1
|
Samper-Martín B, Sarrias A, Lázaro B, Pérez-Montero M, Rodríguez-Rodríguez R, Ribeiro MPC, Bañón A, Wolfgeher D, Jessen HJ, Alsina B, Clotet J, Kron SJ, Saiardi A, Jiménez J, Bru S. Polyphosphate degradation by Nudt3-Zn 2+ mediates oxidative stress response. Cell Rep 2021; 37:110004. [PMID: 34788624 DOI: 10.1016/j.celrep.2021.110004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Revised: 10/08/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphosphate (polyP) is a polymer of hundreds of phosphate residues present in all organisms. In mammals, polyP is involved in crucial physiological processes, including coagulation, inflammation, and stress response. However, after decades of research, the metabolic enzymes are still unknown. Here, we purify and identify Nudt3, a NUDIX family member, as the enzyme responsible for polyP phosphatase activity in mammalian cells. We show that Nudt3 shifts its substrate specificity depending on the cation; specifically, Nudt3 is active on polyP when Zn2+ is present. Nudt3 has in vivo polyP phosphatase activity in human cells, and importantly, we show that cells with altered polyP levels by modifying Nudt3 protein amount present reduced viability upon oxidative stress and increased DNA damage, suggesting that polyP and Nudt3 play a role in oxidative stress protection. Finally, we show that Nudt3 is involved in the early stages of embryo development in zebrafish.
Collapse
Affiliation(s)
- Bàrbara Samper-Martín
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Ana Sarrias
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Blanca Lázaro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Marta Pérez-Montero
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Aitor Bañón
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica, 08003 Barcelona, Spain
| | - Don Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica, 08003 Barcelona, Spain
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E6BT, UK
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| | - Samuel Bru
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Abstract
The diphosphoinositol polyphosphate phosphohydrolases are a subset of the Nudix hydrolase family of enzymes. As such, they metabolize a wide range of substrates, including diphosphoinositol polyphosphates (inositol diphosphates, inositol pyrophosphates), dinucleotide phosphates, nucleosides as well as 5-phosphoribosyl 1-pyrophosphate and inorganic polyphosphate. Here, we describe protocols to optimize these enzymes, with consideration to buffer composition and sample preparation and how to analyze the metabolism of these substrates using high-performance liquid chromatography, giving advice where pitfalls are commonly encountered.
Collapse
|
3
|
Lin H, Lindner K, Mayr GW. Synthesis and nonradioactive micro-analysis of diphosphoinositol phosphates by HPLC with postcolumn complexometry. Methods Mol Biol 2010; 645:103-122. [PMID: 20645184 DOI: 10.1007/978-1-60327-175-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/29/2023]
Abstract
A nonradioactive high-performance anion-exchange chromatographic method based on MDD-HPLC (Mayr Biochem. J. 254:585-591, 1988) was developed for the separation of inositol hexakisphosphate (InsP(6), phytic acid) and most isomers of pyrophosphorylated inositol phosphates, such as diphosphoinositol pentakisphosphate (PPInsP(5) or InsP(7)) and bis-diphosphoinositol tetrakisphosphate (bisPPInsP(4) or InsP(8)). With an acidic elution, the anion-exchange separation led to the resolution of four separable PPInsP(5) isomers (including pairs of enantiomers) into three peaks and of nine separable bisPPInsP(4) isomers into nine peaks. The whole separation procedure was completed within 20-36 min after optimization. Reference standards of all bisPPInsP(4) isomers were generated by a nonenzymatic shotgun synthesis from InsP(6). Hereby, the phosphorylation was brought about nonenzymatically when concentrated InsP(6) bound to the solid surface of anion-exchange beads was incubated with creatine phosphate under optimal pH conditions. From the mixture of pyrophosphorylated InsP(6) derivatives containing all theoretically possible isomers of PPInsP(5), bisPPInsP(4), and also some isomers of trisPPInsP(3), isomers were separated by anion-exchange chromatography and fractions served as reference standards of bisPPInsP(4) isomers for further investigation. Their isomeric nature could be partly assigned by comparison with position specifically synthesized or NMR-characterized purified protozoan reference compounds and partly by limited hydrolysis to PPInsP(5) isomers. By applying this nonradioactive analysis technique to cellular studies, the isomeric nature of the major bisPPInsP(4) in mammalian cells could be identified without the need to obtain sufficient material for NMR analysis.
Collapse
Affiliation(s)
- Hongying Lin
- Institut für Biochemie und Molekularbiologie I: Zelluläre Signaltransduktion, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
4
|
Affiliation(s)
- Victor Raboy
- USDA-ARS and University of Idaho, Aberdeen, Idaho 83210, USA
| | | |
Collapse
|
5
|
Affiliation(s)
- Frank A Loewus
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
6
|
Abstract
The roles of diphosphoinositol polyphosphates (DIPs) in mammalian cell biology have been difficult to determine because of the lack of tools known to regulate their levels. I have determined a series of protocols that regulate these DIPs, and these can be used to further our understanding of these molecules. Sorbitol and sucrose significantly raised levels of bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4) but slightly lowered levels of diphosphoinositol pentakisphosphate (PP-InsP5) in DDT1 MF-2 cells. These effects correlate with the ability of hyperosmotic stress to interfere with protein trafficking described previously and suggest that [PP]2-InsP4 specifically impedes protein trafficking. The effects on [PP]2-InsP4 were not regulated by extracellular signal-regulated kinase or phospholipase D, as exemplified by the lack of effect of U0126 and butan-1-ol. I have also found that genistein potently and rapidly lowers levels of [PP]2-InsP4, whereas a similar inhibitor, herbimycin, was without effect. Thapsigargin, a sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase pump inhibitor previously shown to selectively lower PP-InsP5 after short-term treatment, also selectively raises PP-InsP5 after a longer treatment. The calmodulin inhibitors N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and chlorpromazine significantly lowered all higher inositol phosphates, as well as DIPs, whereas the calmodulin-dependent kinase inhibitors methyl 9-(S)-12-(R)-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-2,3,9,10,11,12-hexahydro-10-(R)hydroxy-9-methyl-1-oxo-10-carboxylate (K-252a) and 2-[N-(2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine (KN-93) were without effect. W-7 and chlorpromazine also lowered levels of phosphatidylinositol 4,5-bisphosphate and ATP but greatly increased levels of phosphatidylinositol 4-phosphate. Trypan blue exclusion deemed that these doses were not cytotoxic. These results identify an increasing number of reagents that regulate DIP levels. Using these tools, and those described previously, we can further understand the roles of the DIPs in cell biology.
Collapse
Affiliation(s)
- S T Safrany
- Division of Cell Signaling, University of Dundee, Dundee, Scotland, United Kingdom.
| |
Collapse
|
7
|
Wenk MR, De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 2004; 101:8262-9. [PMID: 15146067 PMCID: PMC420382 DOI: 10.1073/pnas.0401874101] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Great progress has been made in the elucidation of the function of proteins in membrane traffic. Less is known about the regulatory role of lipids in membrane dynamics. Studies of nerve terminals, compartments highly specialized for the recycling of synaptic vesicles, have converged with studies from other systems to reveal mechanisms in protein-lipid interactions that affect membrane shape as well as the fusion and fission of vesicles. Phosphoinositides have emerged as major regulators of the binding of cytosolic proteins to the bilayer. Phosphorylation on different positions of the inositol ring generates different isomers that are heterogeneously distributed on cell membranes and that together with membrane proteins generate a "dual keys" code for the recruitment of cytosolic proteins. This code helps controlling vectoriality of membrane transport. Powerful methods for the detection of lipids are rapidly advancing this field, thus complementing the broad range of information about biological systems that can be obtained from genomic and proteomic approaches.
Collapse
Affiliation(s)
- Markus R Wenk
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
8
|
Abstract
Lipid signaling by phosphoinositides (PIP(n)s) involves an array of proteins with lipid recognition, kinase, phosphatase, and phospholipase functions. Understanding PIP(n) pathway signaling requires identification and characterization of PIP(n)-interacting proteins. Moreover, spatiotemporal localization and physiological function of PIP(n)-protein complexes must be elucidated in cellular and organismal contexts. For protein discovery to functional elucidation, reporter-linked phosphoinositides or tethered PIP(n)s have been essential. The phosphoinositide 3-kinase (PI 3-K) signaling pathway has recently emerged as an important source of potential "druggable" therapeutic targets in human pathophysiology in both academic and pharmaceutical environments. This review summarizes the chemistry of PIP(n) affinity probes and their use in identifying macromolecular targets. The process of target validation will be described, i.e., the use of tethered PIP(n)s in determining PIP(n) selectivity in vitro and in establishing the function of PIP(n)-protein complexes in living cells.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108, USA.
