1
|
Marston NA, Bergmark BA, Alexander VJ, Karwatowska-Prokopczuk E, Kang YM, Moura FA, Prohaska TA, Zimerman A, Zhang S, Murphy SA, Tsimikas S, Giugliano RP, Sabatine MS. Design and rationale of the CORE-TIMI 72a and CORE2-TIMI 72b trials of olezarsen in patients with severe hypertriglyceridemia. Am Heart J 2025; 286:125-135. [PMID: 40064331 PMCID: PMC12065585 DOI: 10.1016/j.ahj.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Severe hypertriglyceridemia (HTG), defined as a serum triglyceride (TG) concentration ≥500 mg/dl, is present in approximately 1 in every 100 individuals and carries direct clinical consequences, including pancreatitis, which can be life-threatening. Olezarsen is an investigational antisense oligonucleotide targeted to the mRNA for apolipoprotein C-III (apoC-III), a protein known to impair TG clearance by inhibiting lipoprotein lipase and the hepatic uptake of triglyceride-rich remnants. No dedicated trial has tested olezarsen in patients with severe HTG. METHODS In these 2 pivotal phase 3 trials, CORE-TIMI 72a and CORE2-TIMI 72b, patients with severe HTG were randomized in a 2:1 fashion to either olezarsen (80 mg or 50 mg dose) or matching placebo. Patients will be treated for a total of 12 months and evaluated for the primary endpoint of percent change in TGs from baseline to 6 months compared with placebo. Pooled analyses of CORE and CORE2 will also assess olezarsen's effect on acute pancreatitis events and change in hepatic steatosis. RESULTS A total of 617 subjects in CORE-TIMI 72a and 446 subjects in CORE2-TIMI 72b were randomized. In these 2 trials, the median age was 54 and 55 years, women made up 24% and 23% of the study population, and the baseline TGs were 836 mg/dl and 749 mg/dl, respectively. A total of 333 subjects, 129 from CORE-TIMI 72a and 204 from CORE2-TIMI 72b, were enrolled in the hepatic MRI substudy. DISCUSSION Together, CORE-TIMI 72a and CORE2-TIMI 72b are designed to establish the efficacy and safety of olezarsen in patients with severe HTG. TRIAL REGISTRATION Clinicaltrials.gov: NCT05079919 and NCT05552326.
Collapse
Affiliation(s)
- Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Brian A Bergmark
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Yu Mi Kang
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Filipe A Moura
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT; Disivion of Cardiovascular Medicine, VA Connecticut Healthcare System, West Haven, CT
| | | | - Andre Zimerman
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Clinical Trials Unit, Academic Research Organization, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | - Shuanglu Zhang
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sabina A Murphy
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sotirios Tsimikas
- Ionis Pharmaceuticals, Carlsbad, CA; Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, CA
| | - Robert P Giugliano
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Weijs BM, Oostveen RF, Kraaijenhof JM, Stroes ESG. Targeting apolipoprotein C-III: a game changer for pancreatitis prevention in severe hypertriglyceridemia. Curr Opin Endocrinol Diabetes Obes 2025; 32:126-132. [PMID: 40012530 DOI: 10.1097/med.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE OF REVIEW The aim of this review is to examine recent advancements in RNA-targeted therapies for the management of severe hypertriglyceridemia (sHTG) and prevention of sHTG-associated acute pancreatitis. RECENT FINDINGS Recent developments in RNA-targeted therapies, aimed at inhibiting apolipoprotein C-III (apoC-III), have demonstrated substantial and sustained reductions in triglyceride levels. Novel therapies, including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA), such as volanesorsen, olezarsen, and plozasiran, have shown promising results in recent trials. These therapies not only effectively lower plasma triglyceride levels but also significantly reduce the incidence of acute pancreatitis. SUMMARY SHTG is a high-burden metabolic disorder that is associated with a significantly increased incidence and severity of acute pancreatitis. Traditional lifestyle interventions and conventional therapies, including fibrates and n-3 fatty acids, often provide only modest reductions in triglycerides and fail to prevent sHTG-associated acute pancreatitis. The emergence of novel and targeted RNA-therapies represents a potential breakthrough in the management of sHTG and acute pancreatitis prevention.
Collapse
Affiliation(s)
- Bram M Weijs
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
3
|
de Moura de Souza M, Mendes BX, Defante MLR, de Athayde de Hollanda Morais BA, Martins OC, Prizão VM, Romaniello G. Apolipoprotein C-III inhibitors for the treatment of hypertriglyceridemia: a meta-analysis of randomized controlled trials. Metabolism 2025; 167:156187. [PMID: 40074058 DOI: 10.1016/j.metabol.2025.156187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Hypertriglyceridemia is related to atherosclerotic cardiovascular risk and pancreatitis risk. The efficacy and safety of apolipoprotein C-III (APOC-III) inhibitors remains unclear. AIM To investigate the effects of APOC-III inhibitors on hypertriglyceridemia and its complications. METHODS We systematically searched PubMed, Embase, and Cochrane Central databases from inception to May 2024 for randomized controlled trials (RCTs) comparing APOC-III inhibitors to placebo in patients with hypertriglyceridemia. We pooled percentage standardized mean difference (SMD) changes and risk ratio (RR) for continuous and binary outcomes, respectively, with 95 % confidence interval (CI). Subgroup analyses were performed with APOC-III inhibitors drugs doses (Olezarsen, Volanesorsen and Plozasiran), and primary and secondary hypertriglyceridemia. RESULTS 10 RCTs with 1204 participants were included, of which 46 % were men. APOC-III inhibitors significantly reduced triglycerides (TG) (SMD: -60.56 %; 95 % CI -68.94 to -52.18; p < 0.00001), APOC-III (SMD: -75.44 %; 95 % CI -80.81 to -70.07; p < 0.00001) and non-HDL-c (SMD: -27.49 %; 95 % CI -34.16 to -20.82; p < 0.00001) levels. Consistent results were found for all subgroup analyses. APOC-III inhibitors were capable to normalize TG levels in patients with severe hypertriglyceridemia (RR: 7.92; 95 % CI 4.12 to 15.23; p < 0.00001). There was a significant increase in HDL-c (SMD: 43.92 %; 95 % CI 37.27 to 50.57; p < 0.00001) and LDL-c (SMD: 33.05 %; 95 % CI 9.08 to 57.01; p = 0.007) levels. There was a significant relative risk reduction in acute pancreatitis in the APOC-III inhibitors group (RR 0.17; 95 % CI 0.05 to 0.53; p = 0.007). Adverse events were similar in both groups. CONCLUSION APOC-III inhibitors improve TG levels and other lipid panel parameters, as well as reduce episodes of acute pancreatitis in patients with primary and secondary hypertriglyceridemia.
Collapse
|
4
|
Brinton EA, Eckel RH, Gaudet D, Ballantyne CM, Baker BF, Ginsberg HN, Witztum JL. Familial chylomicronemia syndrome and treatments to target hepatic APOC3 mRNA. Atherosclerosis 2025; 403:119114. [PMID: 40068508 DOI: 10.1016/j.atherosclerosis.2025.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/20/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare, recessive monogenic disorder characterized by severely elevated plasma triglyceride (TG) levels due to absent or markedly impaired lipoprotein lipase activity, leading to a greatly increased risk of acute pancreatitis. Naturally occurring very low levels of apoC-III are associated with low TG levels; thus, apoC-III is a target for TG lowering, and therapies have been developed to reduce apoC-III. Strategies to inhibit hepatic apoC-III synthesis include antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). In the last decade, technologies have been developed to enhance hepatic delivery of these potential therapeutic agents by conjugation of the ligand triantennary N-acetyl galactosamine to ASO and siRNA for receptor-mediated uptake by hepatocytes, where apoC-III is predominantly expressed. Enhanced delivery of these pharmacological agents to the target tissue has been found to support lower and/or less frequent dosing with consequent lower total systemic exposure. One antisense agent, the ASO olezarsen, is now approved by the US Food and Drug Administration (FDA) as an adjunct to diet to lower triglycerides in adults with FCS, and the other, the siRNA plozasiran, is in late-stage clinical development. Both agents have shown effectiveness in reducing both apoC-III and TG levels across several study populations. Reduced TG, lower rates of acute pancreatitis events, and similar proportions of adverse events in placebo and treated patients were recently demonstrated in placebo-controlled phase 3 trials of patients with FCS treated with olezarsen in Balance and with plozasiran in PALISADE. This review discusses causes and consequences of FCS and the rationale and progress made in developing APOC3 RNA-targeted therapeutics for the treatment of FCS.
Collapse
Affiliation(s)
- Eliot A Brinton
- The Utah Lipid Center, 421 S Wakara Way, Salt Lake City, UT, USA
| | - Robert H Eckel
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, PO Box 6128, Montréal, QC, H3C 3J7, ECOGENE-21, 930 Rue Jacques-Cartier E, Chicoutimi, QC, G7H 7K9, Canada
| | - Christie M Ballantyne
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, 6655 Travis Street, and the Texas Heart Institute, 6770 Bertner Ave, Houston, TX, USA
| | | | - Henry N Ginsberg
- Department of Internal Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St, New York, NY, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, M0682, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA.
| |
Collapse
|
5
|
Frey C. Quetiapine is associated with pancreatitis: A real-world pharmacovigilance study. J Affect Disord 2025; 374:72-74. [PMID: 39798714 DOI: 10.1016/j.jad.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Quetiapine, an atypical antipsychotic widely prescribed for conditions including schizophrenia and bipolar disorder has been associated with a potential risk of pancreatitis. This study aimed to quantify the association between quetiapine use and the occurrence of pancreatitis using data from the FDA Adverse Events Reporting System. Disproportionality analyses were conducted to evaluate the frequency of pancreatitis reports linked to quetiapine compared to other drugs in the FAERS database. The study identified a significant association between quetiapine and pancreatitis, with a proportional reporting ratio of 30.708, χ2 of 81,328.63, relative risk ratio of 27.772, and reporting odds ratio of 32.990, indicating that the risk of pancreatitis is approximately 30 times higher in patients taking quetiapine compared to other medications. These findings suggest that quetiapine poses a considerable risk for the development of pancreatitis, particularly in patients with predisposing factors such as hypertriglyceridemia. This study emphasizes the need for physicians to exercise heightened caution when prescribing quetiapine. While this study provides strong evidence of an association, causality cannot be definitively established, highlighting the necessity for further research to explore the underlying mechanisms and to develop strategies to mitigate this risk.
Collapse
Affiliation(s)
- Connor Frey
- Department of Medicine, University of British Columbia, 2194 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
6
|
Zhang B, Xu K, Deng W, Liu C, Xu Q, Sheng H, Feng J, Yuan Q. Protective effects of Sulforaphene on kidney damage and gut dysbiosis in high-fat diet plus streptozotocin-induced diabetic mice. Food Chem 2025; 469:142558. [PMID: 39709924 DOI: 10.1016/j.foodchem.2024.142558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Diabetic nephropathy (DN) is one of the most serious and prevalent complications associated with diabetes. Consequently, antidiabetic drugs or foods potentially protecting the kidneys are of significant therapeutic value. Sulforaphene (SFE) is a natural isothiocyanate derived from radish seeds, known for its anti-inflammatory and antioxidant properties. However, no studies have investigated on the ability of SFE to prevent or treat DN. This study established a high-fat diet combined with a streptozotocin-induced type II diabetes mellitus mouse model. We administered SFE treatment to examine its protective effects on renal and intestinal homeostasis in DN mice. After 4 weeks of treatment, SFE (50 mg/kg b.w.) not only reduced blood glucose concentration (20.3 %, P < 0.001), kidney to body weight ratio (26.2 %, P < 0.01), and levels of serum total cholesterol (40.6 %, P < 0.001), triglycerides (38.2 %, P < 0.01), creatinine (36.7 %, P < 0.01), and urea nitrogen (45.0 %, P < 0.001) in DN mice compared to control mice but also increased the kidney superoxide dismutase (72.7 %, P < 0.001), catalase (51.1 %, P < 0.001), and glutathione peroxidase activities (31.6 %, P < 0.01), as well as glutathione levels (39.2 %, P < 0.01) in comparison to DN mice. Furthermore, SFE decreased levels of reactive oxygen species (55.4 %, P < 0.01), 4-hydroxyalkenals (36.9 %, P < 0.001), malondialdehyde (42.6 %, P < 0.001), and 8-hydroxy-deoxyguanosine (26.3 %, P < 0.001), accompanied by a meliorating kidney morphological abnormalities. Notably, a reduction in renal inflammatory factors was also observed in SFE-treated DN mice compared to untreated DN mice, particularly in the C-X-C motif chemokine ligand 8 factors (54.8 %, P < 0.001). Western blotting results indicated that SFE significantly down-regulated the protein expression of TLR4 and MyD88 (1.9, 1.7-fold, P < 0.001). Additionally, SFE improved gut microbiota (GM) dysbiosis and intestinal homeostasis, as evidenced by increased expression of antimicrobial peptides and tight junction proteins in colon tissue. SFE appeared to enhance the proliferation of probiotics, such as Bacteroidota, Lachnospiraceae_NK4A136_group and norank_f__Muribaculaceae, while also decreasing harmful bacteria to a greater extent compared to STZ treatment. These findings suggest that SFE modulates GM and improves intestinal homeostasis, providing a theoretical basis for its use in the treatment of DN.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kang Xu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenlei Deng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ce Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianmin Xu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialu Feng
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Javed F, Hegele RA, Garg A, Patni N, Gaudet D, Williams L, Khan M, Li Q, Ahmad Z. Familial chylomicronemia syndrome: An expert clinical review from the National Lipid Association. J Clin Lipidol 2025:S1933-2874(25)00066-2. [PMID: 40234111 DOI: 10.1016/j.jacl.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare Mendelian autosomal recessive disorder (MIM 238600) characterized by extreme and sustained hypertriglyceridemia due to profound reduction of lipoprotein lipase (LPL) activity. This expert opinion statement synthesizes current knowledge on the definition, pathophysiology, genetics, prevalence, diagnosis, and management of FCS. FCS typically manifests at a young age with persistent severe hypertriglyceridemia-defined as ≥10 mmol/L (≥885 mg/dL), or ≥1000 mg/dL (≥11.2 mmol/L) depending on region and whether Systeme International (SI) units are utilized-in the absence of secondary factors, resistance to conventional lipid-lowering therapies, and a high lifetime risk of acute pancreatitis. It is caused by biallelic pathogenic variants in the LPL gene encoding LPL, or 1 of 4 other related genes that encode proteins that interact with LPL. Affected individuals require a strict, lifelong very low-fat diet with <15% of energy from fat. Emerging therapies inhibiting apolipoprotein C-III show promise in reducing serum triglycerides and pancreatitis risk in patients with FCS. A multidisciplinary approach, encompassing dietary management, pharmacotherapy, and patient education, is pivotal in mitigating the significant morbidity associated with FCS.
Collapse
Affiliation(s)
- Fiza Javed
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada (Dr Javed)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (Dr Hegele)
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA (Dr Garg)
| | - Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA (Dr Patni)
| | - Daniel Gaudet
- ECOGENE-21 Department of Medicine, Université de Montréal, Chicoutimi, QC, Canada (Dr Gaudet)
| | - Lauren Williams
- Department of Pediatric Cardiology, Baylor Scott & White McLane Children's Medical Center, Temple, TX, USA (Ms Williams)
| | - Mohamed Khan
- FCS Foundation, San Diego, CA, USA (Mrs Khan and Li)
| | - Qingyang Li
- FCS Foundation, San Diego, CA, USA (Mrs Khan and Li)
| | - Zahid Ahmad
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad).
| |
Collapse
|
8
|
Ahmed S, Elgizouli M, Kilpatrick ES, Morris TJ. Familial hypercholesterolaemia with high triglycerides: A diagnostic challenge. Ann Clin Biochem 2025; 62:143-147. [PMID: 39389087 DOI: 10.1177/00045632241289275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Combined or mixed hyperlipidaemia is characterised by hypercholesterolaemia together with high triglyceride concentrations. It is found in approximately 1 in 100 people in the United Kingdom. Most cases are secondary to an underlying condition such as the metabolic syndrome, diabetes mellitus (especially poorly controlled) or individuals with a high alcohol intake. Mixed hyperlipidaemia is also a feature of some primary hyperlipidaemia conditions such familial combined hyperlipidaemia (FCH) or type III hyperlipidaemia (dysbetalipoproteinaemia). One differential diagnosis for mixed hyperlipidaemia that can easily be overlooked is a patient with an underlying diagnosis of familial hypercholesterolaemia (FH) who also has a hypertriglyceridaemia due to any other cause. Those patients may have very high total and low-density lipoprotein cholesterol concentrations (LDL-C) with a moderately elevated triglyceride concentration. In this article, we report 4 cases of familial hypercholesterolaemia, confirmed by genetic testing, in patients initially presenting with hypertriglyceridaemia in addition to high total cholesterol and LDL-C. This article discusses the diagnostic challenges associated with this presentation and highlights the key role of directly measuring LDL-C to aid diagnosis in these specific situations.
Collapse
Affiliation(s)
- Suha Ahmed
- Manchester University Foundation Trust, Manchester, UK
- Department of Chemical Pathology, Royal Liverpool University Hospital, Liverpool, UK
| | | | - Eric S Kilpatrick
- Manchester University Foundation Trust, Manchester, UK
- Weill Cornell Medicine Qatar and Sidra Medicine, Doha, Qatar
| | - Timothy J Morris
- Manchester University Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Ain Q, Khan M, Nawaz A, Batool H, Khan MI, Ajmal M, Sadiq F. Trends and prevalence of severe hypertriglyceridemia in Pakistan: A five-year analysis (2019-2023). J Clin Lipidol 2025:S1933-2874(25)00029-7. [PMID: 40157864 DOI: 10.1016/j.jacl.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Severe hypertriglyceridemia (HTG) is associated with increased risk of cardiovascular disease and acute pancreatitis. Previously, there were no studies or data available from Pakistan regarding this condition. This study aimed to analyze the trends and prevalence of severe HTG in Pakistan over a 5-year period from 2 healthcare centers. METHODS A retrospective analysis of laboratory data from 2 major healthcare centers across Pakistan's 4 provinces was conducted. Demographic information and lipid profiles of patients were collected. HTG was categorized as HTG (≥150 mg/dL), mild HTG (150-199), moderate HTG (200-999), severe HTG (1000-1999 mg/dL), and very severe HTG (≥2000 mg/dL). RESULTS A study of 552,719 individuals (mean age 45.9 ± 12.6 years, 58.1% males and 41.9% females) revealed that 53.7% (1:2) were hypertriglyceridemic. Severe HTG was observed in 0.3% (1:286) of the population, while very severe HTG was found in 0.1% (1:861). Both severe and very severe HTG were more prevalent in males, individuals aged under 18 years, and those aged 36 to 45 years. Very severe HTG was most prevalent in Khyber Pakhtunkhwa (0.2%). Patients with severe HTG presented with mean triglyceride levels of 1308.2 ± 254.7 mg/dL, while those with very severe HTG showed levels of 3293.0 ± 1889.9 mg/dL. CONCLUSION This study revealed that 53.7% of the population had HTG, with severe and very severe HTG affecting 0.3% and 0.1%, respectively. Males, younger individuals, and residents of Khyber Pakhtunkhwa had higher prevalence. These findings emphasize the need for targeted interventions in high-risk groups.
Collapse
Affiliation(s)
- Quratul Ain
- Translational Genomics Laboratory, Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Pakistan (Drs Ain, M. Khan, and Ajmal); Shifa Tameer-e-Millat University, Islamabad, Pakistan (Drs Ain, M. Khan, Nawaz, and Sadiq)
| | - Madeeha Khan
- Shifa Tameer-e-Millat University, Islamabad, Pakistan (Drs Ain, M. Khan, Nawaz, and Sadiq); Atta Ur Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan (Dr M. Khan)
| | - Amjad Nawaz
- Shifa Tameer-e-Millat University, Islamabad, Pakistan (Drs Ain, M. Khan, Nawaz, and Sadiq)
| | - Hijab Batool
- Chemical Pathology, Chughtai Institute of Pathology, Lahore, Pakistan (Dr Batool)
| | - Mohammad Iqbal Khan
- Department of Vascular Surgery, Shifa Tameer-e-Millat University, Shifa International Hospital Islamabad, Pakistan (Dr. M.I. Khan)
| | - Muhammad Ajmal
- Translational Genomics Laboratory, Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Pakistan (Drs Ain, M. Khan, and Ajmal).
| | - Fouzia Sadiq
- Shifa Tameer-e-Millat University, Islamabad, Pakistan (Drs Ain, M. Khan, Nawaz, and Sadiq).
| |
Collapse
|
10
|
Cardenas J, Daniel M, Shah N, Colace SI, Tobias JD. Lactic Acidosis and Electrolyte Disturbances Associated With Hypertriglyceridemia in an Adolescent Receiving Chemotherapy for Acute Lymphoblastic Lymphoma. J Med Cases 2025; 16:77-81. [PMID: 39935541 PMCID: PMC11809603 DOI: 10.14740/jmc4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 02/13/2025] Open
Abstract
Given the association of lactic acidosis with inadequate tissue perfusion and poor clinical outcomes, an aggressive investigation and alterations in supportive and therapeutic care are needed for patients with lactic acidosis. However, other etiologies of lactic acidosis may exist, including disorders of excessive production or inadequate clearance. Several of these fall under the category known as "type B" lactic acidosis. We present a 17-year-old female with acute lymphoblastic leukemia who was admitted to the pediatric intensive care unit (PICU) for evaluation of lactic acidosis and severe hyponatremia. Subsequent evaluation argued against pathologic etiologies of lactic acidosis, leading to the conclusion that the high lactic acid laboratory value was caused by hypertriglyceridemia.
Collapse
Affiliation(s)
- Juan Cardenas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Megan Daniel
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nilay Shah
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Susan I. Colace
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph D. Tobias
- Department of Anesthesiology & Pain Medicine, Nationwide Children’s Hospital and the Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
11
|
Hazra S, Chakraborthy G. Effects of Diabetes and Hyperlipidemia in Physiological Conditions - A Review. Curr Diabetes Rev 2025; 21:24-34. [PMID: 38409688 DOI: 10.2174/0115733998289406240214093815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) is an autoimmune manifestation defined by persistent hyperglycemia and alterations in protein, fatty substances, and carbohydrate metabolism as an effect of problems with the secretion of insulin action or both. Manifestations include thirst, blurred eyesight, weight loss, and ketoacidosis, which can majorly lead to coma. There are different types of diabetes according to class or by cellular level. They are interrelated with hyperlipidemia as they are involved in the metabolism and regulation of physiological factors. Most parameters are seen at cellular or humoral levels, yet the underlying concern remains the same. OBJECTIVE To create a systematic correlation between the disease and locate the exact mechanism and receptors responsible for it. So, this article covers a proper way to resolve the conditions and their manifestation through literacy and diagrammatic. CONCLUSION Hence, this will be an insight for many scholars to understand the exact mechanism involved in the process.
Collapse
Affiliation(s)
- Sayan Hazra
- Department of Pharmacology, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, 391760, India
| | - Gunosindhu Chakraborthy
- Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
12
|
Hegele RA, Ahmad Z, Ashraf A, Baldassarra A, Brown AS, Chait A, Freedman SD, Kohn B, Miller M, Patni N, Soffer DE, Wang J, Broder MS, Chang E, Yermilov I, Campos C, Gibbs SN. Development and validation of clinical criteria to identify familial chylomicronemia syndrome (FCS) in North America. J Clin Lipidol 2025; 19:83-94. [PMID: 39537503 DOI: 10.1016/j.jacl.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Familial chylomicronemia syndrome (FCS) is an ultrarare inherited disorder. Genetic testing is not always feasible or conclusive. European clinicians developed a "FCS score" to differentiate between FCS and multifactorial chylomicronemia syndrome (MCS), a more common condition with overlapping features. A diagnostic score has not been developed for use in the North American (NA) context. OBJECTIVE To develop and validate a diagnostic score for NA patients based on signs, symptoms and biochemical traits of FCS. METHODS Using the RAND/UCLA modified Delphi process, we convened 10 US/Canadian physicians with experience recognizing and treating FCS and 1 adult patient with FCS. The panel developed and rated 296 scenarios describing patients with FCS. Linear regression analyses used median post-meeting ratings to develop score parameters. We tested the score's sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in patients with classical FCS, functional FCS, and MCS from Western University's Lipid Genetics Clinic's registry. RESULTS Numerical scores were attributed based upon the following: age, hypertriglyceridemia onset, body mass index, history of abdominal pain/pancreatitis, presence of secondary factors, triglyceride (TG) levels, ratio of TG/total cholesterol, and apolipoprotein B level. Scores ≥ 60 indicate definite classical FCS; the score distinguished patients with FCS from MCS in a real-world registry (100.0% specificity, 66.7% sensitivity, 100.0% PPV, 95.5% NPV). Scores ≥ 45 were "very likely" to have classical FCS (96.9% specificity, 88.9% sensitivity). CONCLUSION Given its simplicity and high specificity for distinguishing patients with FCS from MCS, the NAFCS Score could be used in lieu of - or while awaiting - genetic testing to optimize treatment.
Collapse
Affiliation(s)
- Robert A Hegele
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang).
| | - Zahid Ahmad
- UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad and Patni)
| | - Ambika Ashraf
- University of Alabama at Birmingham, Birmingham, AL, USA (Dr Ashraf)
| | - Andrew Baldassarra
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang)
| | - Alan S Brown
- Advocate Lutheran General Hospital, Downers Grove, IL, USA (Dr Brown)
| | - Alan Chait
- University of Washington, Seattle, WA, USA (Dr Chait)
| | | | - Brenda Kohn
- New York University, New York, USA (Dr Kohn)
| | - Michael Miller
- Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA (Dr Miller); University of Pennsylvania, Translational Medicine and Human Genetics, Philadelphia, PA, USA (Dr Miller, and Soffer)
| | - Nivedita Patni
- UT Southwestern Medical Center, Dallas, TX, USA (Dr Ahmad and Patni)
| | - Daniel E Soffer
- University of Pennsylvania, Translational Medicine and Human Genetics, Philadelphia, PA, USA (Dr Miller, and Soffer)
| | - Jian Wang
- Western University, London, Ontario, Canada (Dr Hegele, Baldassarra, and Wang)
| | - Michael S Broder
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Eunice Chang
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Irina Yermilov
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Cynthia Campos
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| | - Sarah N Gibbs
- PHAR, Beverly Hills, CA, USA (Dr Broder, Chang, Yermilov, Campos, and Gibbs)
| |
Collapse
|
13
|
Vollaro M, Sharma T, Sharma M, Frishman WH, Aronow WS. Aortopathy: Effects of Lipid-Lowering Therapy. Cardiol Rev 2025; 33:82-87. [PMID: 37489907 DOI: 10.1097/crd.0000000000000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aortopathies can be congenital or acquired. Aortic atherosclerosis, abdominal aortic aneurysm, and degenerative aortic stenosis are some of the major manifestations of acquired aortopathy. Dyslipidemia, an imbalance of plasma lipid levels, is strongly associated with common aortopathies. A relationship between abdominal aortic aneurysm, degenerative aortic stenosis, and dyslipidemia has been identified in the literature but finding effective preventive strategies has been challenging. Nevertheless, lipid-lowering therapy remains a mainstay of both treatment and prevention. In patients with aortic atheroma, statins were found to be protective through the review of this study. There is currently no place for statins in the treatment or prevention of disease progression in patients with calcific aortic stenosis. Their low cost, widespread availability, and strong safety profile tip the risk-to-benefit ratio toward statins for abdominal aortic aneurysms but more research is needed. A review of proprotein convertase subtilisin/kexin type 9 inhibitors may yield similar benefits for all aortopathy patients; however, those results are not yet available.
Collapse
Affiliation(s)
| | - Tanya Sharma
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Mala Sharma
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - William H Frishman
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
14
|
Blanco Echevarría A, Ariza Corbo MJ, Muñiz-Grijalvo O, Díaz-Díaz JL. Familial chylomicronemia: New perspectives. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36 Suppl 2:S18-S24. [PMID: 39672668 DOI: 10.1016/j.arteri.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Familial chylomicronemia syndrome (FCS) is a very rare, underdiagnosed disorder that can cause abdominal pain and recurrent pancreatitis from childhood -potentially life-threatening- and chronic complications such as diabetes mellitus and exocrine pancreatic insufficiency. FCS affects the quality of life and mental health of those who suffer from it, aspects that must be taken into account in its treatment, based on a strict low-fat diet, which is difficult to adhere to and persist. People with FCS lack the lipolytic capacity to hydrolyze triglycerides (TG) and have a minimal or null response to conventional lipid-lowering treatments. ApoCIII antagonists, specifically volanesorsen, olezarsen and ARO-APOC3, are the most promising drugs to reduce TG concentrations in patients with FCS. Anti-ANGPTL3 therapies appear to be less effective. More clinical trials and new pharmacological treatments are needed to improve the quality of life and prognosis of people with FCS.
Collapse
Affiliation(s)
- Agustín Blanco Echevarría
- Servicio de Medicina Interna, Instituto de Investigación Biomédica, Hospital Universitario 12 de Octubre, Madrid, España
| | - María José Ariza Corbo
- Departamento de Medicina y Dermatología, Laboratorio de Lípidos y Aterosclerosis, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga plataforma Bionand (IBIMA), Universidad de Málaga, Málaga, España
| | - Ovidio Muñiz-Grijalvo
- UCERV-UCAMI, Departamento de Medicina Interna, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - José Luis Díaz-Díaz
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España.
| |
Collapse
|
15
|
Prabhu GS, Concessao PL. Triglycerides and metabolic syndrome: from basic to mechanism - A narrative review. Arch Physiol Biochem 2024:1-9. [PMID: 39540905 DOI: 10.1080/13813455.2024.2426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
CONTENT The impact of triglyceride levels is important to understand the changes in metabolism and structure. With an increase in obesity and hyperlipidemia due to diet; cardiovascular and neuronal structural changes have been shown to be more distinct. OBJECTIVE This review aims to discuss the pathophysiology and mechanisms involved in increased levels of triglycerides leading to vascular impairment, metabolic syndrome and cognitive decline. METHODS The literature search was performed using the PubMed, Google scholar and Scopus databases, among which 180 articles were shortlisted based on key words, abstract, materials and methods and results. Among these 74 articles have been cited for the review. RESULTS AND DISCUSSION The review discusses the impact of hypertriglyceridemia on metabolism, triglyceride storage, and neurovascular integrity, highlighting mechanisms contributing to vascular dysfunction, metabolic syndrome, and cognitive deterioration. CONCLUSION Elevated triglyceride levels are a key factor in altering metabolic pathways and structural integrity in cardiovascular and neuronal systems. This review provides insights into the mechanisms underlying metabolic disorders caused by elevated triglyceride levels, It highlights the need for further studies to provide more supportive evidence and address existing limitations in understanding these changes.
Collapse
Affiliation(s)
- Gayathri S Prabhu
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Lavina Concessao
- Division of Physiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
16
|
Baker LA, Minor KM, Tate N, Furrow E. Whole blood gene expression analysis of spontaneous hypertriglyceridemia in dogs suggests an underlying pro-thrombotic process. PLoS One 2024; 19:e0313343. [PMID: 39531449 PMCID: PMC11556679 DOI: 10.1371/journal.pone.0313343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertriglyceridemia (HTG) is influenced by multiple genetic and environmental factors. Spontaneous, idiopathic HTG is common in the Miniature Schnauzer dog and presumed to have a strong genetic influence in this breed. To define genes that are differentially expressed in dogs with HTG, we performed RNA sequencing on peripheral blood of 13 Miniature Schnauzers with HTG and 18 controls. We identified 110 differentially expressed genes (DEGs). Pathway analysis suggests an ongoing pro-thrombotic, endothelial activation process in dogs with HTG. The gene with the largest fold change (5.4 ± 1.4, Padj = 4.4E-04), SERPINE1, encodes plasminogen activator inhibitor 1 (PAI-1), a known risk factor for atherosclerosis and thrombosis. Other top DEGs, including SHANK3, MMRN1, and FZD7, are involved in endothelial activation. Two of the top DEGs, ARHGAP29 and ARHGAP21, inhibit pro-thrombotic pathways and are potentially protective of disease sequelae. Top DEGs, including SERPINE1 and ARHGAP21, have also been linked to metabolic syndrome or its features (e.g. insulin resistance) in humans and animal models. Our findings indicate that HTG in the Miniature Schnauzer dog has similar features to HTG and metabolic syndrome in humans, highlighting the potential use of the dog as a spontaneous model for further research into the etiology and effects of HTG.
Collapse
Affiliation(s)
- Lauren A. Baker
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie M. Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicole Tate
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
17
|
Rashad M, Williams L, Wilson DP. Nutrition Interventions for Youth with Dyslipidemia: Who, What, When, and Where? Curr Atheroscler Rep 2024; 26:609-615. [PMID: 39441427 DOI: 10.1007/s11883-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
PURPOSEOF REVIEW A heart-healthy lifestyle adopted during childhood and sustained throughout life can reduce cardiovascular disease risk in youth with dyslipidemia. In this review, we discuss nutrition recommendations for youth (< 18 years-of-age) with dyslipidemia, compare recommendations for youth versus those for adults, review published data regarding nutrition management in the pediatric population, and discuss strategies for successful implementation in a clinical setting. RECENT FINDINGS Recent publications highlight the characteristics of genetic and acquired hypertriglyceridemia disorders, dietary adjuncts used for lipid-lowering, and the effectiveness of a multi-disciplinary team approach. Nutrition interventions remain a cornerstone of lipid management and cardiovascular disease risk reduction in youth with dyslipidemia. Nutrition counseling should include age and developmentally appropriate education while also addressing barriers to implementing a heart-healthy lifestyle. A registered dietitian nutritionist plays an important role within a multidisciplinary clinic setting by providing dietary recommendations to address the needs of youth with dyslipidemia.
Collapse
Affiliation(s)
- Maya Rashad
- Department of Pediatric Endocrinology, Cook Children's Medical Center, Endocrinology and Diabetes Clinic, 1500 Cooper St, 2ndfloor, Fort Worth, TX, 76104, USA.
| | - Lauren Williams
- Department of Pediatric Cardiology, McLane Children's - Baylor Scott & White Medical Center, Temple, TX, USA
| | - Don P Wilson
- Department of Pediatric Endocrinology, Cook Children's Medical Center, Endocrinology and Diabetes Clinic, 1500 Cooper St, 2ndfloor, Fort Worth, TX, 76104, USA
| |
Collapse
|
18
|
Sardar MB, Raza M, Fayyaz A, Nadir MA, Nadeem ZA, Babar M. Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. Cardiovasc Toxicol 2024; 24:1301-1309. [PMID: 39212843 DOI: 10.1007/s12012-024-09913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan.
| | - Mohsin Raza
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Ammara Fayyaz
- Department of Medicine, Central Park Medical College, Lahore, Pakistan
| | - Muhammad Asfandyar Nadir
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Muhammad Babar
- Department of Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
19
|
Hooper AJ, Bell DA, Burnett JR. Olezarsen, a liver-directed APOC3 ASO therapy for hypertriglyceridemia. Expert Opin Pharmacother 2024; 25:1861-1866. [PMID: 39305266 DOI: 10.1080/14656566.2024.2408369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Apolipoprotein (apo)C-III, a key regulator of plasma triglyceride (TG) levels, is a prime candidate for the treatment of hypertriglyceridemia (HTG), prevention of acute pancreatitis, and reduction of future atherosclerotic cardiovascular disease (ASCVD) events. AREAS COVERED We discuss the role of apoC-III as a therapeutic target for HTG, describe the pharmacodynamics, pharmacokinetics, and metabolism of olezarsen, as well as report on the findings of recent clinical trials with this liver-directed APOC3 antisense oligonucleotide (ASO). EXPERT OPINION Olezarsen, a GalNac-conjugated ASO targeting apoC-III, can reduce TG levels by ~ 50% in patients with extreme HTG due to familial chylomicronemia syndrome, as well as in patients with moderate HTG. Attention is now focused on whether olezarsen reduces ASCVD risk in patients with moderate and severe HTG. While olezarsen does cause elevations in liver enzymes, these changes are not clinically meaningful, and are not associated with thrombocytopenia, an issue with its predecessor, volanesorsen. The need for 4-weekly administration puts olezarsen at a disadvantage to competing injectables. Results from the CORE, CORE2, and ESSENCE phase III clinical trials in patients with severe HTG, expected in the second half of 2025, will help determine the requirement for a larger cardiovascular outcomes trial.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Damon A Bell
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Ueda M. A brief clinical genetics review: stepwise diagnostic processes of a monogenic disorder-hypertriglyceridemia. Transl Pediatr 2024; 13:1828-1848. [PMID: 39524398 PMCID: PMC11543124 DOI: 10.21037/tp-24-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The completion of the Human Genome Project and tremendous advances in automated high-throughput genetic analysis technologies have enabled explosive progress in the field of genetics, which resulted in countless discoveries of novel genes and pathways. Many phenotype- or disease-associated single nucleotide polymorphisms (SNPs) with a high statistical significance have been identified through numerous genome-wide association studies (GWAS), and various polygenic risk scoring (PRS) schemes have been proposed to identify individuals with a high risk for a certain trait or disorder. Meanwhile, medical education in genetics has lagged far behind, leaving many physicians and healthcare providers unprepared in the genomic era. Thus, there is an urgent need to educate physicians and healthcare providers with basic knowledge and skills in genetics. To facilitate this, some basic terminologies and concepts are discussed in this review. In addition, some important considerations in delineating and incorporating clinical genetic testing in the diagnosis and management of a monogenic disorder are illustrated in a stepwise fashion. Furthermore, the effects of disease-associated SNPs represented by a PRS scheme clearly demonstrated that even the phenotypes of a monogenic disorder due to the same pathogenic variant in family members are modulated by the polygenic background. In human genetics, despite these explosive advancements, we are still far from clearly deciphering the interplay of gene variants to effect unique characteristics in an individual. In addition, sophisticated genome or gene directed therapies are being investigated for numerous disorders. Therefore, evolution in the field of genetics is likely to continue into the foreseeable future. In the meantime, much emphasis should be placed on educating physicians and healthcare professionals to be well-versed and skillful in the clinical use of genetics so that they can fully embrace the new era of precision medicine.
Collapse
Affiliation(s)
- Masako Ueda
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Mendes C, Loureiro T, Villela D, Bittencourt MI, Sobreira J, Bermeo D, Gomes M, Alencar D, de Castro LSS, Fock RA, Tinoco ML, Galvão H, Scapulatempo-Neto C, Schiavetti K, Senerchia AA, Gurgel MHC. Germline variant analysis from a cohort of patients with severe hypertriglyceridemia in Brazil. Mol Genet Metab Rep 2024; 40:101100. [PMID: 38933898 PMCID: PMC11201343 DOI: 10.1016/j.ymgmr.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertriglyceridemia (HTG) is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. It is well stablished that the severe cases of disease often present with an underlying genetic cause. In this study, we determined the frequency and variation spectrum of genes involved in the triglyceride metabolism in a series of Brazilian patients with severe HTG. A total of 212 patients with very high HTG, defined with fasting triglycerides (TG) ≥ 880 mg/ dL, that underwent a multi-gene panel testing were included in this research. Germline deleterious variants (i.e. Pathogenic/Likely Pathogenic (P/LP) variants) were identified in 28 out of 212 patients, reflecting an overall diagnostic yield of 13% in our cohort. Variants of unknown significance (VUS) were identified in 87 patients, and represent 80% of detected variants in this dataset. We confirm the LPL as the most frequently mutated gene in patients with severe HTG, and we had only one suspected case of familial chylomicronemia syndrome, caused by a homozygous variant in LMF1, in our cohort. Notably, we report 16 distinct and novel variants (P/LP and VUS), each of them representing a single case, not previously reported in any public databases or other studies. Our data expand our knowledge of genetic variation spectrum in patients with severe HTG in the Brazilian population, often underrepresented in public genomic databases, being also a valuable clinical resource for genetic counseling and healthcare programs in the country.
