and compound eye morphology). These results indicate that sequence and expression-level changes in genes associated with both metabolic efficiency and morphological attributes related to the freshwater lifestyle contributed to freshwater adaptation in fireflies. This study provides new insights into the molecular mechanisms of aquatic adaptation in insects.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Rajagopal S, Fitzgerald AA, Deep SN, Paul S, Poddar R. Role of GluN2A NMDA receptor in homocysteine-induced prostaglandin E2 release from neurons. J Neurochem 2019; 150:44-55. [PMID: 31125437 DOI: 10.1111/jnc.14775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of homocysteine is a metabolic condition that has been linked to multiple neurological disorders where inflammation plays an important role in the progression of the disease. However, it is unclear whether hyperhomocysteinemia contributes to disease pathology by inducing an inflammatory response. The current study investigates whether exposure of primary cultures from rat and mice cortical neurons to high levels of homocysteine induces the expression and release of the proinflammatory prostanoid, Prostaglandin E2 (PGE2). Using enzymatic assays and immunoblot analysis we show concurrent increase in the activity of cytosolic phospholipase A2 (cPLA2) and level of cyclooxygenase-2 (COX2), two enzymes involved in PGE2 biosynthesis. The findings also show an increase in PGE2 release from neurons. Pharmacological inhibition of GluN2A-containing NMDAR (GluN2A-NMDAR) with NVP-AAM077 significantly reduces homocysteine-induced cPLA2 activity, COX2 expression, and subsequent PGE2 release. Whereas, inhibition of GluN2B-containing NMDAR (GluN2A-NMDAR) with Ro 25-6981 has no effect. Complementary studies in neuron cultures obtained from wild type and GluN2A knockout mice show that genetic deletion of GluN2A subunit of NMDAR attenuates homocysteine-induced neuronal increase in cPLA2 activity, COX2 expression, and PGE2 release. Pharmacological studies further establish the role of both extracellular-regulated kinase/mitogen-activated protein kinase and p38 MAPK in homocysteine-GluN2A NMDAR-dependent activation of cPLA2-COX2-PGE2 pathway. Collectively, these findings reveal a novel role of GluN2A-NMDAR in facilitating homocysteine-induced proinflammatory response in neurons.
Collapse
Affiliation(s)
- Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ashley Anne Fitzgerald
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
10
|
Merelli A, Rodríguez JCG, Folch J, Regueiro MR, Camins A, Lazarowski A. Understanding the Role of Hypoxia Inducible Factor During Neurodegeneration for New Therapeutics Opportunities. Curr Neuropharmacol 2018; 16:1484-1498. [PMID: 29318974 PMCID: PMC6295932 DOI: 10.2174/1570159x16666180110130253] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/24/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegeneration (NDG) is linked with the progressive loss of neural function with intellectual and/or motor impairment. Several diseases affecting older individuals, including Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, stroke, Multiple Sclerosis and many others, are the most relevant disorders associated with NDG. Since other pathologies such as refractory epilepsy, brain infections, or hereditary diseases such as "neurodegeneration with brain iron accumulation", also lead to chronic brain inflammation with loss of neural cells, NDG can be said to affect all ages. Owing to an energy and/or oxygen supply imbalance, different signaling mechanisms including MAPK/PI3K-Akt signaling pathways, glutamatergic synapse formation, and/or translocation of phosphatidylserine, might activate some central executing mechanism common to all these pathologies and also related to oxidative stress. Hypoxia inducible factor 1-α (HIF-1α) plays a twofold role through gene activation, in the sense that this factor has to "choose" whether to protect or to kill the affected cells. Most of the afore-mentioned processes follow a protracted course and are accompanied by progressive iron accumulation in the brain. We hypothesize that the neuroprotective effects of iron chelators are acting against the generation of free radicals derived from iron, and also induce sufficient -but not excessive- activation of HIF-1α, so that only the hypoxia-rescue genes will be activated. In this regard, the expression of the erythropoietin receptor in hypoxic/inflammatory neurons could be the cellular "sign" to act upon by the nasal administration of pharmacological doses of Neuro-EPO, inducing not only neuroprotection, but eventually, neurorepair as well.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Lazarowski
- Address correspondence to this author at the Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires-Argentina, Junín 954, Buenos Aires-Argentina; Tel: +54-11-5950-8674;, E-mail:
| |
Collapse
|
11
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Ashok BS, Ajith TA, Sivanesan S. Hypoxia-inducible factors as neuroprotective agent in Alzheimer's disease. Clin Exp Pharmacol Physiol 2017; 44:327-334. [PMID: 28004401 DOI: 10.1111/1440-1681.12717] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 07/31/2024]
Abstract
Beta amyloid (Aβ)-42 peptide and phosphorylated tau protein have been demonstrated as the pathological hallmarks of Alzheimer's disease (AD). A gradual decline of oxygen and glucose supply to the brain during aging or hypoxia was manifested as a contributing factor to hypometabolism. The brain regions susceptible to hypometabolism are the hippocampus, entorhinal cortex and cognition-associated neocortical regions like parietal, temporal and frontal cortex. In AD patients, the brain regions with hypometabolism can trigger overexpression of amyloid precursor protein and decrease the clearance of Aβ. Aβ and hypoxia can evoke inflammation, oxidative stress and finally neuronal cell death. Among the transcription factors involved in the compensatory mechanism, hypoxia-inducible factor-1 alpha (HIF-1α) has a major role in the cellular adaptation by inducing the expression of several proteins, including vascular endothelial growth factor, erythropoietin and inducible nitric oxide synthase. Therefore, maintaining the HIF-1α level by inhibiting the prolyl 4-hydroxylase was effective to attenuate the nerve damage during hypoxia and postpone the incidence of AD. Agents such as iron chelators, and heavy metals like cobalt and nickel were demonstrated to be effective in maintaining the HIF-1α level in the nerve. This review article discusses the possible role of HIF-1α as a neuroprotector in AD and the future perspectives.
Collapse
Affiliation(s)
- Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
Abstract
The role of tumor-associated macrophages (TAMs) in cancer is often correlated with poor prognosis, even though this statement should be interpreted with care, as the effects of macrophages primarily depend on their localization within the tumor. This versatile cell type orchestrates a broad spectrum of biological functions and exerts very complex and even opposing functions on cell death, immune stimulation or suppression, and angiogenesis, resulting in an overall pro- or antitumoral effect. We are only beginning to understand the environmental cues that contribute to transient retention of macrophages in a specific phenotype. It has become clear that hypoxia shapes and induces specific macrophage phenotypes that serve tumor malignancy, as hypoxia promotes immune evasion, angiogenesis, tumor cell survival, and metastatic dissemination. Additionally, TAMs in the hypoxic niches within the tumor are known to mediate resistance to several anticancer treatments and to promote cancer relapse. Thus, a careful characterization and understanding of this macrophage differentiation state is needed in order to efficiently tailor cancer therapy.
Collapse
|
14
|
Piscopo P, Grasso M, Fontana F, Crestini A, Puopolo M, Del Vescovo V, Venerosi A, Calamandrei G, Vencken SF, Greene CM, Confaloni A, Denti MA. Reduced miR-659-3p Levels Correlate with Progranulin Increase in Hypoxic Conditions: Implications for Frontotemporal Dementia. Front Mol Neurosci 2016; 9:31. [PMID: 27199656 PMCID: PMC4853935 DOI: 10.3389/fnmol.2016.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Progranulin (PGRN) is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and is activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial frontotemporal lobar degeneration (FTLD). PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs (miRNAs) involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848), the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3′UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24 h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd) 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Margherita Grasso
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Alessio Crestini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Maria Puopolo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Valerio Del Vescovo
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Aldina Venerosi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Gemma Calamandrei
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Sebastian F Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital Dublin, Ireland
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital Dublin, Ireland
| | - Annamaria Confaloni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Michela A Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
15
|
Jung S, Nah J, Han J, Choi SG, Kim H, Park J, Pyo HK, Jung YK. Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem 2016; 137:770-81. [PMID: 26924229 DOI: 10.1111/jnc.13597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022]
Abstract
Amyloid beta peptide (Aβ) is a pathological hallmark of Alzheimer's disease (AD) and is generated through the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases. Hypoxia is a known risk factor for AD and stimulates Aβ generation by γ-secretase; however, the underlying mechanisms remain unclear. In this study, we showed that dual-specificity phosphatase 26 (DUSP26) regulates Aβ generation through changes in subcellular localization of the γ-secretase complex and its substrate C99 under hypoxic conditions. DUSP26 was identified as a novel γ-secretase regulator from a genome-wide functional screen using a cDNA expression library. The phosphatase activity of DUSP26 was required for the increase in Aβ42 generation through γ-secretase, but this regulation did not affect the amount of the γ-secretase complex. Interestingly, DUSP26 induced the accumulation of C99 in the axons by stimulating anterograde transport of C99-positive vesicles. Additionally, DUSP26 induced c-Jun N-terminal kinase (JNK) activation for APP processing and axonal transport of C99. Under hypoxic conditions, DUSP26 expression levels were elevated together with JNK activation, and treatment with JNK inhibitor SP600125, or the DUSP26 inhibitor NSC-87877, reduced hypoxia-induced Aβ generation by diminishing vesicle trafficking of C99 to the axons. Finally, we observed enhanced DUSP26 expression and JNK activation in the hippocampus of AD patients. Our results suggest that DUSP26 mediates hypoxia-induced Aβ generation through JNK activation, revealing a new regulator of γ-secretase-mediated APP processing under hypoxic conditions. We propose the role of phosphatase dual-specificity phosphatase 26 (DUSP26) in the selective regulation of Aβ42 production in neuronal cells under hypoxic stress. Induction of DUSP26 causes JNK-dependent shift in the subcellular localization of γ-secretase and C99 from the cell body to axons for Aβ42 generation. These findings provide a new strategy for developing new therapeutic targets to arrest AD progression.
Collapse
Affiliation(s)
- Sunmin Jung
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jihoon Nah
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jonghee Han
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Seon-Guk Choi
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Hyunjoo Kim
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jaesang Park
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Ha-Kyung Pyo
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Yong-Keun Jung
- Global Research Laboratory, School of Biological Science, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
16
|
Decreased hemoglobin levels, cerebral small-vessel disease, and cortical atrophy: among cognitively normal elderly women and men. Int Psychogeriatr 2016; 28:147-56. [PMID: 25990664 DOI: 10.1017/s1041610215000733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Decreased hemoglobin levels increase the risk of developing dementia among the elderly. However, the underlying mechanisms that link decreased hemoglobin levels to incident dementia still remain unclear, possibly due to the fact that few studies have reported on the relationship between low hemoglobin levels and neuroimaging markers. We, therefore, investigated the relationships between decreased hemoglobin levels, cerebral small-vessel disease (CSVD), and cortical atrophy in cognitively healthy women and men. METHODS Cognitively normal women (n = 1,022) and men (n = 1,018) who underwent medical check-ups and magnetic resonance imaging (MRI) were enrolled at a health promotion center. We measured hemoglobin levels, white matter hyperintensities (WMH) scales, lacunes, and microbleeds. Cortical thickness was automatically measured using surface based methods. Multivariate regression analyses were performed after controlling for possible confounders. RESULTS Decreased hemoglobin levels were not associated with the presence of WMH, lacunes, or microbleeds in women and men. Among women, decreased hemoglobin levels were associated with decreased cortical thickness in the frontal (Estimates, 95% confidence interval, -0.007, (-0.013, -0.001)), temporal (-0.010, (-0.018, -0.002)), parietal (-0.009, (-0.015, -0.003)), and occipital regions (-0.011, (-0.019, -0.003)). Among men, however, no associations were observed between hemoglobin levels and cortical thickness. CONCLUSION Our findings suggested that decreased hemoglobin levels affected cortical atrophy, but not increased CSVD, among women, although the association is modest. Given the paucity of modifiable risk factors for age-related cognitive decline, our results have important public health implications.
Collapse
|
17
|
Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: Relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res 2015; 93:1778-94. [DOI: 10.1002/jnr.23634] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
18
|
Sorond FA, Tan CO, LaRose S, Monk AD, Fichorova R, Ryan S, Lipsitz LA. Deferoxamine, Cerebrovascular Hemodynamics, and Vascular Aging: Potential Role for Hypoxia-Inducible Transcription Factor-1-Regulated Pathways. Stroke 2015; 46:2576-83. [PMID: 26304864 DOI: 10.1161/strokeaha.115.009906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Iron chelation therapy is emerging as a novel neuroprotective strategy. The mechanisms of neuroprotection are diverse and include both neuronal and vascular pathways. We sought to examine the effect of iron chelation on cerebrovascular function in healthy aging and to explore whether hypoxia-inducible transcription factor-1 activation may be temporally correlated with vascular changes. METHODS We assessed cerebrovascular function (autoregulation, vasoreactivity, and neurovascular coupling) and serum concentrations of vascular endothelial growth factor and erythropoietin, as representative measures of hypoxia-inducible transcription factor-1 activation, during 6 hours of deferoxamine infusion in 24 young and 24 older healthy volunteers in a randomized, blinded, placebo-controlled cross-over study design. Cerebrovascular function was assessed using the transcranial Doppler ultrasound. Vascular endothelial growth factor and erythropoietin serum protein assays were conducted using the Meso Scale Discovery platform. RESULTS Deferoxamine elicited a strong age- and time-dependent increase in the plasma concentrations of erythropoietin and vascular endothelial growth factor, which persisted ≤3 hours post infusion (age effect P=0.04; treatment×time P<0.01). Deferoxamine infusion also resulted in a significant time- and age-dependent improvement in cerebral vasoreactivity (treatment×time P<0.01; age P<0.01) and cerebral autoregulation (gain: age×time×treatment P=0.04). CONCLUSIONS Deferoxamine infusion improved cerebrovascular function, particularly in older individuals. The temporal association between improved cerebrovascular function and increased serum vascular endothelial growth factor and erythropoietin concentrations is supportive of shared hypoxia-inducible transcription factor-1-regulated pathways. Therefore, pharmacological activation of hypoxia-inducible transcription factor-1 to enhance cerebrovascular function may be a promising neuroprotective strategy in acute and chronic ischemic syndromes, especially in elderly patients. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT013655104.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.).
| | - Can Ozan Tan
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Sarah LaRose
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Andrew D Monk
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Raina Fichorova
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Stanthia Ryan
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Lewis A Lipsitz
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| |
Collapse
|
19
|
Bai S, Mao M, Tian L, Yu Y, Zeng J, Ouyang K, Yu L, Li L, Wang D, Deng X, Wei C, Luo Y. Calcium sensing receptor mediated the excessive generation of β-amyloid peptide induced by hypoxia in vivo and in vitro. Biochem Biophys Res Commun 2015; 459:568-73. [DOI: 10.1016/j.bbrc.2015.02.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
|
20
|
Abstract
SIGNIFICANCE Oxygen plays a key role in cellular metabolism and function. Oxygen delivery to cells is crucial, and a lack of oxygen such as that which occurs during myocardial infarction can be lethal. Cells should, therefore, be able to respond to changes in oxygen tension. RECENT ADVANCES Since the first studies examining the acute cellular effect of hypoxia on activation of transmitter release from glomus or type I chemoreceptor cells, it is now known that virtually all cells are able to respond to changes in oxygen tension. CRITICAL ISSUES Despite advances made in characterizing hypoxic responses, the identity of the "oxygen sensor" remains debated. Recently, more evidence has evolved as to how cardiac myocytes sense acute changes in oxygen. This review will examine the available evidence in support of acute oxygen-sensing mechanisms providing a brief historical perspective and then more detailed insights into the heart and the role of cardiac ion channels in hypoxic responses. FUTURE DIRECTIONS A further understanding of these cellular processes should result in interventions that assist in preventing the deleterious effects of acute changes in oxygen tension such as alterations in contractile function and cardiac arrhythmia.
Collapse
Affiliation(s)
- Livia C Hool
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley, Australia
| |
Collapse
|
21
|
Wang CY, Wang ZY, Xie JW, Cai JH, Wang T, Xu Y, Wang X, An L. CD36 upregulation mediated by intranasal LV-NRF2 treatment mitigates hypoxia-induced progression of Alzheimer's-like pathogenesis. Antioxid Redox Signal 2014; 21:2208-30. [PMID: 24702189 PMCID: PMC4224043 DOI: 10.1089/ars.2014.5845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS There is extensive evidence that oxidative stress induces cellular dysfunction in the brain and plays a critical role in Alzheimer's disease (AD) pathogenesis. Hypoxia increases factors involved in oxidative stress injury and contributes to the onset and progression of AD. Nuclear factor erythroid 2-related factor 2 (NRF2), a major component regulating antioxidant response, is attenuated in the AD brain. Importantly, NRF2 directly regulates the alternative first exons of CD36, an important participant in oxidative and inflammatory processes. To explore the effects of hypoxia-induced deterioration of AD-like pathogenesis and investigate the correlation between hypoxia-induced NRF2 signal alterations and CD36 expression, we examined the NRF2 signaling, CD36, and oxidative stress events in hypoxia-treated APPswe/PSEN1dE9 (APP/PS1) mice brain. RESULTS We observed that hypoxia treatment increased oxidative stress, exacerbated inflammation, and aggravated learning defects in aged APP/PS1 mice. Microglia from hypoxia-treated mice brain exhibited marked reduction in CD36 expression and inhibition of β-amyloid (Aβ) degradation. Accordingly, hypoxia treatment caused a decrease in transactivation of NRF2 target genes in the aging mouse brain. Intranasal administration with a lentiviral vector encoding human NRF2 increased CD36 expression, ameliorated the weak antioxidant response triggered by hypoxia, diminished Aβ deposition, and improved spatial memory defects. INNOVATION In this study, we demonstrated for the first time that NRF2 intranasal treatment-induced increases of CD36 could enhance Aβ clearance in AD transgenic mouse. CONCLUSION These results suggest that targeting NRF2-mediated CD36 expression might provide a beneficial intervention for cognitive impairment and oxidative stress in AD progression.
Collapse
Affiliation(s)
- Chun-Yan Wang
- 1 Key Laboratory of Medical Cell Biology of Ministry of Education of China, Department of Pathophysiology, China Medical University , Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 2014; 6:235. [PMID: 25278875 PMCID: PMC4166351 DOI: 10.3389/fnagi.2014.00235] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry St. Petersburg, Russia
| | - Nikolai D Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| | - Caroline Kerridge
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; Neurodegeneration DHT, Lilly, Erl Wood Manor Windlesham, Surrey, UK
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| |
Collapse
|
23
|
Liu X, Yamada N, Osawa T. Amide-type adduct of dopamine - plausible cause of Parkinson diseases. Subcell Biochem 2014; 77:49-60. [PMID: 24374917 DOI: 10.1007/978-94-007-7920-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dopamine is the endogenous neurotransmitter produced by nigral neurons. Dopamine loss can trigger not only prominent secondary morphological changes, but also changes in the density and sensitivity of dopamine receptors; therefore, it is a sign of PD development. The reasons for dopamine loss are attributed to dopamine's molecular instability due to it is a member of catecholamine family, whose catechol structure contributes to high oxidative stress through enzymatic and non-enzymatic oxidation. Oxidative stress in the brain easily leads to the lipid peroxidation reaction due to a high concentration of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, C22:6/ω-3) and arachidonic acid (AA, C18:4/ω-6). Recent studies have shown that lipid hydroperoxides, the primary peroxidative products, could non-specifically react with primary amino groups to form N-acyl-type (amide-linkage) adducts. Therefore, based on the NH2-teminals in dopamine's structure, the aims of this chapter are to describes the possibility that reactive LOOH species derived from DHA/AA lipid peroxidation may modify dopamine to form amide-linkage dopamine adducts, which might be related to etiology of Parkinson's diseases.
Collapse
Affiliation(s)
- Xuebo Liu
- The Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, 464-8601, Japan,
| | | | | |
Collapse
|
24
|
Wang Z, Zhang XJ, Li T, Li J, Tang Y, Le W. Valproic acid reduces neuritic plaque formation and improves learning deficits in APP(Swe) /PS1(A246E) transgenic mice via preventing the prenatal hypoxia-induced down-regulation of neprilysin. CNS Neurosci Ther 2013; 20:209-17. [PMID: 24289518 DOI: 10.1111/cns.12186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 01/19/2023] Open
Abstract
AIMS Previously, we have documented that prenatal hypoxia can aggravate the cognitive impairment and Alzheimer's disease (AD) neuropathology in APP(Swe) /PS1(A246E) (APP/PS1) transgenic mice, and valproic acid (VPA) can prevent hypoxia-induced down-regulation of β-amyloid (Aβ) degradation enzyme neprilysin (NEP) in primary neurons. In this study, we have investigated the molecular mechanisms of VPA's anti-AD effects and found that VPA can reduce the prenatal hypoxia-induced neuritic plaque formation and improve the learning deficits in the AD mouse model. METHODS The pregnant APP/PS1 transgenic mice were exposed in a hypobaric chamber. Neuritic plaque staining, Morris water maze, and enzyme-linked immunosorbent assay (ELISA) were used to detect the effects of VPA on Aβ neuropathology, learning, and memory. Chromatin immunoprecipitation (ChIP) assays and real-time PCR (RT-PCR) were used to determine the effect of VPA on the histone3 acetylation (H3-Ace). RESULTS We found that VPA can inhibit neuritic plaque formation and improve the learning and memory in the prenatal hypoxic APP/PS1 transgenic mice. In addition, VPA treatment can decrease the soluble and insoluble Aβ42 levels and increase the NEP expression via up-regulation of H3-Ace in the APP/PS1 transgenic mice. CONCLUSION Valproic acid is able to attenuate the prenatal hypoxia-induced Aβ neuropathology and learning and memory deficits via inhibiting the activation of histone deacetylase 1 (HDAC1), preventing the decrease in H3-Ace in the NEP promoter regions and reducing the down-regulation of NEP.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Neurobiology, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Adult neural stem cells contribute to neurogenesis and plasticity of the brain which is essential for central regulation of systemic homeostasis. Damage to these homeostatic components, depending on locations in the brain, poses threat to impaired neurogenesis, neurodegeneration, cognitive loss and energy imbalance. Recent research has identified brain metabolic inflammation via proinflammatory IκB kinase-β (IKKβ) and its downstream nuclear transcription factor NF-κB pathway as a non-classical linker of metabolic and neurodegenerative disorders. Chronic activation of the pathway results in impairment of energy balance and nutrient metabolism, impediment of neurogenesis, neural stem cell proliferation and differentiation, collectively converging on metabolic and cognitive decline. Hypothalamic IKKβ/NF-κB via inflammatory crosstalk between microglia and neurons has been discovered to direct systemic aging by inhibiting the production of gonadotropin-releasing hormone (GnRH) and inhibition of inflammation or GnRH therapy could revert aging related degenerative symptoms at least in part. This article reviews the crucial role of hypothalamic inflammation in affecting neural stem cells which mediates the neurodegenerative mechanisms of causing metabolic derangements as well as aging-associated disorders or diseases.
Collapse
Affiliation(s)
| | - Dongsheng Cai
- Address correspondence to: Dongsheng Cai, M.D., Ph.D., Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, Phone: 718-430-2426, Fax: 718-430-2433,
| |
Collapse
|
26
|
Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY. Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer's disease. CNS Neurosci Ther 2013; 19:820-33. [PMID: 23889979 DOI: 10.1111/cns.12151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/25/2013] [Accepted: 06/16/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress-triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. AIMS In this study, we tested the hypothesis that hypoxia-induced m-calpain activation is involved in ER stress-mediated AD pathogenesis. METHOD We employed a hypoxic exposure in APP/PS1 transgenic mice and SH-SY5Y cells overexpressing human Swedish mutation APP (APPswe). RESULTS We observed that hypoxia impaired spatial learning and memory in the APP/PS1 mouse. In the transgenic mouse brain, hypoxia increased the UPR, upregulated apoptotic signaling, enhanced the activation of calpain and glycogen synthase kinase-3β (GSK3β), and increased tau hyperphosphorylation and β-amyloid deposition. In APPswe cells, m-calpain silencing reduced hypoxia-induced cellular dysfunction and resulted in suppression of GSK3β activation, ER stress and tau hyperphosphorylation reduction as well as caspase pathway suppression. CONCLUSION These findings demonstrate that hypoxia-induced abnormal calpain activation may increase ER stress-induced apoptosis in AD pathogenesis. In contrast, a reduction in the expression of the m-calpain isoform reduces ER stress-linked apoptosis that is triggered by hypoxia. These findings suggest that hypoxia-triggered m-calpain activation is involved in ER stress-mediated AD pathogenesis. m-calpain is a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Pathophysiology, Key Laboratory of Medical Cell Biology of Ministry of Education of China, China Medical University, Shenyang, China; Medical Research Laboratory, Jilin Medical College, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
28
|
Cho IH. Effects of Panax ginseng in Neurodegenerative Diseases. J Ginseng Res 2013; 36:342-53. [PMID: 23717136 PMCID: PMC3659610 DOI: 10.5142/jgr.2012.36.4.342] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 12/11/2022] Open
Abstract
Ginseng, the root of the Panax ginseng, has been a popular and widely-used traditional herbal medicine in Korea, China, and Japan for thousands of years. Now it has become popular as a functional health food and is used globally as a natural medicine. Evidence is accumulating in the literature on the physiological and pharmacological effects of P. ginseng on neurodegenerative diseases. Possible ginseng- or ginsenosides-mediated neuroprotective mechanisms mainly involve maintaining homeostasis, and anti-inflammatory, anti-oxidant, anti-apoptotic, and immune-stimulatory activities. This review considers publications dealing with the various actions of P. ginseng that are indicative of possible neurotherapeutic efficacies in neurodegenerative diseases and neurological disorders such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
Affiliation(s)
- Ik-Hyun Cho
- Department of Anatomy, College of Oriental Medicine and Institute of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
29
|
Death by a thousand cuts in Alzheimer's disease: hypoxia--the prodrome. Neurotox Res 2013; 24:216-43. [PMID: 23400634 DOI: 10.1007/s12640-013-9379-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
A wide range of clinical consequences may be associated with obstructive sleep apnea (OSA) including systemic hypertension, cardiovascular disease, pulmonary hypertension, congestive heart failure, cerebrovascular disease, glucose intolerance, impotence, gastroesophageal reflux, and obesity, to name a few. Despite this, 82 % of men and 93 % of women with OSA remain undiagnosed. OSA affects many body systems, and induces major alterations in metabolic, autonomic, and cerebral functions. Typically, OSA is characterized by recurrent chronic intermittent hypoxia (CIH), hypercapnia, hypoventilation, sleep fragmentation, peripheral and central inflammation, cerebral hypoperfusion, and cerebral glucose hypometabolism. Upregulation of oxidative stress in OSA plays an important pathogenic role in the milieu of hypoxia-induced cerebral and cardiovascular dysfunctions. Strong evidence underscores that cerebral amyloidogenesis and tau phosphorylation--two cardinal features of Alzheimer's disease (AD), are triggered by hypoxia. Mice subjected to hypoxic conditions unambiguously demonstrated upregulation in cerebral amyloid plaque formation and tau phosphorylation, as well as memory deficit. Hypoxia triggers neuronal degeneration and axonal dysfunction in both cortex and brainstem. Consequently, neurocognitive impairment in apneic/hypoxic patients is attributable to a complex interplay between CIH and stimulation of several pathological trajectories. The framework presented here helps delineate the emergence and progression of cognitive decline, and may yield insight into AD neuropathogenesis. The global impact of CIH should provide a strong rationale for treating OSA and snoring clinically, in order to ameliorate neurocognitive impairment in aged/AD patients.
