1
|
Tetzlaff EJ, Richards BJ, Wagar KE, Harris-Mostert RC, Journeay WS, O'Connor FK, Kenny GP. A Content Analysis of Web-Based Heat Stress Materials Published by Occupational Health and Safety Ministries, Associations, and Agencies in Canada. New Solut 2024:10482911241298948. [PMID: 39703049 DOI: 10.1177/10482911241298948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An ever-increasing number of workplaces are becoming heat-exposed due to rising temperature extremes. However, a comprehensive review of Canadian safety materials available to support workplaces in managing this critical hazard has not previously been conducted. We undertook a review and a content analysis of heat stress materials on safety-based ministry, association, and agency websites in Canada (n = 155) to identify content related to heat stress (n = 595). Each document was qualitatively analyzed using NVivo. The most dominant components identified were heat stress control measures (n = 492, 83%), training and education (n = 414, 70%), workplaces and workers at risk (n = 361, 61%), exposure limits and monitoring practices (n = 344, 58%), and emergency response and reporting (n = 249, 42%). However, the content within these programming components was highly variable. While we found that organizations across Canada provide heat stress content, there was evidence of inconsistencies and considerable gaps in the availability of material and the strategies presented to control the critical risk posed by heat.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Brodie J Richards
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Katie E Wagar
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | | | - W Shane Journeay
- Department of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
- Providence Healthcare - Unity Health Toronto, Toronto, ON, Canada
| | - Fergus K O'Connor
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Yezli S, Yassin Y, Ghallab S, Abdullah M, Abuyassin B, Vishwakarma R, Bouchama A. Diagnosing and managing heat exhaustion: insights from a systematic review of cases in the desert climate of Mecca. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:729-736. [PMID: 37535673 DOI: 10.1515/reveh-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
Heat exhaustion (HE) is a common, yet obscure, heat-related illness that affects millions of people yearly and its burden is projected to rise due to climate change. A comprehensive literature synthesis is lacking despite previous studies on various HE aspects. This systematic review aims to fill this gap by identifying and synthesizing available evidence on the risk factors, symptoms, biomarkers, treatment options, and outcomes for HE. The review focused on HE during the Muslim (Hajj) pilgrimage where the condition is endemic. We conducted a structured search of MEDLINE/PubMed, Embase, Web of Science Core Collection, SCOPUS, and CINAHL databases. We summarized the data from eligible studies and synthesized them in narrative form using pooled descriptive statistics. Ten studies were included between 1980 and 2019, reporting over 1,194 HE cases. HE cases presented with elevated core temperature (up to 40°C) and mainly affected older males from the Middle East and North Africa region, with overweight individuals at a higher risk. Clinical symptoms included hyperventilation, fatigue, dizziness, headaches, nausea, and vomiting, but not central nervous system disturbances. HE was associated with cardiac stress, and with water, electrolyte, and acid-base alterations. Cooling and hydration therapy were the primary management strategies, leading to a low mortality rate (pooled case fatality rate=0.11 % [95 % CI: 0.01, 0.3]). Most cases recovered within a few hours without complications. HE is associated with cardiac stress and changes in homeostasis, leading to distinct clinical symptoms. Early diagnosis and treatment of HE are crucial in reducing the risk of complications and mortality. The review provides insights into the pathophysiology and outcomes of HE, adding to the scarce literature on the subject. Prospero registration number: CRD42022325759.
Collapse
Affiliation(s)
- Saber Yezli
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Yara Yassin
- Federation of Saudi Chambers Institute, Federation of Saudi Chambers, Riyadh, Saudi Arabia
| | - Sujoud Ghallab
- Saudi Field Epidemiology Training Program, Assistant Agency of Preventive Health, Ministry of Health, Riyadh, Saudi Arabia
| | - Mashan Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Bisher Abuyassin
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Ramesh Vishwakarma
- Norwich Clinical Trial Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Amorim F, Schlader Z. The kidney under heat stress: a vulnerable state. Curr Opin Nephrol Hypertens 2024:00041552-990000000-00208. [PMID: 39688252 DOI: 10.1097/mnh.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
PURPOSE OF REVIEW This review examines the effects of occupational heat stress on kidney health. It focuses on the role of hyperthermia in the development of acute kidney injury (AKI) and its potential progression to chronic kidney disease of nontraditional etiology (CKDnt). We highlight the physiological mechanisms by which hyperthermia affects kidney function and discuss emerging preventive strategies. RECENT FINDINGS Hyperthermia places the kidneys in a vulnerable state. As body temperature increases, blood flow is directed toward the skin to aid in cooling, diverting it away from internal organs like the kidneys to support blood pressure regulation. At the same time, hyperthermia and dehydration increases energetic demand to promote fluid and electrolyte conservation. Collectively, this can create a localized supply-demand mismatch, resulting in tissue hypoxia that can damage kidney tissues. These findings highlight that heat hyperthermia can lead to subclinical kidney damage, with potential long-term implications for kidney health. SUMMARY Heat-induced AKI is a growing public health concern. Individuals engaged in manual labor with prolonged exposure are at risk of CKDnt. Interventions aimed to prevent hyperthermia show promise in mitigating the risk of AKI. Further research is necessary to refine these strategies and establish evidence-based guidelines for reducing heat-related kidney injuries.
Collapse
Affiliation(s)
- Fabiano Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Zachary Schlader
- Department of Kinesiology
- Nutrition and Exercise Research Center, Indiana University School of Public Health - Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Li W, Wang X, Wu Y, Huang W, Yu W, Yu P, Guo Y, Zhao Q, Geng M, Wang H, Ma W. Temperature variability and influenza incidence in China: Effect modification by ambient fine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136114. [PMID: 39405669 DOI: 10.1016/j.jhazmat.2024.136114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
This study aims to examine the association between temperature variabilit (TV) exposure and influenza incidence in China, and the modification effect of PM2.5 levels. Data on daily influenza cases, weather conditions, and PM2.5 concentrations were collected from 339 cities across mainland China from 2014 to 2019. TV was computed as the standard deviation of daily maximum and minimum temperatures for the current day and the previous several days (i.e., TV0-1 to TV0-7). A space-time-stratified case-crossover design with conditional Poisson regression was employed. Overall, each 1 °C increase in TV0-6 was linked to 3.3 % (95 % CI: 3.1 %, 3.5 %) rise in influenza incidence, potentially attributing 14.73 % (95 % CI: 14.08 %, 15.37 %) of cases to this exposure. PM2.5 concentration showed substantial modification effect on the association, such that the relative risk (RR) of influenza incidence grew from 1.027 (95 % CI: 1.025, 1.029) to 1.040 (95 % CI: 1.038, 1.042) as PM2.5 levels increased from 15 to 75 μg/m³ . Females and individuals over 65 years old were more susceptible to TV exposure and the PM2.5 modification. Stronger effects were observed during cold season and in North region. The findings highlight the integrating considerations of TV and PM2.5 exposures into public health measures for influenza prevention and control.
Collapse
Affiliation(s)
- Wen Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Xin Wang
- Dezhou Center for Disease Control and Prevention, Dezhou, China
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China
| | - Mengjie Geng
- Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Haitao Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China.
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Jinan, Shandong, China.
| |
Collapse
|
5
|
Mazzone A. Thermal comfort and gender affirmation: A virtual ethnography of extreme heat among trans women in Rio de Janeiro. Soc Sci Med 2024; 362:117481. [PMID: 39515223 DOI: 10.1016/j.socscimed.2024.117481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The multisensory experience of feeling hot, breathless, sweaty, and weak during heat spells among transgender people is a critically understudied area in both medical anthropology and thermal comfort research. This article contributes to the anthropology of heat and humidity by intersecting with health and thermal comfort studies. Through virtual ethnography with three trans women in Rio de Janeiro in 2021 and 2022, the research reveals that trans women in the city face heightened risks of heat stress and thermal discomfort due to unsafe living conditions, side effects of gender-affirming modifications, and social discrimination. These findings highlight the urgent need to address the specific challenges transgender individuals face in accessing thermal safety and underscore the importance of considering their unique needs.
Collapse
Affiliation(s)
- Antonella Mazzone
- University of Bristol, 43 Woodland Rd, Bristol BS8 1TH, United Kingdom.
| |
Collapse
|
6
|
O'Connor FK, Meade RD, Notley SR, Ioannou LG, Flouris AD, Kenny GP. Agreement between measured and self-reported physiological strain in young adults and older adults with and without common chronic diseases during simulated occupational heat stress. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:869-877. [PMID: 39447152 DOI: 10.1080/15459624.2024.2406227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
While monitoring physiological strain is recommended to safeguard workers during heat exposure, it is logistically challenging. The perceptual strain index (PeSI) is a subjective estimate thought to reflect the physiological strain index (PSI) that requires no direct monitoring. However, advanced age and chronic diseases (hypertension/type 2 diabetes [T2D]) influence the perception of heat stress, potentially limiting the utility of the PeSI. We therefore assessed whether the relation and agreement between the PeSI and PSI during simulated work in various environmental conditions is modified by age and T2D/hypertension. Thirteen young adults and 37 older adults without (n = 14) and with T2D (n = 10) or hypertension (n = 13) walked on a treadmill (∼200 W/m2) for 180 min or until termination (volitional fatigue, rectal temperature ≥39.5 °C) in 16, 24, 28, and 32 °C wet-bulb globe temperatures. Rectal temperature and heart rate were recorded to calculate PSI (0-10 scale). Rating of perceived exertion and thermal sensation were recorded to calculate PeSI (0-10 scale). The relation between hourly PSI and PeSI was assessed via linear mixed models. Mean bias (95% limits of agreement [LoA]) between PSI and PeSI was assessed via Bland-Altman analysis. PSI increased with PeSI (p < 0.001), but the slope of this relation was not different between young and older adults (p = 0.189) or as a function of chronic disease (within older adults; p = 0.183). The mean bias between PSI and PeSI was small (0.02), but the 95% LoA was wide (-3.3-3.4). Together, a linear relation between PeSI and PSI was observed but agreement between these measures varied considerably across individuals and thus PeSI should not be used as a surrogate marker of PSI. Caution should be taken when utilizing the PeSI to estimate physiological strain on workers.
Collapse
Affiliation(s)
- Fergus K O'Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonidas G Ioannou
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Makar A, Al-Hemoud A, Khraishah H, Berry J, Alahmad B. A Review of the Links Between Work and Heart Disease in the 21st Century. Methodist Debakey Cardiovasc J 2024; 20:71-80. [PMID: 39525380 PMCID: PMC11546313 DOI: 10.14797/mdcvj.1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the multifaceted exposures in the workplace that contribute to cardiovascular diseases (CVD), including physical, ergonomics, chemical, biological, psychosocial, and emerging occupational hazards. These well-documented occupational hazards have long been linked to heart disease. Exposures arising from these hazards present significant concerns for worker health and safety. Moreover, heat stress is an emerging and increasingly pervasive threat, exacerbated by climate change, particularly in outdoor, high-exposure industries like agriculture and construction. While the epidemiological links between heat and CVD are well established, there is a critical gap in research on the physiological impacts of heat on workers' cardiovascular health. In particular, migrant workers are especially vulnerable to these occupational hazards, particularly in the absence of targeted, equitable interventions. As global temperatures rise, addressing these occupational exposures is important for protecting the cardiovascular health of the workforce and the expanding field of occupational cardiology.
Collapse
Affiliation(s)
- Andrew Makar
- Sargent College of Health & Rehabilitation, Boston University, Boston, Massachusetts, US
| | - Ali Al-Hemoud
- Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | | | - Jacob Berry
- Aerospace and Occupational Medicine, United States Air Force, Washington, DC, US
| | - Barrak Alahmad
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, US
| |
Collapse
|
8
|
Alemayehu Ali E, Cox B, Van de Vel K, Verachtert E, Vaes B, Gabriel Beerten S, Duarte E, Scheerens C, Aerts R, Van Pottelbergh G. Associations of heat with diseases and specific symptoms in Flanders, Belgium: An 8-year retrospective study of general practitioner registration data. ENVIRONMENT INTERNATIONAL 2024; 193:109097. [PMID: 39467480 DOI: 10.1016/j.envint.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Global temperature rise has become a major health concern. Most previous studies on the impact of heat on morbidity have used hospital data. OBJECTIVE This study aimed to quantify the association between ambient temperature and a variety of potentially heat-related medical conditions and symptoms using general practitioner (GP) data, in Flanders, Belgium. METHODS We used eight years (2012-2019) of aggregated data of daily GP visits during the Belgian summer period (May-September). A distributed lag nonlinear model (DLNM) with time-stratified conditional quasi-Poisson regression was used to account for the non-linear and delayed effect of temperature indicators (minimum, mean and maximum). We controlled for potential confounders such as particulate matter, humidity, and ozone. RESULTS The overall (lag0-14) association between heat and most of the outcomes was J-shaped, with an increased risk of disease observed at higher temperatures. The associations were more pronounced using the minimum temperatures indicator. Comparing the 99th (20 °C) to the minimum morbidity temperature (MMT) of the minimum temperature distribution during summer, the relative risk (RR) was significantly higher for heat-related general symptoms (RR = 1.30 [95 % CI: 1.07, 1.57]), otitis externa (RR = 4.87 [95 % CI:2.98, 7.98]), general heart problems (RR = 2.43 [95 % CI: 1.33, 4.42]), venous problems (RR = 2.48 [95 % CI:1.55, 3.96]), respiratory complaints (RR = 1.97 [95 % CI: 1.25, 3.09]), skin problems (RR = 3.26 [95 % CI: 2.51, 4.25]), and urinary infections (RR = 1.37 [95 % CI: 1.11, 1.69]). However, we did not find evidence for heat-related increases in gastrointestinal problems, cerebrovascular events, cardiovascular events, arrhythmia, mental health problems, upper respiratory problems and lower respiratory problems. An increased risk of allergy was observed when the minimum temperature reached 17.8 °C (RR = 1.50 [95 % CI: 1.23, 1.83]). Acute effects of heat were observed (largest effects at the first few lags). SUMMARY Our findings indicated that the occurrence of certain symptoms and illnesses during summer season is associated to high temperature or environmental exposures that are augmented by elevated temperatures. Overall, unlike hospitalization data, GP visits data provide broader population coverage, revealing a more accurate representation of heat-health association.