Collapse
Affiliation(s)
- Camila Mendes
- Diagnósticos da América S.A., DASA, São Paulo, SP, Brazil
| | | | - Darine Villela
- Diagnósticos da América S.A., DASA, São Paulo, SP, Brazil
| | | | | | - Diana Bermeo
- Diagnósticos da América S.A., DASA, São Paulo, SP, Brazil
| | - Mireille Gomes
- Diagnósticos da América S.A., DASA, São Paulo, SP, Brazil
| | - Dayse Alencar
- Diagnósticos da América S.A., DASA, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prairie ML, Rubino SM, Tang PH. Resolution of Lipemia Retinalis With Lifestyle Modification. JOURNAL OF VITREORETINAL DISEASES 2024:24741264241275285. [PMID: 39554632 PMCID: PMC11561956 DOI: 10.1177/24741264241275285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purpose: To describe a case of lipemia retinalis, a rare ocular manifestation of hypertriglyceridemia that is characterized by a creamy-white to salmon-colored appearance to the fundus. Methods: A 55-year-old man was referred for an evaluation for diabetic retinopathy and was subsequently found to have marked lipemia retinalis. Results: The patient's triglyceride levels were 3141 mg/dL; therefore, treatment was initiated with high-intensity statin therapy and lifestyle modifications. At the 3-month follow-up, the patient had significantly reduced triglyceride levels (689 mg/dL) and full resolution of lipemia retinalis. Conclusions: Lipemia retinalis may be an initial finding of a severe systemic problem and a harbinger for more severe, and potentially fatal, consequences. Thus, a complete systemic assessment is warranted for any patient with signs of lipemia retinalis.
Collapse
Affiliation(s)
| | | | - Peter H. Tang
- Department of Ophthalmology & Visual Neurosciences, Minneapolis, MN, USA
- Retina Consultants of Minnesota, Edina, MN, USA
| |
Collapse
|
23
|
Shah M, Sharma A, Ayyad M, Swartz E, Jafrani D, Gala D. Targeting Apolipoprotein C-III for the Management of Severe Hypertriglyceridemia: Current Research and Future Directions. Cureus 2024; 16:e67091. [PMID: 39286687 PMCID: PMC11405074 DOI: 10.7759/cureus.67091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Hypertriglyceridemia is characterized by elevated triglyceride levels in the blood, which increases the risk of cardiovascular disease and pancreatitis. This condition stems from multiple factors including lifestyle choices, genetics, and conditions such as diabetes and metabolic syndrome. Apolipoprotein C-III (APOC3), a protein for lipid metabolism, hinders enzymes necessary for breaking down triglycerides and thus plays a key role in hypertriglyceridemia. Variations in the APOC3 gene are associated with varying triglyceride levels among individuals. Recent genetic studies and clinical trials have shed light on the potential of targeting APOC3 as a potentially promising therapeutic modality of hypertriglyceridemia. Antisense oligonucleotides like volanesorsen have displayed effectiveness in lowering triglyceride levels in individuals with severe hypertriglyceridemia. This review article delves into how APOC3 influences triglyceride control and its potential use in targeting APOC3 to manage severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Mili Shah
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Abisheikh Sharma
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Mohammed Ayyad
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Ethan Swartz
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Danyaal Jafrani
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Dhir Gala
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| |
Collapse
|
24
|
Bardey F, Rieck L, Spira D, März W, Binner P, Schwab S, Kleber ME, Danyel M, Barkowski R, Bobbert T, Spranger J, Steinhagen-Thiessen E, Demuth I, Kassner U. Clinical characterization and mutation spectrum of patients with hypertriglyceridemia in a German outpatient clinic. J Lipid Res 2024; 65:100589. [PMID: 38969064 PMCID: PMC11913797 DOI: 10.1016/j.jlr.2024.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Severe hypertriglyceridemia (HTG) has predominantly multifactorial causes (MCS). Yet a small subset of patients have the monogenetic form (FCS). It remains a challenge to distinguish patients clinically, since decompensated MCS might mimic FCS´s severity. Aim of the current study was to determine clinical criteria that could sufficiently distinguish both forms as well as to apply the FCS score proposed by Moulin and colleagues. METHODS We retrospectively studied 72 patients who presented with severe HTG in our clinic during a time span of seven years and received genetic testing. We classified genetic variants (ACMG-criteria), followed by genetic categorization into MCS or FCS. Clinical data were gathered from the medical records and the FCS score was calculated for each patient. RESULTS Molecular genetic screening revealed eight FCS patients and 64 MCS patients. Altogether, we found 13 pathogenic variants of which four have not been described before. The FCS patients showed a significantly higher median triglyceride level compared to the MCS. The FCS score yielded a sensitivity of 75% and a specificity of 93.7% in our cohort, and significantly differentiated between the FCS and MCS group (p<0.001). CONCLUSIONS In our cohort we identified several variables that significantly differentiated FCS from MCS. The FCS score performed similar to the original study by Moulin, thereby further validating the discriminatory power of the FCS score in an independent cohort.
Collapse
Affiliation(s)
- Frieda Bardey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lorenz Rieck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Winfried März
- Synlab Academy, P5, 7, 68167 Mannheim, Germany; Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbrugger Platz 15, 8036 Graz
| | - Priska Binner
- Synlab Center of Human Genetics, Harrlachweg 1, 68163 Mannheim, Germany
| | - Stefanie Schwab
- Synlab Center of Human Genetics, Harrlachweg 1, 68163 Mannheim, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Synlab Center of Human Genetics, Harrlachweg 1, 68163 Mannheim, Germany
| | - Magdalena Danyel
- Berlin Institute of Health (BIH), Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Rasmus Barkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Thomas Bobbert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Joachim Spranger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Ursula Kassner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
25
|
Gaudet D, Pall D, Watts GF, Nicholls SJ, Rosenson RS, Modesto K, San Martin J, Hellawell J, Ballantyne CM. Plozasiran (ARO-APOC3) for Severe Hypertriglyceridemia: The SHASTA-2 Randomized Clinical Trial. JAMA Cardiol 2024; 9:620-630. [PMID: 38583092 PMCID: PMC11000138 DOI: 10.1001/jamacardio.2024.0959] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Importance Severe hypertriglyceridemia (sHTG) confers increased risk of atherosclerotic cardiovascular disease (ASCVD), nonalcoholic steatohepatitis, and acute pancreatitis. Despite available treatments, persistent ASCVD and acute pancreatitis-associated morbidity from sHTG remains. Objective To determine the tolerability, efficacy, and dose of plozasiran, an APOC3-targeted small interfering-RNA (siRNA) drug, for lowering triglyceride and apolipoprotein C3 (APOC3, regulator of triglyceride metabolism) levels and evaluate its effects on other lipid parameters in patients with sHTG. Design, Setting, and Participants The Study to Evaluate ARO-APOC3 in Adults With Severe Hypertriglyceridemia (SHASTA-2) was a placebo-controlled, double-blind, dose-ranging, phase 2b randomized clinical trial enrolling adults with sHTG at 74 centers across the US, Europe, New Zealand, Australia, and Canada from May 31, 2021, to August 31, 2023. Eligible patients had fasting triglyceride levels in the range of 500 to 4000 mg/dL (to convert to millimoles per liter, multiply by 0.0113) while receiving stable lipid-lowering treatment. Interventions Participants received 2 subcutaneous doses of plozasiran (10, 25, or 50 mg) or matched placebo on day 1 and at week 12 and were followed up through week 48. Main Outcomes and Measures The primary end point evaluated the placebo-subtracted difference in means of percentage triglyceride change at week 24. Mixed-model repeated measures were used for statistical modeling. Results Of 229 patients, 226 (mean [SD] age, 55 [11] years; 176 male [78%]) were included in the primary analysis. Baseline mean (SD) triglyceride level was 897 (625) mg/dL and plasma APOC3 level was 32 (16) mg/dL. Plozasiran induced significant dose-dependent placebo-adjusted least squares (LS)-mean reductions in triglyceride levels (primary end point) of -57% (95% CI, -71.9% to -42.1%; P < .001), driven by placebo-adjusted reductions in APOC3 of -77% (95% CI, -89.1% to -65.8%; P < .001) at week 24 with the highest dose. Among plozasiran-treated patients, 144 of 159 (90.6%) achieved a triglyceride level of less than 500 mg/dL. Plozasiran was associated with dose-dependent increases in low-density lipoprotein cholesterol (LDL-C) level, which was significant in patients receiving the highest dose (placebo-adjusted LS-mean increase 60% (95% CI, 31%-89%; P < .001). However, apolipoprotein B (ApoB) levels did not increase, and non-high-density lipoprotein cholesterol (HDL-C) levels decreased significantly at all doses, with a placebo-adjusted change of -20% at the highest dose. There were also significant durable reductions in remnant cholesterol and ApoB48 as well as increases in HDL-C level through week 48. Adverse event rates were similar in plozasiran-treated patients vs placebo. Serious adverse events were mild to moderate, not considered treatment related, and none led to discontinuation or death. Conclusions and Relevance In this randomized clinical trial of patients with sHTG, plozasiran decreased triglyceride levels, which fell below the 500 mg/dL threshold of acute pancreatitis risk in most participants. Other triglyceride-related lipoprotein parameters improved. An increase in LDL-C level was observed but with no change in ApoB level and a decrease in non-HDL-C level. The safety profile was generally favorable at all doses. Additional studies will be required to determine whether plozasiran favorably modulates the risk of sHTG-associated complications. Trial Registration ClinicalTrials.gov Identifier: NCT04720534.
Collapse
Affiliation(s)
- Daniel Gaudet
- ECOGENE-21 QC, Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Denes Pall
- Department of Medical Clinical Pharmacology, University of Debrecen, Debrecen, Hungary
| | - Gerald F. Watts
- Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Stephen J. Nicholls
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Jiang L, Gangireddy S, Dickson AL, Xin Y, Yan C, Kawai V, Cox NJ, Linton MF, Wei WQ, Stein CM, Feng Q. Characterizing genetic profiles for high triglyceride levels in U.S. patients of African ancestry. J Lipid Res 2024; 65:100569. [PMID: 38795861 PMCID: PMC11231545 DOI: 10.1016/j.jlr.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry. However, relatively little is known about the contribution of genetic variation of HTG in people of African ancestry (AA), potentially constraining research and treatment opportunities. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole-genome sequencing data and longitudinal electronic health records available in the All of Us program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between HTG patients and normal TG among a cohort of AA patients (N = 15,373). Those with mild-to-moderate HTG (N = 342) and severe HTG (N ≤ 20) were more likely to carry APOA5 p.S19W (odds ratio = 1.94, 95% confidence interval = [1.48-2.54], P = 1.63 × 10-6 and OR = 3.65, 95% confidence interval: [1.22-10.93], P = 0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) polygenic risk score, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.
Collapse
Affiliation(s)
- Lan Jiang
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Srushti Gangireddy
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yi Xin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Yan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian Kawai
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - MacRae F Linton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Ahmad M, Kennedy BA, Son S, McIntyre AD, Lazarte J, Wang J, Hegele RA. Carotid intima-medial thickness in patients with severe hypertriglyceridemia. ATHEROSCLEROSIS PLUS 2024; 56:7-11. [PMID: 38694144 PMCID: PMC11060956 DOI: 10.1016/j.athplu.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
Background and aims Severe hypertriglyceridemia (HTG), defined as plasma triglyceride (TG) concentration > 10 mmol/L, is relatively uncommon, and its implications for atherosclerotic cardiovascular disease (ASCVD) risk remain somewhat unclear. We evaluated the association between severe HTG and carotid intima-media thickness (IMT), a marker for ASCVD. Methods We studied three clinical cohorts: 88 patients with severe HTG (mean TG level 20.6 mmol/L), 271 patients with familial hypercholesterolemia (FH) as a contrast group, and 70 normolipidemic controls. Carotid IMT was measured using standardized ultrasound imaging. Statistical analysis was conducted using one-way analysis of variance (ANOVA) to compare mean IMT values, analysis of covariance (ANCOVA) to adjust for confounding variables, specifically age and sex, as well as Spearman pairwise correlation analysis between variables. Results Unadjusted mean carotid IMT was greater in severe HTG and FH groups compared to controls, however, this was no longer significant for severe HTG after adjustment for age and sex. In contrast, adjusted carotid IMT remained significantly different between the FH and control groups. Conclusions Our findings suggest that extreme TG elevations in severe HTG patients are not significantly associated with carotid IMT, in contrast to the increased IMT seen in FH patients. These findings add perspective to the complex relationship between severe HTG and ASCVD risk.
Collapse
Affiliation(s)
- Maud Ahmad
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5B7, Canada
| | - Brooke A. Kennedy
- Robarts Research Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Surim Son
- Department of Epidemiology and Biostatistics, Western University, London, ON, N6A 5B7, Canada
| | - Adam D. McIntyre
- Robarts Research Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Julieta Lazarte
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5B7, Canada
| | - Jian Wang
- Robarts Research Institute, Western University, London, Ontario, N6A 5B7, Canada
| | - Robert A. Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 5B7, Canada
- Robarts Research Institute, Western University, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
28
|
Jiang L, Gangireddy S, Dickson AL, Xin Y, Yan C, Kawai V, Cox NJ, Linton MF, Wei WQ, Stein CM, Feng Q. Characterizing genetic profiles for high triglyceride levels in U.S. patients of African ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.11.24304107. [PMID: 38559137 PMCID: PMC10980129 DOI: 10.1101/2024.03.11.24304107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated circulating triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry (EA). However, relatively little is known about the contribution of genetic variation to HTG in people of AA, potentially constraining research and treatment opportunities; the lipid profile for African ancestry (AA) populations differs from that of EA populations-which may be partially attributable to genetics. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole genome sequencing (WGS) data and longitudinal electronic health records (EHRs) available in the All of Us (AoU) program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between patients with HTG and normal TG among a cohort of AA patients (N=15,373). Those with mild-to-moderate HTG (N=342) and severe HTG (N≤20) were more likely to carry APOA5 p.S19W (OR=1.94, 95% CI [1.48-2.54], p=1.63×10 -6 and OR=3.65, 95% CI [1.22-10.93], p=0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) PRS, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.