| |
Collapse
|
9
|
Shears SB. How versatile are inositol phosphate kinases? Biochem J 2004; 377:265-80. [PMID: 14567754 PMCID: PMC1223885 DOI: 10.1042/bj20031428] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2003] [Revised: 10/14/2003] [Accepted: 10/20/2003] [Indexed: 01/31/2023]
Abstract
This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS/NIH/DHSS Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6)) was first described as an abundant form of phosphorus in plant seeds and other plant tissues and dubbed "phytic acid". Subsequently it was found to be a common constituent in eukaryotic cells, its metabolism a basic component of cellular housekeeping. In addition to phosphate, myo-inositol (Ins) and mineral storage and retrieval in plant organs and tissues, other roles for Ins P(6) include service as a major metabolic pool in Ins phosphate and pyrophosphate pathways involved in signaling and regulation; possibly as an effector or ligand in these processes; as a form of energy currency and in ATP regeneration; in RNA export and DNA repair; and as an anti-oxidant. The relatively recent demonstration that pyrophosphate-containing derivatives of Ins P(6) can function as phosphate donors in the regeneration of ATP is reminiscent of the proposal, made four decades ago in studies of seed development, that Ins P(6) itself may serve in this function. Studies of Ins P(6) in non-plant systems rarely include the consideration that this compound might represent a significant fraction of cellular P; cellular phosphate nutrition has been viewed as either not interesting or of little importance. However, there may be few fundamental differences among diverse eukaryotes in both the metabolic pathways involving Ins P(6) and the spectrum of possible roles for it and its metabolites.
Collapse
Affiliation(s)
- Victor Raboy
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA.
| |
Collapse
|
11
|
Andriotis VME, Ross JD. Isolation and characterisation of phytase from dormant Corylus avellana seeds. PHYTOCHEMISTRY 2003; 64:689-699. [PMID: 13679091 DOI: 10.1016/s0031-9422(03)00415-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/24/2023]
Abstract
Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)(2)SO(4) precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS-PAGE it was found to be a monomeric protein with molecular mass 72+/-2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 microM) and highest specificity constant (V(max)/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 microM and Ki=205 microM, respectively).
Collapse
|
12
|
Hua LV, Hidaka K, Pesesse X, Barnes LD, Shears SB. Paralogous murine Nudt10 and Nudt11 genes have differential expression patterns but encode identical proteins that are physiologically competent diphosphoinositol polyphosphate phosphohydrolases. Biochem J 2003; 373:81-9. [PMID: 12689335 PMCID: PMC1223484 DOI: 10.1042/bj20030142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2003] [Revised: 01/31/2003] [Accepted: 04/10/2003] [Indexed: 11/17/2022]
Abstract
We previously described paralogous human genes [NUDT10 and NUDT11 [where NUDT is (nucleoside diphosphate attached moiety 'X')-type motif, also known as the 'nudix'-type motif]] encoding type 3 diphosphoinositol polyphosphate phosphohydrolases (DIPP3) [Hidaka, Caffrey, Hua, Zhang, Falck, Nickel, Carrel, Barnes and Shears (2002) J. Biol. Chem. 277, 32730-32738]. Normally, gene duplication is redundant, and lacks biological significance. Is this true for the DIPP3 genes? We address this question by characterizing highly-conserved murine Nudt10 and Nudt11 homologues of the human genes. Thus these genes must have been duplicated prior to the divergence of primates and sciurognath rodents, approx. 115 million years ago, greatly exceeding the 4 million year half-life for inactivation of redundant paralogues; our data therefore indicate that the DIPP3 duplication is unusual in being physiologically significant. One possible functional consequence is gene neofunctionalization, but we exclude that, since Nudt10 and Nudt11 encode identical proteins. Another possibility is gene subfunctionalization, which we studied by conducting the first quantitative expression analysis of these genes. We demonstrated high Nudt10 expression in liver, kidney and testis; Nudt11 expression is primarily restricted to the brain. This differential, but complementary, expression pattern indicates that subfunctionalization is the evolutionary consequence of DIPP3 gene duplication. Our kinetic data argue that diphosphoinositol polyphosphates are more physiologically relevant substrates for DIPP3 than are either diadenosine hexaphosphate or 5-phosphoribosyl 1-pyrophosphate. Thus the significance of the Nudt10/Nudt11 duplication is specific hydrolysis of diphosphoinositol polyphosphates in a tissue-dependent manner.
Collapse
Affiliation(s)
- Len V Hua
- Inositide Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
13
|
Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1234-1243. [PMID: 12748774 DOI: 10.1007/s00122-002-1177-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/10/2002] [Accepted: 10/21/2002] [Indexed: 05/24/2023]
Abstract
Phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) is the most abundant P-containing compound in plants, and an important anti-nutritional factor, due to its ability to complex essential micro-nutrients, e.g. iron and zinc. Analysis of natural variation for InsP6 and Pi accumulation in seeds and leaves for a large number of accessions of Arabidopsis thaliana, using a novel method for InsP6 detection, revealed a wide range of variation in InsP6 and Pi levels, varying from 7.0 mg to 23.1 mg of InsP6 per gram of seed. Quantitative trait locus (QTL) analysis of InsP6 and Pi levels in seeds and leaves, using an existing recombinant inbred line population, was performed in order to identify a gene(s) that is (are) involved in the regulation of InsP6 accumulation. Five genomic regions affecting the quantity of the InsP6 and Pi in seeds and leaves were identified. One of them, located on top of chromosome 3, affects all four traits. This QTL appears as the major locus responsible for the observed variation in InsP6 and Pi contents in the L er/Cvi RIL population; the L er allele decreases the content of both InsP6 and Pi in seeds and in leaves. The InsP6/Pi locus was further fine-mapped to a 99-kb region, containing 13 open reading frames. The maternal inheritance of the QTL and the positive correlation between InsP6 and total Pi levels both in seeds and in leaves indicate that the difference in InsP6 level between L er and Cvi is likely to be caused by a difference in transport rather than by an alteration in the biosynthesis. Therefore, we consider the vacuolar membrane ATPase subunit G, located in the region of interest, as the most likely candidate gene for InsP6/Pi.
Collapse
Affiliation(s)
- L Bentsink
- Laboratory of Genetics, Wageningen University, Arboretumaan 4, The Netherlands
| | | | | | | |
Collapse
|
14
|
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. PHYTOCHEMISTRY 2003; 62:691-706. [PMID: 12620321 DOI: 10.1016/s0031-9422(02)00610-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2023]
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M 955 indicates that at least for this species, the ability to accumulate Ins P(6) can be nearly abolished while retaining at least short-term ( approximately 1.0 years) viability.
Collapse
Affiliation(s)
- John A Dorsch
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ingram SW, Safrany ST, Barnes LD. Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5',5"'-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations. Biochem J 2003; 369:519-28. [PMID: 12387729 PMCID: PMC1223115 DOI: 10.1042/bj20020733] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2002] [Revised: 08/30/2002] [Accepted: 10/21/2002] [Indexed: 11/17/2022]
Abstract
Schizosaccharomyces pombe Aps1 is an enzyme that degrades both diadenosine oligophosphates (Ap(n)A, n =5 or 6) and diphosphoinositol polyphosphates [diphosphoinositol pentakisphosphate (PP-InsP(5)) and bisdiphosphoinositol tetrakisphosphate ([PP](2)-InsP(4))] in vitro. The in vivo substrates of Aps1 are unknown. We report here the identification of Ap(5)A, PP-InsP(5), [PP](2)-InsP(4) and a novel diphosphoinositol polyphosphate ([PP](x)-InsP(x)) in S. pombe using HPLC methods. Ap(5)A was present at 0.06 pmol/mg of protein (approx. 4 nM). PP-InsP(5), [PP](x)-InsP(x) and [PP](2)-InsP(4) were present at 15 pmol/mg (approx. 1.1 microM), 15 pmol/mg (approx. 1.1 microM) and 30 pmol/mg (approx. 2.2 microM) respectively, while the intracellular concentration of InsP(6) was 0.5 nmol/mg of protein (approx. 36 microM). Disruption of aps1 resulted in a 52% decrease in Ap(6)A hydrolase activity in vitro, no detectable change in the intracellular Ap(5)A concentration, and 3-fold increased intracellular concentrations of PP-Ins P(5) and [PP](x)-InsP(x). Disruption of aps1 resulted in no detectable change in morphology or growth rate in minimal or rich media at 30 degrees C. Overexpression of aps1 via two different plasmids that resulted in 60% and 6-fold increases above wild-type enzymic activity in vitro caused no detectable changes in the intracellular concentrations of [PP](2)-InsP(4), [PP](x)-InsP(x) or PP-InsP(5), but paradoxical increases of approx. 2.5- and 55-fold respectively in the intracellular Ap(5)A concentration. Overexpression of aps1 also resulted in a reduced growth rate and in morphological changes, including swollen, rounded and multiseptate cells. No phenotypic changes or changes in intracellular Ap(5)A occurred upon overexpression of aps1 E93Q, which encodes a mutated Aps1 lacking significant enzymic activity. We conclude that Aps1 degrades PP-InsP(5) and [PP](x)-InsP(x) in vivo.
Collapse
Affiliation(s)
- Stephen W Ingram
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
16
|
Aoki M, Sobek V, Maslyar DJ, Hecht A, Vogt PK. Oncogenic transformation by beta-catenin: deletion analysis and characterization of selected target genes. Oncogene 2002; 21:6983-91. [PMID: 12370820 DOI: 10.1038/sj.onc.1205796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2002] [Revised: 06/06/2002] [Accepted: 06/18/2002] [Indexed: 11/09/2022]
Abstract
Genetic analysis of beta-catenin-induced oncogenic transformation in chicken embryo fibroblasts (CEF) revealed the following prerequisites for oncogenicity: (1) removal of the N terminal phosphorylation sites targeted by glycogen synthase kinase 3beta (GSK3beta), (2) retention of the N terminal transactivation domain, and (3) retention of the armadillo repeats. The C terminal transactivation domain played an ancillary role in the transformation of CEF. There was a rough correlation between the transforming activity of various beta-catenin constructs and their transactivation of the TOPFLASH reporter. Expression levels of the candidate target genes of beta-catenin-LEF, cyclin D1 and myc were not correlated with each other or with the transforming activity of beta-catenin constructs. A new target gene, coding for inositol hexakisphosphate kinase 2 (IP6K2) was identified. Its expression showed concordance with the transforming activity of beta-catenin constructs.
Collapse
Affiliation(s)
- Masahiro Aoki
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, CA 92037, USA.
| | | | | | | | | |
Collapse
|
17
|
Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82:736-54. [PMID: 12358779 DOI: 10.1046/j.1471-4159.2002.01041.x] [Citation(s) in RCA: 478] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Inositol phospholipids and inositol phosphates mediate well-established functions in signal transduction and in Ca2+ homeostasis in the CNS and non-neural tissues. More recently, there has been renewed interest in other roles that both myo-inositol and its highly phosphorylated forms may play in neural function. We review evidence that myo-inositol serves as a clinically relevant osmolyte in the CNS, and that its hexakisphosphate and pyrophosphorylated derivatives may play roles in such diverse cellular functions as DNA repair, nuclear RNA export and synaptic membrane trafficking.
Collapse
Affiliation(s)
- Stephen K Fisher
- Mental Health Research Institute, and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
18
|
Wilson MP, Sun Y, Cao L, Majerus PW. Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2. J Biol Chem 2001; 276:40998-1004. [PMID: 11533064 DOI: 10.1074/jbc.m106605200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of inositol 1,3,4-trisphosphate by inositol 1,3,4-trisphosphate 5/6-kinase is the first committed step in the formation of higher phosphorylated forms of inositol. We have shown that the eight proteins called the COP9 signalosome complex copurify with calf brain 5/6-kinase. Because the complex has been shown to phosphorylate c-Jun in vitro, we tested both the complex and 5/6-kinase and found that both are able to phosphorylate c-Jun and ATF-2 on serine/threonine residues. These findings establish a link between two major signal transduction systems: the inositol phosphates and the stress response system.
Collapse
Affiliation(s)
- M P Wilson
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
19
|
Raboy V. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution. TRENDS IN PLANT SCIENCE 2001; 6:458-62. [PMID: 11590064 DOI: 10.1016/s1360-1385(01)02104-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
myo-Inositol(1,2,3,4,5,6)hexakisphosphate (InsP(6) or 'phytic acid') was first known as the storage form of phosphorus in seeds. Seed-derived dietary InsP(6) can contribute to iron and zinc deficiency in human populations. Excretion of 'phytic acid phosphorus' by non-ruminants such as poultry, swine and fish can contribute to water pollution. Sustainable solutions to these important problems might depend on progress in the molecular biology and genetics of InsP(6) accumulation during seed development. The development of 'low phytate' grain and legume genotypes could help advance our understanding of this biology, and when used in foods and feeds might help to reduce human malnutrition and reduce animal waste phosphorus.
