1
|
Fan Z, Li J, Zhang Y, Kang J, Wang D, Liu L, Li M, