1
|
Wang Z, Zou J, Zhang L, Ning J, Zhang X, Jiang B, Liang Y, Zhang Y. The impact of early adversity on the cerebral cortex - a Mendelian randomization study. Front Neurosci 2023; 17:1283159. [PMID: 37965215 PMCID: PMC10641447 DOI: 10.3389/fnins.2023.1283159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background The early adversity is associated with a series of negative outcomes in adulthood, and the impact on the cerebral cortex may be one of the fundamental causes of these adverse consequences in adulthood. In this study, we aim to investigate the causal relationship between early adversity and changes in cerebral cortex structure using Mendelian randomization (MR) analysis. Methods The GWAS summary statistics of 6 early adversity traits were obtained from individuals of European ancestry in the UK Biobank. The GWAS summary statistics of 34 known functional cortical regions were obtained from the ENIGMA Consortium. Causal relationships between the adversity factors and brain cortical structure were assessed using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods, with IVW being the primary evaluation method. Cochran's Q-test, MR-PRESSO, leave-one-out analysis, and funnel plot examination were employed to detect potential heterogeneity and pleiotropy, as well as to identify and exclude outliers. Results At a global level, no causal relationship was found between early adversity and cortical thickness (TH) or surface area (SA) of the brain. However, at the regional level, early adversity was found to potentially influence the TH of the caudal anterior cingulate, superior temporal, entorhinal, paracentral, lateral occipital, banks of the superior temporal sulcus, and supramarginal regions, as well as the SA of the pars triangularis, lateral occipital, parahippocampal, medial orbitofrontal, and isthmus cingulate regions. All findings were nominally significant and passed sensitivity analyses, with no significant heterogeneity or pleiotropy detected. Discussion Our study provides evidence for the association between early adversity and alterations in brain cortical structure, which may serve as a foundation for certain mental disorders. Furthermore, magnetic resonance imaging (MRI) might be considered as a promising tool to aid healthcare professionals in identifying individuals with a history of adverse experiences, allowing for early interventions.
Collapse
Affiliation(s)
- Zhen Wang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing Zou
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Le Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jinghua Ning
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Xin Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan (Cultivation), Dali, Yunnan, China
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, TMDT-MaRS Centre, Toronto, ON, Canada
| | - Yuzhe Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
2
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
3
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
4
|
Tobacco and Nervous System Development and Function-New Findings 2015-2020. Brain Sci 2021; 11:brainsci11060797. [PMID: 34208753 PMCID: PMC8234722 DOI: 10.3390/brainsci11060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Tobacco is a one of the most common addictive stimulants used by people around the world. The smoke generated during tobacco combustion is a toxic mixture of more than 5000 chemicals of which over 30 are known human carcinogens. While its negative effects on the human body are well understood, it remains a serious public health problem. One of the multiple effects of smoking is tobacco’s effect on the nervous system—its development and function. This review aims to summarize the progress made in research on the effects of tobacco on the nervous system both of the perinatal period and adults and both in animals and humans in 2015–2020. The 1245 results that corresponded to the keywords “tobacco, cigarette, nervous system, brain, morphology, function” were reviewed, of which 200 abstracts were considered significant. Most of those articles broadened the knowledge about the negative effects of smoking on the human nervous system. Tobacco has a significant negative impact on the development of nervous structures, neurotransmission and cognitive functions, and promotes the development of neurodegenerative diseases, insomnia and cerebrovascular diseases. The only exception is the protective effect of the dopaminergic system in Parkinson’s disease. In conclusion, in recent years much effort has been devoted to describing, revealing and uncovering new aspects of tobacco detrimental to human life. The nicotine contained in tobacco smoke affects the human body in a multidimensional way, including a serious impact on the broadly understood neurological health.
Collapse
|
5
|
Rumrich I, Vähäkangas K, Viluksela M, Gissler M, de Ruyter H, Hänninen O. Effects of maternal smoking on body size and proportions at birth: a register-based cohort study of 1.4 million births. BMJ Open 2020; 10:e033465. [PMID: 32102814 PMCID: PMC7044904 DOI: 10.1136/bmjopen-2019-033465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES The aim of our work was to analyse the effect of maternal smoking on body size and body proportions of newborns when the mother had smoked only during the first trimester, in comparison with continued smoking after the first trimester. Furthermore, we have evaluated how growth restriction associated with maternal smoking contributes to changes in body proportions. DESIGN Register-based cohort study SETTING: Maternal Exposure (MATEX) cohort identified from the Finnish Medical Birth Register. PARTICIPANTS Singleton births without congenital anomalies and missing data (1.38 million) from 1 January 1991 to 31 December 2016. METHODS Logistic regression was used to quantify the effect of maternal smoking, stratified by the maternal smoking status. OUTCOME MEASURES Body proportions indicated by low brain-to-body ratio (defined as <10th percentile); high ponderal index and high head-to-length ratio (defined as >90th percentile); small body size for gestational age at birth (defined as weight, length or head circumference <10th percentile) and preterm birth (<37 weeks) and low birth weight (2500 g). RESULTS Continued smoking after the first trimester was associated with high ponderal index (OR 1.26, 95% CI 1.23 to 1.28), low brain-to-body ratio (1.11, 1.07-1.15) and high head-to-length ratio (1.22, 1.19-1.26), corresponding with absolute risks of 22%, 10% and 19%, respectively). The effects were slightly lower when smoking had been quit during the first trimester. Similar effects were seen for the body size variables and low birth weight. Preterm birth was not associated with smoking only during first trimester. CONCLUSIONS Maternal smoking, independent of smoking duration during pregnancy, was associated with abnormal body proportions resulting from larger reduction of length and head circumference in comparison to weight. The effects of having quit smoking during the first trimester and having continued smoking after the first trimester were similar, suggesting the importance of early pregnancy as a sensitive exposure window.
Collapse
Affiliation(s)
- Isabell Rumrich
- Department of Environmental and Biological Sciences, University of Eastern Finland, Faculty of Science and Forestry, Kuopio, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kirsi Vähäkangas
- School of Pharmacy/Toxicology, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Matti Viluksela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Faculty of Science and Forestry, Kuopio, Finland
- School of Pharmacy/Toxicology, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Mika Gissler
- Department of Information Services, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Huddinge, Sweden
| | - Hanna de Ruyter
- Unit for Obstetrics and Gynecology, Southern Ostrobothnia Central Hospital, Seinäjoki, Finland
| | - Otto Hänninen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
6
|
Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol 2019; 61:1127-1133. [PMID: 30740660 DOI: 10.1111/dmcn.14182] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The developing brain in utero and during the first years of life is highly vulnerable to environmental influences. Experiences occurring during this period permanently modify brain structure and function through epigenetic modifications (alterations of the DNA structure and chromatin function) and consequently affect the susceptibility to mental disorders. In this review, we describe evidence linking adverse environmental variation during early life (from the fetal period to childhood) and long-term changes in brain volume, microstructure, and connectivity, especially in amygdala and hippocampal regions. We also describe genetic variations that moderate the impact of adverse environmental conditions on child neurodevelopment, such as polymorphisms in brain-derived neurotrophic factor and catechol-O-methyltransferase genes, as well as genetic pathways related to glutamate and monoaminergic signaling. Lastly, we have depicted positive early life experiences that could benefit childhood neurodevelopment and reverse some detrimental effects of adversity in the offspring. WHAT THIS PAPER ADDS: Prenatal, peripartum, and postnatal adversities influence child behavior and neurodevelopment. Exposure to environmental enrichment and positive influences may revert these effects. Putative mechanisms involve alterations in neurotrophic factors and neurotransmitter systems. New tools/big data improved the understanding on how early adversity alters neurodevelopment. This permits better translation/application of the findings from animal models to humans.
Collapse
Affiliation(s)
- Patrícia M Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir O Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
7
|
Esposito G, Azhari A, Borelli JL. Gene × Environment Interaction in Developmental Disorders: Where Do We Stand and What's Next? Front Psychol 2018; 9:2036. [PMID: 30416467 PMCID: PMC6212589 DOI: 10.3389/fpsyg.2018.02036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Although the field of psychiatry has witnessed the proliferation of studies on Gene × Environment (G×E) interactions, still limited is the knowledge we possess of G×E interactions regarding developmental disorders. In this perspective paper, we discuss why G×E interaction studies are needed to broaden our knowledge of developmental disorders. We also discuss the different roles of hazardous versus self-generated environmental factors and how these types of factors may differentially engage with an individual's genetic background in predicting a resulting phenotype. Then, we present examplar studies that highlight the role of G×E in predicting atypical developmental trajectories as well as provide insight regarding treatment outcomes. Supported by these examples, we explore the need to move beyond merely examining statistical interactions between genes and the environment, and the motivation to investigate specific genetic susceptibility and environmental contexts that drive developmental disorders. We propose that further parsing of genetic and environmental components is required to fully understand the unique contribution of each factor to the etiology of developmental disorders. Finally, with a greater appreciation of the complexities of G×E interaction, this discussion will converge upon the potential implications for clinical and translational research.
Collapse
Affiliation(s)
- Gianluca Esposito
- Psychology Program, Nanyang Technological University, Singapore, Singapore
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Atiqah Azhari
- Psychology Program, Nanyang Technological University, Singapore, Singapore
| | - Jessica L. Borelli
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|