Collapse
|
29
|
Imeh-Nathaniel E, Imeh-Nathaniel S, Imeh-Nathaniel A, Coker-Ayo O, Kulkarni N, Nathaniel TI. Sex Differences in Severity and Risk Factors for Ischemic Stroke in Patients With Hyperlipidemia. Neurosci Insights 2024; 19:26331055241246745. [PMID: 38706531 PMCID: PMC11069268 DOI: 10.1177/26331055241246745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aims to determine sex differences in poststroke hypertriglyceridemia (serum triglyceride levels ⩾ 200 mg/dl) and high stroke severity in ischemic stroke patients. Method Our study analyzed data from 392 males and 373 females with hypertriglyceridemia. Stroke severity on admission was measured using the National Institute of Health Stroke Scale (NIHSS) with a value ⩽7 indicating a more favorable post-stroke prognosis while a score of >7 indicates poorer post-stroke outcomes. Logistic regression models adjusted for demographic and risk factors. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for each clinical risk factor were used to predict the increasing odds of an association of a specific clinical baseline risk factor with the male or female AIS with hypertriglyceridemia. Results In the adjusted analysis, male patients with hypertriglyceridemia, diastolic blood pressure (OR = 1.100, 95% CI, 1.034-1.171, P = .002), and Ischemic stroke mortality (OR = 6.474, 95% CI, 3.262-12.847, P < .001) were significantly associated with increased stroke severity. In female patients with hypertriglyceridemia, age (OR = 0.920, 95% CI, 0.866-0.978, P = .008) was associated with reduced stroke severity, while ischemic stroke mortality score (OR = 37.477, 95% CI, 9.636-145.756, P < .001) was associated with increased stroke severity. Conclusion Increased ischemic stroke mortality risk score was associated with increased severity in both male and female AIS patients with hypertriglyceridemia. Our findings provide information about sex differences in specific risk factors that can be managed to improve the care of male and female ischemic stroke patients with hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas I Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC, USA
| |
Collapse
|
30
|
Mostaza JM, Pintó X, Armario P, Masana L, Real JT, Valdivielso P, Arrobas-Velilla T, Baeza-Trinidad R, Calmarza P, Cebollada J, Civera-Andrés M, Cuende Melero JI, Díaz-Díaz JL, Espíldora-Hernández J, Fernández Pardo J, Guijarro C, Jericó C, Laclaustra M, Lahoz C, López-Miranda J, Martínez-Hervás S, Muñiz-Grijalvo O, Páramo JA, Pascual V, Pedro-Botet J, Pérez-Martínez P, Puzo J. SEA 2024 Standards for Global Control of Vascular Risk. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:133-194. [PMID: 38490888 DOI: 10.1016/j.arteri.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
One of the objectives of the Spanish Society of Arteriosclerosis is to contribute to the knowledge, prevention and treatment of vascular diseases, which are the leading cause of death in Spain and entail a high degree of disability and health expenditure. Atherosclerosis is a multifactorial disease and its prevention requires a global approach that takes into account the associated risk factors. This document summarises the current evidence and includes recommendations for patients with established vascular disease or at high vascular risk: it reviews the symptoms and signs to evaluate, the laboratory and imaging procedures to request routinely or in special situations, and includes the estimation of vascular risk, diagnostic criteria for entities that are vascular risk factors, and general and specific recommendations for their treatment. Finally, it presents aspects that are not usually referenced in the literature, such as the organisation of a vascular risk consultation.
Collapse
Affiliation(s)
- José María Mostaza
- Servicio de Medicina Interna, Unidad de Lípidos y Arteriosclerosis, Hospital La Paz-Carlos III, Madrid, España.
| | - Xavier Pintó
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario Bellvitge, Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Fundación para la Investigación y Prevención de las Enfermedades Cardiovasculares (FIPEC), Universidad de Barcelona, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, España
| | - Pedro Armario
- Servicio de Medicina Interna, Área de Atención Integrada de Riesgo Vascular, Complex Hospitalari Universitari Moisès Broggi, Consorci Sanitari Integral (CSI), Sant Joan Despí, Universidad de Barcelona, Barcelona, España
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolismo (UVASMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat Rovira i Virgili, Tarragona, España
| | - José T Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Pedro Valdivielso
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Virgen de la Victoria, Málaga, España; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand), Universidad de Málaga, Málaga, España
| | - Teresa Arrobas-Velilla
- Laboratorio de Nutrición y RCV, UGC de Bioquímica clínica, Hospital Virgen Macarena, Sevilla, España
| | | | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Investigación Sanitaria (ISS) de Aragón, Universidad de Zaragoza, Zaragoza, España
| | - Jesús Cebollada
- Servicio de Medicina Interna, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - Miguel Civera-Andrés
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España
| | - José I Cuende Melero
- Consulta de Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Asistencial Universitario de Palencia, Palencia, España
| | - José L Díaz-Díaz
- Sección de Medicina Interna, Unidad de Lípidos y Riesgo Cardiovascular, Hospital Abente y Lago Complejo Hospitalario Universitario A Coruña, La Coruña, España
| | - Javier Espíldora-Hernández
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand), Universidad de Málaga, Málaga, España; Unidad de Lípidos y Unidad Asistencial de Hipertensión Arterial- Riesgo Vascular (HTA-RV), UGC Medicina Interna, Hospital Universitario Virgen de la Victoria, Málaga, España
| | - Jacinto Fernández Pardo
- Servicio de Medicina Interna, Hospital General Universitario Reina Sofía de Murcia, Universidad de Murcia, Murcia, España
| | - Carlos Guijarro
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorón, España
| | - Carles Jericó
- Servicio de Medicina Interna, Área de Atención Integrada de Riesgo Vascular, Complex Hospitalari Universitari Moisès Broggi, Consorci Sanitari Integral (CSI), Sant Joan Despí, Universidad de Barcelona, Barcelona, España
| | - Martín Laclaustra
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Investigación Sanitaria (ISS) de Aragón, Universidad de Zaragoza, Zaragoza, España
| | - Carlos Lahoz
- Servicio de Medicina Interna, Unidad de Lípidos y Arteriosclerosis, Hospital La Paz-Carlos III, Madrid, España
| | - José López-Miranda
- Unidad de Lípidos y Arteriosclerosis, UGC de Medicina Interna, Hospital Universitario Reina Sofía, Córdoba, España; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Sergio Martínez-Hervás
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Ovidio Muñiz-Grijalvo
- Servicio de Medicina Interna, UCERV, UCAMI, Hospital Virgen del Rocío de Sevilla, Sevilla, España
| | - José A Páramo
- Servicio de Hematología, Clínica Universidad de Navarra, Navarra, España; Laboratorio Aterotrombosis, CIMA, Universidad de Navarra, Pamplona, España
| | - Vicente Pascual
- Centro de Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España
| | - Pablo Pérez-Martínez
- Unidad de Lípidos y Arteriosclerosis, UGC de Medicina Interna, Hospital Universitario Reina Sofía, Córdoba, España; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - José Puzo
- Servicio de Bioquímica Clínica, Unidad de Lípidos, Hospital General Universitario San Jorge de Huesca, Huesca, España; Departamento de Medicina, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
31
|
Cakmak B, Yeral S, Ozcan B, Pariltay E, Ozgul S, Simsir IY, Hegele RA. Evaluation of apolipoprotein A5 variants: A cohort of patients with severe hypertriglyceridemia from Turkiye. J Clin Lipidol 2024; 18:e423-e429. [PMID: 38627169 DOI: 10.1016/j.jacl.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 06/28/2024]
Abstract
BACKGROUND This study aims to show the clinical and biochemical features in patients with severe hypertriglyceridemia (HTG) associated with rare variants in the apolipoprotein A-V (APOA5) gene. MATERIALS AND METHODS Demographics, blood lipid levels, body mass index (BMI) and APOA5 mutation subtypes were collected from the endocrinology clinic registry and analyzed for a retrospective cohort study of ten patients with severe HTG and APOA5 gene variants. RESULTS Of the 10 cases, four were female, and six were male. The median age was 45.0 years (min-max: 21-60 years), the median triglyceride was 2429.5 mg/dL (27.5 mmol/L) (min-max: 1351-4087 mg/dL, 15.3-46.2 mmol/L), and the mean BMI was calculated as 30.4 ± 4.4 kg/m2 (min-max: 24.9-41.0 kg/m2). Four cases had diabetes mellitus (DM); two were on intensive insulin therapy, and two were on basal insulin therapy. The mean hemoglobin A1c was 9.2 ± 1.2 % (min-max: 8.3-11.0 %). Among the study group, eight different APOA5 gene mutations were detected. These variants were heterozygous in 2 patients and homozygous (bi-allelic) in 8 patients. One patient was homozygous for APOA5 p.Ser19Trp, a relatively common polymorphism that is a risk variant for HTG. CONCLUSION We report a cohort of patients with biallelic and single copy APOA5 variants, who were diagnosed later in life. Most had secondary factors, such as DM or obesity with increased BMI. Most rare APOA5 variants found in our patients were of uncertain significance. Our results add to the growing evidence that rare variants in certain candidate genes may predispose to developing HTG, together with secondary factors such as obesity. The genetic basis of HTG in many other patients is still unknown and remains the subject of further investigation.
Collapse
Affiliation(s)
- B Cakmak
- Ege University Faculty of Medicine, Izmir, Turkey (Dr Cakmak)
| | - S Yeral
- Ege University Faculty of Medicine, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey (Drs Yeral, Ozcan, and Simsir)
| | - B Ozcan
- Ege University Faculty of Medicine, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey (Drs Yeral, Ozcan, and Simsir)
| | - E Pariltay
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey (Dr Pariltay)
| | - S Ozgul
- Ege University Faculty of Medicine, Department of Biostatistics and Medical Informatics, Izmir, Turkey (Dr Ozgul)
| | - I Y Simsir
- Ege University Faculty of Medicine, Division of Endocrinology and Metabolism Disorders, Izmir, Turkey (Drs Yeral, Ozcan, and Simsir).
| | - R A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (Dr Hegele)
| |
Collapse
|
32
|
den Hollander B, Brands MM, Nijhuis IJM, Doude van Troostwijk LJAE, van Essen P, Hofsteenge GH, Koot BG, Müller AR, Tseng LA, Stroes ESG, van de Ven PM, Wiegman A, van Karnebeek CDM. Breaking the chains of lipoprotein lipase deficiency: A pediatric perspective on the efficacy and safety of Volanesorsen. Mol Genet Metab 2024; 142:108347. [PMID: 38401382 DOI: 10.1016/j.ymgme.2024.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
RATIONALE Lipoprotein lipase (LPL) deficiency, a rare inherited metabolic disorder, is characterized by high triglyceride (TG) levels and life-threatening acute pancreatitis. Current treatment for pediatric patients involves a lifelong severely fat-restricted diet, posing adherence challenges. Volanesorsen, an EMA-approved RNA therapy for adults, effectively reduces TG levels by decreasing the production of apolipoprotein C-III. This 96-week observational open-label study explores Volanesorsen's safety and efficacy in a 13-year-old female with LPL deficiency. METHODS The patient, with a history of severe TG elevations, 53 hospital admissions, and life-threatening recurrent pancreatitis despite dietary restrictions, received weekly subcutaneous Volanesorsen injections. We designed a protocol for this investigator-initiated study, primarily focusing on changes in fasting TG levels and hospital admissions. RESULTS While the injections caused occasional pain and swelling, no other adverse events were observed. TG levels decreased during treatment, with more measurements below the pancreatitis risk threshold compared to pre-treatment. No hospital admissions occurred in the initial 14 months of treatment, contrasting with 21 admissions in the 96 weeks before. In the past 10 months, two pancreatitis episodes may have been linked to dietary noncompliance. Dietary restrictions were relaxed, increasing fat intake by 65% compared to baseline. While not fully reflected in the PedsQL, both parents and the patient narratively reported an improved quality of life. CONCLUSION This study demonstrates, for the first time, that Volanesorsen is tolerated in a pediatric patient with severe LPL deficiency and effectively lowers TG levels, preventing life-threatening complications. This warrants consideration for expanded access in this population.