Collapse
Affiliation(s)
- Endale Alemayehu Ali
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium.
| | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Van de Vel
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Els Verachtert
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bert Vaes
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Simon Gabriel Beerten
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Elisa Duarte
- I-BioStat, Data Science Institute, Hasselt University, Campus Diepenbeek, Diepenbeek, Belgium
| | - Charlotte Scheerens
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Raf Aerts
- Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium; Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| | - Gijs Van Pottelbergh
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| |
Collapse
|
9
|
Schlader ZJ, Tourula E, Lignier MJ. Protecting vulnerable populations in extreme heat - a growing and pervasive health challenge. EBioMedicine 2024; 109:105448. [PMID: 39504722 PMCID: PMC11570735 DOI: 10.1016/j.ebiom.2024.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Zachary J Schlader
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, Indiana, USA; Nutrition and Exercise Research Center, Indiana University School of Public Health - Bloomington, Bloomington, Indiana, USA.
| | - Erica Tourula
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, Indiana, USA
| | - Maxime Jeanovitch Lignier
- Department of Kinesiology, Indiana University School of Public Health - Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
10
|
Shin SH, Walker SL, Ji H, Lee HY. Performance Under Fire: Older Adult Cognitive Risks and Protections Under Heat Strain. THE GERONTOLOGIST 2024; 64:gnae116. [PMID: 39166357 PMCID: PMC11467403 DOI: 10.1093/geront/gnae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although extreme heat events disproportionately affect older adults and the importance of cognition is known, research examining older adult cognition under heat stress is limited. This study examines the relationship between risk/protective factors and heat strain on older adult cognition, employing a social-ecological model. RESEARCH DESIGN AND METHODS Retrieved from the 1996-2016 waves of the Health and Retirement Study, our study used older adults aged 50 and older and their spouses residing in the United States. Individual-fixed effects models estimated changes in cognition as measured by fluid and crystallized intelligence scores in response to extreme heat days. This study further estimated interactions of extreme heat with protective/risk factors for cognition (i.e., education, physical activity, social engagement, and genetic risk for Alzheimer's disease). RESULTS Our results demonstrated that extreme heat days were associated with fluid but not crystallized intelligence scores. Educational attainment, mild physical activity, and social contacts with children moderated this relationship. Furthermore, Alzheimer's disease polygenic scores moderated the correlation between extreme heat days and crystallized intelligence scores. DISCUSSION AND IMPLICATIONS An increasing frequency of extreme heat events and an aging population globally highlight the need for policies and interventions building resiliency in older adults. Actions promoting the protective modifiable behaviors to older adult cognition identified by our study can lead to healthier individuals and communities.
Collapse
Affiliation(s)
- Su Hyun Shin
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, Utah, USA
| | - Susan Lee Walker
- Department of Family and Consumer Studies, University of Utah, Salt Lake City, Utah, USA
| | - Hyunjung Ji
- Department of Political Science, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Hee Yun Lee
- School of Social Work, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
11
|
Mendrinos A, O'Brien J, Davis M, Baldwin A, Zaitchik BF, Britton A, Mwanja I, Gohlke JM. Association between summertime emergency department visits and maximum daily heat index in rural and non-rural areas of Virginia (2015-2022). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174753. [PMID: 39025140 DOI: 10.1016/j.scitotenv.2024.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
There is growing evidence that high ambient temperatures are associated with a range of adverse health outcomes. Further evidence suggests differences in rural versus non-rural populations' vulnerability to heat-related adverse health outcomes. The current project aims to 1) refine estimated associations between maximum daily heat index (HI) and emergency department (ED) visits in regions of Virginia, and 2) compare associations between maximum daily HI and ED visits in rural versus non-rural areas of Virginia and within those areas, for persons 65 years of age and older versus those younger than 65 years. Our study utilized 16,873,213 healthcare visits from Virginia facilities reporting to the Virginia Department of Health syndromic surveillance system between May and September 2015-2022. Federal Office of Rural Health Policy defined rural areas were assigned to patient home ZIP code. The estimated daily maximum HI at which ED visits begin to rise varies between 25 °C and 33 °C across climate zones and regions of Virginia. Across all regions, estimated ED visits attributable to days with maximum HI above 25.7 °C were higher in rural areas (3.7%, 95% CI: 3.5%, 3.9%) versus in non-rural areas (3.1%, 95% CIs: 3.0%, 3.2%). Patients aged 0-64 years had a higher estimated heat attributable fraction of ED visits (4.2%, 95% CI: 4.0%, 4.3%) than patients 65 years and older (3.1%, 95% CI: 2.9%, 3.4%). Rural patients older than 65 have a higher estimated fraction of heat attributable ED visits (2.7%, 95% CI: 2.2%, 3.1%) compared to non-rural patients 65 years and older (1.5%, 95% CI: 1.3%, 1.8%). State-level syndromic surveillance data can be used to optimize heat warning messaging based on expected changes in healthcare visits given a set of meteorological variables, and can be further refined based on climate, rurality and age.
Collapse
Affiliation(s)
- Antonia Mendrinos
- Department of Population Health Sciences, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Janice O'Brien
- Department of Population Health Sciences, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Meredith Davis
- Office of Epidemiology, Virginia Department of Health, Richmond, VA, USA
| | - Alexandra Baldwin
- Office of Epidemiology, Virginia Department of Health, Richmond, VA, USA
| | - Benjamin F Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Annie Britton
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Immaculata Mwanja
- Geospatial Data Services, University Libraries, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Polytechnic and State University, Blacksburg, VA, USA.
| |
Collapse
|
12
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2024:10.1007/s00421-024-05623-y. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Roths M, Rudolph TE, Krishna S, Michael A, Selsby JT. One day of environment-induced heat stress damages the murine myocardium. Am J Physiol Heart Circ Physiol 2024; 327:H978-H988. [PMID: 39212770 PMCID: PMC11482254 DOI: 10.1152/ajpheart.00180.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The physiological consequences of environment-induced heat stress (EIHS), caused by prolonged exposure to excess heat and humidity, are largely unknown. The purpose of this investigation was to determine the extent to which EIHS alters cardiac health. We hypothesized that 24 h of EIHS would cause cardiac injury and cellular dysfunction in a murine EIHS model. To test this hypothesis, 7-wk-old female mice were housed under thermoneutral (TN) conditions (n = 12; 31.2 ± 1.01°C, 35 ± 0.7% humidity) or EIHS conditions (n = 14; 37.6 ± 0.01°C, 42.0 ± 0.06% humidity) for 24 h. Environment-induced heat stress increased rectal temperature by 2.1°C (P < 0.01) and increased subcutaneous temperature by 1.8°C (P < 0.01). Body weight was decreased by 10% (P = 0.03), heart weight/body weight was increased by 26% (P < 0.01), and tissue water content was increased by 11% (P < 0.05) in EIHS compared with TN. In comparison with TN, EIHS increased protein abundance of heat shock protein (HSP) 27 by 84% (P = 0.01); however, HSPs 90, 60, 70, and phosphorylated HSP 27 were similar between groups. Histological inspection of the heart revealed that EIHS animals had increased myocyte vacuolation in the left ventricle (P = 0.01), right ventricle (P < 0.01), and septum (P = 0.01) compared with TN animals. Biochemical indices are suggestive of mitochondrial remodeling, increased autophagic flux, and robust activation of endoplasmic reticulum stress in hearts from EIHS mice compared with TN mice. These data demonstrate that 1 day of EIHS is sufficient to induce myocardial injury and biochemical dysregulation.NEW & NOTEWORTHY The consequences of prolonged environment-induced heat stress (EIHS) on heart health are largely unknown. We discovered that a 24-h exposure to environmental conditions sufficient to cause EIHS resulted in cardiac edema and histopathologic changes in the right and left ventricles. Furthermore, among other biochemical changes, EIHS increased autophagic flux and caused endoplasmic reticulum stress. These data raise the possibility that thermic injury, even when insufficient to cause heat stroke, can damage the myocardium.
Collapse
Affiliation(s)
- Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Veterinary Diagnostic Laboratory, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
14
|
Lee BJ, Flood TR, Russell SL, McCormick JJ, Fujii N, Kenny GP. Impacts of age, type 2 diabetes, and hypertension on circulating neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 after prolonged work in the heat in men. Eur J Appl Physiol 2024; 124:2923-2939. [PMID: 38753017 DOI: 10.1007/s00421-024-05505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/05/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Prolonged work in the heat increases the risk of acute kidney injury (AKI) in young men. Whether aging and age-associated chronic disease may exacerbate the risk of AKI remains unclear. METHODS We evaluated plasma neutrophil gelatinase-associated lipocalin (NGAL) and serum kidney injury molecule-1 (KIM1) before and after 180 min of moderate-intensity work (200 W/m2) in temperate (wet-bulb globe temperature [WBGT] 16 °C) and hot (32 °C) environments in healthy young (n = 13, 22 years) and older men (n = 12, 59 years), and older men with type 2 diabetes (T2D; n = 9, 60 years) or hypertension (HTN; n = 9, 60 years). RESULTS There were no changes in NGAL or KIM1 concentrations following prolonged work in temperate conditions in any group. Despite a similar work tolerance, the relative change in NGAL was greater in the older group when compared to the young group following exercise in the hot condition (mean difference + 82 ng/mL; p < 0.001). Baseline concentrations of KIM1 were ~ 22 pg/mL higher in the older relative to young group, increasing by ~ 10 pg/mL in each group after exercise in the heat (both p ≤ 0.03). Despite a reduced work tolerance in the heat in older men with T2D (120 ± 40 min) and HTN (108 ± 42 min), elevations in NGAL and KIM1 were similar to their healthy counterparts. CONCLUSION Age may be associated with greater renal stress following prolonged work in the heat. The similar biomarker responses in T2D and HTN compared to healthy older men, alongside reduced exercise tolerance in the heat, suggest these individuals may exhibit greater vulnerability to heat-induced AKI if work is prolonged.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Sophie L Russell
- Clinical Sciences and Translational Medicine Theme, Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
15
|
Sixtus RP, Gray C, Barnes H, Paterson ESJ, Berry MJ, Dyson RM. Cardiovascular responses to heat and cold exposure are altered by preterm birth in guinea pigs. Physiol Rep 2024; 12:e70098. [PMID: 39435736 PMCID: PMC11494451 DOI: 10.14814/phy2.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Adversity early in life can modify the trajectory for disease risk extending decades beyond the event. Preterm birth produces persistent cardiovascular alterations that may appear maladaptive in adulthood. We have previously hypothesized that those born preterm may exhibit cardiovascular vulnerability in the climate change context. Further, this vulnerability may be present as early as childhood. We aimed to identify the early signs of cardiovascular dysfunction at childhood-equivalent age using our animal model of preterm birth. Using a whole-body thermal stress test, guinea pigs aged 35-d and 38-d (equivalent to 8-10-year-old children) and born at term or preterm gestations were exposed to progressive hyper- (TC = 41.5°C) and hypo-thermia (TC = 34°C; normothermia TC = 39°C). Comprehensive cardiovascular monitoring included ECG, blood pressure, microvascular perfusion, blood gas, and catecholamine profile, as well as skin and core body temperature. Preterm-born animals exhibited attenuated vascular responses to hyperthermic stress, and a significant elevation in systolic blood pressure in response to hypothermic stress. Such responses are similar to those observed in elderly populations and indicate the presence of cardiovascular dysfunction. This is the first study to demonstrate the impact of preterm birth on the cardiovascular response to both heat and cold stress. Further, this dysfunction has been observed at an earlier age than that achievable using traditional stress testing techniques. The present findings warrant further investigation.