Collapse
|
30
|
Hypoxia Increases Aβ-Induced Tau Phosphorylation by Calpain and Promotes Behavioral Consequences in AD Transgenic Mice. J Mol Neurosci 2013; 51:138-47. [DOI: 10.1007/s12031-013-9966-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
31
|
Abstract
Inflammation is a biological response mounted by the immune system against dangerous assaults that threaten the integrity and normal physiology of an organism. During the past decades, cross-disciplinary research from immunology and endocrinology has much broadened this knowledge by demonstrating that chronic conditions of nutritional excess constitute an independent category of inflammatory activators, and the resulting chronic and low-grade inflammation is an important characteristic of overnutrition-induced diseases. A large body of research has demonstrated that these diseases are pathogenically associated with the local, negative actions of inflammation in peripheral tissues predominantly including the liver, muscle, and fat. In this research background, more recent research has advanced to a new level, with the important discoveries showing that overnutrition-induced inflammation occurs in the brain and thus plays a broad and leadership role in overnutrition-induced diseases. While much more research establishments are expected in this emerging and quickly expanding research, the appreciated understandings have been mainly based on proinflammatory IKKβ/NF-κB pathway and related molecules in the hypothalamus. In this chapter, the author focuses on describing IKKβ/NF-κB-induced neural inflammation in the context of overnutrition-induced metabolic inflammation and especially the central roles of this neural inflammation in the development of a spectrum of overnutrition-related diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Institute of Aging, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
32
|
Herrera-Molina R, Flores B, Orellana JA, von Bernhardi R. Modulation of interferon-γ-induced glial cell activation by transforming growth factor β1: a role for STAT1 and MAPK pathways. J Neurochem 2012; 123:113-23. [PMID: 22823229 DOI: 10.1111/j.1471-4159.2012.07887.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overactivated glial cells can produce neurotoxic oxidant molecules such as nitric oxide (NO·) and superoxide anion (O(2)·(-)). We have previously reported that transforming growth factor β1 (TGFβ1) released by hippocampal cells modulates interferon-γ (IFNγ)-induced production of O(2)·(-) and NO· by glial cells. However, underlying molecular mechanisms are not completely understood, thereby, the aim of this work was to study the effect of TGFβ1 on IFNγ-induced signaling pathways. We found that costimulation with TGFβ1 decreased IFNγ-induced phosphorylation of signal transducer and activator of transcription-type-1 (STAT1) and extracellular signal-regulated kinase (ERK), which correlated with a reduced O(2)·(-) and NO· production in mixed and purified glial cultures. Moreover, IFNγ caused a decrease in TGFβ1-mediated phosphorylation of P38, whereas pre-treatment with ERK and P38 inhibitors decreased IFNγ-induced phosphorylation of STAT1 on serine727 and production of radical species. These results suggested that modulation of glial activation by TGFβ1 is mediated by deactivation of MAPKs. Notably, TGFβ1 increased the levels of MAPK phosphatase-1 (MKP-1), whose participation in TGFβ1-mediated modulation was confirmed by MKP-1 siRNA transfection in mixed and purified glial cultures. Our results indicate that the cross-talk between IFNγ and TGFβ1 might regulate the activation of glial cells and that TGFβ1 modulated IFNγ-induced production of neurotoxic oxidant molecules through STAT1, ERK, and P38 pathways.
Collapse
Affiliation(s)
- Rodrigo Herrera-Molina
- Departamento de Neurología, Laboratorio de Neurosciencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
33
|
Ha YM, Kim MY, Park MK, Lee YS, Kim YM, Kim HJ, Lee JH, Chang KC. Higenamine reduces HMGB1 during hypoxia-induced brain injury by induction of heme oxygenase-1 through PI3K/Akt/Nrf-2 signal pathways. Apoptosis 2012; 17:463-74. [PMID: 22183510 DOI: 10.1007/s10495-011-0688-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growing lines of evidence suggests that high mobility group box-1 (HMGB1) plays an important role for promoting inflammation and apoptosis in brain ischemia. Previously, we demonstrated that inducers of heme oxygenase-1 (HO-1) significantly reduce HMGB1 release in inflammatory conditions in vitro and in vivo. Thus, we tested our hypothesis that higenamine protects brain injury by inhibition of middle cerebral artery occlusion (MCAO)-mediated HMGB1 release in vivo, and glucose/glucose oxidase (GOX)-induced apoptosis in C6 cells in vitro due to HO-1 induction. Higenamine increased HO-1 expression in C6 cells in both hypoxia and normoxia, in which the former was much more significant than the latter. Higenamine increased Nrf-2 luciferase activity, translocated Nrf-2 to nucleus, and increased phosphorylation of Akt in C6 cells. Consistent with this, LY 294002, a PI3K inhibitor, inhibited HO-1 induction by higenamine and apoptosis induced by glucose/GOX in C6 cells was prevented by higenamine, which effect was reversed by LY 294002. Importantly, administration of higenamine (i.p) significantly reduced brain infarct size, mortality rate, MPO activity and tissue expression of HMGB1 in MCAO rats. In addition, recombinant high mobility group box 1 induced apoptosis in C6 cells by increasing ratio of Bax/bcl-2 and cleaved caspase c, which was inhibited by higenamine, and all of these effects were reversed by co-treatment with ZnPPIX. Therefore, we conclude that higenamine, at least in part, protects brain cells against hypoxic damages by up-regulation of HO-1. Thus, higenamine may be beneficial for the use of ischemic injuries such as stroke.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
35
|
Cho JL, Allanson M, Reeve VE. Hypoxia inducible factor-1α contributes to UV radiation-induced inflammation, epidermal hyperplasia and immunosuppression in mice. Photochem Photobiol Sci 2011; 11:309-17. [PMID: 22048469 DOI: 10.1039/c1pp05265a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia inducible factor-1α (HIF-1α), a ubiquitous inducible oxygen-sensing transcription factor, promotes cell survival under hypoxic conditions, including the early pre-angiogenic period of tumorigenesis, and is known to contribute to many malignancies. However HIF-1α can also be activated by inflammatory mediators, and can activate inflammation-modulating proteins itself, including heme oxygenase-1 (HO-1) and the cytokine IL-6. Recently HIF-1α was reported to be induced by UVB (290-320 nm) radiation in cultured human keratinocytes, acting as a stress protein associated with the release of reactive oxygen species. In this in vivo murine study we demonstrate that HIF-1α protein is an early responder to UV radiation in the skin, and its activation can be attenuated by treating mice with its post-translational inhibitor, YC-1. Treatment with YC-1 following UV-irradiation of mice has revealed the involvement of HIF-1α in UV-induced inflammation, IL-6 production, and epidermal hyperplasia. In addition, upregulated cutaneous HIF-1α was found to be an important factor in the UV-suppression of T cell-mediated immunity, measured by contact hypersensitivity (CHS). The mechanism remains unclear, however it did not appear to involve the immunosuppressive cutaneous photoproduct cis-urocanic acid, but HIF-1α induction was inhibited by irradiation with photoimmune protective UVA (320-400 nm), implicating a negative correlation between the two stress proteins, HIF-1α and the photoimmune protective UVA responder HO-1.
Collapse
Affiliation(s)
- Jun-Lae Cho
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
36
|
Liu X, Shibata T, Hisaka S, Kawai Y, Osawa T. DHA Hydroperoxides as a Potential Inducer of Neuronal Cell Death: a Mitochondrial Dysfunction-Mediated Pathway. J Clin Biochem Nutr 2011; 43:26-33. [PMID: 18648656 PMCID: PMC2459249 DOI: 10.3164/jcbn.2008040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/29/2008] [Indexed: 01/24/2023] Open
Abstract
During the lipid peroxidation reaction, lipid hydroperoxides are formed as primary products. Several lines of evidence suggest that lipid hydroperoxides can trigger cell death in many cell types, including neurons. In a screening of lipid hydroperoxides which can induce toxicity in neuronal cells, we found docosahexaenoic acid hydroperoxides (DHA-OOH) induced much severe levels of reactive oxygen species generation and cell death in human neuroblastoma SH-SY5Y cells compared to the hydroperoxides of linoleic acid and arachidonic acid. Therefore, we focused on DHA-OOH, and demonstrated that DHA-OOH apparently induced an apoptosis in the neuronal cells through several apoptotic hallmarks including nuclei condensation, DNA fragmentation, poly (ADP-ribose) polymerase cleavage and increased activity of caspase-3. We also found the signaling changes in mitochondria-mediated apoptosis, such as cytochrome c release and increased expression of Bcl-2, as well as a dose-dependent attenuation of mitochondrial membrane potential in the DHA-OOH treated cells. These data indicated DHA hydroperoxide as a potential inducer of apoptosis in human neuroblastoma SH-SY5Y cells, which may be mediated by mitochondria dysfunction pathway.
Collapse
Affiliation(s)
- Xuebo Liu
- Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
37
|
Seo JS, Lee KW, Kim TK, Baek IS, Im JY, Han PL. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease. Free Radic Biol Med 2011; 50:1526-35. [PMID: 21382475 DOI: 10.1016/j.freeradbiomed.2011.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/11/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.
Collapse
Affiliation(s)
- Ji-Seon Seo
- Department of Brain and Cognitive Sciences, Ewha Women's University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
De Carolis A, Giubilei F, Caselli G, Casolla B, Cavallari M, Vanacore N, Leonori R, Scrocchia I, Fersini A, Quercia A, Orzi F. Chronic obstructive pulmonary disease is associated with altered neuropsychological performance in young adults. Dement Geriatr Cogn Dis Extra 2011; 1:402-8. [PMID: 22187547 PMCID: PMC3243636 DOI: 10.1159/000333079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Subjects with ischemic lesions have an increased risk of dementia. In addition, Alzheimer's disease (AD) and vascular cognitive impairment share many risk factors. These observations suggest that different diseases that cause altered blood perfusion of the brain or hypoxia promote AD neurodegeneration. In this case-control, cross-sectional study, we sought to test the hypothesis that hypoxia facilitates cognitive decline. METHODS We looked for altered neuropsychological performance in subjects with chronic obstructive pulmonary disease (COPD) without apparent cardio- or cerebrovascular diseases or risk factors for atherosclerosis. A selected, homogeneous group of workers from two ceramic factories in a small town of central Italy was enrolled in this study. RESULTS The COPD patients had a slightly, but significantly worse performance than controls in a number of neuropsychological tests. CONCLUSION The findings are consistent with the working hypothesis that chronic hypoxia facilitates cognitive decline.
Collapse
Affiliation(s)
- Antonella De Carolis
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| | - Giulio Caselli
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| | - Barbara Casolla
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| | - Michele Cavallari
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| | - Nicola Vanacore
- National Center of Epidemiology, Surveillance and Health Promotion, National Institute of Health, Rome
| | - Rita Leonori
- PISLL, Azienda Unità Sanitaria Locale, Viterbo, Italy
| | | | - Anna Fersini
- PISLL, Azienda Unità Sanitaria Locale, Viterbo, Italy
| | | | - Francesco Orzi
- Department of Neuroscience, Mental Health and Sensory Organs, University of Rome La Sapienza, Rome
| |
Collapse
|
39
|
Ratovitski EA. LKB1/PEA3/ΔNp63 pathway regulates PTGS-2 (COX-2) transcription in lung cancer cells upon cigarette smoke exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:317-24. [PMID: 21150337 PMCID: PMC3154041 DOI: 10.4161/oxim.3.5.13108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first study to show that cigarette smoking induced the LKB1/PEA 3/ΔNp63-dependent transcriptional regulation of inflammatory molecules, such as COX-2/PTGS-2. Using mainstream smoke extract (MSE) and sidestream smoke extract (SSE) as modeling tools for primary and secondhand smoking, we found that both MSE and SSE downregulated protein levels for LKB1, while upregulated protein levels for PEA 3 and COX-2 in a dose-dependent manner. Using the endogenous ChIP analysis, we further found that the C/EBPβ, NFκB, NF-Y (CHOP), PEA 3 (ETS) and ΔNp63 proteins bound to the specific area (-550 to -130) of the COX-2 promoter, while forming multiple protein complexes in lung cancer cells exposed to MSE and SSE. Our results define a novel link between various transcription factors occupying the COX-2 promoter and cellular response to cigarette smoke exposure bringing a new component, ΔNp63α, showing a critical role for cooperation between various chromatin components in regulation of COX-2 expression and, therefore strengthening the central role of inflammatory process in tumorigenesis of epithelial cells, especially after cigarette smoke exposure (both primary and secondhand).
Collapse
Affiliation(s)
- Edward A Ratovitski
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD USA.
| |
Collapse
|
40
|
Wu LY, Ma ZM, Fan XL, Zhao T, Liu ZH, Huang X, Li MM, Xiong L, Zhang K, Zhu LL, Fan M. The anti-necrosis role of hypoxic preconditioning after acute anoxia is mediated by aldose reductase and sorbitol pathway in PC12 cells. Cell Stress Chaperones 2010; 15:387-94. [PMID: 19902381 PMCID: PMC3082650 DOI: 10.1007/s12192-009-0153-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that hypoxic preconditioning (HP) enhances the survival ability of the organism against the subsequent acute anoxia (AA). However, it is not yet clear whether necrosis induced by AA can be prevented by HP, and what are the underlying mechanisms. In this study, we examined the effect of HP (10% O(2), 48 h) on necrosis induced by AA (0% O(2), 24 h) in PC12 cells. We found that HP delayed the regulatory volume decrease and reduced cell swelling after 24 h of exposure to AA. Since aldose reductase (AR) is involved in cell volume regulation, we detected AR mRNA expression with reverse transcription-polymerase chain reaction (RT-PCR) techniques. The AR mRNA level was dramatically elevated by HP. Furthermore, an HP-induced decrease in cell injury was reversed by berberine chloride (BB), the inhibitor of AR. In addition, sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume regulation. Subsequently, we tested sorbitol content in the cytoplasm. HP clearly elevated sorbitol content, while BB inhibited the elevation induced by HP. Further study showed that a strong inhibitor of sorbitol permease, quinidine, completely reversed the protection induced by HP after AA. These data provide evidence that HP prevents necrosis induced by AA and is mediated by AR and sorbitol pathway.
Collapse
Affiliation(s)
- Li-Ying Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Zi-Min Ma
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Xue-Lai Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Zhao-Hui Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Xin Huang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ming-Ming Li
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Lei Xiong
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ling-Ling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Taiping Rd 27, Beijing, 100850 People’s Republic of China
| |
Collapse
|
41
|
Dong Y, Zhao R, Chen XQ, Yu ACH. 14-3-3γ and Neuroglobin are New Intrinsic Protective Factors for Cerebral Ischemia. Mol Neurobiol 2010; 41:218-31. [DOI: 10.1007/s12035-010-8142-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/20/2010] [Indexed: 12/15/2022]
|
42
|
Seo JS, Yun JH, Baek IS, Leem YH, Kang HW, Cho HK, Lyu YS, Son HJ, Han PL. Oriental medicine Jangwonhwan reduces Abeta(1-42) level and beta-amyloid deposition in the brain of Tg-APPswe/PS1dE9 mouse model of Alzheimer disease. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:206-212. [PMID: 20079417 DOI: 10.1016/j.jep.2010.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jangwonhwan, a boiled extract of 12 medicinal plants/mushroom including Korean red ginseng (Panax ginseng C.A. Meyer), has been prescribed for patients with cognitive dysfunction and are believed to induce brain activity enhancement, provide light sedation, and facilitate sound sleep. AIM OF THE STUDY The present study was carried out to investigate whether Jangwonhwan has a beneficial effect on the brain of Alzheimer disease. MATERIALS AND METHODS The transgenic mice of Alzheimer disease, Tg-APPswe/PS1dE9, were fed a modified recipe of Jangwonhwan consisting of a boiled extract of 7 herbs/mushroom (called LMK02-Jangwonhwan) at 400mg/kg/day of dose for 3 months from 4.5 months of age. Immunohistological and ELISA analyses were used to assess the Abeta accumulation and plaque deposition in the brain. Other in vitro and in vivo works were performed to understand the underlying mechanism. RESULTS LMK02-Jangwonhwan notably reduced Abeta(1-42) and Abeta(1-40) levels, concomitantly with a reduction of plaque deposition, in the brain of Tg-APPswe/PS1dE9 mice. LMK02-Jangwonhwan partially suppressed oxidative stress accumulation, and prevented the down-regulation of phospho-CREB and calbindin typically seen in the hippocampus of AD-like brains. In vitro study with SH-SY5Y neuroblastoma cells showed that LMK02-Jangwonhwan inhibited oxidative stress and Abeta-induced neurotoxicity. CONCLUSION The present study suggests that LMK02-Jangwonhwan confers a therapeutic potential to ameliorate AD-like pathology in the brain of Tg-APPswe/PS1dE9 mice.
Collapse
Affiliation(s)
- Ji-Seon Seo
- Department of Chemistry & Nano Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Singaravelu K, Lohr C, Deitmer JW. Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells. THE CEREBELLUM 2009; 7:467-81. [PMID: 18784973 DOI: 10.1007/s12311-008-0050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) has been extensively studied in non-neuronal cells, such as glial cells and smooth muscle cells, in which Ca(2+)-independent phospholipase A(2) (iPLA(2)) has been shown to play a key role in the regulation of SOCE channels. In the present study, we have investigated the role of iPLA(2) for store-operated Ca(2+) entry in rat cerebellar granule neurons in acute brain slices using confocal Ca(2+) imaging. Depletion of Ca(2+) stores by cyclopiazonic acid (CPA) induced a Ca(2+) influx, which could be inhibited by SOCE channel blockers 2-aminoethoxy-diphenylborate (2-APB) and 3,5-bistrifluoromethyl pyrazole derivative (BTP2), but not by the voltage-operated Ca(2+) channel blocker diltiazem and by the Na+ channel blocker tetrodotoxin. The inhibitors of iPLA(2), bromoenol lactone (BEL) and 1,1,1-trifluoro-2-heptadecanone, and the selective suppression of iPLA(2) expression by antisense oligodeoxynucleotides, inhibited CPA-induced Ca(2+) influx. Calmidazolium, which relieves the block of inhibitory calmodulin from iPLA(2), elicited a Ca(2+) influx similar to CPA-induced Ca(2+) entry. The product of iPLA(2), lysophosphatidylinositol, elicited a 2-APB- and BTP2-sensitive, but BEL-insensitive, Ca(2+) influx. Spontaneous Ca(2+) oscillations in granule cells in acute brain slices were reduced after inhibiting iPLA(2) activity or by blocking SOCE channels. The results suggest that depletion of Ca(2+) stores activates iPLA(2) to trigger Ca(2+) influx by the formation of lysophospholipids in these neurons.
Collapse
|
44
|
Lee KW, Kim JB, Seo JS, Kim TK, Im JY, Baek IS, Kim KS, Lee JK, Han PL. Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J Neurochem 2009; 108:165-75. [DOI: 10.1111/j.1471-4159.2008.05769.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Liu X, Yamada N, Maruyama W, Osawa T. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease. J Biol Chem 2008; 283:34887-95. [PMID: 18922792 PMCID: PMC3259879 DOI: 10.1074/jbc.m805682200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/08/2008] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.