Collapse
Affiliation(s)
- Bibiche den Hollander
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Marion M Brands
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Ilse J M Nijhuis
- Wilhelmina Hospital Assen, Department of Pediatrics, Europaweg-Zuid 1, Assen, the Netherlands
| | | | - Peter van Essen
- Radboud University Medical Center, Department of Pediatrics, Amalia Children's Hospital, Geert Grooteplein Zuid 10, Nijmegen, the Netherlands
| | - Geesje H Hofsteenge
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Nutrition & Dietetics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bart G Koot
- Amsterdam UMC location University of Amsterdam, Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Annelieke R Müller
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Laura A Tseng
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; University Medical Center Rotterdam, Department of Pediatrics, Sophia Children's Hospital, Dr. Molewaterplein 40, Rotterdam, the Netherlands
| | - Erik S G Stroes
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Meibergdraaf 9, Amsterdam, the Netherlands
| | - Peter M van de Ven
- University Medical Centre Utrecht, Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, Heidelberglaan 100, Utrecht, Netherlands
| | - Albert Wiegman
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Clara D M van Karnebeek
- Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Huang H, Li J, Shen J, Zhao T, Xiao R, Ma W. Dietary Inflammatory Index and Cognitive Function: Findings from a Cross-Sectional Study in Obese Chinese Township Population from 45 to 75 Years. J Inflamm Res 2024; 17:2365-2382. [PMID: 38651005 PMCID: PMC11034566 DOI: 10.2147/jir.s447300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Background and Objective Cognitive dysfunction is highly prevalent in obese people, and food is a key factor in obesity, and dietary inflammatory index (DII) can reflect whether diet has anti-inflammatory or pro-inflammatory potential. In addition, dietary fatty acid consumption is linked to inflammation, obesity, and cognitive impairment. Erythrocyte membrane fatty acids can reflect dietary fatty acid intake. Our hypothesis was that erythrocyte membrane fatty acids might have a significant impact on the relationship between DII and cognition in obese individuals, and we designed experiments to test the hypothesis. Methods In three villages in Beijing, we collected 579 respondents from individuals 45 to 75 years old and categorized them by body mass index. The Montreal Cognitive Assessment (MoCA) score and DII score was calculated and gas chromatography was used to measure the proportion of erythrocyte membrane fatty acids. The relationship between the DII score and cognition was examined using multiple linear regression and binary logistic regression. Mediation analysis can help to understand the causal chain between variables, deeply explore the internal relationship and mechanism of action between variables. So a multiple chain mediation model was developed to investigate the mediating factors between the DII score and cognitive association. Results According to adjusted linear regression, higher DII scores were linked to lower MoCA scores in the obese group. The negative correlation between DII score and cognitive function score remains in binary linear regression. We discovered through mediation analysis that erythrocyte membrane fatty acids mediate the detrimental link between DII and cognitive function in obese individuals. Conclusion We propose that higher DII scores in obese people are associated with a decline in cognitive function. In addition, this effect might be mediated via the fatty acids in the erythrocyte membrane.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
34
|
Mustafa M, Almheiri M. Six-year follow-up of a child with familial chylomicronemia syndrome: disease course and effectiveness of gemfibrozil treatment --case report and literature review. Ann Pediatr Endocrinol Metab 2024; 29:130-134. [PMID: 38224692 PMCID: PMC11076224 DOI: 10.6065/apem.2346208.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disease affecting lipoprotein metabolism. FCS is estimated to occur in 1 in 1-2 million individuals and can be diagnosed at any age, equally affecting all genders, races, and ethnicities. The condition is characterized by hypertriglyceridemia, which may predispose patients to acute pancreatitis. In this report, we present the case of a now 6-year-old girl with FCS on gemfibrozil and dietary restrictions. The patient initially presented at 40 days of age with vomiting. Serum samples revealed lipemia, with markedly elevated triglyceride levels. The patient was diagnosed with FCS, confirmed by genetic testing showing the homozygous variant c.833C>T(p,Ser278Phe) for the LPL gene. Despite being on a low-fat diet with medium chain triglyceride (MCT) based milk formulas, the patient developed acute pancreatitis 2 months later with continued elevated triglyceride levels. She was placed on gemfibrozil and fat-soluble vitamins at 2 months of age, with marked improvements subsequently noted. Currently, the patient is doing well, with normal growth parameters and no other episodes of acute pancreatitis. Her triglyceride levels have been maintained within normal levels. FCS is a rare, inherited lipid disorder that often goes underdiagnosed and unmanaged. It is worth considering the fibric acid derivative (gemfibrozil) to be one of the lines of management early on after diagnosis.
Collapse
|
35
|
Wang Y, Fang Y, Vrablik M. Homeostasis Model Assessment for Insulin Resistance Mediates the Positive Association of Triglycerides with Diabetes. Diagnostics (Basel) 2024; 14:733. [PMID: 38611646 PMCID: PMC11011406 DOI: 10.3390/diagnostics14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Elevated circulating triglyceride levels have been linked to an increased risk of diabetes, although the precise mechanisms remain unclear. This study aimed to investigate whether low-density lipoprotein (LDL) cholesterol, homeostatic model assessment (HOMA) for insulin resistance, and C-reactive protein (CRP) served as mediators in this association across a sample of 18,435 US adults. Mediation analysis was conducted using the PROCESS Version 4.3 Macro for SPSS. Simple mediation analysis revealed that all three potential mediators played a role in mediating the association. However, in parallel mediation analysis, where all three mediators were simultaneously included, HOMA for insulin resistance remained a significant mediator (indirect effect coefficient, 0.47; 95% confidence interval [CI], 0.43-0.52; p < 0.05) after adjusting for all tested confounding factors. Conversely, LDL cholesterol (indirect effect coefficient, -0.13; 95% CI, -0.31-0.05; p > 0.05) and C-reactive protein (indirect effect coefficient, 0.01; 95% CI, -0.003-0.02; p > 0.05) ceased to be significant mediators. HOMA for insulin resistance accounted for 49% of the association between triglycerides and diabetes. In conclusion, HOMA for insulin resistance was the dominant mediator underlying the association between triglycerides and diabetes. Therefore, reducing triglyceride levels may hold promise for improving insulin sensitivity in diabetic patients.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michal Vrablik
- Third Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic;
| |
Collapse
|
36
|
Guo J, Miao G, Zhang W, Shi H, Lai P, Xu Y, Zhang L, Chen G, Han Y, Zhao Y, Liu G, Zhang L, Wang Y, Huang W, Xian X. Depletion of ApoA5 aggravates spontaneous and diet-induced nonalcoholic fatty liver disease by reducing hepatic NR1D1 in hamsters. Theranostics 2024; 14:2036-2057. [PMID: 38505614 PMCID: PMC10945338 DOI: 10.7150/thno.91084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
Background: ApoA5 mainly synthesized and secreted by liver is a key modulator of lipoprotein lipase (LPL) activity and triglyceride-rich lipoproteins (TRLs). Although the role of ApoA5 in extrahepatic triglyceride (TG) metabolism in circulation has been well documented, the relationship between ApoA5 and nonalcoholic fatty liver disease (NAFLD) remains incompletely understood and the underlying molecular mechanism still needs to be elucidated. Methods: We used CRISPR/Cas9 gene editing to delete Apoa5 gene from Syrian golden hamster, a small rodent model replicating human metabolic features. Then, the ApoA5-deficient (ApoA5-/-) hamsters were used to investigate NAFLD with or without challenging a high fat diet (HFD). Results: ApoA5-/- hamsters exhibited hypertriglyceridemia (HTG) with markedly elevated TG levels at 2300 mg/dL and hepatic steatosis on a regular chow diet, accompanied with an increase in the expression levels of genes regulating lipolysis and small adipocytes in the adipose tissue. An HFD challenge predisposed ApoA5-/- hamsters to severe HTG (sHTG) and nonalcoholic steatohepatitis (NASH). Mechanistic studies in vitro and in vivo revealed that targeting ApoA5 disrupted NR1D1 mRNA stability in the HepG2 cells and the liver to reduce both mRNA and protein levels of NR1D1, respectively. Overexpression of human NR1D1 by adeno-associated virus 8 (AAV8) in the livers of ApoA5-/- hamsters significantly ameliorated fatty liver without affecting plasma lipid levels. Moreover, restoration of hepatic ApoA5 or activation of UCP1 in brown adipose tissue (BAT) by cold exposure or CL316243 administration could significantly correct sHTG and hepatic steatosis in ApoA5-/- hamsters. Conclusions: Our data demonstrate that HTG caused by ApoA5 deficiency in hamsters is sufficient to elicit hepatic steatosis and HFD aggravates NAFLD by reducing hepatic NR1D1 mRNA and protein levels, which provides a mechanistic link between ApoA5 and NAFLD and suggests the new insights into the potential therapeutic approaches for the treatment of HTG and the related disorders due to ApoA5 deficiency in the clinical trials in future.
Collapse
Affiliation(s)
- Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haozhe Shi
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Zhao
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Geroge Liu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
37
|
Yan C, Bao J, Jin J. Exploring the interplay of gut microbiota, inflammation, and LDL-cholesterol: a multiomics Mendelian randomization analysis of their causal relationship in acute pancreatitis and non-alcoholic fatty liver disease. J Transl Med 2024; 22:179. [PMID: 38374155 PMCID: PMC10875775 DOI: 10.1186/s12967-024-04996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Acute pancreatitis and non-alcoholic fatty liver disease are both serious diseases in the digestive system. The pathogenesis of both diseases is extremely complex closely and it related to gut microbiota, inflammation, and blood fat. There is a close relationship between gut microbiota and blood lipids. METHODS In this study, we used three types of exposure: 412 gut microbiota, 731 inflammatory cells, and 91 inflammatory proteins (pqtls), with LDL-C as an intermediary and acute pancreatitis and non-alcoholic fatty liver disease as outcomes. We mainly used MR-IVW, co-localization analysis, and reverse MR analysis methods for analysis. RESULTS 7 gut microbiota, 21 inflammatory cells, and 3 inflammatory proteins can affect LDL-C levels. LDL-C is associated with acute pancreatitis and non-alcoholic fatty liver disease. CONCLUSIONS Three omics were used: 412 gut microbiota, 731 inflammatory cells, and 91 inflammatory proteins (pqtls). It explains the causal relationship between multiomics, LDL- cholesterol, acute pancreatitis, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Congzhi Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Wenzhou Medical University, Zhejiang, China
| | - Jingxia Bao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China
- Wenzhou Medical University, Zhejiang, China
| | - Jinji Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325000, China.
- Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
38
|
Raina R, Suchan A, Sethi SK, Soundararajan A, Vitale VS, Keller GL, Brown AM, Davenport A, Shih WV, Nada A, Irving SY, Mannemuddhu SS, Crugnale AS, Myneni A, Berry KG, Zieg J, Alhasan K, Guzzo I, Lussier NH, Yap HK, Bunchman TE. Nutrition in Critically Ill Children with AKI on Continuous RRT: Consensus Recommendations. KIDNEY360 2024; 5:285-309. [PMID: 38112754 PMCID: PMC10914214 DOI: 10.34067/kid.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Nutrition plays a vital role in the outcome of critically ill children, particularly those with AKI. Currently, there are no established guidelines for children with AKI treated with continuous RRT (CRRT). A thorough understanding of the metabolic changes and nutritional challenges in AKI and CRRT is required. Our objective was to create clinical practice points for nutritional assessment and management in critically ill children with AKI receiving CRRT. METHODS PubMed, MEDLINE, Cochrane, and Embase databases were searched for articles related to the topic. Expertise of the authors and a consensus of the workgroup were additional sources of data in the article. Available articles on nutrition therapy in pediatric patients receiving CRRT through January 2023. RESULTS On the basis of the literature review, the current evidence base was examined by a panel of experts in pediatric nephrology and nutrition. The panel used the literature review as well as their expertise to formulate clinical practice points. The modified Delphi method was used to identify and refine clinical practice points. CONCLUSIONS Forty-four clinical practice points are provided on nutrition assessment, determining energy needs, and nutrient intake in children with AKI and on CRRT on the basis of the existing literature and expert opinions of a multidisciplinary panel.
Collapse
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
- Akron Children's Hospital, Akron, Ohio
| | - Andrew Suchan
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Sidharth K. Sethi
- Department of Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, India
| | - Anvitha Soundararajan
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | | | | | - Ann-Marie Brown
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
- ECU Health, Greenville, North Carolina
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Weiwen V. Shih
- Section of Pediatric Nephrology, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Arwa Nada
- Department of Pediatrics, Division of Pediatric Nephrology, Le Bonheur Children's & St. Jude Children's Research Hospitals, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sharon Y. Irving
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Sai Sudha Mannemuddhu
- Division of Pediatric Nephrology, East Tennessee Children's Hospital, Knoxville, Tennessee
- Department of Medicine, University of Tennessee at Knoxville, Knoxville, Tennessee
| | - Aylin S. Crugnale
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Archana Myneni
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio
| | - Katarina G. Berry
- Children's Hospital of Philadelphia, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Khalid Alhasan
- Pediatrics Department, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Isabella Guzzo
- Division of Nephrology and Dialysis, Department of Pediatrics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | | | - Hui Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Timothy E. Bunchman
- Department of Pediatrics, Childrens Hospital of Richmond, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
39
|
Lee MK, Han K, Kim B, Kim JD, Jung Kim M, Kim B, Heo J, Ahn J, Sohn SY, Lee JH. Cumulative exposure to hypertriglyceridemia and risk of type 2 diabetes in young adults. Diabetes Res Clin Pract 2024; 208:111109. [PMID: 38262520 DOI: 10.1016/j.diabres.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
AIM This study aimed to examine whether cumulative exposure to hypertriglyceridemia is associated with an increased risk of developing type 2 diabetes in young adults. METHODS The study included 1,840,251 participants aged 20-39 years who had undergonefourconsecutiveannualhealth checkups and had no history of type 2 diabetes. Participants werecategorized into five groups (exposure score 0-4) based on the frequencies of hypertriglyceridemia diagnosis over a four-year period. The primary outcome was newly diagnosed type 2 diabetes. Exploratory analyses were performed for the different subgroups. RESULTS During a follow-up period of 6.53 years, 40,286 participants developed type 2 diabetes. The cumulative incidence of type 2 diabetes significantly increased with higher exposure scores for hypertriglyceridemia (log-rank test, P < 0.001). The multivariable-adjusted hazard ratios for incident diabetes were 1.674 (95 % CI, 1.619, 1.732), 2.192 (95 % CI, 2.117, 2.269), 2.637 (95 % CI, 2.548, 2.73), and 3.715 (95 % CI, 3.6, 3.834) for participants with scores of 1-4, respectively, compared with those with an exposure score of 0. CONCLUSIONS In this large-scale prospective cohort study of young adults, cumulative exposure to hypertriglyceridemia was significantly associated with an increased risk of type 2 diabetes, independent of lifestyle-related factors.
Collapse
Affiliation(s)
- Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea.
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Bongsung Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jong-Dai Kim
- Division of Endocrinology, Department of Internal Medicine, Konayng University Hospital, Daejeon, Republic of Korea
| | - Moon Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Byungpyo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jung Heo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jiyeon Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Seo-Young Sohn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Jae-Hyuk Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
40
|
Kennelley GE, Nowak AS, Hysell MK. Eruptive xanthomas in the setting of acute pancreatitis. VISUAL JOURNAL OF EMERGENCY MEDICINE 2024; 34:101894. [DOI: 10.1016/j.visj.2023.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Gaudet D, Clifton P, Sullivan D, Baker J, Schwabe C, Thackwray S, Scott R, Hamilton J, Given B, Melquist S, Zhou R, Chang T, San Martin J, Watts GF, Goldberg IJ, Knowles JW, Hegele RA, Ballantyne CM. RNA Interference Therapy Targeting Apolipoprotein C-III in Hypertriglyceridemia. NEJM EVIDENCE 2023; 2:EVIDoa2200325. [PMID: 38320498 DOI: 10.1056/evidoa2200325] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Apolipoprotein C-III (APOC3) inhibits triglyceride clearance by reducing lipoprotein lipase–mediated hydrolysis and hepatocyte uptake of triglyceride-rich lipoproteins. ARO-APOC3, a hepatocyte-targeting RNA interference therapeutic, inhibits APOC3 messenger ribonucleic acid expression, lowering triglyceride levels. The objective of this trial was to assess the safety, pharmacodynamic variables, and pharmacokinetic variables of ARO-APOC3 treatment. METHODS: Healthy participants and adults with hypertriglyceridemia were randomly assigned to receive escalating single (day 1) or repeat (days 1 and 29) doses, respectively, of subcutaneous injections of ARO-APOC3 10, 25, 50, or 100 mg or placebo; they were followed up until day 113. Additional cohorts of healthy participants and adults with chylomicronemia received repeat doses of open-label ARO-APOC3. The primary objective was to evaluate the safety and side effect profile of ARO-APOC3. Key secondary and exploratory objectives included pharmacokinetic variables and changes in serum APOC3, triglyceride, and cholesterol levels. RESULTS: Eighty-eight participants received ARO-APOC3 and 24 participants received placebo across double-blind and open-label cohorts. Treatment-emergent adverse events (AEs) of transient, mild to moderate liver transaminase changes occurred in 10 participants: 1 patient receiving ARO-APOC3 25 mg, 5 patients receiving ARO-APOC3 50 mg, and 4 participants receiving ARO-APOC3 100 mg (1 healthy participant and 3 patients with hypertriglyceridemia). These events were asymptomatic, and transaminase levels returned to near baseline by the end of the trial. No AEs related to thrombocytopenia or platelet declines were reported. In the hypertriglyceridemia cohorts, the day 113 mean changes from baseline in APOC3 at the 10-, 25-, 50-, and 100-mg doses were −62.0%, −81.7%, −90.1%, and −94.4%, respectively, compared with −1.6% with placebo. This corresponded to median changes in triglyceride levels of −65.6%, −69.9%, −81.2%, and −81.0% compared with −2.8% with placebo. CONCLUSIONS: In this small trial of short duration, ARO-APOC3 was associated with few AEs and reduced serum levels of APOC3 and triglycerides in healthy participants and patients with hypertriglyceridemia. (Funded by Arrowhead Pharmaceuticals, Inc.; ClinicalTrials.gov number, NCT03783377.)
Collapse
Affiliation(s)
- Daniel Gaudet
- Department of Medicine, Université de Montréal and ECOGENE 21 Clinical Research Center, Chicoutimi, Quebec, QC, Canada
| | | | - David Sullivan
- NSW Health Pathology, Royal Prince Alfred Hospital, Sydney
| | - John Baker
- Middlemore Hospital, Auckland, New Zealand
| | | | - Susan Thackwray
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | | | - Bruce Given
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA
| | | | - Rong Zhou
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA
| | - Ting Chang
- Arrowhead Pharmaceuticals, Inc., Pasadena, CA
| | | | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | | | - Joshua W Knowles
- Stanford Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford, CA
| | - Robert A Hegele
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | |
Collapse
|
42
|
Zhou Z, Ryan J, Tonkin AM, Zoungas S, Lacaze P, Wolfe R, Orchard SG, Murray AM, McNeil JJ, Yu C, Watts GF, Hussain SM, Beilin LJ, Ernst ME, Stocks N, Woods RL, Zhu C, Reid CM, Shah RC, Chong TTJ, Sood A, Sheets KM, Nelson MR. Association Between Triglycerides and Risk of Dementia in Community-Dwelling Older Adults: A Prospective Cohort Study. Neurology 2023; 101:e2288-e2299. [PMID: 37879942 PMCID: PMC10727221 DOI: 10.1212/wnl.0000000000207923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES It has been suggested that higher triglyceride levels were associated with a lower risk of Alzheimer disease. This study aimed to examine the association of triglycerides with dementia and cognition change in community-dwelling older adults. METHODS This prospective longitudinal study used data from the Aspirin in Reducing Events in the Elderly (ASPREE) randomized trial of adults aged 65 years or older without dementia or previous cardiovascular events at enrollment. The main outcome was incident dementia. Other outcomes included changes in composite cognition and domain-specific cognition (global cognition, memory, language and executive function, and psychomotor speed). The association between baseline triglycerides and dementia risk was estimated using Cox proportional hazard models adjusting for relevant risk factors. Linear mixed models were used to investigate cognitive change. The analysis was repeated in a subcohort of participants with available APOE-ε4 genetic data with additional adjustment for APOE-ε4 carrier status and an external cohort (UK Biobank) with similar selection criteria applied. RESULTS This study included 18,294 ASPREE participants and 68,200 UK Biobank participants (mean age: 75.1 and 66.9 years; female: 56.3% and 52.7%; median [interquartile range] triglyceride: 106 [80-142] mg/dL and 139 [101-193] mg/dL), with dementia recorded in 823 and 2,778 individuals over a median follow-up of 6.4 and 12.5 years, respectively. Higher triglyceride levels were associated with lower dementia risk in the entire ASPREE cohort (hazard ratio [HR] with doubling of triglyceride: 0.82, 95% CI 0.72-0.94). Findings were similar in the subcohort of participants with APOE-ε4 genetic data (n = 13,976) and in the UK Biobank cohort (HR was 0.82 and 0.83, respectively, all p ≤ 0.01). Higher triglycerides were also associated with slower decline in composite cognition and memory over time (p ≤ 0.05). DISCUSSION Older adults with higher triglyceride levels within the normal to high-normal range had a lower dementia risk and slower cognitive decline over time compared with individuals with lower triglyceride levels. Higher triglyceride levels may be reflective of better overall health and/or lifestyle behaviors that would protect against dementia development. Future studies are warranted to investigate whether specific components within the total circulating pool of plasma triglycerides may promote better cognitive function, with the hope of informing the development of new preventive strategies.
Collapse
Affiliation(s)
- Zhen Zhou
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia.
| | - Joanne Ryan
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Andrew M Tonkin
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Sophia Zoungas
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Paul Lacaze
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Rory Wolfe
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Suzanne G Orchard
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Anne M Murray
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - John J McNeil
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Chenglong Yu
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Gerald F Watts
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Sultana Monira Hussain
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Lawrence J Beilin
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Michael E Ernst
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Nigel Stocks
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Robyn L Woods
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Chao Zhu
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Christopher M Reid
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Raj C Shah
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Trevor T-J Chong
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Ajay Sood
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Kerry M Sheets
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| | - Mark R Nelson
- From the School of Public Health and Preventive Medicine (Z.Z., J.R., A.M.T., S.Z., P.L., R.W., S.G.O., J.J.M., C.Y., S.M.H., R.L.W.), Central Clinical School (C.Z.), and Turner Institute for Brain & Mental Health (T.T.-J.C.), Monash University, Melbourne, Victoria, Australia; Berman Center for Outcomes and Clinical Research (A.M.M.), Hennepin Healthcare Research Institute, Division of Geriatrics, Department of Medicine Hennepin HealthCare, Minneapolis, MN; School of Medicine (G.F.W., L.J.B.), University of Western Australia, Perth; Department of Pharmacy Practice and Science (M.E.E.), College of Pharmacy, The University of Iowa, Iowa City; Discipline of General Practice (N.S.), University of Adelaide, South Australia; School of Population Health (C.M.R.), Curtin University, Perth, Western Australia; Department of Family and Preventive Medicine and Rush Alzheimer's Disease Center (R.C.S., A.S.), Rush University Medical Center, Chicago, IL; Division of Geriatric Medicine (K.M.S.), Department of Medicine, Hennepin Healthcare, Minneapolis, MN; and Menzies Institute for Medical Research (M.R.N.), University of Tasmania, Hobart, Australia
| |
Collapse
|
43
|
Ehret F, Pelz MS, Senko AN, Soto KEG, Liu H, Kempermann G. Presymptomatic Reduction of Individuality in the App NL-F Knockin Model of Alzheimer's Disease. Biol Psychiatry 2023; 94:721-731. [PMID: 37076091 DOI: 10.1016/j.biopsych.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND One-third of the risk for Alzheimer's disease is explained by environment and lifestyle, but Alzheimer's disease pathology might also affect lifestyle and thereby impair the individual potential for health behavior and prevention. METHODS We examined in mice how the AppNL-F/NL-F (NL-F) knockin mutation affects the presymptomatic response to environmental enrichment (ENR) as an experimental paradigm addressing nongenetic factors. We assessed the emergence of interindividual phenotypic variation under the condition that both the genetic background and the shared environment were held constant, thereby isolating the contribution of individual behavior (nonshared environment). RESULTS After 4 months of ENR, the mean and variability of plasma ApoE were increased in NL-F mice, suggesting a presymptomatic variation in pathogenic processes. Roaming entropy as a measure of behavioral activity was continuously assessed with radiofrequency identification (RFID) technology and revealed reduced habituation and variance in NL-F mice compared with control animals, which do not carry a Beyreuther/Iberian mutation. Intraindividual variation decreased, while behavioral stability was reduced in NL-F mice. Seven months after discontinuation of ENR, we found no difference in plaque size and number, but ENR increased variance in hippocampal plaque counts in NL-F mice. A reactive increase in adult hippocampal neurogenesis in NL-F mice, known from other models, was normalized by ENR. CONCLUSIONS Our data suggest that while NL-F has early effects on individual behavioral patterns in response to ENR, there are lasting effects on cellular plasticity even after the discontinuation of ENR. Hence, early behavior matters for maintaining individual behavioral trajectories and brain plasticity even under maximally constrained conditions.
Collapse
Affiliation(s)
- Fanny Ehret
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany; Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike S Pelz
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Anna N Senko
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Karla E G Soto
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Hang Liu
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Center for Regenerative Therapies Technical University Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Ortega E, Vlacho B, Treserres RP, Mata-Cases M, Altes A, Mauricio D, Franch-Nadal J. Severe hypertriglyceridemia prevalence at a primary care setting in Catalonia, Spain. J Clin Lipidol 2023; 17:777-787. [PMID: 37741728 DOI: 10.1016/j.jacl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Hypertriglyceridemia (HTG) increases the risk of cardiovascular disease and pancreatitis, and its prevalence varies across populations. OBJECTIVE To determine the prevalence of moderate-to-severe hypertriglyceridemia (msHTG, 500-879 mg/dl) and severe hypertriglyceridemia (sHTG, ≥ 880 mg/dl) in a primary care population in Catalonia, Spain, and to categorize them according to presence/absence of factors potentially causing HTG. METHODS Retrospective analysis of clinical and laboratory data in SIDIAP (Information System for the Development of Primary Care Research) from 2010, 2013, 2016, and 2019. We considered medications with hypolipidemic effects and those potentially increasing TG levels. We developed logistic regression models adjusted by age and sex to calculate the probability of having ms/sHTG according to covariates of interest. RESULTS In the study years, 36.2‒42.0% of the >3.5 million active primary care users had ≥1 TG determination. Prevalence for msHTG was 0.7% and for sHTG 0.2% among those with recorded TG. In 2019, 54.7% were female; median (IQR) age was 62.5 (49.4‒73.7) years. Prevalence was higher in 36‒50-year-old persons (1.3% msHTG, 0.4% sHTG) and men (1.1% msHTG, 0.3% sHTG). Most cases were associated with secondary and <20% with non-secondary causes, the latter being most prevalent in young patients. The secondary causes more strongly associated with msHTG/sHTG were obesity, uncontrolled diabetes mellitus (DM) and gamma-glutamyl transferase >100 U/L. CONCLUSION The prevalence of msHTG was 0.7% and that of sHTG was 0.2% between 2010 and 2019 among individuals with recorded TG. msHTG/sHTG most often affected men around their fifties and people with obesity and uncontrolled DM. Most msHTG and sHTG cases were associated with the presence of secondary causes.
Collapse
Affiliation(s)
- Emilio Ortega
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Lipid and Vascular Risk Unit, Endocrinology and Nutrition Department, Hospital Clinic Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Bogdan Vlacho
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Ray Puig Treserres
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Manel Mata-Cases
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Primary Health Care Center, Gerència d'Àmbit d'Atenció Primària Barcelona Ciutat, Institut Català de la Salut, Barcelona, Spain
| | - Andreu Altes
- Primary Health Care Center, Gerència d'Àmbit d'Atenció Primària Barcelona Ciutat, Institut Català de la Salut, Barcelona, Spain
| | - Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain; Department of Endocrinology and Nutrition, Hospital Universitari de la Santa Creu i Sant Pau, Barcelona, Spain; Departament of Medicine, University of Vic - Central University of Catalonia, Vic, Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Primary Health Care Center, Gerència d'Àmbit d'Atenció Primària Barcelona Ciutat, Institut Català de la Salut, Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| |
Collapse
|
45
|
Christakopoulos C. Multimodal Retinal Imaging of Intravascular Lipid in Severe/Extreme Hypertriglyceridemia. Case Rep Ophthalmol Med 2023; 2023:6698239. [PMID: 37800092 PMCID: PMC10550437 DOI: 10.1155/2023/6698239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Retinal intravascular lipid aggregates were detected in the left eye in a patient with uncontrolled diabetes and very high blood triglycerides. The patient suffered visual loss in the left eye due to retinal ischemia. Optical coherence tomography, fluorescein angiography, infrared fundus photography, and autofluorescence studies of the retina demonstrated unique findings. Slowed choroidal and retinal flow was detected on fluorescein angiography, and a prominent middle layer membrane sign was present on OCT. Intravascular lipid reflectivity was manifest on retinal infrared and autofluorescence imaging. Eventually, insulin and statin therapy proved effective in reversing the vascular lesions, although retinal atrophy finally ensued. This report of a very rare clinical condition provides unique findings on multimodal retinal imaging and confirms the need for prompt insulin and statin therapy in severe/extreme hypertriglyceridemia and dysregulated diabetes. One similar case was reported in the past when multimodal imaging studies of the retina were not available. The lesions described herein should be differentiated from the more frequently encountered lipemia retinalis as they may confer worse prognosis.
Collapse
|
46
|
Gutiérrez-Esparza G, Pulido T, Martínez-García M, Ramírez-delReal T, Groves-Miralrio LE, Márquez-Murillo MF, Amezcua-Guerra LM, Vargas-Alarcón G, Hernández-Lemus E. A machine learning approach to personalized predictors of dyslipidemia: a cohort study. Front Public Health 2023; 11:1213926. [PMID: 37799151 PMCID: PMC10548235 DOI: 10.3389/fpubh.2023.1213926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Mexico ranks second in the global prevalence of obesity in the adult population, which increases the probability of developing dyslipidemia. Dyslipidemia is closely related to cardiovascular diseases, which are the leading cause of death in the country. Therefore, developing tools that facilitate the prediction of dyslipidemias is essential for prevention and early treatment. Methods In this study, we utilized a dataset from a Mexico City cohort consisting of 2,621 participants, men and women aged between 20 and 50 years, with and without some type of dyslipidemia. Our primary objective was to identify potential factors associated with different types of dyslipidemia in both men and women. Machine learning algorithms were employed to achieve this goal. To facilitate feature selection, we applied the Variable Importance Measures (VIM) of Random Forest (RF), XGBoost, and Gradient Boosting Machine (GBM). Additionally, to address class imbalance, we employed Synthetic Minority Over-sampling Technique (SMOTE) for dataset resampling. The dataset encompassed anthropometric measurements, biochemical tests, dietary intake, family health history, and other health parameters, including smoking habits, alcohol consumption, quality of sleep, and physical activity. Results Our results revealed that the VIM algorithm of RF yielded the most optimal subset of attributes, closely followed by GBM, achieving a balanced accuracy of up to 80%. The selection of the best subset of attributes was based on the comparative performance of classifiers, evaluated through balanced accuracy, sensitivity, and specificity metrics. Discussion The top five features contributing to an increased risk of various types of dyslipidemia were identified through the machine learning technique. These features include body mass index, elevated uric acid levels, age, sleep disorders, and anxiety. The findings of this study shed light on significant factors that play a role in dyslipidemia development, aiding in the early identification, prevention, and treatment of this condition.
Collapse
Affiliation(s)
- Guadalupe Gutiérrez-Esparza
- Researcher for Mexico CONAHCYT, National Council of Humanities Sciences, and Technologies, Mexico City, Mexico
- Clinical Research, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Tomas Pulido
- Clinical Research, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Mireya Martínez-García
- Department of Immunology, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Tania Ramírez-delReal
- Researcher for Mexico CONAHCYT, National Council of Humanities Sciences, and Technologies, Mexico City, Mexico
- Center for Research in Geospatial Information Sciences, Aguascalientes, Mexico
| | | | - Manlio F. Márquez-Murillo
- Department of Electrocardiology, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Luis M. Amezcua-Guerra
- Department of Immunology, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology and Endocrinology, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
47
|
Castillo RF, García Pérez R, González Díaz A, Liñán González A. Therapeutic Applications and Effects of Lupinus angustifolius (Blue Lupin) and Its Components: A Systematic Review and Meta-Analysis. Foods 2023; 12:2749. [PMID: 37509841 PMCID: PMC10378960 DOI: 10.3390/foods12142749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Lupinus angustifolius has a unique nutrient profile among legumes and may have beneficial health effects when included in the diet. The aim of this study was to investigate the biological properties of blue lupin (Lupinus angustifolius), its chemical components, and their relevance for monitoring biological and anthropometric health markers, including triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), BMI, weight, and glycemia, compared with control groups with other kinds of diets. PubMed, Web of Science, and Scopus databases, updated to December 2023, were searched. Out of the 194 studies identified, a total of 7 randomized controlled trials (RCTs) comprising 302 participants met the eligibility criteria. The results of our study indicated that the blue lupin diet has a direct relationship with parameters such as blood glucose, weight, and LDL-C but not with TGs or BMI. In conclusion, the research described in this review clearly indicates that L. angustifolius may play an important role in the dietary prevention of hyperlipidemia and hypertension. Therefore, it would be highly advisable to increase its consumption in diets. However, further studies, ideally in humans, are required to truly establish L. angustifolius's health-promoting properties.
Collapse
Affiliation(s)
- Rafael Fernández Castillo
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| | - Raquel García Pérez
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| | - Ana González Díaz
- Faculty of Health Sciences, University of Granada, C/Cortadura del Valle s/n, 51001 Ceuta, Spain
| | - Antonio Liñán González
- Faculty of Health Sciences, University of Granada, Parque Tecnológico de Ciencias de la Salud, Avd. de la Ilustración, 60, 18016 Granada, Spain
| |
Collapse
|
48
|
Bhatt DL, Bays HE, Miller M, Cain JE, Wasilewska K, Andrawis NS, Parli T, Feng S, Sterling L, Tseng L, Hartsfield CL, Agollah GD, Mansbach H, Kastelein JJP. The FGF21 analog pegozafermin in severe hypertriglyceridemia: a randomized phase 2 trial. Nat Med 2023; 29:1782-1792. [PMID: 37355760 PMCID: PMC10353930 DOI: 10.1038/s41591-023-02427-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Pegozafermin, a long-acting glycopegylated analog of human fibroblast growth factor 21, is in development for the treatment of severe hypertriglyceridemia (SHTG) and nonalcoholic steatohepatitis. Here we report the results of a phase 2, double-blind, randomized, five-arm trial testing pegozafermin at four different doses (n = 67; 52 male) versus placebo (n = 18; 12 male) for 8 weeks in patients with SHTG (triglycerides (TGs), ≥500 mg dl-1 and ≤2,000 mg dl-1). Treated patients showed a significant reduction in median TGs for the pooled pegozafermin group versus placebo (57.3% versus 11.9%, difference versus placebo -43.7%, 95% confidence interval (CI): -57.1%, -30.3%; P < 0.001), meeting the primary endpoint of the trial. Reductions in median TGs ranged from 36.4% to 63.4% across all treatment arms and were consistent regardless of background lipid-lowering therapy. Results for secondary endpoints included significant decreases in mean apolipoprotein B and non-high-density lipoprotein cholesterol concentrations (-10.5% and -18.3% for pooled doses compared to 1.1% and -0.6% for placebo (95% CI: -21.5%, -2.0%; P = 0.019 and 95% CI: -30.7%, -5.1%; P = 0.007, respectively), as well as a significant decrease in liver fat fraction for pooled treatment (n = 17) versus placebo (n = 6; -42.2% pooled pegozafermin, -8.3% placebo; 95% CI: -60.9%, -8.7%; P = 0.012), as assessed in a magnetic resonance imaging sub-study. No serious adverse events were observed to be related to the study drug. If these results are confirmed in a phase 3 trial, pegozafermin could be a promising treatment for SHTG (ClinicalTrials.gov registration: NCT0441186).
Collapse
Affiliation(s)
- Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine, Mount Sinai Health System, New York City, NY, USA.
| | - Harold E Bays
- Louisville Metabolic and Atherosclerosis Research Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Michael Miller
- Corporal Michael J. Crescenz VA Medical Center and Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - James E Cain
- Family Medicine Clinic Science, Lampasas, TX, USA
| | | | | | | | | | | | | | | | | | | | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
Xu Y, Shen H, Shi Y, Zhao Y, Zhen X, Sun J, Li X, Zhou D, Yang C, Wang J, Huang X, Wei J, Huang J, Meng H, Yu W, Tong H, Jin J, Xie W. Dyslipidemia in diffuse large B-cell lymphoma based on the genetic subtypes: a single-center study of 259 Chinese patients. Front Oncol 2023; 13:1172623. [PMID: 37384286 PMCID: PMC10299728 DOI: 10.3389/fonc.2023.1172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a kind of highly heterogeneous non-Hodgkin lymphoma, both in clinical and genetic terms. DLBCL is admittedly categorized into six subtypes by genetics, which contain MCD, BN2, EZB, N1, ST2, and A53. Dyslipidemia is relevant to a multitude of solid tumors and has recently been reported to be associated with hematologic malignancies. We aim to present a retrospective study investigating dyslipidemia in DLBCL based on the molecular subtypes. Results This study concluded that 259 patients with newly diagnosed DLBCL and their biopsy specimens were available for molecular typing. Results show that the incidence of dyslipidemia (87.0%, p <0.001) is higher in the EZB subtype than in others, especially hypertriglyceridemia (78.3%, p = 0.001) in the EZB subtype. Based on the pathological gene-sequencing, patients with BCL2 gene fusion mutation are significantly correlative with hyperlipidemia (76.5%, p = 0.006) and hypertriglyceridemia (88.2%, p = 0.002). Nevertheless, the occurrence of dyslipidemia has no remarkable influence on prognosis. Conclusion In summary, dyslipidemia correlates with genetic heterogeneity in DLBCL without having a significant influence on survival. This research first connects lipids and genetic subtypes in DLBCL.
Collapse
|
50
|
Costa MM, Da Silva AP, Santos C, Ferreira J, Mascarenhas MR, Bicho M, Barbosa AP. Influence of the TAS2R38 Gene Single Nucleotide Polymorphisms in Metabolism and Anthropometry in Thyroid Dysfunction. Nutrients 2023; 15:2214. [PMID: 37432370 DOI: 10.3390/nu15092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
The gene TAS2R38 single nucleotide polymorphisms (SNPs-P49A, A262V and V296I) can condition bitter tasting by PAV (proline-alanine-valine) and non-bitter-tasting by AVI (alanine-valine-isoleucine) homozygosity. We evaluated this polymorphisms association with thyroid function, metabolism and anthropometry parameters determined by: Endpoint analysis (SNPs); DXA (fat mass-%, total fat mass-kg, lean mass-kg); Standard methods (lipid metabolism parameters, HbA1c-%, glycemia-mg/dL, insulinemia-µIU/mL, HOMA-IR, uricemia-mg/dL, calcemia-mg/dL and BMI-kg/m2); ELISA (leptinemia-ng/mL); Spectrophotometry (Angiotensin Converting Enzyme activity-UI/L). Statistics: SPSS program; OR [IC95%]; p < 0.05. Sample: 114 hypothyroid, 49 hyperthyroid, and 179 controls. An association between A262V-valine-valine and hypothyroidism/hyperthyroidism was verified (OR = 2.841; IC95% [1.726-4.676]), p < 0.001/OR = 8.915; IC95% [4.286-18.543]), p < 0.001). Protector effect from thyroid dysfunction: A262V-alanine-valine (OR = 0.467; IC95% [0.289-0.757], p = 0.002/OR = 0.132; IC95% [0.056-0.309], p < 0.001) and PAV (OR = 0.456; IC95% [0.282-0.737], p = 0.001/OR = 0.101; IC95% [0.041-0.250], p < 0.001). Higher parameter values associated with genotypes were: fat-mass-% (V296I-valine-isoleucine), lean-mass (P49A-proline-proline; PVI), leptin (AVI), HbA1c (A262V-alanine-valine) and lower values in lean-Mass (AVI; PVV), leptin (A262V-alanine-alanine), HbA1c (PVV), uricemia (V296I-valine-isoleucine), glycemia (A262V-alanine-alanine; AAV) and plasma triglycerides (PVV). In conclusion, TAS2R38 influences thyroid function, body composition and metabolism. Bitter taste perception (PAV) and the genotype A262V-alanine-valine can protect from thyroid dysfunction. AVV, PVV and genotype A262V-valine-valine may confer higher predisposition for thyroid dysfunction, particularly PVV for hyperthyroidism.
Collapse
Affiliation(s)
- Marta Mendes Costa
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
| | - Alda Pereira Da Silva
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
- Faculty of Medicine, University Clinic for General and Family Medicine, Lisbon University,1649-028 Lisbon, Portugal
| | - Carolina Santos
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
| | - Joana Ferreira
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
| | - Mário Rui Mascarenhas
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
- Clinic of Endocrinology (CEDML), Diabetes and Metabolism of Lisbon Lda, 1050-017 Lisbon, Portugal
| | - Manuel Bicho
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
- Institute for Scientific Research Bento Rocha Cabral, Calçada Bento da Rocha Cabral 14, 1250-012 Lisbon, Portugal
| | - Ana Paula Barbosa
- Ecogenetics and Human Health Unity, Institute for Environmental Health (ISAMB), Genetics Laboratory, Associate Laboratory TERRA, Faculty of Medicine, Lisbon University, 1649-028 Lisbon, Portugal
- Clinic of Endocrinology (CEDML), Diabetes and Metabolism of Lisbon Lda, 1050-017 Lisbon, Portugal
- Faculty of Medicine, University Clinic of Endocrinology, Lisbon University, 1649-028 Lisbon, Portugal
| |
Collapse
|