1
|
Poudel SP, Behura SK. Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. Metabolomics 2024; 20:126. [PMID: 39495316 DOI: 10.1007/s11306-024-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION The placenta plays influential role in the fetal development of mammals. But how the metabolic need of the fetal organs is related to that of the placenta, and whether this relationship is influenced by the sex of the fetus remain poorly understood. OBJECTIVES This study used pigs to investigate metabolomic signatures of male and female fetal organs, and determine the relevance of gene expression of the placenta and brain to the metabolism of peripheral organs. METHODS Untargeted metabolomics analysis was performed with the day-45 placenta, kidney, heart, liver, lung and brain of male and female pig fetuses to model sex differences in the metabolism of the peripheral organs relative to that of the brain and placenta. Transcriptomic analysis was performed to investigate the expression of metabolic genes in the placenta and fetal brain of both sexes. RESULTS The results of this study show that the fetoplacental metabolic regulation was not only influenced by the fetal sex but also dependent on the metabolic requirement of the individual organs of the fetus. Neural network modeling of metabolomics data revealed differential relationship of the metabolic changes of the peripheral organs with the placenta and fetal brain between males and females. RNA sequencing further showed that genes associated with the metabolism of the peripheral organs were differentially expressed in the placenta and fetal brain. CONCLUSION The findings of this study suggest a regulatory role of the fetal brain and placenta axis in the sex-bias metabolism of the peripheral organs.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
3
|
Brown ER, Giussani DA. Cause of fetal growth restriction during high-altitude pregnancy. iScience 2024; 27:109702. [PMID: 38694168 PMCID: PMC11061758 DOI: 10.1016/j.isci.2024.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
High-altitude pregnancy increases the incidence of fetal growth restriction and reduces birth weight. This poses a significant clinical challenge as both are linked to adverse health outcomes, including raised infant mortality and the development of the metabolic syndrome in later life. While this reduction in birth weight is mostly understood to be driven by the hypobaric hypoxia of high altitude, the causative mechanism is unclear. Moreover, it is now recognized that highland ancestry confers protection against this reduction in birth weight. Here, we analyze the evidence that pregnancy at high altitude reduces birth weight and that highland ancestry confers protection, discussing mechanisms contributing to both effects.
Collapse
Affiliation(s)
- Emily R. Brown
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A. Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cambridge Strategic Research Initiative in Reproduction
- Cambridge Cardiovascular Centre for Research Excellence
| |
Collapse
|
4
|
Ewing A, O'Callaghan JL, McCracken S, Ellery S, Lappas M, Holland OJ, Perkins A, Saif Z, Clifton VL. Placentae of small appropriately-grown-for-gestational-age neonates exhibit sexually dimorphic transcriptomic changes representative of placental insufficiency. Placenta 2024; 149:37-43. [PMID: 38492471 DOI: 10.1016/j.placenta.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Previous studies have reported that neonates less than the 25th BWC especially if they were male, were more likely to be associated with birth complications suggesting small neonates often identified as appropriately grown are at risk of adverse outcomes. We have questioned whether smaller neonates not typically categorized as "small for gestational age" may not reach their genetically determined growth due to placental insufficiency. METHODS RNA-Seq was performed on the Illumina NovaSeq 600 using term placentae from neonates that were less than the 10th birthweight centile (BWC) (n = 39), between the 10th and the 30th BWC (n = 15) or greater than the 30th BWC (n = 23). Bioinformatic analyses were conducted and statistical significance was assessed at a level of P < 0.05 for single comparisons or FDR <0.05 unless otherwise noted. RESULTS Gene set enrichment analysis revealed differences between BWC groups and in relation to the sex of the placenta. Genes associated with hypoxia, inflammatory responses, estrogen responsive genes, and androgen responsive genes were enriched (FDR <0.1) for in placentae of neonates <10th BWC regardless of sex and also in male placentae of neonates between the 10th-30th BWC. Female placenta of neonates between the 10th-30th BWC were comparable to placentae of neonates >30th BWC. DISCUSSION These findings provide evidence that small male neonates may be at a greater risk of an adverse outcome than females due to changes in gene expression that are associated with placental dysfunction. The current data raises questions of whether placental pathology for smaller appropriately grown neonates should be scientifically and clinically examined in more depth.
Collapse
Affiliation(s)
- Adam Ewing
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia
| | | | - Sharon McCracken
- Women and Babies Research, Perinatal Medicine, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; Northern Sydney Local Health District Research (Kolling Institute), St Leonards, NSW, Australia
| | - Stacy Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Martha Lappas
- Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, The University of Melbourne, Melbourne VIC, Australia
| | - Olivia J Holland
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Anthony Perkins
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Zarqa Saif
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia
| | - Vicki L Clifton
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane QLD, Australia.
| |
Collapse
|
5
|
Huppertz B. Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy. J Reprod Immunol 2023; 158:103985. [PMID: 37406413 DOI: 10.1016/j.jri.2023.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
For obvious reasons, in vivo measurements of placental oxygenation are extremely rare and hence, scientists need to focus on the few studies that revealed at least some data on the topic. The scarcity of real in vivo data resulted in the development of hypotheses on placental oxygenation that blocked an objective view on the topic for decades. Only now, new hypotheses are emerging adding new views and ideas on the topic. Especially in the field of preeclampsia, hypotheses on placental oxygenation have mislead a whole generation of scientists. This review article displays the available in vivo placental oxygen data from 8 to 40 weeks of gestation. It also compares these physiological oxygen concentrations, called physioxia, with the situation in pre-placental hypoxia, i.e. pregnancies at high altitude. Finally, it summarizes what we know today about oxygen measurements in cases with preeclampsia. In early-onset preeclampsia cases, all in vivo data available today point to increased oxygen values in the intervillous space of the placenta. This is due to a reduced oxygen transfer of the placental barrier from maternal to fetal blood, resulting in hypoxia of fetal blood and the fetus.
Collapse
Affiliation(s)
- Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
6
|
Kyllo HM, Wang D, Lorca RA, Julian CG, Moore LG, Wilkening RB, Rozance PJ, Brown LD, Wesolowski SR. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency. Am J Physiol Endocrinol Metab 2023; 324:E556-E568. [PMID: 37126847 PMCID: PMC10259853 DOI: 10.1152/ajpendo.00046.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.
Collapse
Affiliation(s)
- Hannah M Kyllo
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Randall B Wilkening
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
7
|
Mata-Greenwood E, Westenburg HCA, Zamudio S, Illsley NP, Zhang L. Decreased Vitamin D Levels and Altered Placental Vitamin D Gene Expression at High Altitude: Role of Genetic Ancestry. Int J Mol Sci 2023; 24:3389. [PMID: 36834800 PMCID: PMC9967090 DOI: 10.3390/ijms24043389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
High-altitude hypoxia challenges reproduction; particularly in non-native populations. Although high-altitude residence is associated with vitamin D deficiency, the homeostasis and metabolism of vitamin D in natives and migrants remain unknown. We report that high altitude (3600 m residence) negatively impacted vitamin D levels, with the high-altitude Andeans having the lowest 25-OH-D levels and the high-altitude Europeans having the lowest 1α,25-(OH)2-D levels. There was a significant interaction of genetic ancestry with altitude in the ratio of 1α,25-(OH)2-D to 25-OH-D; with the ratio being significantly lower in Europeans compared to Andeans living at high altitude. Placental gene expression accounted for as much as 50% of circulating vitamin D levels, with CYP2R1 (25-hydroxylase), CYP27B1 (1α-hydroxylase), CYP24A1 (24-hydroxylase), and LRP2 (megalin) as the major determinants of vitamin D levels. High-altitude residents had a greater correlation between circulating vitamin D levels and placental gene expression than low-altitude residents. Placental 7-dehydrocholesterol reductase and vitamin D receptor were upregulated at high altitude in both genetic-ancestry groups, while megalin and 24-hydroxylase were upregulated only in Europeans. Given that vitamin D deficiency and decreased 1α,25-(OH)2-D to 25-OH-D ratios are associated with pregnancy complications, our data support a role for high-altitude-induced vitamin D dysregulation impacting reproductive outcomes, particularly in migrants.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hans C. A. Westenburg
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Stacy Zamudio
- Placental Research Group LLC, Maplewood, NJ 07040, USA
| | | | - Lubo Zhang
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Preeclampsia complicates 5-10% of all pregnancies and is a leading cause of maternal and perinatal mortality and morbidity. The placenta plays a pivotal role in determining pregnancy outcome by supplying the fetus with oxygen and nutrients and by synthesizing hormones. Placental function is highly dependent on energy supplied by mitochondria. It is well-known that preeclampsia is originated from placental dysfunction, although the etiology of it remains elusive. RECENT FINDINGS During the last three decades, substantial evidence suggests that mitochondrial abnormality is a major contributor to placental dysfunction. In addition, mitochondrial damage caused by circulating bioactive factors released from the placenta may cause endothelial dysfunction and subsequent elevation in maternal blood pressure. In this review, we summarize the current knowledge of mitochondrial abnormality in the pathogenesis of preeclampsia and discuss therapeutic approaches targeting mitochondria for treatment of preeclampsia.
Collapse
|
9
|
Sutovska H, Babarikova K, Zeman M, Molcan L. Prenatal Hypoxia Affects Foetal Cardiovascular Regulatory Mechanisms in a Sex- and Circadian-Dependent Manner: A Review. Int J Mol Sci 2022; 23:2885. [PMID: 35270026 PMCID: PMC8910900 DOI: 10.3390/ijms23052885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal hypoxia during the prenatal period can interfere with the developmental trajectory and lead to developing hypertension in adulthood. Prenatal hypoxia is often associated with intrauterine growth restriction that interferes with metabolism and can lead to multilevel changes. Therefore, we analysed the effects of prenatal hypoxia predominantly not associated with intrauterine growth restriction using publications up to September 2021. We focused on: (1) The response of cardiovascular regulatory mechanisms, such as the chemoreflex, adenosine, nitric oxide, and angiotensin II on prenatal hypoxia. (2) The role of the placenta in causing and attenuating the effects of hypoxia. (3) Environmental conditions and the mother's health contribution to the development of prenatal hypoxia. (4) The sex-dependent effects of prenatal hypoxia on cardiovascular regulatory mechanisms and the connection between hypoxia-inducible factors and circadian variability. We identified that the possible relationship between the effects of prenatal hypoxia on the cardiovascular regulatory mechanism may vary depending on circadian variability and phase of the days. In summary, even short-term prenatal hypoxia significantly affects cardiovascular regulatory mechanisms and programs hypertension in adulthood, while prenatal programming effects are not only dependent on the critical period, and sensitivity can change within circadian oscillations.
Collapse
Affiliation(s)
| | | | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia; (H.S.); (K.B.); (L.M.)
| | | |
Collapse
|
10
|
Jones AK, Wang D, Goldstrohm DA, Brown LD, Rozance PJ, Limesand SW, Wesolowski SR. Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep. Am J Physiol Endocrinol Metab 2022; 322:E181-E196. [PMID: 34957858 PMCID: PMC8816623 DOI: 10.1152/ajpendo.00382.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and LDH protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, β-cell area, or genes regulating β-cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia-induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.NEW & NOTEWORTHY Hypoxemia lowered fetal glucose oxidation rates, based on severity of hypoxemia, and increased lactate production. This was supported by tissue-specific metabolic responses that may result from increased norepinephrine and cortisol concentrations, which decrease pancreatic insulin secretion and insulin concentrations and decrease glucose utilization. This highlights the vulnerability of metabolic pathways in the fetus and demonstrates that constrained glucose oxidation may represent an early event in response to sustained hypoxemia and fetal growth restriction.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Goldstrohm
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
11
|
McClements L, Richards C, Patel N, Chen H, Sesperez K, Bubb KJ, Karlstaedt A, Aksentijevic D. Impact of reduced uterine perfusion pressure model of preeclampsia on metabolism of placenta, maternal and fetal hearts. Sci Rep 2022; 12:1111. [PMID: 35064159 PMCID: PMC8782944 DOI: 10.1038/s41598-022-05120-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a cardiovascular pregnancy complication characterised by new onset hypertension and organ damage or intrauterine growth restriction. It is one of the leading causes of maternal and fetal mortality in pregnancy globally. Short of pre-term delivery of the fetus and placenta, treatment options are limited. Consequently, preeclampsia leads to increased cardiovascular disease risk in both mothers and offspring later in life. Here we aim to examine the impact of the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia on the maternal cardiovascular system, placental and fetal heart metabolism. The surgical RUPP model was induced in pregnant rats by applying silver clips around the aorta and uterine arteries on gestational day 14, resulting in ~ 40% uterine blood flow reduction. The experiment was terminated on gestational day 19 and metabolomic profile of placentae, maternal and fetal hearts analysed using high-resolution 1H NMR spectroscopy. Impairment of uterine perfusion in RUPP rats caused placental and cardiac hypoxia and a series of metabolic adaptations: altered energetics, carbohydrate, lipid and amino acid metabolism of placentae and maternal hearts. Comparatively, the fetal metabolic phenotype was mildly affected. Nevertheless, long-term effects of these changes in both mothers and the offspring should be investigated further in the future.
Collapse
Affiliation(s)
- Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Claire Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Nikayla Patel
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hao Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kristen J Bubb
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA, 127 San Vincente Blvd, 90048
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Jones AK, Rozance PJ, Brown LD, Lorca RA, Julian CG, Moore LG, Limesand SW, Wesolowski SR. Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiol Rep 2021; 9:e15033. [PMID: 34558219 PMCID: PMC8461030 DOI: 10.14814/phy2.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.
Collapse
Affiliation(s)
- Amanda K. Jones
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paul J. Rozance
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Laura D. Brown
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ramón A. Lorca
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Colleen G. Julian
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lorna G. Moore
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Stephanie R. Wesolowski
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
13
|
Chen H, Williams KE, Kwan EY, Kapidzic M, Puckett KA, Aburajab RK, Robinson JF, Fisher SJ. Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development 2021; 148:dev199561. [PMID: 34121116 PMCID: PMC8276980 DOI: 10.1242/dev.199561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) from the placenta differentiate into specialized subpopulations that play crucial roles in proper fetal growth and development. A subset of these CTBs differentiate along an invasive pathway, penetrating the decidua and anchoring the placenta to the uterus. A crucial hurdle in pregnancy is the ability of these cells to migrate, invade and remodel spiral arteries, ensuring adequate blood flow to nourish the developing fetus. Although advances continue in describing the molecular features regulating the differentiation of these cells, assessment of their global proteomic changes at mid-gestation remain undefined. Here, using sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which is a data-independent acquisition strategy, we characterized the protein repertoire of second trimester human CTBs during their differentiation towards an invasive phenotype. This mass spectrometry-based approach allowed identification of 3026 proteins across four culture time points corresponding to sequential stages of differentiation, confirming the expression dynamics of established molecules and offering new information into other pathways involved. The availability of a SWATH CTB global spectral library serves as a beneficial resource for hypothesis generation and as a foundation for further understanding CTB differentiation dynamics.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Katherine E. Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Elaine Y. Kwan
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Kenisha A. Puckett
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Rayyan K. Aburajab
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
- Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Knyazev EN, Paul SY, Tonevitsky AG. Chemical Induction of Trophoblast Hypoxia by Cobalt Chloride Leads to Increased Expression of DDIT3. DOKL BIOCHEM BIOPHYS 2021; 499:251-256. [PMID: 34426922 PMCID: PMC8382627 DOI: 10.1134/s1607672921040104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
Choriocarcinoma cells BeWo b30 are used to model human placental trophoblast hypoxia using cobalt (II) chloride and hydroxyquinoline derivative (HD) as chemical inducers of hypoxia-inducible factor (HIF). In this study, it was shown that both substances activate the hypoxic pathway and the epithelial-mesenchymal transition and inhibit the pathways of cell proliferation. However, CoCl2 caused activation of the apoptosis pathway, increased the activity of effector caspases 3 and 7, and increased the expression of the unfolded protein response target DDIT3. The mTORC1 pathway was activated upon exposition to CoCl2, while HD suppressed this pathway, as it happens during real trophoblast hypoxia. Thus, effect of CoCl2 on BeWo cells can be a model of severe hypoxia with activation of apoptosis, while HD mimics moderate hypoxia.
Collapse
Affiliation(s)
- E N Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.
- Translational Technology Center, Moscow, Russia.
| | - S Yu Paul
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
- Troitsk Research and Development Center, Moscow, Russia
| | - A G Tonevitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
15
|
Knyazev EN, Paul SY. Levels of miR-374 increase in BeWo b30 cells exposed to hypoxia. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In humans, trophoblast hypoxia during placental development can be a cause of serious pregnancy complications, such as preeclampsia and fetal growth restriction. The pathogenesis of these conditions is not fully clear and may be associated with changed expression of some genes and regulatory molecules, including miRNA, in trophoblast cells. The aim of this study was to analyze miRNA profiles and measure the expression of their target genes in a model of trophoblast hypoxia. Human choriocarcinoma BeWo b30 cells were used as a trophoblast model. Hypoxia was induced by cobalt chloride (CoCl2) and an oxyquinoline derivative. MRNA and miRNA expression profiles were evaluated by means of next generation sequencing (NGS); the expression of individual genes was analyzed by PCR. We studied the secondary structure of mRNAs of target genes for those miRNAs whose expression had changed significantly and analyzed potential competition between these miRNAs for the binding site. The observed changes in the expression of the key genes involved in the response to hypoxia confirmed the feasibility of using CoCl2 and the oxyquinoline derivative as hypoxia inducers. The analysis revealed an increase in miR-374 levels following the activation of the hypoxia pathway in our trophoblast model. The changes were accompanied by a reduction in FOXM1 mRNA expression; this mRNA is a target for hsa-miR-374a-5p and hsa-miR374b-5p, which can compete with hsa-miR-21-5p for the binding sites on FOXM1 mRNA. The involvement of FOXM1 in the regulation of the invasive cell potential suggests the role of miR-374 and FOXM1 in the pathogenesis of disrupted trophoblast invasion during placental development as predisposing for fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- EN Knyazev
- National Research University Higher School of Economics, Moscow, Russia
| | - SYu Paul
- National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
16
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Läsche M, Emons G, Gründker C. Shedding New Light on Cancer Metabolism: A Metabolic Tightrope Between Life and Death. Front Oncol 2020; 10:409. [PMID: 32300553 PMCID: PMC7145406 DOI: 10.3389/fonc.2020.00409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Since the earliest findings of Otto Warburg, who discovered the first metabolic differences between lactate production of cancer cells and non-malignant tissues in the 1920s, much time has passed. He explained the increased lactate levels with dysfunctional mitochondria and aerobic glycolysis despite adequate oxygenation. Meanwhile, we came to know that mitochondria remain instead functional in cancer cells; hence, metabolic drift, rather than being linked to dysfunctional mitochondria, was found to be an active act of direct response of cancer cells to cell proliferation and survival signals. This metabolic drift begins with the use of sugars and the full oxidative phosphorylation via the mitochondrial respiratory chain to form CO2, and it then leads to the formation of lactic acid via partial oxidation. In addition to oncogene-driven metabolic reprogramming, the oncometabolites themselves alter cell signaling and are responsible for differentiation and metastasis of cancer cells. The aberrant metabolism is now considered a major characteristic of cancer within the past 15 years. However, the proliferating anabolic growth of a tumor and its spread to distal sites of the body is not explainable by altered glucose metabolism alone. Since a tumor consists of malignant cells and its tumor microenvironment, it was important for us to understand the bilateral interactions between the primary tumor and its microenvironment and the processes underlying its successful metastasis. We here describe the main metabolic pathways and their implications in tumor progression and metastasis. We also portray that metabolic flexibility determines the fate of the cancer cell and ultimately the patient. This flexibility must be taken into account when deciding on a therapy, since singular cancer therapies only shift the metabolism to a different alternative path and create resistance to the medication used. As with Otto Warburg in his days, we primarily focused on the metabolism of mitochondria when dealing with this scientific question.
Collapse
Affiliation(s)
- Matthias Läsche
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Elkin ER, Bridges D, Harris SM, Loch-Caruso RK. Exposure to Trichloroethylene Metabolite S-(1,2-Dichlorovinyl)-L-cysteine Causes Compensatory Changes to Macronutrient Utilization and Energy Metabolism in Placental HTR-8/SVneo Cells. Chem Res Toxicol 2020; 33:1339-1355. [PMID: 31951115 PMCID: PMC7299793 DOI: 10.1021/acs.chemrestox.9b00356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Trichloroethylene
(TCE) is a widespread environmental contaminant
following decades of use as an industrial solvent, improper disposal,
and remediation challenges. Consequently, TCE exposure continues to
constitute a risk to human health. Despite epidemiological evidence
associating exposure with adverse birth outcomes, the effects of TCE
and its metabolite S-(1, 2-dichlorovinyl)-L-cysteine
(DCVC) on the placenta remain undetermined. Flexible and efficient
macronutrient and energy metabolism pathway utilization is essential
for placental cell physiological adaptability. Because DCVC is known
to compromise cellular energy status and disrupt energy metabolism
in renal proximal tubular cells, this study investigated the effects
of DCVC on cellular energy status and energy metabolism pathways in
placental cells. Human extravillous trophoblast cells, HTR-8/SVneo,
were exposed to 5–20 μM DCVC for 6 or 12 h. After establishing
concentration and exposure duration thresholds for DCVC-induced cytotoxicity,
targeted metabolomics was used to evaluate overall energy status and
metabolite concentrations from energy metabolism pathways. The data
revealed glucose metabolism perturbations including a time-dependent
accumulation of glucose-6-phosphate+frutose-6-phosphate (G6P+F6P)
as well as independent shunting of glucose intermediates that diminished
with time, with modest energy status decline but in the absence of
significant changes in ATP concentrations. Furthermore, metabolic
profiling suggested that DCVC stimulated compensatory utilization
of glycerol, lipid, and amino acid metabolism to provide intermediate
substrates entering downstream in the glycolytic pathway or the tricarboxylic
acid cycle. Lastly, amino acid deprivation increased susceptibility
to DCVC-induced cytotoxicity. Taken together, these results suggest
that DCVC caused metabolic perturbations necessitating adaptations
in macronutrient and energy metabolism pathway utilization to maintain
adequate ATP levels.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| | - Rita Karen Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109-2029, United States
| |
Collapse
|
19
|
Rutherford JN, Victoria A deMartelly, Ragsdale HB, Avila JL, Lee NR, Kuzawa CW. Global population variation in placental size and structure: Evidence from Cebu, Philippines. Placenta 2019; 85:40-48. [PMID: 31445348 PMCID: PMC6742541 DOI: 10.1016/j.placenta.2019.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Placental morphology influences the intrauterine environment and fetal growth, which help set life-course health trajectories across generations. Little is known about placental characteristics in populations with chronic nutritional insufficiency where birth weights tend to be lower, and how these relationships between birth and placental weights vary across populations. METHODS We collected weights and stereologically-determined villous mass and surface area of 21 placentas from offspring of women enrolled in a birth cohort study in metropolitan Cebu, Philippines, a low-income population. We identified 15 samples from other global populations ranging from low to high income that had similar data to ours to assess patterns of variation between birth and placental weights and microscopic characteristics. We ranked the population samples in order for each characteristic. RESULTS Mean birth weight in Cebu was 3162 ± 80 g (ranked 9/16) and placental weight was 454 ± 32 g (ranked 12/16). Birth:placental weight ratio was 7.0 (ranked 3/16). Average villous surface area for Cebu placentas was 6.5 m2 (ranked 9/12); Birth weight:villous surface area was 0.048 g/m2 (ranked 4/12). DISCUSSION Placentas from Cebu produced heavier neonates per units of placental weight and villous surface area than most other populations, despite lower villous surface areas and less complex surface-to-volume topography. This range of placental efficiency spurs questions about the mechanisms by which placental morphology optimizes efficiency in different environmental contexts during gestation. Placental variation both within and across populations is likely due to many intersecting environmental, metabolic, and (epi)genetic factors that will require additional research to clarify.
Collapse
Affiliation(s)
- Julienne N Rutherford
- Department of Women, Children, and Family Health, Department of Anthropology, University of Illinois at Chicago, Chicago, IL, USA.
| | | | - Haley B Ragsdale
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Josephine L Avila
- USC- Office of Population Studies Foundation, University of San Carlos, Cebu, Philippines
| | - Nanette R Lee
- USC- Office of Population Studies Foundation, University of San Carlos, Cebu, Philippines
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
20
|
Wang Y, Bucher M, Myatt L. Use of Glucose, Glutamine and Fatty Acids for Trophoblast Respiration in Lean, Obese and Gestational Diabetic Women. J Clin Endocrinol Metab 2019; 104:4178-4187. [PMID: 31116396 PMCID: PMC6688456 DOI: 10.1210/jc.2019-00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Maternal obesity and gestational diabetes (GDM) are associated with adverse outcomes particularly with a male fetus. The composition and amount of substrate supplied to the placenta is altered in these conditions. We hypothesized that there are sexually dimorphic differences in utilization of glucose, fatty acids and glutamine between trophoblast of lean, obese and GDM women. METHODS Trophoblast were isolated from term male or female placentas from lean, obese or GDM women (n = 4-6/group) and syncytiotrophoblast formed over 72 hr before measuring mitochondrial respiration by fuel flex assay (Seahorse XF96 analyzer). Dependency, capacity and flexibility for use of glucose, glutamine and fatty acids was measured with western blot of glucose transporter GLUT1, glutaminase and carnitine palmitoyl-transferase 1A, (CPT1A). RESULTS Sexual dimorphism in syncytiotrophoblast fuel utilization was seen in GDM vs lean with a significant increase in glucose dependency in male and glucose capacity in female, whereas for glutamine capacity significantly decreased in male and female but dependency only in female. Fatty acid dependency and capacity significantly increased in male and capacity in female trophoblast of GDM vs either lean or obese. In male but not female trophoblast flexibility to use all three fuels significantly decreased from lean to obese and GDM. In male trophoblast there were significant associations between GLUT1 and glucose dependency (positive) and flexibility (negative). MAIN CONCLUSIONS Human syncytiotrophoblast utilizes glutamine for mitochondrial respiration. Utilization of glucose, fatty acids and glutamine changes in a sexually dimorphic manner with obesity and GDM predominantly with a male placenta.
Collapse
Affiliation(s)
- Yu Wang
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Matthew Bucher
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Guitart-Mampel M, Juarez-Flores DL, Youssef L, Moren C, Garcia-Otero L, Roca-Agujetas V, Catalan-Garcia M, Gonzalez-Casacuberta I, Tobias E, Milisenda JC, Grau JM, Crispi F, Gratacos E, Cardellach F, Garrabou G. Mitochondrial implications in human pregnancies with intrauterine growth restriction and associated cardiac remodelling. J Cell Mol Med 2019; 23:3962-3973. [PMID: 30941904 PMCID: PMC6533501 DOI: 10.1111/jcmm.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single‐site, cross‐sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I‐stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI‐stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/β‐actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI‐stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new‐borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.
Collapse
Affiliation(s)
- Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Diana L Juarez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Lina Youssef
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U719, Madrid, Spain
| | - Constanza Moren
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Laura Garcia-Otero
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U719, Madrid, Spain
| | - Vicente Roca-Agujetas
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Marc Catalan-Garcia
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Ingrid Gonzalez-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Ester Tobias
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - José C Milisenda
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Josep M Grau
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Fàtima Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U719, Madrid, Spain
| | - Eduard Gratacos
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U719, Madrid, Spain
| | - Francesc Cardellach
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Glòria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Faculty of Medicine and Health Sciences, Internal Medicine Service-Hospital Clínic of Barcelona, Cellex-IDIBAPS, University of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| |
Collapse
|
22
|
Placental mitochondria adapt developmentally and in response to hypoxia to support fetal growth. Proc Natl Acad Sci U S A 2019; 116:1621-1626. [PMID: 30655345 DOI: 10.1073/pnas.1816056116] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria respond to a range of stimuli and function in energy production and redox homeostasis. However, little is known about the developmental and environmental control of mitochondria in the placenta, an organ vital for fetal growth and pregnancy maintenance in eutherian mammals. Using respirometry and molecular analyses, the present study examined mitochondrial function in the distinct transport and endocrine zones of the mouse placenta during normal pregnancy and maternal inhalation hypoxia. The data show that mitochondria of the two zones adopt different strategies in modulating their respiration, substrate use, biogenesis, density, and efficiency to best support the growth and energy demands of fetoplacental tissues during late gestation in both normal and hypoxic conditions. The findings have important implications for environmentally induced adaptations in mitochondrial function in other tissues and for compromised human pregnancy in which hypoxia and alterations in placental mitochondrial function are associated with poor outcomes like fetal growth restriction.
Collapse
|
23
|
Metabolic Reprogramming of Trophoblast Cells in Response to Hypoxia. Bull Exp Biol Med 2019; 166:321-325. [PMID: 30627907 DOI: 10.1007/s10517-019-04342-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 10/27/2022]
Abstract
Hypoxia of trophoblast cells is an important regulator of normal development of the placenta. However, some pathological states associated with hypoxia, e.g. preeclampsia, impair the functions of placental cells. Oxyquinoline derivative inhibits HIF-prolyl hydroxylase by stabilizing HIF-1 transcription complex, thus modeling cell response to hypoxia. In human choriocarcinoma cells BeWo b30 (trophoblast model), oxyquinoline increased the expression of a core hypoxia response genes along with up-regulation of NOS3, PDK1, and BNIP3 genes and down-regulation of the PPARGC1B gene. These changes in the expression profile attest to activation of the metabolic cell reprogramming mechanisms aimed at reducing oxygen consumption by enabling the switch from aerobic to anaerobic glucose metabolism and the respective decrease in number of mitochondria. The possibility of practical use of the therapeutic properties of oxyquinoline derivatives is discussed.
Collapse
|
24
|
Illsley NP, Baumann MU. Human placental glucose transport in fetoplacental growth and metabolism. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165359. [PMID: 30593896 DOI: 10.1016/j.bbadis.2018.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
Abstract
While efficient glucose transport is essential for all cells, in the case of the human placenta, glucose transport requirements are two-fold; provision of glucose for the growing fetus in addition to the supply of glucose required the changing metabolic needs of the placenta itself. The rapidly evolving environment of placental cells over gestation has significant consequences for the development of glucose transport systems. The two-fold transport requirement of the placenta means also that changes in expression will have effects not only for the placenta but also for fetal growth and metabolism. This review will examine the localization, function and evolution of placental glucose transport systems as they are altered with fetal development and the transport and metabolic changes observed in pregnancy pathologies.
Collapse
Affiliation(s)
- Nicholas P Illsley
- Center for Abnormal Placentation, Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA.
| | - Marc U Baumann
- Department of Obstetrics and Gynaecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Cindrova-Davies T, Giussani DA. miRNA-210: a hypoxamiRyad of possibilities. J Physiol 2018; 596:5501-5502. [PMID: 29929210 DOI: 10.1113/jp276591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Verratti V, Ietta F, Paulesu L, Romagnoli R, Ceccarelli I, Doria C, Fanò Illic G, Di Giulio C, Aloisi AM. Physiological effects of high-altitude trekking on gonadal, thyroid hormones and macrophage migration inhibitory factor (MIF) responses in young lowlander women. Physiol Rep 2018; 5:5/20/e13400. [PMID: 29066595 PMCID: PMC5661227 DOI: 10.14814/phy2.13400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022] Open
Abstract
Altitude hypoxia is often associated with impairment of human reproduction. In this study, hormones and macrophage migration inhibitory factor (MIF, a proinflammatory cytokine with key roles in human reproduction) were determined in seven regularly menstruating, lowlander native women living at sea level participating in 14 days of trekking at moderate and high altitude. Blood and saliva samples were collected from each subject at high altitude (5050 m a.s.l. [above sea level]), and at sea level before and after the expedition. Testosterone level was lowered by high altitude and was restored after the end of the expedition, while progesterone decreased significantly in all participants at the end of the expedition, although most of the participants were in the luteal phase. The salivary concentration of MIF decreased greatly at altitude, but its levels were completely restored after the return to sea level. Our findings showed high sensitivity and rapid changes in the determined parameters in response to the high‐altitude hypoxic environment, particularly MIF.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Christian Doria
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Camillo Di Giulio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Anna M Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
27
|
DeMeritt J, Wajswol E, Wattamwar A, Litkouhi B, Vaidya A, Sbarra M, Zamudio S, Pozzi RA, Canning A, Woytanowski J, Al-Khan A. Serial Uterine Artery Embolization for the Treatment of Placenta Percreta in the First Trimester: A Case Report. Cardiovasc Intervent Radiol 2018; 41:1280-1284. [PMID: 29556708 DOI: 10.1007/s00270-018-1929-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Two patients with placenta percreta underwent uterine artery embolization (UAE) for abnormally invasive placenta (AIP) in the first trimester. Patient 1 had a 9-week cervical ectopic, while Patient 2 had a 9-week cesarean scar pregnancy. Elective termination of pregnancy was performed in both patients. UAE was performed with tris-acryl gelatin microspheres as well as gelfoam until stasis and was repeated in cases of revascularization. Both patients were followed with US/MRI/MRA scans and β-hCG levels. Revascularization occurred in both patients following UAE, requiring multiple embolizations to achieve complete placental involution. Serial bland UAE may be an effective technique in the treatment of first-trimester AIP, with the distinct advantage of maintaining a patient's fertility. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- John DeMeritt
- Department of Radiology, Hackensack University Medical Center, 30 Prospect Avenue, Hackensack, NJ, 07601, USA.
| | | | - Anoop Wattamwar
- Department of Radiology, Hackensack University Medical Center, 30 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Babak Litkouhi
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ami Vaidya
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Michael Sbarra
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Rocio Acera Pozzi
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andrew Canning
- Department of Internal Medicine, University of Nebraska, Omaha, NE, USA
| | - John Woytanowski
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Abdulla Al-Khan
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
28
|
Sánchez-Aranguren LC, Espinosa-González CT, González-Ortiz LM, Sanabria-Barrera SM, Riaño-Medina CE, Nuñez AF, Ahmed A, Vasquez-Vivar J, López M. Soluble Fms-Like Tyrosine Kinase-1 Alters Cellular Metabolism and Mitochondrial Bioenergetics in Preeclampsia. Front Physiol 2018; 9:83. [PMID: 29563877 PMCID: PMC5845757 DOI: 10.3389/fphys.2018.00083] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Abstract
Preeclampsia is a maternal hypertensive disorder that affects up to 1 out of 12 pregnancies worldwide. It is characterized by proteinuria, endothelial dysfunction, and elevated levels of the soluble form of the vascular endothelial growth factor receptor-1 (VEGFR-1, known as sFlt-1). sFlt-1 effects are mediated in part by decreasing VEGF signaling. The direct effects of sFlt-1 on cellular metabolism and bioenergetics in preeclampsia, have not been established. The goal of this study was to evaluate whether sFlt-1 causes mitochondrial dysfunction leading to disruption of normal functioning in endothelial and placental cells in preeclampsia. Endothelial cells (ECs) and first-trimester trophoblast (HTR-8/SVneo) were treated with serum from preeclamptic women rich in sFlt-1 or with the recombinant protein. sFlt-1, dose-dependently inhibited ECs respiration and acidification rates indicating a metabolic phenotype switch enhancing glycolytic flux. HTR-8/SVneo displayed a strong basal glycolytic metabolism, remaining less sensitive to sFlt-1-induced mitochondrial impairment. Moreover, results obtained in ECs exposed to serum from preeclamptic subjects demonstrated that increased sFlt-1 leads to metabolic perturbations accountable for mitochondrial dysfunction observed in preeclampsia. sFlt-1 exacerbated mitochondrial reactive oxygen species (ROS) formation and mitochondrial membrane potential dissipation in ECs and trophoblasts exposed to serum from preeclamptic women. Forcing oxidative metabolism by culturing cells in galactose media, further sensitized cells to sFlt-1. This approach let us establish that sFlt-1 targets mitochondrial function in ECs. Effects of sFlt-1 on HTR-8/SVneo cells metabolism were amplified in galactose, demonstrating that sFlt-1 only target cells that rely mainly on oxidative metabolism. Together, our results establish the early metabolic perturbations induced by sFlt-1 and the resulting endothelial and mitochondrial dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Lissette C Sánchez-Aranguren
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Santander, Colombia.,Graduate Program in Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | - Laura M González-Ortiz
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Santander, Colombia.,Graduate Program in Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Sandra M Sanabria-Barrera
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Santander, Colombia.,Graduate Program in Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Carlos E Riaño-Medina
- Graduate Program in Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia.,Maternal-Fetal Medicine Unit, Fundación Cardiovascular de Colombia, Santander, Colombia
| | - Andrés F Nuñez
- Maternal-Fetal Medicine Unit, Clínica Materno Infantil San Luis, Bucaramanga, Santander, Colombia
| | - Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jeannette Vasquez-Vivar
- Redox Biology Program and Free Radical Research Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marcos López
- Traslational Biomedical Research Group, Fundación Cardiovascular de Colombia, Santander, Colombia.,Graduate Program in Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| |
Collapse
|
29
|
Albers RE, Waker CA, Keoni C, Kaufman MR, Bottomley MA, Min S, Natale DR, Brown TL. Gestational differences in murine placenta: Glycolytic metabolism and pregnancy parameters. Theriogenology 2017; 107:115-126. [PMID: 29145065 DOI: 10.1016/j.theriogenology.2017.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated metabolism during placental development may not be fully representative of the in vivo state in defined culture systems, such as cell lines or isolated primary cells. Thus, assessing metabolic function in intact placental tissue would provide a better assessment of placental metabolism. In this study, we describe a methodology for assaying glycolytic function in structurally-intact mouse placental tissue, ex vivo, without culturing or tissue dissociation, that more closely resembles the in vivo state. Additionally, we present data highlighting sex-dependent differences of two mouse strains (C57BL/6 and ICR) in the pre-hypertrophic (E14.5) and hypertrophic (E18.5) placenta. These data establish a foundation for investigation of metabolism throughout gestation and provides a comprehensive assessment of glycolytic function during placental development.
Collapse
Affiliation(s)
- Renee E Albers
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Chanel Keoni
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States
| | - Sarah Min
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - David R Natale
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States.
| |
Collapse
|
30
|
Luo J, Abaci Turk E, Bibbo C, Gagoski B, Roberts DJ, Vangel M, Tempany-Afdhal CM, Barnewolt C, Estroff J, Palanisamy A, Barth WH, Zera C, Malpica N, Golland P, Adalsteinsson E, Robinson JN, Grant PE. In Vivo Quantification of Placental Insufficiency by BOLD MRI: A Human Study. Sci Rep 2017. [PMID: 28623277 PMCID: PMC5473907 DOI: 10.1038/s41598-017-03450-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal health is critically dependent on placental function, especially placental transport of oxygen from mother to fetus. When fetal growth is compromised, placental insufficiency must be distinguished from modest genetic growth potential. If placental insufficiency is present, the physician must trade off the risk of prolonged fetal exposure to placental insufficiency against the risks of preterm delivery. Current ultrasound methods to evaluate the placenta are indirect and insensitive. We propose to use Blood-Oxygenation-Level-Dependent (BOLD) MRI with maternal hyperoxia to quantitatively assess mismatch in placental function in seven monozygotic twin pairs naturally matched for genetic growth potential. In-utero BOLD MRI time series were acquired at 29 to 34 weeks gestational age. Maps of oxygen Time-To-Plateau (TTP) were obtained in the placentas by voxel-wise fitting of the time series. Fetal brain and liver volumes were measured based on structural MR images. After delivery, birth weights were obtained and placental pathological evaluations were performed. Mean placental TTP negatively correlated with fetal liver and brain volumes at the time of MRI as well as with birth weights. Mean placental TTP positively correlated with placental pathology. This study demonstrates the potential of BOLD MRI with maternal hyperoxia to quantify regional placental function in vivo.
Collapse
Affiliation(s)
- Jie Luo
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, 02115, USA.,Madrid-MIT M+Vision Consortium, RLE, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, 02115, USA.,Madrid-MIT M+Vision Consortium, RLE, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Carolina Bibbo
- Maternal Fetal Medicine, Brigham and Women's Hospital, Boston, 02115, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, 02115, USA
| | | | - Mark Vangel
- Radiology, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | - Judy Estroff
- Radiology, Boston Children's Hospital, Boston, 02115, USA
| | | | - William H Barth
- Obstetrics and Gynecology, Massachusetts General Hospital, Boston, 02114, USA
| | - Chloe Zera
- Maternal Fetal Medicine, Brigham and Women's Hospital, Boston, 02115, USA
| | - Norberto Malpica
- Madrid-MIT M+Vision Consortium, RLE, Massachusetts Institute of Technology, Cambridge, 02139, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, 28933, Spain
| | - Polina Golland
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Elfar Adalsteinsson
- Madrid-MIT M+Vision Consortium, RLE, Massachusetts Institute of Technology, Cambridge, 02139, USA.,Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Julian N Robinson
- Maternal Fetal Medicine, Brigham and Women's Hospital, Boston, 02115, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, 02115, USA.
| |
Collapse
|
31
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, Nuzhat Z, Palma C, Scholz-Romero K, Menon R, Mol BW, Rice GE, Salomon C. Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells - Liquid biopsies for monitoring complications of pregnancy. PLoS One 2017; 12:e0174514. [PMID: 28350871 PMCID: PMC5370130 DOI: 10.1371/journal.pone.0174514] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of how cells communicate has undergone a paradigm shift since the recent recognition of the role of exosomes in intercellular signaling. In this study, we investigated whether oxygen tension alters the exosome release and miRNA profile from extravillous trophoblast (EVT) cells, modifying their bioactivity on endothelial cells (EC). Furthermore, we have established the exosomal miRNA profile at early gestation in women who develop pre-eclampsia (PE) and spontaneous preterm birth (SPTB). HTR-8/SVneo cells were used as an EVT model. The effect of oxygen tension (i.e. 8% and 1% oxygen) on exosome release was quantified using nanocrystals (Qdot®) coupled to CD63 by fluorescence NTA. A real-time, live-cell imaging system (Incucyte™) was used to establish the effect of exosomes on EC. Plasma samples were obtained at early gestation (<18 weeks) and classified according to pregnancy outcomes. An Illumina TrueSeq Small RNA kit was used to construct a small RNA library from exosomal RNA obtained from EVT and plasma samples. The number of exosomes was significantly higher in EVT cultured under 1% compared to 8% oxygen. In total, 741 miRNA were identified in exosomes from EVT. Bioinformatic analysis revealed that these miRNA were associated with cell migration and cytokine production. Interestingly, exosomes isolated from EVT cultured at 8% oxygen increased EC migration, whilst exosomes cultured at 1% oxygen decreased EC migration. These changes were inversely proportional to TNF-α released from EC. Finally, we have identified a set of unique miRNAs in exosomes from EVT cultured at 1% oxygen and exosomes isolated from the circulation of mothers at early gestation, who later developed PE and SPTB. We suggest that aberrant exosomal signalling by placental cells is a common aetiological factor in pregnancy complications characterised by incomplete SpA remodeling and is therefore a clinically relevant biomarker of pregnancy complications.
Collapse
Affiliation(s)
- Grace Truong
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Vyjayanthi Kinhal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherri Longo
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Katherin Scholz-Romero
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ben W. Mol
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, School of Medicine, University of Adelaide, North Adelaide, Australia
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, United States of America
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
33
|
Waker CA, Albers RE, Pye RL, Doliboa SR, Wyatt CN, Brown TL, Mayes DA. AMPK Knockdown in Placental Labyrinthine Progenitor Cells Results in Restriction of Critical Energy Resources and Terminal Differentiation Failure. Stem Cells Dev 2017; 26:808-817. [PMID: 28335680 DOI: 10.1089/scd.2016.0252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Renee E Albers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Richard L Pye
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Savannah R Doliboa
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Christopher N Wyatt
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Debra A Mayes
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| |
Collapse
|
34
|
Kolahi KS, Valent AM, Thornburg KL. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci Rep 2017; 7:42941. [PMID: 28230167 PMCID: PMC5322316 DOI: 10.1038/srep42941] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
The syncytiotrophoblast (SCT) at the maternal-fetal interface has been presumed to be the primary driver of placental metabolism, and the underlying progenitor cytotrophoblast cells (CTB) an insignificant contributor to placental metabolic activity. However, we now show that the metabolic rate of CTB is much greater than the SCT. The oxygen consumption and extracellular acidification rate, a measure of glycolysis, are both greater in CTB than in SCT in vitro (CTB: 96 ± 16 vs SCT: 46 ± 14 pmol O2 × min−1 × 100 ng DNA−1, p < 0.001) and (CTB: 43 ± 6.7 vs SCT 1.4 ± 1.0 ∆mpH × min−1 × 100 ng DNA−1, p < 0.0001). Mitochondrial activity, as determined by using the mitochondrial activity-dependent dye Mitotracker CM-H2TMRosa, is higher in CTB than in SCT in culture and living explants. These data cast doubt on the previous supposition that the metabolic rate of the placenta is dominated by the SCT contribution. Moreover, differentiation into SCT leads to metabolic suppression. The normal suppression of metabolic activity during CTB differentiation to SCT is prevented with a p38 MAPK signaling inhibitor and epidermal growth factor co-treatment. We conclude that the undifferentiated CTB, in contrast to the SCT, is highly metabolically active, has a high level of fuel flexibility, and contributes substantially to global metabolism in the late gestation human placenta.
Collapse
Affiliation(s)
- Kevin S Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA
| | - Amy M Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Kent L Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
35
|
Wesolowski SR, Hay WW. Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production. Mol Cell Endocrinol 2016; 435:61-68. [PMID: 26723529 PMCID: PMC4921201 DOI: 10.1016/j.mce.2015.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
Glucose is the major fuel for fetal oxidative metabolism. A positive maternal-fetal glucose gradient drives glucose across the placenta and is sufficient to meet the demands of the fetus, eliminating the need for endogenous hepatic glucose production (HGP). However, fetuses with intrauterine growth restriction (IUGR) from pregnancies complicated by placental insufficiency have an early activation of HGP. Furthermore, this activated HGP is resistant to suppression by insulin. Here, we present the data demonstrating the activation of HGP in animal models, mostly fetal sheep, and human pregnancies with IUGR. We also discuss potential mechanisms and pathways that may produce and support HGP and hepatic insulin resistance in IUGR fetuses.
Collapse
Affiliation(s)
- Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Vaughan OR, Fowden AL. Placental metabolism: substrate requirements and the response to stress. Reprod Domest Anim 2016; 51 Suppl 2:25-35. [DOI: 10.1111/rda.12797] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- OR Vaughan
- Centre for Trophoblast Research; Department of Physiology, Development and Neuroscience; University of Cambridge; Cambridge CB2 3EG UK
| | - AL Fowden
- Centre for Trophoblast Research; Department of Physiology, Development and Neuroscience; University of Cambridge; Cambridge CB2 3EG UK
| |
Collapse
|
37
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
38
|
Kurlak LO, Mistry HD, Cindrova-Davies T, Burton GJ, Broughton Pipkin F. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J Physiol 2016; 594:1327-40. [PMID: 26574162 DOI: 10.1113/jp271045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022] Open
Abstract
A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function.
Collapse
Affiliation(s)
- Lesia O Kurlak
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| | - Hiten D Mistry
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK.,Division of Hypertension, Department of Nephrology, Hypertension and Clinical Pharmacology and Clinical Research, University of Bern, CH-3010, Berne, Switzerland
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Fiona Broughton Pipkin
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| |
Collapse
|
39
|
Higgins JS, Vaughan OR, Fernandez de Liger E, Fowden AL, Sferruzzi-Perri AN. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. J Physiol 2015; 594:1341-56. [PMID: 26377136 PMCID: PMC4771776 DOI: 10.1113/jp271057] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth. In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia. Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age. Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia. There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies.
Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity, increased barrier thickness and reduced placental 14C‐methylaminoisobutyric acid clearance at D19. Consequently, fetal growth was only marginally affected in 13% O2 (unchanged at D16 and −5% at D19) but was severely restricted in 10% O2 (−21% at D19). The hypoxia‐induced changes in placental phenotype were accompanied by altered placental insulin‐like growth factor (IGF)‐2 expression and insulin/IGF signalling, as well as by maternal hypophagia depending on the timing and severity of the hypoxia. Overall, the present study shows that the mouse placenta can integrate signals of oxygen and nutrient availability, possibly through the insulin‐IGF pathway, to adapt its phenotype and optimize maternal resource allocation to fetal growth during late pregnancy. It also suggests that there is a threshold between 13% and 10% inspired O2 at which these adaptations no longer occur. Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth. In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia. Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age. Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia. There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies.
Collapse
Affiliation(s)
- J S Higgins
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - O R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - E Fernandez de Liger
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
41
|
|
42
|
Schneider H. IFPA senior award lecture: Energy metabolism of human placental tissue studied by ex vivo perfusion of an isolated cotyledon. Placenta 2015; 36 Suppl 1:S29-34. [PMID: 25599614 DOI: 10.1016/j.placenta.2014.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND This is a historical review of the method of "Ex vivo dual perfusion of a human placental cotyledon", which was first described by M. Panigel in 1967. The subsequent evolution of this method is described with particular emphasis on energy metabolism of human placental tissue under ex vivo conditions. METHOD For perfusion of the foetal compartment a pair of a chorionic arterial and venous vessel is cannulated. In the original method a remnant of the spiral artery of that cotyledon was catheterized to provide access to the maternal compartment. To simplify the procedure access to the intervillous space later was achieved by penetration of the decidual plate with 3 to 5 cannulae. RESULTS Due to a remarkable tolerance of ischaemia energy dependent transport of amino acids and de novo synthesis of proteins remain functional in spite of a delay of 20 to 30 min. until start of the two ex vivo circuits. With medium containing only physically dissolved oxygen the high demand of oxygen of the tissue can only partially be met. Chronic hypoxia leads to metabolic reprogramming with reduction in mitochondrial oxygen consumption and an increase in anaerobic glycolysis. Addition of erythrocytes to the medium is highly effective in increasing oxygen supply at physiological partial pressure with stimulation of aerobic glycolysis and de novo synthesis of proteins. Increasing the number of maternal cannulae leads to a better distribution of haemoglobin free medium with physiological partial pressure of oxygen giving median values of oxygen content inside the intervillous space close to target values. CONCLUSION Ex vivo dual perfusion of a human placental cotyledon allows to study functional aspects of this organ under close to in vivo conditions. A remarkable tolerance of ischaemia permits a start of dual perfusion ex vivo with a delay of 20 to 30 min. after delivery without significant tissue damage.
Collapse
Affiliation(s)
- H Schneider
- Department of Obstetrics and Gynaecology - Inselspital, University of Bern, Switzerland.
| |
Collapse
|
43
|
Sedaghat K, Zahediasl S, Ghasemi A. Intrauterine programming. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:212-20. [PMID: 25945232 PMCID: PMC4414985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/07/2014] [Indexed: 11/04/2022]
Abstract
In mammals, the intrauterine condition has an important role in the development of fetal physiological systems in later life. Suboptimal maternal environment can alter the regulatory pathways that determine the normal development of the fetus in utero, which in post-natal life may render the individual more susceptible to cardiovascular or metabolic adult-life diseases. Changes in the intrauterine availability of nutrients, oxygen and hormones can change the fetal tissue developmental regulatory planning, which occurs genomically and non-genomically and can cause permanent structural and functional changes in the systems, leading to diseases in early years of life and those that particularly become overt in adulthood. In this review we take a brief look at the main elements which program the fetal system development and consequently induce a crucial impact on the cardiovascular, nervous and hormonal systems in adulthood.
Collapse
Affiliation(s)
- Katayoun Sedaghat
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid-Beheshti University of Medical Sciences, Tehran, Iran,*Corresponding author: Asghar Ghasemi. Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22432467; Fax: +98-21-22402463;
| |
Collapse
|
44
|
Brocato B, Zoerner AA, Janjetovic Z, Skobowiat C, Gupta S, Moore BM, Slominski A, Zhang J, Schenone M, Phinehas R, Ferry RJ, Dick E, Hubbard GB, Mari G, Schlabritz-Loutsevitch N. Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity. Placenta 2013; 34:983-9. [PMID: 24008071 DOI: 10.1016/j.placenta.2013.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Maternal obesity (MO) remains a serious obstetric problem with acute and chronic morbidities for both mothers and offspring. The mechanisms underlying these adverse consequences of MO remain unknown. Endocannabinoids (ECB) are neuromodulatory lipids released from adipocytes and other tissues. Metabolic crosstalk between placenta and adipocytes may mediate sequelae of MO. The goal of this study was to elucidate placental and systemic ECB in MO. MATERIAL AND METHODS Placentas, sera, and subcutaneous fat were collected at Cesarean sections performed near term (0.9 G) in four non-obese (nOB) and four obese (OB) baboons (Papio spp.). Concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled to tandem mass spectrometry. AEA and 2-AG pathways were characterized in placentas by Q-RT-PCR, Western blot and immunohistochemistry. RESULTS Placental 2-AG levels were lower and maternal fat AEA levels were higher in OB (1254.1 ± 401.3 nmol/kg and 17.3 ± 4 nmol/kg) vs. nOB (3124.2 ± 557.3 nmol/kg and 3.1 ± 0.6 nmol/kg) animals. Concentrations of 2-AG correlated positively between maternal fat and placenta (r = 0.82, p = 0.013), but correlated negatively with maternal leptin concentrations (r = -0.72, p = 0.04 and r = -0.83, p = 0.01, respectively). CONCLUSION This is the first study to demonstrate differential ECB pathway regulation in maternal fat and placenta in MO. Differential regulation and function exist for AEA and 2-AG as the major ECB pathways in placenta.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/blood
- Arachidonic Acids/metabolism
- Biological Transport
- Chromatography, High Pressure Liquid
- Disease Models, Animal
- Endocannabinoids/blood
- Endocannabinoids/metabolism
- Female
- Gene Expression Regulation, Developmental
- Glycerides/blood
- Glycerides/metabolism
- Leptin/blood
- Obesity/blood
- Obesity/metabolism
- Obesity/pathology
- Papio
- Placenta/metabolism
- Placenta/pathology
- Polyunsaturated Alkamides/blood
- Polyunsaturated Alkamides/metabolism
- Pregnancy
- Pregnancy Complications/blood
- Pregnancy Complications/metabolism
- Pregnancy Complications/pathology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/biosynthesis
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/biosynthesis
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/metabolism
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- B Brocato
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Osumek JE, Revesz A, Morton JS, Davidge ST, Hardy DB. Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy. Reprod Sci 2013; 21:112-21. [PMID: 23744881 DOI: 10.1177/1933719113492212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given that hepatic glucose 6-phosphatase (G6Pase, involved in gluconeogenesis) has been demonstrated to be altered long term in animal models of intrauterine growth restriction (IUGR), we hypothesized that hypoxia in utero may regulate G6Pase expression via epigenetic mechanisms. To address this further, a rat model of maternal hypoxia leading to IUGR and impaired liver growth was utilized. In the 12-month-old male offspring of pregnant rat dams exposed to 11.5% atmospheric oxygen from gestational day (gd) 15 to gd 21, nonfasting glucose was lower in association with decreased hepatic G6Pase messenger RNA and protein levels. This was concomitant with enhanced methylation of histone H3 [K9] surrounding the promoter of G6Pase. Moreover, when McA-RH7777 hepatoma cells were exposed to various concentrations of oxygen for 48 hours, we observed an oxygen-dependent decrease in G6Pase expression associated with enhanced histone H3 [K9] methylation. Collectively, these results indicate that hypoxia directly and indirectly impairs G6Pase expression through enhanced methylation of histone H3 [K9].
Collapse
Affiliation(s)
- Jessica E Osumek
- 1The Department of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
Colleoni F, Padmanabhan N, Yung HW, Watson ED, Cetin I, Tissot van Patot MC, Burton GJ, Murray AJ. Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition. PLoS One 2013; 8:e55194. [PMID: 23383105 PMCID: PMC3559344 DOI: 10.1371/journal.pone.0055194] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023] Open
Abstract
Fetal growth is critically dependent on energy metabolism in the placenta, which drives active exchange of nutrients. Placental oxygen levels are therefore vital, and chronic hypoxia during pregnancy impairs fetal growth. Here we tested the hypothesis that placental hypoxia alters mitochondrial electron transport chain (ETS) function, and sought to identify underlying mechanisms. We cultured human placental cells under different oxygen concentrations. Mitochondrial respiration was measured, alongside levels of ETS complexes. Additionally, we studied placentas from sea-level and high-altitude pregnancies. After 4 d at 1% O2 (1.01 KPa), complex I-supported respiration was 57% and 37% lower, in trophoblast-like JEG3 cells and fibroblasts, respectively, compared with controls cultured at 21% O2 (21.24 KPa); complex IV-supported respiration was 22% and 30% lower. Correspondingly, complex I levels were 45% lower in placentas from high-altitude pregnancies than those from sea-level pregnancies. Expression of HIF-responsive microRNA-210 was increased in hypoxic fibroblasts and high-altitude placentas, whilst expression of its targets, iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), decreased. Moreover, protein synthesis inhibition, a feature of the high-altitude placenta, also suppressed ETS complex protein levels. Our results demonstrate that mitochondrial function is altered in hypoxic human placentas, with specific suppression of complexes I and IV compromising energy metabolism and potentially contributing to impaired fetal growth.
Collapse
Affiliation(s)
- Francesca Colleoni
- Department of Physiology, Development & Neuroscience, and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fowden A, Moore T. Maternal-fetal resource allocation: Co-operation and conflict. Placenta 2012; 33 Suppl 2:e11-5. [DOI: 10.1016/j.placenta.2012.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
|
48
|
Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev 2012; 24:80-96. [PMID: 22394720 DOI: 10.1071/rd11909] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Environmental conditions during pregnancy determine birthweight, neonatal viability and adult phenotype in human and other animals. In part, these effects may be mediated by the placenta, the principal source of nutrients for fetal development. However, little is known about the environmental regulation of placental phenotype. Generally, placental weight is reduced during suboptimal conditions like maternal malnutrition or hypoxaemia but compensatory adaptations can occur in placental nutrient transport capacity to help maintain fetal growth. In vivo studies show that transplacental glucose and amino acid transfer adapt to the prevailing conditions induced by manipulating maternal calorie intake, dietary composition and hormone exposure. These adaptations are due to changes in placental morphology, metabolism and/or abundance of specific nutrient transporters. This review examines environmental programming of placental phenotype with particular emphasis on placental nutrient transport capacity and its implications for fetal growth, mainly in rodents. It also considers the systemic, cellular and molecular mechanisms involved in signalling environmental cues to the placenta. Ultimately, the ability of the placenta to balance the competing interests of mother and fetus in resource allocation may determine not only the success of pregnancy in producing viable neonates but also the long-term health of the offspring.
Collapse
Affiliation(s)
- O R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
49
|
Developmental perturbation induced by maternal asthma during pregnancy: the short- and long-term impacts on offspring. J Pregnancy 2012; 2012:741613. [PMID: 22830026 PMCID: PMC3399337 DOI: 10.1155/2012/741613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022] Open
Abstract
Maternal asthma is a common disease to complicate human pregnancy. Epidemiological studies have identified that asthma during pregnancy increases the risk of a number of poor outcomes for the neonate including growth restriction, lower birthweight, preterm delivery, neonatal resuscitation, and stillbirth. Asthma therefore represents a significant health burden to society and could have an impact on the lifelong health of the children of women with asthma. Our research has identified that maternal asthma in pregnancy induces placental dysfunction and developmental perturbation in the fetus in a sex specific manner. These alterations in development could increase the risk of metabolic disease in adulthood of children of asthmatic mothers, especially females. In this paper, we will discuss the evidence currently available that supports the hypothesis that children of mothers with asthma may be at risk of lifelong health complications which include diabetes and hypertension.
Collapse
|
50
|
Murray AJ. Oxygen delivery and fetal-placental growth: beyond a question of supply and demand? Placenta 2012; 33 Suppl 2:e16-22. [PMID: 22742726 DOI: 10.1016/j.placenta.2012.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/28/2012] [Accepted: 06/12/2012] [Indexed: 12/17/2022]
Abstract
Towards the end of the first trimester, blood flow and oxygenation rise within the placenta, supporting an increased capacity for mitochondrial oxidative metabolism in both the placenta and developing fetus. In this regard, the placenta acts uniquely as both a conduit of oxygen to the fetal circulation and a significant consumer of oxygen in order to support its own energy demands for the processes of nutrient transport and protein synthesis for hormone production and growth. When the supply of oxygen becomes restricted, for example during chronic exposure to hypobaric hypoxia at high altitude, placental and fetal tissues respond in order to optimise the allocation of oxygen between competing demands. In this case, the placenta appears to remodel its metabolism to decrease oxygen consumption, probably by increasing ATP production via glycolysis. This process can maintain oxygen supply to the fetus but is still associated with growth restriction. Oxidative stress, a feature of pre-eclampsia, might elicit similar metabolic changes in the absence of hypoxia. This review considers what is known about the metabolic response of the placenta and fetal tissues to hypoxia and oxidative stress, and suggests possible mechanisms that might underlie such metabolic remodelling using lessons from other tissues and organ systems. Aspects of the hypoxia response that remain to be addressed are highlighted and future studies suggested. Much remains unknown about the coordinated metabolic response of the fetal-placental unit to chronic hypoxia and oxidative stress, but it would appear to be more than a simple question of supply and demand.
Collapse
Affiliation(s)
- A J Murray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom.
| |
Collapse
|