Collapse
Affiliation(s)
- Xuebo Liu
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Naruomi Yamada
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Wakako Maruyama
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| | - Toshihiko Osawa
- Laboratory of Food and Biodynamics,
Graduate School of Bioagricultural Science, Nagoya University, Nagoya
464-8601, Japan and the Department of Basic
Gerontology, National Institute for Longevity Science, Obu 474-8522,
Japan
| |
Collapse
|
46
|
Beaudoin ME, Poirel VJ, Krushel LA. Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Res 2008; 36:6835-47. [PMID: 18953033 PMCID: PMC2588504 DOI: 10.1093/nar/gkn792] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/14/2008] [Accepted: 10/10/2008] [Indexed: 12/31/2022] Open
Abstract
Expression of amyloid precursor protein (APP) is critical to the etiology of Alzheimer's disease (AD). Consequently, regulating APP expression is one approach to block disease progression. To this end, APP can be targeted at the levels of transcription, translation, and protein stability. Little is currently known about the translation of APP mRNA. Here, we report that endogenous APP mRNA is translated in neural cell lines via an internal ribosome entry site (IRES) located in the 5'-untranslated leader. The functional unit of the APP IRES is located within the 5' 50 nucleotides of the 5'-leader. In addition, we found that the APP IRES is positively regulated by two conditions correlated with AD, increased intracellular iron concentration and ischemia. Interestingly, the enhancement of APP IRES activity is dependent upon de novo transcription. Taken together, our data suggest that internal initiation of translation of the APP mRNA is an important mode for synthesis of APP, a mechanism which is regulated by conditions that also contribute to AD.
Collapse
Affiliation(s)
- Monique E. Beaudoin
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Vincent-Joseph Poirel
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Leslie A. Krushel
- Neurosciences Program, Department of Biochemistry and Molecular Genetics and Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Kikuchi Y, Kakeya T, Nakajima O, Sakai A, Ikeda K, Yamaguchi N, Yamazaki T, Tanamoto KI, Matsuda H, Sawada JI, Takatori K. Hypoxia induces expression of a GPI-anchorless splice variant of the prion protein. FEBS J 2008; 275:2965-76. [PMID: 18445040 DOI: 10.1111/j.1742-4658.2008.06452.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human prion protein (PrP) is a glycoprotein with a glycosylphosphatidylinositol (GPI) anchor at its C-terminus. Here we report alternative splicing within exon 2 of the PrP gene (PRNP) in the human glioblastoma cell line T98G. The open reading frame of the alternatively spliced mRNA lacked the GPI anchor signal sequence and encoded a 230 amino acid polypeptide. Its product, GPI-anchorless PrP (GPI(-) PrPSV), was unglycosylated and soluble in non-ionic detergent, and was found in the cytosolic fraction. We also detected low levels of alternatively spliced mRNA in human brain and non-neuronal tissues. When long-term passaged T98G cells were placed in a low-oxygen environment, alternatively spliced mRNA expression increased and expression of normally spliced PrP mRNA decreased. These findings imply that oxygen tension regulates GPI(-) PrPSV expression in T98G cells.
Collapse
Affiliation(s)
- Yutaka Kikuchi
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li L, Zhang X, Yang D, Luo G, Chen S, Le W. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 2007; 30:1091-8. [PMID: 18063223 DOI: 10.1016/j.neurobiolaging.2007.10.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 10/01/2007] [Accepted: 10/15/2007] [Indexed: 11/19/2022]
Abstract
Environmental factors are significant contributors for the development of Alzheimer's disease (AD). The greatly increased incidence of AD following stroke and cerebral ischemia suggests that hypoxia is a risk factor which may accelerate AD pathogenesis by altering amyloid precursor protein (APP) processing. However, the molecular mechanisms underlying the hypoxia mediated AD pathogenesis have not been fully elucidated. In the present study we demonstrated that repeated hypoxia increased beta-amyloid (Abeta) generation and neuritic plaques formation by elevating beta-cleavage of APP in APP(swe)+PS1(A246E) transgenic mice. We also found that hypoxia enhanced the expression of APH-1a, a component of gamma-secretase complex, which in turn may lead to increase in gamma-cleavage activity. Furthermore, we demonstrated that repeated hypoxia treatment can activate macroautophagy, which may contribute to the increases in Abeta production since pretreatment with macroautophagy inhibitor 3-methyladenine significantly blocked chemical hypoxic condition-induced increase in Abeta production in SH-SY5Y cells. Taken together, our results suggest an important role of hypoxia in modulating the APP processing by facilitating both beta- and gamma-cleavage which may result in a significant increase of Abeta generation.
Collapse
Affiliation(s)
- Liang Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Maloney MT, Bamburg JR. Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies. Mol Neurobiol 2007; 35:21-44. [PMID: 17519504 DOI: 10.1007/bf02700622] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/30/1999] [Accepted: 09/05/2006] [Indexed: 12/16/2022]
Abstract
Transport defects may arise in various neurodegenerative diseases from failures in molecular motors, microtubule abnormalities, and the chaperone/proteasomal degradation pathway leading to aggresomal-lysosomal accumulations. These defects represent important steps in the neurodegenerative cascade, although in many cases, a clear consensus has yet to be reached regarding their causal relationship to the disease. A growing body of evidence lends support to a link between neurite transport defects in the very early stages of many neurodegenerative diseases and alterations in the organization and dynamics of the actin cytoskeleton initiated by filament dynamizing proteins in the ADF/cofilin family. This article focuses on cofilin, which in neurons under stress, including stress induced by the amyloid-beta (Abeta) 1-42 peptide, undergoes dephosphorylation (activation) and forms rod-shaped actin bundles (rods). Rods inhibit transport, are sites of amyloid precursor protein accumulation, and contribute to the pathology of Alzheimer's disease. Because rods form rapidly in response to anoxia, they could also contribute to synaptic deficits associated with ischemic brain injury (e.g., stroke). Surprisingly, cofilin undergoes phosphorylation (inactivation) in hippocampal neurons treated with Abeta1-40 at high concentrations, and these neurons undergo dystrophic morphological changes, including accumulation of pretangle phosphorylated-tau. Therefore, extremes in phosphoregulation of cofilin by different forms of Abeta may explain much of the Alzheimer's disease pathology and provide mechanisms for synaptic loss and plaque expansion.
Collapse
Affiliation(s)
- Michael T Maloney
- Department of Biochemistry and Molecular Biology, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
50
|
Hool LC. What Cardiologists Should Know About Calcium Ion Channels and Their Regulation by Reactive Oxygen Species. Heart Lung Circ 2007; 16:361-72. [PMID: 17353151 DOI: 10.1016/j.hlc.2007.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/16/2007] [Indexed: 12/17/2022]
Abstract
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means by which electrical signals are converted to responses within the cell. Calcium channels play an integral role in excitation in the heart and shaping the cardiac action potential. In addition, calcium influx through calcium channels is responsible for initiating contraction. Abnormalities in calcium homeostasis underlie cardiac arrhythmia, contractile dysfunction and cardiac remodelling. Reactive oxygen species participate in the development of pathology by altering the redox state of regulatory proteins. There is now good evidence that reactive oxygen species regulate the function of calcium channels. In this mini-review, the evidence for regulation of calcium channels by reactive oxygen species and implications with respect to pathology are presented. Calcium channels may represent a target for intervention during hypoxic trigger of arrhythmia or chronic pathological remodelling.
Collapse
Affiliation(s)
- Livia C Hool
- Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Western Australia.
| |
Collapse
|