Collapse
Affiliation(s)
- Ryan Phillip Sixtus
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
- Present address:
Department of Biological and Life SciencesCardiff UniversityWalesUK
| | - Clint Gray
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Heather Barnes
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | | | - Mary Judith Berry
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Rebecca Maree Dyson
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
16
|
Requia WJ, Damasceno da Silva RM, Hoinaski L, Amini H. Thermal Comfort Conditions and Mortality in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1248. [PMID: 39338131 PMCID: PMC11431699 DOI: 10.3390/ijerph21091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Conventional temperature-based approaches often overlook the intricate nature of thermal stress experienced by individuals. To address this limitation, climatologists have developed thermal indices-composite measures designed to reflect the complex interaction of meteorological factors influencing human perception of temperature. Our study focuses on Brazil, estimating the association between thermal comfort conditions and mortality related to respiratory and circulatory diseases. We examined four distinct thermal indices: the discomfort index (DI), net effective temperature (NET), humidex (H), and heat index (HI). Analyzing a comprehensive dataset of 2,872,084 deaths from 2003 to 2017, we found significant variation in relative risk (RR) based on health outcomes, exposure lag, percentile of exposure, sex/age groups, and specific thermal indices. For example, under high exposure conditions (99th percentile), we observed that the shorter lags (3, 5, 7, and 10) had the most robust effects on all-cause mortality. For example, under lag 3, the pooled national results for the overall population (all ages and sexes) indicate an increased risk of all-cause mortality, with an RR of 1.17 (95% CI: 1.13; 1.122) for DI, 1.15 (95% CI: 1.12; 1.17) for H, 1.15 (95% CI: 1.09; 1.21) for HI, and 1.18 (95% CI: 1.13; 1.22) for NET. At low exposure levels (1st percentile), all four distinct thermal indices were linked to an increase in all-cause mortality across most sex and age subgroups. Specifically, for lag 20, we observed an estimated RR of 1.19 (95% CI: 1.14; 1.23) for DI, 1.12 (95% CI: 1.08; 1.16) for H, 1.17 (95% CI: 1.12; 1.22) for HI, and 1.18 (95% CI: 1.14; 1.23) for NET. These findings have important implications for policymakers, guiding the development of measures to minimize climate change's impact on public health in Brazil.
Collapse
Affiliation(s)
- Weeberb J. Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getulio Vargas, Brasilia 72125590, Brazil;
| | - Reizane Maria Damasceno da Silva
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getulio Vargas, Brasilia 72125590, Brazil;
| | - Leonardo Hoinaski
- Sanitary and Enviromental Engineering Department, Universidade Federal de Santa Catarina, Florianópolis 88040600, Brazil;
| | - Heresh Amini
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
17
|
O’Connor FK, McGarr GW, McCourt ER, Meade RD, Kenny GP. Foot immersion with and without neck cooling reduces self-reported environmental symptoms in older adults exposed to simulated indoor overheating. Temperature (Austin) 2024; 11:318-332. [PMID: 39583896 PMCID: PMC11583589 DOI: 10.1080/23328940.2024.2394341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 11/26/2024] Open
Abstract
While foot immersion and neck cooling have been recommended for protecting heat-vulnerable groups, recent evidence does not support their efficacy for mitigating increases in physiological heat strain in older adults. However, their influence on self-reported environmental symptoms and mood-state remains unclear. Seventeen older adults (nine females, median [interquartile range] age: 72 [69-74]) completed three randomized heat exposures (6-h; 38°C, 35% relative humidity) with no cooling (control), foot immersion to mid-calf in 20°C water for the final 40-min of each hour (foot immersion), or foot immersion with a wet towel (20°C) around the neck (foot immersion with neck cooling). Core temperature, skin temperature, and heart rate areas under the curve (AUC) were assessed as indicators of cumulative physiological strain. Environmental symptom scores (68-item environmental symptoms questionnaire) and mood disturbance (40-item profile of mood states questionnaire) were evaluated at end-heating (adjusted for pre-exposure). Core temperature AUC was not different between conditions (p = 0.418). However, the skin temperature and heart rate AUCs were 11.8°C · h [95% confidence interval: 8.1, 15.5] and 12.5 bpm · h [0.1, 24.8] lower for foot immersion and 16.6°C · h [12.9, 20.3] and 19.6 bpm · h [7.2, 32.0] lower for foot immersion with neck cooling compared to control (p ≤ 0.032). Environmental symptom scores were 0.8-fold [0.6, 1.0] lower for both foot immersion with and without neck cooling, compared to control (both p = 0.036). Mood disturbance was not different between conditions (both p ≥ 0.275). Foot immersion with and without neck cooling reduces self-reported environmental symptoms in older adults despite having little effect on physiological heat strain.
Collapse
Affiliation(s)
- Fergus K. O’Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Emma R. McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
18
|
Lee BJ, Russell SL, Meade RD, McCormick JJ, King KE, Kenny GP. Markers of enterocyte damage, microbial translocation, and systemic inflammation following 9 h of heat exposure in young and older adults. Appl Physiol Nutr Metab 2024; 49:1241-1251. [PMID: 38772045 DOI: 10.1139/apnm-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Heat stress induced damage to the gastrointestinal barrier can induce local and systemic inflammatory reactions implicated in heat-stroke. Gastrointestinal barrier damage has been shown to be greater in older relative to young adults following hyperthermia. However, comparisons between young and older adults have been limited to brief exposures (3 h), which may not reflect the duration of heat stress experienced during heat waves. We therefore evaluated markers of intestinal epithelial damage (log transformed intestinal fatty acid binding protein, IFABPLOG), microbial translocation (soluble cluster of differentiation 14, sCD14LOG), and systemic inflammation (tumour necrosis factor alpha, TNF-αLOG; interleukin 6, IL-6LOG; C-reactive protein, CRP) in 19 young (interquartile range: 21-27 years; 10 females) and 37 older (68-73 years; 10 females) adults before and after 9 h of rest in 40 °C (9% relative humidity). The magnitude of the increase in IFABPLOG was 0.38 log pg/mL (95% CI, 0.10, 0.65 log pg/mL) greater in the older relative to young cohort (P = 0.049) after 9 h heat exposure. At baseline both IL-6LOG and CRP concentrations were higher in the older (IL-6: 2.67 (1.5) log pg/mL, CRP: 0.28 (1.5) mg/mL) relative to the young (IL-6: 1.59 log pg/mL, SD 1.2; CRP: 0.11 mg/mL, SD 1.7) group (both P ≤ 0.001). The change in IL-6 and CRP was similar between groups following 9 h heat exposure (IL-6: P = 0.053; CRP: P = 0.241). Neither sCD14LOG and TNF-αLOG were different between groups at baseline nor altered after 9 h heat exposure. Our data indicate that age may modify intestinal epithelial injury following 9 h of passive heat exposure.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport, Exercise Sciences, Coventry University, United Kingdom
| | - Sophie L Russell
- Clinical Sciences and Translational Medicine, Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
19
|
Ovienmhada U, Hines‐Shanks M, Krisch M, Diongue AT, Minchew B, Wood DR. Spatiotemporal Facility-Level Patterns of Summer Heat Exposure, Vulnerability, and Risk in United States Prison Landscapes. GEOHEALTH 2024; 8:e2024GH001108. [PMID: 39318424 PMCID: PMC11421043 DOI: 10.1029/2024gh001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Heat is associated with increased risk of morbidity and mortality. People who are incarcerated are especially vulnerable to heat exposure due to demographic characteristics and their conditions of confinement. Evaluating heat exposure in prisons, and the characteristics of exposed populations and prisons, can elucidate prison-level risk to heat exposure. We leveraged a high-resolution air temperature data set to evaluate short and long-term patterns of heat metrics for 1,614 prisons in the United States from 1990 to 2023. We found that the most heat-exposed facilities and states were mostly in the Southwestern United States, while the prisons with the highest temperature anomalies from the historical record were in the Pacific Northwest, the Northeast, Texas, and parts of the Midwest. Prisons in the Pacific Northwest, the Northeast, and upper Midwest had the highest occurrences of days associated with an increased risk of heat-related mortality. We also estimated differences in heat exposure at prisons by facility and individual-level characteristics. We found higher proportions of non-white and Hispanic populations in the prisons with higher heat exposure. Lastly, we found that heat exposure was higher in prisons with any of nine facility-level characteristics that may modify risk to heat. This study brings together distinct measures of exposure, vulnerability, and risk, which would each inform unique strategies for heat-interventions. Community leaders and policymakers should carefully consider which measures they want to apply, and include the voices of directly impacted people, as the differing metrics and perspectives will have implications for who is included in fights for environmental justice.
Collapse
Affiliation(s)
- Ufuoma Ovienmhada
- Department of Aeronautics and AstronauticsMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | - Michael Krisch
- Brown Institute for Media InnovationColumbia UniversityNew YorkNYUSA
| | - Ahmed T. Diongue
- Department of Aeronautics and AstronauticsMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Brent Minchew
- Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Danielle R. Wood
- Space Enabled Research GroupMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
20
|
Nadeem ZA, Ashraf H, Nadeem A, Kareem R, Ashfaq H, Majid Z, Ashraf A. Trends in mortality due to multiple sclerosis in the United States: A retrospective analysis from 1999 to 2020. Mult Scler Relat Disord 2024; 89:105765. [PMID: 39029341 DOI: 10.1016/j.msard.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory condition with a prevalence of about 309.2 per 100,000 people in the United States. We aim to identify MS-related mortality trends in the USA from 1999 to 2020, stratified by age, sex, race, and geography, and its correlation with sunlight. METHODS Death certificates from the CDC-WONDER database were examined for adults aged ≥25 years. Crude rates (CR) and age-adjusted mortality rates (AAMRs) per 1,000,000 persons and annual percent change (APC) were calculated. We also retrieved data for daily sunlight from 1999 to 2011. RESULTS From 1999 to 2020, a total of 121,694 deaths occurred due to MS. The AAMR rose from 23.6 in 1999 to 29.7 in 2020 (APC 0.65), with a stable trend till 2018 (APC -0.22) followed by an abrupt increase towards 2020 (APC 9.27). Women had higher AAMR than men. Non-Hispanic (NH) Whites exhibited the highest AAMR (28.5), followed by NH Blacks (25.9), NH American Indians/Alaska Natives (9.6), Hispanics or Latino (6.8), and NH Asian or Pacific Islanders (1.9). AAMRs also varied substantially by region (Midwest: 32.4; Northeast: 26.9; West: 26.2; South: 19.4). States with the highest AAMRs were Montana, Wyoming, Colorado, and Oregon. The states with lower daily sunlight had higher AAMRs (r = -0.559, p = 0.000). AAMRs were comparable in urban (25) and rural (26.3) areas. Most deaths occurred in medical facilities (33.92 %) and nursing homes / long-term care (30.80 %), followed by home (27.79 %), and hospice (4.06 %). Adults ≥ 65 years depicted the highest mortality rates (CR 64.4) while adults aged 25 to 44 years showed the lowest rates (CR 4.6). CONCLUSION We found an overall stable trend in MS-related mortality rates in the US till 2018 with a sharp increase thereafter. We observed highest mortality among women and NH White adults, among residents of Midwest and Northeast regions, and among adults ≥ 65 years. Higher disease burden in recent years calls for devising timely policies focused on these high-risk populations.
Collapse
Affiliation(s)
- Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Pakistan
| | - Hamza Ashraf
- Department of Cardiology, Allama Iqbal Medical College, Pakistan
| | - Aimen Nadeem
- Department of Medicine, King Edward Medical University, Pakistan
| | - Rutaab Kareem
- Department of Medicine, King Edward Medical University, Pakistan
| | - Haider Ashfaq
- Department of Medicine, Allama Iqbal Medical College, Pakistan
| | - Zuha Majid
- Department of Medicine, King Edward Medical University, Pakistan
| | - Ali Ashraf
- Government College University, Lahore, Pakistan
| |
Collapse
|
21
|
Crank PJ, O'Lenick CR, Baniassadi A, Sailor DJ, Wilhelmi O, Hayden M. Sociodemographic Determinants of Extreme Heat and Ozone Risk Among Older Adults in 3 Sun Belt Cities. J Gerontol A Biol Sci Med Sci 2024; 79:glae164. [PMID: 39073887 DOI: 10.1093/gerona/glae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Vulnerable populations across the United States are frequently exposed to extreme heat, which is becoming more intense due to a combination of climate change and urban-induced warming. Extreme heat can be particularly detrimental to the health and well-being of older citizens when it is combined with ozone. Although population-based studies have demonstrated associations between ozone, extreme heat, and human health, few studies focused on the role of social and behavioral factors that increase indoor risk and exposure among older adults. METHODS We conducted a household survey that aimed to understand how older adults are affected by extreme heat and ozone pollution inside and outside of their homes across Houston, Phoenix, and Los Angeles. We examine contributing factors to the risk of self-reported health effects using a generalized linear mixed-effects regression model of telephone survey data of 909 older adults in 2017. RESULTS We found an increased occurrence of self-reported symptoms for extreme heat with preexisting respiratory health conditions and a lack of air conditioning access; self-reported ozone symptoms were more likely with preexisting respiratory health conditions. The risk of heat-related symptoms was slightly higher in Los Angeles than Houston and Phoenix. We found several demographic, housing, and behavioral characteristics that influenced the risk of heat- and ozone-related symptoms. CONCLUSIONS The increased risk among older adults based on specific social and behavioral factors identified in this study can inform public health policy and help cities tailor their heat and ozone response plans to the specific needs of this vulnerable population.
Collapse
Affiliation(s)
- Peter J Crank
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada
| | - Cassandra R O'Lenick
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amir Baniassadi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - David J Sailor
- Urban Climate Research Center, Arizona State University, Tempe, Arizona, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, USA
| | - Olga Wilhelmi
- NSF National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Mary Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado-Colorado Springs, Colorado Springs, Colorado, USA
| |
Collapse
|
22
|
Mougin L, Bougault V, Racinais S, Mountjoy ML, Stephenson B, Carter S, James LJ, Mears SA, Taylor L. Environmental challenges facing athletes, stakeholders and spectators at Paris 2024 Olympic and Paralympic Games: an evidence-based review of mitigation strategies and recommendations. Br J Sports Med 2024; 58:870-881. [PMID: 38955507 DOI: 10.1136/bjsports-2024-108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
The upcoming Paris 2024 Olympic and Paralympic Games could face environmental challenges related to heat, air quality and water quality. These challenges will pose potential threats to athletes and impact thousands of stakeholders and millions of spectators. Recognising the multifaceted nature of these challenges, a range of strategies will be essential for mitigating adverse effects on participants, stakeholders and spectators alike. From personalised interventions for athletes and attendees to comprehensive measures implemented by organisers, a holistic approach is crucial to address these challenges and the possible interplay of heat, air and water quality factors during the event. This evidence-based review highlights various environmental challenges anticipated at Paris 2024, offering strategies applicable to athletes, stakeholders and spectators. Additionally, it provides recommendations for Local Organising Committees and the International Olympic Committee that may be applicable to future Games. In summary, the review offers solutions for consideration by the stakeholders responsible for and affected by the anticipated environmental challenges at Paris 2024.
Collapse
Affiliation(s)
- Loïs Mougin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | | | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier Font-Romeu, Montpellier, France
- DMEM, UMR 866 INRAE / University of Montpellier, Montpellier, France
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ben Stephenson
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- UK Sports Institute, Loughborough, UK
| | - Sarah Carter
- Faculty of Health, Exercise and Sports Science, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Muhamad SN, How V, Lim FL, Md Akim A, Karuppiah K, Mohd Shabri NSA. Assessment of heat stress contributing factors in the indoor environment among vulnerable populations in Klang Valley using principal component analysis (PCA). Sci Rep 2024; 14:16265. [PMID: 39009671 PMCID: PMC11251149 DOI: 10.1038/s41598-024-67110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Rising global temperatures can lead to heat waves, which in turn can pose health risks to the community. However, a notable gap remains in highlighting the primary contributing factors that amplify heat-health risk among vulnerable populations. This study aims to evaluate the precedence of heat stress contributing factors in urban and rural vulnerable populations living in hot and humid tropical regions. A comparative cross-sectional study was conducted, involving 108 respondents from urban and rural areas in Klang Valley, Malaysia, using a face-to-face interview and a validated questionnaire. Data was analyzed using the principal component analysis, categorizing factors into exposure, sensitivity, and adaptive capacity indicators. In urban areas, five principal components (PCs) explained 64.3% of variability, with primary factors being sensitivity (health morbidity, medicine intake, increased age), adaptive capacity (outdoor occupation type, lack of ceiling, longer residency duration), and exposure (lower ceiling height, increased building age). In rural, five PCs explained 71.5% of variability, with primary factors being exposure (lack of ceiling, high thermal conductivity roof material, increased building age, shorter residency duration), sensitivity (health morbidity, medicine intake, increased age), and adaptive capacity (female, non-smoking, higher BMI). The order of heat-health vulnerability indicators was sensitivity > adaptive capacity > exposure for urban areas, and exposure > sensitivity > adaptive capacity for rural areas. This study demonstrated a different pattern of leading contributors to heat stress between urban and rural vulnerable populations.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Fang Lee Lim
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Yang X, Xu X, Wang Y, Yang J, Wu X. Heat exposure impacts on urban health: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174650. [PMID: 38986701 DOI: 10.1016/j.scitotenv.2024.174650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The escalating health risks posed by warm weather in urban areas have become a pressing global public health issue. This study undertakes a meta-analysis to evaluate the impact of warm weather on health in urban settings. We comprehensively searched PubMed, Embase, Scopus, and Web of Science for literature published before September 6, 2023, evaluating evidence quality using the Navigation Guide Criteria. We included original studies utilizing high temperatures or heatwaves as exposure metrics and employing observational designs. A meta-analysis was carried out to assess the relative risk (RR) of the association between high temperatures (or heatwaves) and disease outcomes. Out of 12,893 studies identified, 188 met the inclusion criteria for meta-analysis. Results demonstrate a statistically significant association between a 1 °C temperature increase and a 2.1 % elevation in disease-related mortality (RR 1.021 [95 % CI 1.018-1.023]), alongside a 1.1 % increase in morbidity (RR 1.011 [95 % CI 1.007-1.016]). Heatwaves also showed associations with increased total mortality (RR 1.224 [95 % CI 1.186-1.264]) and morbidity (RR 1.038 [95 % CI 1.010-1.066]). Subgroup analyses for diseases, sex, age, climatic zones, countries, and time periods consistently indicated heightened disease-related mortality and morbidity linked to high temperatures. Notably, China's urban population faced an elevated mortality risk (RR 1.027 [95 % CI 1.018-1.036]) compared to other countries (RR 1.021 [95 % CI 1.019-1.024]). Mortality associated with high temperatures after 2007 (RR 1.022 [95 % CI 1.015-1.029]) was higher than before 2007 (RR 1.017 [95 % CI 1.013-1.021]), reflecting increased health risks as the global warming accelerates. Our findings underscore the positive association between rising temperatures and/or heatwaves and adverse health outcomes in urban populations. The widespread exposure to high temperatures amplifies health risks across various diseases, demographics, climates, and countries, with potential exacerbation under ongoing global warming. Further research is imperative to delineate factors influencing altered heat exposure impacts.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Earth System Science, Institute for Global Change Studies, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing 100084, China
| | - Xingyuan Xu
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yize Wang
- Department of Radiology, Hefei Binhu Hospital, Anhui province, Hefei 230092, China
| | - Jun Yang
- Department of Earth System Science, Institute for Global Change Studies, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing 100084, China.
| | - Xingwang Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
25
|
Shaban M, Amer FGM, Shaban MM. The impact of nursing sustainable prevention program on heat strain among agricultural elderly workers in the context of climate change. Geriatr Nurs 2024; 58:215-224. [PMID: 38838403 DOI: 10.1016/j.gerinurse.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study assesses a geriatric nursing-led sustainable heat prevention program for elderly agricultural workers. It targets those aged 60 and above, addressing the heightened risk of heat strain in the era of climate change. METHODS A community-based quasi-experimental design involved 120 elderly agricultural workers, divided into intervention and control groups. The program, spanning three months, included education on hydration, rest, protective clothing, and recognition of heat-related illnesses. RESULTS The intervention led by geriatric nursing professionals showed significant improvements in heat strain metrics. The Heat Strain Score Index (HSSI) and the Observational-Perceptual Heat Strain Risk Assessment (OPHSRA) Index indicated increased safety levels and reduced risk categories among participants. CONCLUSIONS The study demonstrates the effectiveness of a geriatric nursing-led, tailored prevention program in reducing heat strain among elderly agricultural workers. It highlights the crucial role of nursing in adapting healthcare practices to the challenges posed by climate change. TRIAL REGISTRATION ClinicalTrials.gov, ID NCT06192069 retrospectively registered.
Collapse
|
26
|
Davey SL, Lee BJ, Robbins T, Thake CD. Prevalence of occupational heat stress across the seasons and its management amongst healthcare professionals in the UK. APPLIED ERGONOMICS 2024; 118:104281. [PMID: 38581844 DOI: 10.1016/j.apergo.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Occupational heat stress (OHS) is an issue in healthcare facilities (HCFs) in the United Kingdom (UK). The aims of this study were to evaluate perceived levels of OHS during two seasons and its perceived consequences on healthcare professionals (HCPs) and to assess the efficacy of heat stress management (HSM) policies. An anonymous online survey was distributed to HCPs working in HCFs in the UK. The survey returned 1014 responses (87% women). Descriptive statistics and content analysis of survey data identified that OHS in HCFs is frequently experienced throughout the year and concerned most HCPs. Over 90% perceived OHS impairs their performance and 20% reported heat-related absenteeism. Awareness of HSM policies was poor and 73% deemed them not adequate. To help reduce the financial loss and impact on staff performance, health and well-being and patient safety, it is recommended that revisions and widespread dissemination of HSM policies are made.
Collapse
Affiliation(s)
- S L Davey
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport & Exercise Sciences, Research Institute for Health and Wellbeing, Coventry University, Coventry, UK.
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport & Exercise Sciences, Research Institute for Health and Wellbeing, Coventry University, Coventry, UK
| | - Timothy Robbins
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK; Institute of Digital Healthcare, WMG, University of Warwick, Coventry, UK
| | - C D Thake
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport & Exercise Sciences, Research Institute for Health and Wellbeing, Coventry University, Coventry, UK
| |
Collapse
|
27
|
Astolphi Lima C, Alsunaidi S, Lowe S, Hogan DB, Dennett L, Jones CA, Yamamoto S. Exploring the influence of weather variability and climate change on health outcomes in people living with dementia: A scoping review protocol. PLoS One 2024; 19:e0304181. [PMID: 38913693 PMCID: PMC11195938 DOI: 10.1371/journal.pone.0304181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/04/2024] [Indexed: 06/26/2024] Open
Abstract
Environmental factors resulting from climate change and air pollution are risk factors for many chronic conditions including dementia. Although research has shown the impacts of air pollution in terms of cognitive status, less is known about the association between climate change and specific health-related outcomes of older people living with dementia. In response, we outline a scoping review protocol to systematically review the published literature regarding the evidence of climate change, including temperature and weather variability, on health-related quality of life, morbidity, mobility, falls, the utilization of health resources, and mortality among older adults living with dementia. This scoping review will be guided by the framework proposed by Arksey and O'Malley. Electronic search (Medline, Embase, PsycINFO, CINAHL, Scopus, Web of Science) using relevant subject headings and synonyms for two concepts (older people with dementia, weather/ climate change). No publication date or other restrictions will be applied to the search strategy. No language restriction will be applied in order to understand the impact of non-English studies in the literature. Eligible studies must include older adults (65+years) with dementia living in the community and investigate the impacts of climate change and/or weather on their health-related quality of life, morbidity, mobility, falls, use of health resources and mortality. Two independent reviewers will screen abstracts and select those for a full-text review, perform these reviews, select articles for retention, and extract data from them in a standardized manner. This data will then be synthesized and interpreted. OSF registration: DOI: 10.17605/OSF.IO/YRFM8.
Collapse
Affiliation(s)
- Camila Astolphi Lima
- School of Public Health, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Sara Alsunaidi
- School of Public Health, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Samuel Lowe
- School of Public Health, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - David B. Hogan
- Cumming School of Medicine, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Liz Dennett
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - C. Allyson Jones
- Department of Physical Therapy, University of Alberta, Edmonton, AB, Canada
| | - Shelby Yamamoto
- School of Public Health, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Montoro-Ramírez EM, Parra-Anguita L, Álvarez-Nieto C, Parra G, López-Medina IM. Climate change effects in older people's health: A scoping review. J Adv Nurs 2024. [PMID: 38895960 DOI: 10.1111/jan.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Climate change has serious consequences for the morbidity and mortality of older adults. OBJECTIVE To identify the effects of climate change on older people's health. METHODS A scoping review was conducted following the Joanna Briggs Institute guidelines and the PRISMA-ScR checklist. Quantitative research and reports from organizations describing the effects of climate change on older people were selected. RESULTS Sixty-three full-text documents were selected. Heat and air pollution were the two factors that had the most negative effects on cardiovascular and respiratory morbidity and mortality in older people. Mental health and cognitive function were also affected. CONCLUSIONS Climate change affects several health problems in older individuals, especially high temperatures and air pollution. Nursing professionals must have the necessary skills to respond to the climate risks in older adults. More instruments are required to determine nursing competencies on climate change and the health of this population group. PATIENT OF PUBLIC CONTRIBUTION No patient or public contribution.
Collapse
Affiliation(s)
| | - Laura Parra-Anguita
- Department of Nursing, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | - Carmen Álvarez-Nieto
- Department of Nursing, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | - Gema Parra
- Animal Biology, Plant Biology and Ecology Department, University of Jaen, Jaen, Spain
| | | |
Collapse
|
29
|
Li J, Zhang L, Yu S, Hong B, Lin R, Li Q, Jia H, Yang D, Gu C, Jia Q. Source-sink relationships of anthropogenic metal(loid)s from urban catchment to waterway in relation to spatial pattern of urban green infrastructures. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134381. [PMID: 38663296 DOI: 10.1016/j.jhazmat.2024.134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Surface sediment in urban waterways originates from fine topsoil particles within catchments via surface erosion, often bonded with non-degradable metal(loid)s. This study posited that urban green infrastructures (UGIs) can influence anthropogenic metal(loid) transport from catchment topsoil to waterway sediment by retaining moveable particles. In multiply channeled downtown Suzhou, China, UGIs' spatial patterns were examined in relations to metal(loid)s source (catchment topsoil) - sink (waterway surface sediment) dynamics. Anthropogenic metal(loid)s - As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn - were spatially quantified in sediment at 144 waterway points and in topsoil at 154 UGIs' points across 7 subwatersheds. Integrated metal(loid) loads revealed significantly higher sediment loads (except for As) than topsoil, varying with element specificity and spatial unmatching across the subwatersheds. Loads of metal(loid)s in topsoil showed no significant differences among UGI types, but sediment loads of As, Cr, and Ni correlated positively with topsoil loads in roadside and public facility UGIs within 100 m- and 200 m-wide riparian buffer zones. However, waterfront UGIs negatively impacted on these correlations for Cr, Hg, and Ni loads within the riparian buffer zones. These findings highlight metal(loid) specificity and UGIs' spatial pattern effects on anthropogenic metal(loid) loads between catchment topsoil (source) and waterway surface sediment (sink), offering valuable guidelines for UGIs' design and implementation.
Collapse
Affiliation(s)
- Juan Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China.
| | - Bing Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Xiamen Key Laboratory of Smart Management on the Urban Environment, Xiamen 361021, China
| | - Ruihan Lin
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qi Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Dawen Yang
- Tsinghua University, Beijing 100084, China
| | | | - Qimeng Jia
- Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Kenny GP, Tetzlaff EJ, Journeay WS, Henderson SB, O’Connor FK. Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events. Temperature (Austin) 2024; 11:203-246. [PMID: 39193048 PMCID: PMC11346563 DOI: 10.1080/23328940.2024.2361223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 08/29/2024] Open
Abstract
The likelihood of exposure to overheated indoor environments is increasing as climate change is exacerbating the frequency and severity of hot weather and extreme heat events (EHE). Consequently, vulnerable populations will face serious health risks from indoor overheating. While the relationship between EHE and human health has been assessed in relation to outdoor temperature, indoor temperature patterns can vary markedly from those measured outside. This is because the built environment and building characteristics can act as an important modifier of indoor temperatures. In this narrative review, we examine the physiological and behavioral determinants that influence a person's susceptibility to indoor overheating. Further, we explore how the built environment, neighborhood-level factors, and building characteristics can impact exposure to excess heat and we overview how strategies to mitigate building overheating can help reduce heat-related mortality in heat-vulnerable occupants. Finally, we discuss the effectiveness of commonly recommended personal cooling strategies that aim to mitigate dangerous increases in physiological strain during exposure to high indoor temperatures during hot weather or an EHE. As global temperatures continue to rise, the need for a research agenda specifically directed at reducing the likelihood and impact of indoor overheating on human health is paramount. This includes conducting EHE simulation studies to support the development of consensus-based heat mitigation solutions and public health messaging that provides equitable protection to heat-vulnerable people exposed to high indoor temperatures.
Collapse
Affiliation(s)
- Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily J. Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - W. Shane Journeay
- Departments of Medicine and Community Health and Epidemiology, Dalhousie Medicine New Brunswick and Dalhousie University, Saint John, NB, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
- Department of Rehabilitative Care, Providence Healthcare-Unity Health Toronto, Toronto, ON, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
- National Collaborating Centre for Environmental Health, Vancouver, BC, Canada
| | - Fergus K. O’Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Gao Y, Lin L, Yin P, Kan H, Chen R, Zhou M. Heat Exposure and Dementia-Related Mortality in China. JAMA Netw Open 2024; 7:e2419250. [PMID: 38941091 PMCID: PMC11214125 DOI: 10.1001/jamanetworkopen.2024.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
Importance Although existing research has found daily heat to be associated with dementia-related outcomes, there is still a gap in understanding the differing associations of nighttime and daytime heat with dementia-related deaths. Objectives To quantitatively assess the risk and burden of dementia-related deaths associated with short-term nighttime and daytime heat exposure and identify potential effect modifications. Design, Setting, and Participants This case-crossover study analyzed individual death records for dementia across all mainland China counties from January 1, 2013, to December 31, 2019, using a time-stratified case-crossover approach. Statistical analysis was conducted from January 1, 2013, to December 31, 2019. Exposures Two novel heat metrics: hot night excess (HNE) and hot day excess (HDE), representing nighttime and daytime heat intensity, respectively. Main Outcomes and Measures Main outcomes were the relative risk and burden of dementia-related deaths associated with HNE and HDE under different definitions. Analysis was conducted with conditional logistic regression integrated with the distributed lag nonlinear model. Results The study involved 132 573 dementia-related deaths (mean [SD] age, 82.5 [22.5] years; 73 086 women [55.1%]). For a 95% threshold, the median hot night threshold was 24.5 °C (IQR, 20.1 °C-26.2 °C) with an HNE of 3.7 °C (IQR, 3.1 °C-4.3 °C), and the median hot day threshold was 33.3 °C (IQR, 29.9 °C-34.7 °C) with an HDE of 0.6 °C (IQR, 0.5 °C-0.8 °C). Both nighttime and daytime heat were associated with increased risk of dementia-related deaths. Hot nights' associations with risk of dementia-related deaths persisted for 6 days, while hot days' associations with risk of dementia-related deaths extended over 10 days. Extreme HDE had a higher relative risk of dementia-related deaths, with a greater burden associated with extreme HNE at more stringent thresholds. At a 97.5% threshold, the odds ratio for dementia-related deaths was 1.38 (95% CI, 1.22-1.55) for extreme HNE and 1.46 (95% CI, 1.27-1.68) for extreme HDE, with an attributable fraction of 1.45% (95% empirical confidence interval [95% eCI], 1.43%-1.47%) for extreme HNE and 1.10% (95% eCI, 1.08%-1.11%) for extreme HDE. Subgroup analyses suggested heightened susceptibility among females, individuals older than 75 years of age, and those with lower educational levels. Regional disparities were observed, with individuals in the south exhibiting greater sensitivity to nighttime heat and those in the north to daytime heat. Conclusions and Relevance Results of this nationwide case-crossover study suggest that both nighttime and daytime heat are associated with increased risk of dementia-related deaths, with a greater burden associated with nighttime heat. These findings underscore the necessity of time-specific interventions to mitigate extreme heat risk.
Collapse
Affiliation(s)
- Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Lin Lin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Goulet N, Tetzlaff EJ, McCormick JJ, King KE, Janetos KMT, Sigal RJ, Boulay P, Kenny GP. Greater hyperthermia in men with type 2 diabetes does not lead to higher serum levels of cellular stress biomarkers following exercise-heat stress. Appl Physiol Nutr Metab 2024; 49:874-879. [PMID: 38507777 DOI: 10.1139/apnm-2023-0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Type 2 diabetes (T2D) is associated with worsening age-related impairments in heat loss, causing higher core temperature during exercise. We evaluated whether these thermoregulatory impairments occur with altered serum protein responses to heat stress by measuring cytoprotection, inflammation, and tissue damage biomarkers in middle-aged-to-older men (50-74 years) with (n = 16) and without (n = 14) T2D following exercise in 40°C. There were no changes in irisin, klotho, HSP70, sCD14, TNF-α, and IL-6, whereas NGAL (+539 pg/mL, p = 0.002) and iFABP (+250 pg/mL, p < 0.001) increased similarly across groups. These similar response patterns occurred despite elevated core temperature in individuals with T2D, suggesting greater heat vulnerability.
Collapse
Affiliation(s)
- Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Kristina-Marie T Janetos
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, AB, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
33
|
Jeffries O, Blenkinsop S. Development of local and regional understanding of heat risk. J Appl Physiol (1985) 2024; 136:1336-1337. [PMID: 38836540 DOI: 10.1152/japplphysiol.00251.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Owen Jeffries
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Stephen Blenkinsop
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
34
|
Li X, Zhang Y, Tian Z, Wang J, Zhao J, Lyu Y, Ni Y, Guo Y, Cui Z, Zhang W, Li C. Lag effect of ambient temperature on respiratory emergency department visits in Beijing: a time series and pooled analysis. BMC Public Health 2024; 24:1363. [PMID: 38773497 PMCID: PMC11106889 DOI: 10.1186/s12889-024-18839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.
Collapse
Affiliation(s)
- Xuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Zhenbiao Tian
- Beijing Red Cross Emergency Center, Beijing, 100085, China
| | - Jianping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Jinhua Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yuanjun Lyu
- Department of Endocrinology, Tianjin Hospital, Tianjin, China
| | - Ying Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, 20 Dong-Da Street, Fengtai District, Beijing, 100071, People's Republic of China.
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Heping District, Tianjin, 300070, P.R. China.
| |
Collapse
|
35
|
Hartinger SM, Palmeiro-Silva YK, Llerena-Cayo C, Blanco-Villafuerte L, Escobar LE, Diaz A, Sarmiento JH, Lescano AG, Melo O, Rojas-Rueda D, Takahashi B, Callaghan M, Chesini F, Dasgupta S, Posse CG, Gouveia N, Martins de Carvalho A, Miranda-Chacón Z, Mohajeri N, Pantoja C, Robinson EJ, Salas MF, Santiago R, Sauma E, Santos-Vega M, Scamman D, Sergeeva M, Souza de Camargo T, Sorensen C, Umaña JD, Yglesias-González M, Walawender M, Buss D, Romanello M. The 2023 Latin America report of the Lancet Countdown on health and climate change: the imperative for health-centred climate-resilient development. LANCET REGIONAL HEALTH. AMERICAS 2024; 33:100746. [PMID: 38800647 PMCID: PMC11117061 DOI: 10.1016/j.lana.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
In 2023, a series of climatological and political events unfolded, partly driving forward the global climate and health agenda while simultaneously exposing important disparities and vulnerabilities to climate-related events. On the policy front, a significant step forward was marked by the inaugural Health Day at COP28, acknowledging the profound impacts of climate change on health. However, the first-ever Global Stocktake showed an important gap between the current progress and the targets outlined in the Paris Agreement, underscoring the urgent need for further and decisive action. From a Latin American perspective, some questions arise: How do we achieve the change that is needed? How to address the vulnerabilities to climate change in a region with long-standing social inequities? How do we promote intersectoral collaboration to face a complex problem such as climate change? The debate is still ongoing, and in many instances, it is just starting. The renamed regional centre Lancet Countdown Latin America (previously named Lancet Countdown South America) expanded its geographical scope adding Mexico and five Central American countries: Costa Rica, El Salvador, Guatemala, Honduras, and Panama, as a response to the need for stronger collaboration in a region with significant social disparities, including research capacities and funding. The centre is an independent and multidisciplinary collaboration that tracks the links between health and climate change in Latin America, following the global Lancet Countdown's methodologies and five domains. The Lancet Countdown Latin America work hinges on the commitment of 23 regional academic institutions, United Nations agencies, and 34 researchers who generously contribute their time and expertise. Building from the first report, the 2023 report of the Lancet Countdown Latin America, presents 34 indicators that track the relationship between health and climate change up to 2022, aiming at providing evidence to public decision-making with the purpose of improving the health and wellbeing of Latin American populations and reducing social inequities through climate actions focusing on health. This report shows that Latin American populations continue to observe a growing exposure to changing climatic conditions. A warming trend has been observed across all countries in Latin America, with severe direct impacts. In 2022, people were exposed to ambient temperatures, on average, 0.38 °C higher than in 1986-2005, with Paraguay experiencing the highest anomaly (+1.9 °C), followed by Argentina (+1.2 °C) and Uruguay (+0.9 °C) (indicator 1.1.1). In 2013-2022, infants were exposed to 248% more heatwave days and people over 65 years old were exposed to 271% more heatwave days than in 1986-2005 (indicator 1.1.2). Also, compared to 1991-2000, in 2013-2022, there were 256 and 189 additional annual hours per person, during which ambient heat posed at least moderate and high risk of heat stress during light outdoor physical activity in Latin America, respectively (indicator 1.1.3). Finally, the region had a 140% increase in heat-related mortality from 2000-2009 to 2013-2022 (indicator 1.1.4). Changes in ecosystems have led to an increased risk of wildfires, exposing individuals to very or extremely high fire danger for more extended periods (indicator 1.2.1). Additionally, the transmission potential for dengue by Aedes aegypti mosquitoes has risen by 54% from 1951-1960 to 2013-2022 (indicator 1.3), which aligns with the recent outbreaks and increasing dengue cases observed across Latin America in recent months. Based on the 2023 report of the Lancet Countdown Latin America, there are three key messages that Latin America needs to further explore and advance for a health-centred climate-resilient development. Latin American countries require intersectoral public policies that simultaneously increase climate resilience, reduce social inequities, improve population health, and reduce greenhouse gas (GHG) emissions. The findings show that adaptation policies in Latin America remain weak, with a pressing need for robust vulnerability and adaptation (V&A) assessments to address climate risks effectively. Unfortunately, such assessments are scarce. Up to 2021, Brazil is the only country that has completed and officially reported a V&A to the 2021 Global Survey conducted by the World Health Organization (WHO). Argentina, Guatemala, and Panama have also conducted them, but they have not been reported (indicator 2.1.1). Similarly, efforts in developing and implementing Health National Adaptation Plans (HNAPs) are varied and limited in scope. Brazil, Chile, and Uruguay are the only countries that have an HNAP (indicator 2.1.2). Moreover, self-reported city-level climate change risk assessments are very limited in the region (indicator 2.1.3). The collaboration between meteorological and health sectors remains insufficient, with only Argentina, Brazil, Colombia, and Guatemala self-reporting some level of integration (indicator 2.2.1), hindering comprehensive responses to climate-related health risks in the region. Additionally, despite the urgent need for action, there has been minimal progress in increasing urban greenspaces across the region since 2015, with only Colombia, Nicaragua, and Venezuela showing slight improvements (indicator 2.2.2). Compounding these challenges is the decrease in funding for climate change adaptation projects in Latin America, as evidenced by the 16% drop in funds allocated by the Green Climate Fund (GCF) in 2022 compared to 2021. Alarmingly, none of the funds approved in 2022 were directed toward climate change and health projects, highlighting a critical gap in addressing health-related climate risks (indicator 2.2.3). From a vulnerability perspective, the Mosquito Risk Index (MoRI) indicates an overall decrease in severe mosquito-borne disease risk in the region due to improvements in water, sanitation, and hygiene (WASH) (indicator 2.3.1). Brazil and Paraguay were the only countries that showed an increase in this indicator. It is worth noting that significant temporal variation within and between countries still persists, suggesting inadequate preparedness for climate-related changes. Overall, population health is not solely determined by the health sector, nor are climate policies a sole responsibility of the environmental sector. More and stronger intersectoral collaboration is needed to pave development pathways that consider solid adaptation to climate change, greater reductions of GHG emissions, and that increase social equity and population health. These policies involve sectors such as finance, transport, energy, housing, health, and agriculture, requiring institutional structures and policy instruments that allow long-term intersectoral collaboration. Latin American countries need to accelerate an energy transition that prioritises people's health and wellbeing, reduces energy poverty and air pollution, and maximises health and economic gains. In Latin America, there is a notable disparity in energy transition, with electricity generation from coal increasing by an average of 2.6% from 1991-2000 to 2011-2020, posing a challenge to efforts aimed at phasing out coal (indicator 3.1.1). However, this percentage increase is conservative as it may not include all the fossil fuels for thermoelectric electricity generation, especially during climate-related events and when hydropower is affected (Panel 4). Yet, renewable energy sources have been growing, increasing by an average of 5.7% during the same period. Access to clean fuels for cooking remains a concern, with 46.3% of the rural population in Central America and 23.3% in South America lacking access to clean fuels in 2022 (indicator 3.1.2). It is crucial to highlight the concerning overreliance on fossil fuels, particularly liquefied petroleum gas (LPG), as a primary cooking fuel. A significant majority of Latin American populations, approximately 74.6%, rely on LPG for cooking. Transitioning to cleaner heating and cooking alternatives could also have a health benefit by reducing household air pollution-related mortality. Fossil fuels continue to dominate road transport energy in Latin America, accounting for 96%, although some South American countries are increasing the use of biofuels (indicator 3.1.3). Premature mortality attributable to fossil-fuel-derived PM2.5 has shown varied trends across countries, increasing by 3.9% from 2005 to 2020 across Latin America, which corresponds to 123.5 premature deaths per million people (indicator 3.2.1). The Latin American countries with the highest premature mortality rate attributable to PM2.5 in 2020 were Chile, Peru, Brazil, Colombia, Mexico, and Paraguay. Of the total premature deaths attributable to PM2.5 in 2020, 19.1% was from transport, 12.3% from households, 11.6% from industry, and 11% from agriculture. From emission and capture of GHG perspective, commodity-driven deforestation and expansion of agricultural land remain major contributors to tree cover loss in the region, accounting for around 80% of the total loss (indicator 3.3). Additionally, animal-based food production in Latin America contributes 85% to agricultural CO2 equivalent emissions, with Argentina, Brazil, Panama, Paraguay, and Uruguay ranking highest in per capita emissions (indicator 3.4.1). From a health perspective, in 2020, approximately 870,000 deaths were associated with imbalanced diets, of which 155,000 (18%) were linked to high intake of red and processed meat and dairy products (indicator 3.4.2). Energy transition in Latin America is still in its infancy, and as a result, millions of people are currently exposed to dangerous levels of air pollution and energy poverty (i.e., lack of access to essential energy sources or services). As shown in this report, the levels of air pollution, outdoors and indoors, are a significant problem in the whole region, with marked disparities between urban and rural areas. In 2022, Peru, Chile, Mexico, Guatemala, Colombia, El Salvador, Brazil, Uruguay, Honduras, Panama, and Nicaragua were in the top 100 most polluted countries globally. Transitioning to cleaner sources of energy, phasing out fossil fuels, and promoting better energy efficiency in the industrial and housing sectors are not only climate mitigation measures but also huge health and economic opportunities for more prosperous and healthy societies. Latin American countries need to increase climate finance through permanent fiscal commitments and multilateral development banks to pave climate-resilient development pathways. Climate change poses significant economic costs, with investments in mitigation and adaptation measures progressing slowly. In 2022, economic losses due to weather-related extreme events in Latin America were US$15.6 billion -an amount mainly driven by floods and landslides in Brazil-representing 0.28% of Latin America's Gross Domestic Product (GDP) (indicator 4.1.1). In contrast to high-income countries, most of these losses lack insurance coverage, imposing a substantial financial strain on affected families and governments. Heat-related mortality among individuals aged 65 and older in Latin America reached alarming levels, with losses exceeding the equivalent of the average income of 451,000 people annually (indicator 4.1.2). Moreover, the total potential income loss due to heat-related labour capacity reduction amounted to 1.34% of regional GDP, disproportionately affecting the agriculture and construction sectors (indicator 4.1.3). Additionally, the economic toll of premature mortality from air pollution was substantial, equivalent to a significant portion of regional GDP (0.61%) (indicator 4.1.4). On a positive note, clean energy investments in the region increased in 2022, surpassing fossil fuel investments. However, in 2020, all countries reviewed continued to offer net-negative carbon prices, revealing fossil fuel subsidies totalling US$23 billion. Venezuela had the highest net subsidies relative to current health expenditure (123%), followed by Argentina (10.5%), Bolivia (10.3%), Ecuador (8.3%), and Chile (5.6%) (indicator 4.2.1). Fossil fuel-based energy is today more expensive than renewable energy. Fossil fuel burning drives climate change and damages the environment on which people depend, and air pollution derived from the burning of fossil fuels causes seven million premature deaths each year worldwide, along with a substantial burden of disease. Transitioning to sustainable, zero-emission energy sources, fostering healthier food systems, and expediting adaptation efforts promise not only environmental benefits but also significant economic gains. However, to implement mitigation and adaptation policies that also improve social wellbeing and prosperity, stronger and solid financial systems are needed. Climate finance in Latin American countries is scarce and strongly depends on political cycles, which threatens adequate responses to the current and future challenges. Progress on the climate agenda is lagging behind the urgent pace required. While engagement with the intersection of health and climate change is increasing, government involvement remains inadequate. Newspaper coverage of health and climate change has been on the rise, peaking in 2022, yet the proportion of climate change articles discussing health has declined over time (indicator 5.1). Although there has been significant growth in the number of scientific papers focusing on Latin America, it still represents less than 4% of global publications on the subject (indicator 5.3). And, while health was mentioned by most Latin American countries at the UN General Debate in 2022, only a few addressed the intersection of health and climate change, indicating a lack of awareness at the governmental level (indicator 5.4). The 2023 Lancet Countdown Latin America report underscores the cascading and compounding health impacts of anthropogenic climate change, marked by increased exposure to heatwaves, wildfires, and vector-borne diseases. Specifically, for Latin America, the report emphasises three critical messages: the urgent action to implement intersectoral public policies that enhance climate resilience across the region; the pressing need to prioritise an energy transition that focuses on health co-benefits and wellbeing, and lastly, that need for increasing climate finance by committing to sustained fiscal efforts and engaging with multilateral development banks. By understanding the problems, addressing the gaps, and taking decisive action, Latin America can navigate the challenges of climate change, fostering a more sustainable and resilient future for its population. Spanish and Portuguese translated versions of this Summary can be found in Appendix B and C, respectively. The full translated report in Spanish is available in Appendix D.
Collapse
Affiliation(s)
- Stella M. Hartinger
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Yasna K. Palmeiro-Silva
- Institute for Global Health, University College London, London, UK
- Centro de Políticas Públicas UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Llerena-Cayo
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luciana Blanco-Villafuerte
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Avriel Diaz
- Columbia University, International Research Institute for Climate and Society New York, USA
| | | | - Andres G. Lescano
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Oscar Melo
- Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Rojas-Rueda
- Environmental and Radiological Health Sciences, Colorado State University, CO, USA
- Colorado School of Public Health, Colorado State University, CO, USA
| | - Bruno Takahashi
- Departament of Communication, Michigan State University, MI, USA
| | - Max Callaghan
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
| | - Francisco Chesini
- Departamento de Salud Pública, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shouro Dasgupta
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, UK
| | - Carolina Gil Posse
- Facultad de Ciencias Sociales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Nahid Mohajeri
- Institute of Environmental Design and Engineering, Bartlett School of Environment, Energy and Resources, University College London, London, UK
| | - Chrissie Pantoja
- Nicholas School of the Environment and Sanford School of Policy Policy, Duke University, Durham, NC, USA
- Departamento Académico de Economía, Universidad del Pacífico, Lima, Peru
| | - Elizabeth J.Z. Robinson
- Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, UK
| | | | - Raquel Santiago
- Faculdade de Nutrição, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Enzo Sauma
- Engineering Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Santos-Vega
- Grupo de Biología y Matemática Computacional (BIOMAC), Universidad de los Andes, Bogotá, Colombia
- Departamento Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Daniel Scamman
- Institute for Sustainable Resources, University College London, London, UK
| | | | | | - Cecilia Sorensen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, Department of Emergency Medicine, Columbia Irving Medical Center, NY, USA
| | - Juan D. Umaña
- Grupo de Biología y Matemática Computacional (BIOMAC), Universidad de los Andes, Bogotá, Colombia
| | - Marisol Yglesias-González
- Centro Latino Americano de Excelencia en Cambio Climático y Salud, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Walawender
- Institute for Global Health, University College London, London, UK
| | - Daniel Buss
- Pan American Health Organization, Washington, DC, USA
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| |
Collapse
|
36
|
Cheetham NJ, Dhesi J, Hopper A, Dowd JB, Steves CJ. An undue emphasis on rural older adults in the Chief Medical Officer's annual report 2023? Clin Med (Lond) 2024; 24:100204. [PMID: 38663521 PMCID: PMC11169953 DOI: 10.1016/j.clinme.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/04/2024]
Abstract
The Chief Medical Officer's annual report 2023 presents an incomplete and skewed picture of the geography of older people in England. We show that there are higher absolute numbers of older people in urban areas in England and Wales, in contrast to key messages from the CMO report which suggest greater need in rural areas based on relative metrics. The absolute size of the urban-rural difference in the population of older people is projected to grow by 2043. Older adults in urban areas are much more likely to live in deprived areas than older adults in rural areas. The absolute number and prevalence of older adults in poorer health is also higher in urban areas, leading to greater healthcare needs. Policy-makers need to consider both absolute and relative demographic trends as well as making use of direct measures of health when planning how healthcare services for older adults are distributed geographically in England.
Collapse
Affiliation(s)
- Nathan J Cheetham
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Jugdeep Dhesi
- Guy's & St Thomas's NHS Foundation Trust, London, United Kingdom
| | - Adrian Hopper
- Guy's & St Thomas's NHS Foundation Trust, London, United Kingdom
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom; Guy's & St Thomas's NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
37
|
Requia WJ, Jablinski Castelhano F, Moore J, Maria Damasceno da Silva R, Andreotti Dias M. Thermal stress and hospital admissions for cardiorespiratory disease in Brazil. ENVIRONMENT INTERNATIONAL 2024; 187:108694. [PMID: 38688235 DOI: 10.1016/j.envint.2024.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The growing body of scientific literature underscores the intricate relationship between meteorological conditions and human health, particularly in the context of extreme temperatures. However, conventional temperature-centric approaches often fall short in capturing the complexity of thermal stress experienced by individuals. Temperature alone, as a metric, fails to encompass the entirety of the thermal stress individuals face, necessitating a more nuanced understanding. In response to this limitation, climatologists have devised thermal indices-composite measures meticulously crafted to reflect the intricate interplay of meteorological factors influencing human perception of temperature. Recognizing the inadequacy of simplistic temperature-focused methodologies, our study aims to address the multifaceted nature of thermal stress. In this study, we explored the association between thermal indices and hospital admissions for circulatory and respiratory diseases in Brazil. We used an extensive dataset spanning 11 years (2008-2018) from the Brazilian Ministry of Health, encompassing a total of 23,791,093 hospitalizations for circulatory and respiratory diseases. We considered four distinct thermal indices-Discomfort Index (DI), Net Effective Temperature (NET), Humidex (H), and Heat Index (HI). We used an extension of the two-stage design with a case time series to assess this relationship. In the first stage, we applied a distributed lag non-linear modeling framework to create a cross-basis function. We next applied quasi-Poisson regression models adjusted by time-varying confounders. In the second stage, we applied meta-analysis with random effects to estimate the national relative risk (RR). Our findings suggest robust variations among the thermal indices under examination. These variations underscore the intricate nature of associations between temperature and health, with each index capturing distinct aspects of thermal conditions. Our results indicate that extreme thermal conditions, both at the low and high ends, are associated with increased risks of hospital admissions. The diverse impact observed among different indices emphasizes the complex interplay between various meteorological factors and their specific physiological consequences. This underscores the necessity for a comprehensive comprehension of temperature metrics to guide precise public health interventions, recognizing the multifaceted nature of temperature-health relationships.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil.
| | | | - Julia Moore
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Reizane Maria Damasceno da Silva
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Mariana Andreotti Dias
- Demography Department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
38
|
Shi L, Wang B, Wu Q, Yang J, Wang L, Wan D, Wang Y, Feng Z, Zhang W, Li L, Wang W, Chen J, Ai X, Zheng J, Zhang Z, He M. Heatstroke: a multicenter study in Southwestern China. Front Public Health 2024; 12:1349753. [PMID: 38699425 PMCID: PMC11064700 DOI: 10.3389/fpubh.2024.1349753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Background An increase in Heatstroke cases occurred in southwest China in 2022 due to factors like global warming, abnormal temperature rise, insufficient power supply, and other contributing factors. This resulted in a notable rise in Heatstroke patients experiencing varying degrees of organ dysfunction. This descriptive study aims to analyze the epidemiology and clinical outcomes of Heatstroke patients in the ICU, providing support for standardized diagnosis and treatment, ultimately enhancing the prognosis of Heatstroke. Methods A retrospective, multicenter, descriptive analysis was conducted on Heatstroke patients admitted to ICUs across 83 hospitals in southwest China. Electronic medical records were utilized for data collection, encompassing various aspects such as epidemiological factors, onset symptoms, complications, laboratory data, concurrent infections, treatments, and patient outcomes. Results The dataset primarily comprised classic heatstroke, with 477 males (55% of total). The patient population had a median age of 72 years (range: 63-80 years). The most common initial symptoms were fever, mental or behavioral abnormalities, and fainting. ICU treatment involved respiratory support, antibiotics, sedatives, and other interventions. Among the 700 ICU admissions, 213 patients had no infection, while 487 were diagnosed with infection, predominantly lower respiratory tract infection. Patients presenting with neurological symptoms initially (n = 715) exhibited higher ICU mortality risk compared to those without neurological symptoms (n = 104), with an odds ratio of 2.382 (95% CI 1.665, 4.870) (p = 0.017). Conclusion In 2022, the majority of Heatstroke patients in southwest China experienced classical Heatstroke, with many acquiring infections upon admission to the ICU. Moreover, Heatstroke can result in diverse complications.
Collapse
Affiliation(s)
- Lvyuan Shi
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lietao Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingyuan Wan
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yucong Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Li Li
- Department of Critical Care Medicine, The Second People's Hospital of Neijiang City, Neijiang, Sichuan, China
| | - Wenhu Wang
- Department of Critical Care Medicine, Zizhong County People's Hospital, Neijiang, Sichuan, China
| | - Jun Chen
- Department of Critical Care Medicine, The People's Hospital of Jianyang City, Jianyang, Sichuan, China
| | - Xiaohua Ai
- Department of Critical Care Medicine, The People's Hospital of Zhongjiang, Deyang, Sichuan, China
| | - Jianwei Zheng
- Department of Critical Care Medicine, Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Zhongwei Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|
39
|
Harvey G, Bain-Donohue S, Dewi SP. The impact of extreme heat on older regional and rural Australians: A systematic review. Aust J Rural Health 2024; 32:216-226. [PMID: 38419263 DOI: 10.1111/ajr.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Extreme heat causes a major health burden, especially for older Australians. OBJECTIVE To assess the impact of extreme heat on older regional and rural Australians, including clinical presentations, social implications, and health-seeking behaviours and adaptations. DESIGN A systematic review and narrative synthesis. FINDINGS Ten articles were included in the review with research on this topic limited. Extreme heat causes an increase in mortality and ambulance dispatches for older rural Australians. Social connectedness is negatively affected by extreme heat due to cancellation of events and individuals becoming housebound. Air conditioning is the main cooling mechanism used, although cost is a major concern. Despite this, older rural populations display a depth of knowledge regarding practical behavioural responses to adapt to extreme heat. Studies show older rural Australians do not consider extreme heat to be a threat to health. DISCUSSION Further research needs to examine the role extreme heat may play in contributing to experiences of loneliness. Air conditioning cannot be the ultimate solution in responding to extreme heat due to cost and increased carbon emissions. The low-risk perception of extreme heat for older rural people may inform effective heat health warnings and effective use of primary health care in heat-health education. Listening to First Nations knowledge in dealing with heat may provide a powerful mechanism in which to protect health. CONCLUSION The extensive health effects of extreme heat highlights the necessity of further research and strengthening of services in preparation for an ageing rural population enduring climate change.
Collapse
Affiliation(s)
- Grace Harvey
- Medical School - Australian National University (ANU) School of Medicine and Psychology, ANU College of Health and Medicine, Canberra, Australian Capital Territory, Australia
- Rural Clinical School, Australian National University (ANU) School of Medicine and Psychology, ANU College of Health and Medicine, Canberra, Australian Capital Territory, Australia
| | - Suzanne Bain-Donohue
- Rural Clinical School, Australian National University (ANU) School of Medicine and Psychology, ANU College of Health and Medicine, Canberra, Australian Capital Territory, Australia
- Indigenous Health Unit, Australian National University (ANU) School of Medicine and Psychology, ANU College of Health and Medicine, Canberra, Australian Capital Territory, Australia
| | - Sari Puspa Dewi
- Rural Clinical School, Australian National University (ANU) School of Medicine and Psychology, ANU College of Health and Medicine, Canberra, Australian Capital Territory, Australia
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
40
|
Lee BJ, Flood TR, Galan-Lopez N, McCormick JJ, King KE, Fujii N, Kenny GP. Changes in surrogate markers of intestinal epithelial injury and microbial translocation in young and older men during prolonged occupational heat stress in temperate and hot conditions. Eur J Appl Physiol 2024; 124:1049-1062. [PMID: 37815618 DOI: 10.1007/s00421-023-05329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Exertional heat stress can cause damage to the intestinal epithelium and disrupt gastrointestinal barrier integrity, leading to microbial translocation (MT) linked to the development of heat stroke. This study aimed to assess age-related differences in markers of intestinal epithelial injury and MT following non-heat stress and high-heat stress exercise in healthy young and older men. METHODS Markers of intestinal epithelial injury (intestinal fatty acid-binding protein-'IFABP') and MT (soluble cluster of differentiation 14-'sCD14'; and lipopolysaccharide-binding protein-'LBP') were assessed in healthy young (18-30 y, n = 13) and older (50-70 y) men (n = 12). Blood samples were collected before, after 180 min of moderate-intensity (metabolic rate: 200 W/m2) walking and following 60 min recovery in either a non-heat stress [temperate: 21.9 °C, 35% relative humidity (RH)] or high-heat stress (hot: 41.4 °C, 35% RH) environment. RESULTS There were no differences in IFABP and sCD14 between the young and older groups in the temperate condition, while LBP was greater in the older group (+ 0.66 ug/mL; + 0.08 to + 1.24 ug/mL). In the hot condition, the older group experienced greater increases in IFABP compared to the young group (+ 712 pg/mL/hr; + 269 to + 1154 pg/mL/hr). However, there were no clear between-group differences for sCD14 (+ 0.24 ug/mL/hr, - 0.22 to + 0.70 ug/mL/hr) or LBP (+ 0.86 ug/mL/hr, - 0.73 to + 2.46 ug/mL/hr). CONCLUSION While older men may experience greater intestinal epithelial injury following exercise in the heat; this did not lead to a greater magnitude of microbial translocation relative to their younger counterparts.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Natalia Galan-Lopez
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
41
|
Bachraty JP, Qiao J, Powers ES, Vandermark LW, Pryor JL, Pryor RR. Plateau in Core Temperature during Shorter but Not Longer Work/Rest Cycles in Heat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:371. [PMID: 38541370 PMCID: PMC10970706 DOI: 10.3390/ijerph21030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
This study compared physiological responses to two work/rest cycles of a 2:1 work-to-rest ratio in a hot environment. In a randomized crossover design, fourteen participants completed 120 min of walking and rest in the heat (36.3 ± 0.6 °C, 30.2 ± 4.0% relative humidity). Work/rest cycles were (1) 40 min work/20 min rest [40/20], or (2) 20 min work/10 min rest [20/10], both completing identical work. Core temperature (Tc), skin temperature (Tsk), heart rate (HR), nude body mass, and perception of work were collected. Comparisons were made between trials at equal durations of work using three-way mixed model ANOVA. Tc plateaued in [20/10] during the second hour of work (p = 0.93), while Tc increased in [40/20] (p < 0.01). There was no difference in maximum Tc ([40/20]: 38.08 ± 0.35 °C, [20/10]: 37.99 ± 0.27 °C, p = 0.22) or end-of-work Tsk ([40/20]: 36.1 ± 0.8 °C, [20/10]: 36.0 ± 0.7 °C, p = 0.45). End-of-work HR was greater in [40/20] (145 ± 25 b·min-1) compared to [20/10] (141 ± 27 b·min-1, p = 0.04). Shorter work/rest cycles caused a plateau in Tc while longer work/rest cycles resulted in a continued increase in Tc throughout the work, indicating that either work structure could be used during shorter work tasks, while work greater than 2 h in duration may benefit from shorter work/rest cycles to mitigate hyperthermia.
Collapse
Affiliation(s)
| | | | | | | | | | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA (J.Q.); (E.S.P.)
| |
Collapse
|
42
|
Wu J, Wu Y, Wu Y, Yang R, Yu H, Wen B, Wu T, Shang S, Hu Y. The impact of heat waves and cold spells on pneumonia risk: A nationwide study. ENVIRONMENTAL RESEARCH 2024; 245:117958. [PMID: 38135100 DOI: 10.1016/j.envres.2023.117958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Climate change affects human health and has been linked to several infectious diseases in recent year. However, there is limited assessment on the impact of heat waves and cold spells on pneumonia risk. This study aims to examine the association of heat waves and cold spells with daily pneumonia hospitalizations in 168 cities in China. Data on pneumonia hospitalizations between 2014 and 2017 were extracted from a national claim database of 280 million beneficiaries. We consider combining temperature intensity and duration to define heat waves and cold spells.This association was quantified using a quasi-Poisson generalized linear model combined with a distributed lag nonlinear model. Exposure-response curves and potential effect modifiers were also estimated. We found that the peak relative risk (RR) of cold spells on daily hospitalizations for pneumonia was observed in relatively mild cold spells with a threshold below the 3 days at the 2nd percentile (RR = 1.69, 95% CI: 1.46-1.92). The risk of heat waves increased with the thresholds, and the greatest risk was found for extremely heatwave period of 4 days at the 98th percentile (RR = 1.69, 95% CI: 1.46-1.92). Heat waves and cold spells are more likely to adversely affect women. In conclusion, our study provided novel and strong evidence that exposure to heat waves and cold spells was associate with increased hospital visits for pneumonia, especially in females. This is the first national study in China to comprehensively evaluate the influence of heat waves and cold spells on pneumonia risk, and the findings may offer valuable insights into the impact of climate change on public health.
Collapse
Affiliation(s)
- Junhui Wu
- School of Nursing, Peking University, 38 Xueyuan Road, Hai Dian District, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China.
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Ruotong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Bo Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Shaomei Shang
- School of Nursing, Peking University, 38 Xueyuan Road, Hai Dian District, Beijing, China.
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Medical Informatics Center, Peking University, 100191, Beijing, China.
| |
Collapse
|
43
|
Zuelsdorff M, Limaye VS. A Framework for Assessing the Effects of Climate Change on Dementia Risk and Burden. THE GERONTOLOGIST 2024; 64:gnad082. [PMID: 37392416 PMCID: PMC10860581 DOI: 10.1093/geront/gnad082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 07/03/2023] Open
Abstract
Alzheimer's disease and related dementias (ADRD) represent a public health crisis poised to worsen in a changing climate. Substantial dementia burden is modifiable, attributable to risk rooted in social and environmental conditions. Climate change threatens older populations in numerous ways, but implications for cognitive aging are poorly understood. We illuminate key mechanisms by which climate change will shape incidence and lived experiences of ADRD, and propose a framework for strengthening research, clinical, and policy actions around cognitive health in the context of climate change. Direct impacts and indirect risk pathways operating through built, social, interpersonal, and biomedical systems are highlighted. Air pollution compromises brain health directly and via systemic cardiovascular and respiratory ailments. Flooding and extreme temperatures constrain health behaviors like physical activity and sleep. Medical care resulting from climate-related health shocks imposes economic and emotional tolls on people living with dementia and caregivers. Throughout, inequitable distributions of climate-exacerbated risks and adaptive resources compound existing disparities in ADRD incidence, comorbidities, and care burden. Translational research, including work prioritizing underserved communities, is crucial. A mechanistic framework can guide research questions and methods and identify clinical- and policy-level intervention loci for prevention and mitigation of climate-related impacts on ADRD risk and burden.
Collapse
Affiliation(s)
- Megan Zuelsdorff
- School of Nursing, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Vijay S Limaye
- Science Office, Natural Resources Defense Council, New York City, New York, USA
| |
Collapse
|
44
|
Chang CJ, Chi CY, Yang HY. Heat exposure and chronic kidney disease: a temporal link in a Taiwanese agricultural county. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1511-1524. [PMID: 37319425 DOI: 10.1080/09603123.2023.2223514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Heat stress-related kidney injury has drawn public health attention. This study explored the temporal relationships between impaired kidney function and preceding outdoor heat exposure Taiwan. Data of participants collected through a health screening program was used to assess the association between chronic kidney disease (CKD) and average ambient temperature with various time lag structures. A total of 1,243 CKD cases and 38,831 non-CKD participants were included in the study. After adjusting for demographic, socioeconomic, lifestyle factors, and comorbidities, CKD was positively associated with the ambient temperature within 1-9 months. The 9-month average ambient temperature yielded the highest odds ratio of CKD (OR = 1.22; 95% CI = 1.09-1.37). Furthermore, females and farmers were found to be more vulnerable to CKD risk after outdoor heat exposure. These findings suggest that the prevention of heat stress-related kidney injury should consider relevant time frames and focus on vulnerable populations.
Collapse
Affiliation(s)
- Che-Jui Chang
- Institute of Occupational and Environmental Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chun-Yi Chi
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Hsiao-Yu Yang
- Institute of Occupational and Environmental Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Population Health and Welfare Research Center, National Taiwan University College of Public Health, Taipei, Taiwan
| |
Collapse
|
45
|
Santiago HP, Leite LHR, Lima PMA, Fóscolo DRC, Natali AJ, Prímola-Gomes TN, Szawka RE, Coimbra CC. Effects of physical training on hypothalamic neuronal activation and expressions of vasopressin and oxytocin in SHR after running until fatigue. Pflugers Arch 2024; 476:365-377. [PMID: 38308122 DOI: 10.1007/s00424-024-02916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.
Collapse
Affiliation(s)
- Henrique P Santiago
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura H R Leite
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Paulo M A Lima
- Núcleo de Pesquisa da Faculdade de Medicina da Universidade de Rio Verde, Universidade de Rio Verde, Campus Goiânia, Goiânia, Brazil
| | - Daniela R C Fóscolo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio José Natali
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
46
|
Morejón-Jaramillo PE, Nassikas NJ, Rice MB. Clinical Medicine and Climate Change. Immunol Allergy Clin North Am 2024; 44:109-117. [PMID: 37973256 DOI: 10.1016/j.iac.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The health care system contributes substantially to global greenhouse gas emissions, a driver of climate change. At the same time, climate change has caused disruptions in health care delivery. In this article, the authors describe both how the health care industry contributes to climate change and how climate change affects patient care. The authors also provide clinical recommendations for health care practitioners to counsel patients on health effects of climate change and underscore the need for developing the workforce needed to respond to unique health care delivery challenges resulting from climate-related factors.
Collapse
Affiliation(s)
- Pablo E Morejón-Jaramillo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA
| | - Nicholas J Nassikas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA
| | - Mary B Rice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215-5491, USA.
| |
Collapse
|
47
|
Janoš T, Ballester J, Čupr P, Achebak H. Countrywide analysis of heat- and cold-related mortality trends in the Czech Republic: growing inequalities under recent climate warming. Int J Epidemiol 2024; 53:dyad141. [PMID: 37857363 PMCID: PMC10859142 DOI: 10.1093/ije/dyad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Only little is known about trends in temperature-mortality associations among the most vulnerable subgroups, especially in the areas of central and eastern Europe, which are considered major climatic hotspots in terms of heatwave exposure. Thus, we aimed to assess trends in temperature-related mortality in the Czech Republic by sex, age and cause of death, and to quantify the temporal evolution of possible inequalities. METHODS We collected daily time series of all-cause (1987-2019) and cause-specific (1994-2019) mortality by sex and age category, and population-weighted daily mean 2-metre temperatures for each region of the Czech Republic. We applied a quasi-Poisson regression model to estimate the trends in region-specific temperature-mortality associations, with distributed lag non-linear models and multivariate random-effects meta-analysis to derive average associations across the country. We then calculated mortality attributable to non-optimal temperatures and implemented the indicator of sex- and age-dependent inequalities. RESULTS We observed a similar risk of mortality due to cold temperatures for men and women. Conversely, for warm temperatures, a higher risk was observed for women. Results by age showed a clear pattern of increasing risk due to non-optimum temperatures with increasing age category. The relative risk (RR) related to cold was considerably attenuated in most of the studied subgroups during the study period, whereas an increase in the RR associated with heat was seen in the overall population, in women, in the age category 90+ years and with respect to respiratory causes. Moreover, underlying sex- and age-dependent inequalities experienced substantial growth. CONCLUSIONS Our findings suggest ongoing adaptation to cold temperatures. Mal/adaptation to hot temperatures occurred unequally among population subgroups and resulted in growing inequalities between the sexes and among age categories.
Collapse
Affiliation(s)
- Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hicham Achebak
- ISGlobal, Barcelona, Spain
- Inserm, France Cohortes, Paris, France
| |
Collapse
|
48
|
Ho JYE, Lai ET, Chau PH, Chong KC, Woo J. The role of older adult-focused social vulnerability on the relationship between temperature and emergency department attendance in a subtropical Asian city. Arch Gerontol Geriatr 2024; 117:105195. [PMID: 37734171 DOI: 10.1016/j.archger.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Older adults exhibit a wide range of capabilities and vulnerabilities that affect their capacity to respond to heat. This study analysed the associations between hot temperatures and Accident & Emergency (A&E) attendance taking into account older adult-focused social vulnerability. METHODS Daily A&E attendance data of Young-old (65-74) and Old-old (75+) was obtained for Hong Kong 2010-2019 hot seasons and stratified into three Social Vulnerability Index (SVI) groups (Low, Moderate, High). Mean temperature (lag 0-2) was analysed on A&E attendance at each SVI using Generalized Additive Models and Distributed Lag Non-linear Models. RESULTS High temperatures were associated with increased same-day (lag 0) relative risk (RR) of A&E attendance for Young-old and Old-old in High SVI districts, with RR being 1.024 (95 % CI: 1.011, 1.037) and 1.036 (95 % CI: 1.018, 1.053), respectively. The Old-old living in Moderate and Low SVI districts also demonstrated increased RR of 1.037 (95 % CI: 1.028, 1.047) and 1.022 (95 % CI: 1.009, 1.036), respectively. Fewer emergency visits were found on the subsequent day (lag 1) of hot temperatures. CONCLUSIONS Older adults, both young-old and old-old, living in districts with higher social vulnerability tended to have increased risk of A&E attendance associated with same-day high temperature. With climate change and rapidly aging population, cities should prepare to meet needs of more vulnerable older adults in extreme heat.
Collapse
Affiliation(s)
- Janice Ying-En Ho
- Department of Architecture, The University of Hong Kong, Hong Kong SAR, China; Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Eric Tc Lai
- Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Hing Chau
- School of Nursing, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jean Woo
- Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China; Jockey Club Institute of Ageing, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
Bach AJE, Cunningham SJK, Morris NR, Xu Z, Rutherford S, Binnewies S, Meade RD. Experimental research in environmentally induced hyperthermic older persons: A systematic quantitative literature review mapping the available evidence. Temperature (Austin) 2024; 11:4-26. [PMID: 38567267 PMCID: PMC7615797 DOI: 10.1080/23328940.2023.2242062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 04/04/2024] Open
Abstract
The heat-related health burden is expected to persist and worsen in the coming years due to an aging global population and climate change. Defining the breadth and depth of our understanding of age-related changes in thermoregulation can identify underlying causes and strategies to protect vulnerable individuals from heat. We conducted the first systematic quantitative literature review to provide context to the historical experimental research of healthy older adults - compared to younger adults or unhealthy age matched cases - during exogenous heat strain, focusing on factors that influence thermoregulatory function (e.g. co-morbidities). We identified 4,455 articles, with 147 meeting eligibility criteria. Most studies were conducted in the US (39%), Canada (29%), or Japan (12%), with 71% of the 3,411 participants being male. About 71% of the studies compared younger and older adults, while 34% compared two groups of older adults with and without factors influencing thermoregulation. Key factors included age combined with another factor (23%), underlying biological mechanisms (18%), age independently (15%), influencing health conditions (15%), adaptation potential (12%), environmental conditions (9%), and therapeutic/pharmacological interventions (7%). Our results suggest that controlled experimental research should focus on the age-related changes in thermoregulation in the very old, females, those with overlooked chronic heat-sensitive health conditions (e.g. pulmonary, renal, mental disorders), the impact of multimorbidity, prolonged and cumulative effects of extreme heat, evidence-based policy of control measures (e.g. personal cooling strategies), pharmaceutical interactions, and interventions stimulating protective physiological adaptation. These controlled studies will inform the directions and use of limited resources in ecologically valid fieldwork studies.
Collapse
Affiliation(s)
- Aaron J. E. Bach
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sarah J. K. Cunningham
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Norman R. Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Metro North Hospital and Health Service, The Prince Charles Hospital. Allied Health Research Collaborative, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
50
|
Xia Y, Shi C, Li Y, Ruan S, Jiang X, Huang W, Chen Y, Gao X, Xue R, Li M, Sun H, Peng X, Xiang R, Chen J, Zhang L. Association between temperature and mortality: a multi-city time series study in Sichuan Basin, southwest China. Environ Health Prev Med 2024; 29:1. [PMID: 38220147 PMCID: PMC10788187 DOI: 10.1265/ehpm.23-00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/30/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND There are few multi-city studies on the association between temperature and mortality in basin climates. This study was based on the Sichuan Basin in southwest China to assess the association of basin temperature with non-accidental mortality in the population and with the temperature-related mortality burden. METHODS Daily mortality data, meteorological and air pollution data were collected for four cities in the Sichuan Basin of southwest China. We used a two-stage time-series analysis to quantify the association between temperature and non-accidental mortality in each city, and a multivariate meta-analysis was performed to obtain the overall cumulative risk. The attributable fractions (AFs) were calculated to access the mortality burden attributable to non-optimal temperature. Additionally, we performed a stratified analyses by gender, age group, education level, and marital status. RESULTS A total of 751,930 non-accidental deaths were collected in our study. Overall, 10.16% of non-accidental deaths could be attributed to non-optimal temperatures. A majority of temperature-related non-accidental deaths were caused by low temperature, accounting for 9.10% (95% eCI: 5.50%, 12.19%), and heat effects accounted for only 1.06% (95% eCI: 0.76%, 1.33%). The mortality burden attributable to non-optimal temperatures was higher among those under 65 years old, females, those with a low education level, and those with an alternative marriage status. CONCLUSIONS Our study suggested that a significant association between non-optimal temperature and non-accidental mortality. Those under 65 years old, females, and those with a low educational level or alternative marriage status had the highest attributable burden.
Collapse
Affiliation(s)
- Yizhang Xia
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
- Zigong Center for Disease Control and Prevention, No. 826, Huichuan Road, Ziliujing District, Zigong 643000, China
- School of Public Health, Chengdu Medical College, No. 783, Xindu Road, Xindu District, Chengdu 610500, China
| | - Chunli Shi
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| | - Yang Li
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| | - Shijuan Ruan
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| | - Xianyan Jiang
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| | - Wei Huang
- Zigong Center for Disease Control and Prevention, No. 826, Huichuan Road, Ziliujing District, Zigong 643000, China
| | - Yu Chen
- School of Public Health, Chengdu Medical College, No. 783, Xindu Road, Xindu District, Chengdu 610500, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, No. 6, Longxiang Road, Wuhou District, Chengdu 610041, China
| | - Rong Xue
- Guangyuan Center for Disease Control and Prevention, No. 996, Binhebei Road, Lizhou District, Guangyuan 628017, China
| | - Mingjiang Li
- Panzhi hua Center for Disease Control and Prevention, No. 996, Jichang Road, Dong District, Panzhi hua 617067, China
| | - Hongying Sun
- Mianyang Center for Disease Control and Prevention, No. 50, Mianxingdong Road, Gaoxin District, Mianyang 621000, China
| | - Xiaojuan Peng
- Yaan Center for Disease Control and Prevention, No. 9, Fangcao Road, Yucheng District, Yaan 625000, China
| | - Renqiang Xiang
- Fucheng Center for Disease Control and Prevention, No. 116, Changhong Road, Fucheng District, Mianyang 621000, China
| | - Jianyu Chen
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| | - Li Zhang
- Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|