Collapse
Affiliation(s)
- V Raboy
- US Department of Agriculture, Agricultural Research Service, 1691 So. 2700 W, PO Box 307, Aberdeen, ID 83210, USA.
| |
Collapse
|
20
|
Caffrey JJ, Shears SB. Genetic rationale for microheterogeneity of human diphosphoinositol polyphosphate phosphohydrolase type 2. Gene 2001; 269:53-60. [PMID: 11376937 DOI: 10.1016/s0378-1119(01)00446-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Selective expression of enzymes that adjust the intensity of turnover of diphosphoinositolpolyphosphates may regulate vesicle trafficking and DNA repair. For example, the type 2 human diphosphoinositolpolyphosphate phosphohydrolases (hDIPP2alpha and 2beta) are distinguished by a solitary amino-acid residue; the type 2beta isoform contains Gln86 whereas the type 2alpha isoform does not, yet the latter has 2-5 fold more catalytic activity than its beta counterpart (J. Biol.Chem. (2000) 12730). We discovered that both alpha and beta-type mRNAs were co-expressed in clonal cell-lines. We sought a genetic explanation for this microheterogeneity. Two BACs containing distinct, but intronless, hDIPP2beta genes were cloned. Only one of these genes could potentially give rise to our previously characterized hDIPP2beta mRNA; the other gene has several sequence differences and, in any case, is likely a processed pseudogene. These BACS were mapped to 1q12-q21 and 1p12-p13 by FISH. No analogous intronless hDIPP2alpha gene was detected by analysis of 21 individual genomic DNAs. However, sequence analysis of a third hDIPP2 gene (at 12q21) places the Gln86 CAG codon within an AGCAG pentamer, offering adjacent, alternate intronic 3'-boundaries. Thus, 'intron boundary skidding' by spliceosomes provides a mechanism for yielding both hDIPP2alpha and hDIPP2beta mRNAs. Our studies expand the repertoire of molecular mechanisms regulating diphosphoinositolpolyphosphate metabolism and function.
Collapse
Affiliation(s)
- J J Caffrey
- InforMax Inc., 7600 Wisconsin Ave., Bethesda, MD 20814, USA
| | | |
Collapse
|
21
|
Abstract
This review assesses the authenticity of inositol hexakisphosphate (InsP(6)) being a wide-ranging regulator of many important cellular functions. Against a background in which the possible importance of localized InsP(6) metabolism is discussed, there is the facile explanation that InsP(6) is merely an "inactive" precursor for the diphosphorylated inositol phosphates. Indeed, many of the proposed cellular functions of InsP(6) cannot sustain a challenge from the implementation of a rigorous set of criteria, which are designed to avoid experimental artefacts.
Collapse
Affiliation(s)
- S B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 27709, Research Triangle Park, NC, USA.
| |
Collapse
|
22
|
Abstract
The diverse phosphorylation patterns of the six-carbon inositol ring generates a mesmerizing wealth of inositol phosphates but we have little insight into the precise cellular roles of most members of this family. Therefore, new information on these roles is very welcome. The discovery by two independent groups(1, 2) that the Arg82 transcriptional regulator from Saccharomyces cerevisiae has inositol phosphate kinase activity is intriguing in this respect. One group proposes that these events directly affect the function of a specific, multimeric transcriptional complex.(2) It will be argued here, however, that available data do not entirely support such a direct role for Arg82 in transcription. The potential relevance of these findings to higher organisms will also be discussed.
Collapse
Affiliation(s)
- S B Shears
- Inositide Signaling Section, National Institute of Environmental Health Sciences, NIH, PO Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
23
|
Chi H, Yang X, Kingsley PD, O'Keefe RJ, Puzas JE, Rosier RN, Shears SB, Reynolds PR. Targeted deletion of Minpp1 provides new insight into the activity of multiple inositol polyphosphate phosphatase in vivo. Mol Cell Biol 2000; 20:6496-507. [PMID: 10938126 PMCID: PMC86124 DOI: 10.1128/mcb.20.17.6496-6507.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Multiple inositol polyphosphate phosphatase (Minpp1) metabolizes inositol 1,3,4,5,6-pentakisphosphate (InsP(5)) and inositol hexakisphosphate (InsP(6)) with high affinity in vitro. However, Minpp1 is compartmentalized in the endoplasmic reticulum (ER) lumen, where access of enzyme to these predominantly cytosolic substrates in vivo has not previously been demonstrated. To gain insight into the physiological activity of Minpp1, Minpp1-deficient mice were generated by homologous recombination. Tissue extracts from Minpp1-deficient mice lacked detectable Minpp1 mRNA expression and Minpp1 enzyme activity. Unexpectedly, Minpp1-deficient mice were viable, fertile, and without obvious defects. Although Minpp1 expression is upregulated during chondrocyte hypertrophy, normal chondrocyte differentiation and bone development were observed in Minpp1-deficient mice. Biochemical analyses demonstrate that InsP(5) and InsP(6) are in vivo substrates for ER-based Minpp1, as levels of these polyphosphates in Minpp1-deficient embryonic fibroblasts were 30 to 45% higher than in wild-type cells. This increase was reversed by reintroducing exogenous Minpp1 into the ER. Thus, ER-based Minpp1 plays a significant role in the maintenance of steady-state levels of InsP(5) and InsP(6). These polyphosphates could be reduced below their natural levels by aberrant expression in the cytosol of a truncated Minpp1 lacking its ER-targeting N terminus. This was accompanied by slowed cellular proliferation, indicating that maintenance of cellular InsP(5) and InsP(6) is essential to normal cell growth. Yet, depletion of cellular inositol polyphosphates during erythropoiesis emerges as an additional physiological activity of Minpp1; loss of this enzyme activity in erythrocytes from Minpp1-deficient mice was accompanied by upregulation of a novel, substitutive inositol polyphosphate phosphatase.
Collapse
Affiliation(s)
- H Chi
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. PLANT PHYSIOLOGY 2000; 124:355-68. [PMID: 10982449 PMCID: PMC59149 DOI: 10.1104/pp.124.1.355] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/03/2000] [Accepted: 05/30/2000] [Indexed: 05/18/2023]
Abstract
Phytic acid (myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate or Ins P(6)) typically represents approximately 75% to 80% of maize (Zea mays) seed total P. Here we describe the origin, inheritance, and seed phenotype of two non-lethal maize low phytic acid mutants, lpa1-1 and lpa2-1. The loci map to two sites on chromosome 1S. Seed phytic acid P is reduced in these mutants by 50% to 66% but seed total P is unaltered. The decrease in phytic acid P in mature lpa1-1 seeds is accompanied by a corresponding increase in inorganic phosphate (P(i)). In mature lpa2-1 seed it is accompanied by increases in P(i) and at least three other myo-inositol (Ins) phosphates (and/or their respective enantiomers): D-Ins(1,2,4,5,6) P(5); D-Ins (1,4,5,6) P(4); and D-Ins(1,2,6) P(3). In both cases the sum of seed P(i) and Ins phosphates (including phytic acid) is constant and similar to that observed in normal seeds. In both mutants P chemistry appears to be perturbed throughout seed development. Homozygosity for either mutant results in a seed dry weight loss, ranging from 4% to 23%. These results indicate that phytic acid metabolism during seed development is not solely responsible for P homeostasis and indicate that the phytic acid concentration typical of a normal maize seed is not essential to seed function.
Collapse
Affiliation(s)
- V Raboy
- United States Department of Agriculture-Agricultural Research Service, National Small Grain Germplasm Research Facility, P.O. Box 307, Aberdeen, Idaho 83210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saiardi A, Caffrey JJ, Snyder SH, Shears SB. The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 2000; 275:24686-92. [PMID: 10827188 DOI: 10.1074/jbc.m002750200] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Saiardi et al. (Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P., and Snyder, S. H. (1999) Curr. Biol. 9, 1323-1326) previously described the cloning of a kinase from yeast and two kinases from mammals (types 1 and 2), which phosphorylate inositol hexakisphosphate (InsP(6)) to diphosphoinositol pentakisphosphate, a "high energy" candidate regulator of cellular trafficking. We have now studied the significance of InsP(6) kinase activity in Saccharomyces cerevisiae by disrupting the kinase gene. These ip6kDelta cells grew more slowly, their levels of diphosphoinositol polyphosphates were 60-80% lower than wild-type cells, and the cells contained abnormally small and fragmented vacuoles. Novel activities of the mammalian and yeast InsP(6) kinases were identified; inositol pentakisphosphate (InsP(5)) was phosphorylated to diphosphoinositol tetrakisphosphate (PP-InsP(4)), which was further metabolized to a novel compound, tentatively identified as bis-diphosphoinositol trisphosphate. The latter is a new substrate for human diphosphoinositol polyphosphate phosphohydrolase. Kinetic parameters for the mammalian type 1 kinase indicate that InsP(5) (K(m) = 1.2 micrometer) and InsP(6) (K(m) = 6.7 micrometer) compete for phosphorylation in vivo. This is the first time a PP-InsP(4) synthase has been identified. The mammalian type 2 kinase and the yeast kinase are more specialized for the phosphorylation of InsP(6). Synthesis of the diphosphorylated inositol phosphates is thus revealed to be more complex and interdependent than previously envisaged.
Collapse
Affiliation(s)
- A Saiardi
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Despite being known for over 30 years, the functions of the dinucleoside polyphosphates, such as diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A) and diadenosine 5',5"'-P(1), P(3)-triphosphate (Ap(3)A), are still unclear. On the one hand, they may have important signalling functions, both inside and outside the cell (friend), while on the other hand, they may simply be the unavoidable by-products of certain biochemical reactions, which, if allowed to accumulate, would be potentially toxic through their structural similarity to ATP and other essential mononucleotides (foe). Here, the occurrence, synthesis, degradation, and proposed functions of these compounds are briefly reviewed, along with some new data and recent evidence supporting roles for Ap(3)A and Ap(4)A in the cellular decision making processes leading to proliferation, quiescence, differentiation, and apoptosis. Hypotheses are forwarded for the involvement of Ap(4)A in the intra-S phase DNA damage checkpoint and for Ap(3)A and the pFhit (fragile histidine triad gene product) protein in tumour suppression. It is concluded that the roles of friend and foe are not incompatible, but are distinguished by the concentration range of nucleotide achieved under different circumstances.
Collapse
Affiliation(s)
- A G McLennan
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Crown Street, L69 7ZB, Liverpool, UK.
| |
Collapse
|
27
|
Martin JB, Laussmann T, Bakker-Grunwald T, Vogel G, Klein G. neo-inositol polyphosphates in the amoeba Entamoeba histolytica. J Biol Chem 2000; 275:10134-40. [PMID: 10744695 DOI: 10.1074/jbc.275.14.10134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We have reexamined the structure of inositol phosphates present in trophozoites of the parasitic amoeba Entamoeba histolytica and show here that, rather than being myo-inositol derivatives (Martin, J.-B., Bakker-Grunwald, T., and Klein, G. (1993) Eur. J. Biochem. 214, 711-718), these compounds belong to a new class of inositol phosphates in which the cyclitol isomer is neo-inositol. The structures of neo-inositol hexakisphosphate, 2-diphospho-neo-inositol pentakisphosphate, and 2, 5-bisdiphospho-neo-inositol tetrakisphosphate, which are present in E. histolytica at concentrations of 0.08-0.36 mM, were solved by two-dimensional (31)P-(1)H NMR spectroscopy. No evidence for the co-existence of their myo-inositol counterparts has been found. These neo-inositol compounds were not substrates of 6-diphospho-inositol pentakisphosphate 5-kinase, an enzyme purified from Dictyostelium discoideum that phosphorylates 6-diphospho-myo-inositol pentakisphosphate and more slowly also myo-inositol hexakisphosphate, specifically on position 5. Because preliminary data indicate that large amounts of the same neo-inositol phosphate and diphosphate esters are also present in another primitive amoeba, Phreatamoeba balamuthi, the occurrence of high concentrations of neo-inositol polyphosphates may be much more general than previously thought.
Collapse
Affiliation(s)
- J B Martin
- Département de Biologie Moléculaire et Structurale/Laboratoire de Résonance Magnétique en Biologie Métabolique, CEA-Grenoble, 38054 Grenoble, France
| | | | | | | | | |
Collapse
|
28
|
Saiardi A, Caffrey JJ, Snyder SH, Shears SB. Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 2000; 468:28-32. [PMID: 10683435 DOI: 10.1016/s0014-5793(00)01194-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The ARGRIII gene of Saccharomyces cerevisiae encodes a transcriptional regulator that also has inositol polyphosphate multikinase (ipmk) activity [Saiardi et al. (1999) Curr. Biol. 9, 1323-1326]. To investigate how inositol phosphates regulate gene expression, we disrupted the ARGRIII gene. This mutation impaired nuclear mRNA export, slowed cell growth, increased cellular [InsP(3)] 170-fold and decreased [InsP(6)] 100-fold, indicating reduced phosphorylation of InsP(3) to InsP(6). Levels of diphosphoinositol polyphosphates were decreased much less dramatically than was InsP(6). Low levels of InsP(6), and considerable quantities of Ins(1,3,4,5)P(4), were synthesized by an ipmk-independent route. Transcriptional control by ipmk reflects that it is a pivotal regulator of nuclear mRNA export via inositol phosphate metabolism.
Collapse
Affiliation(s)
- A Saiardi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|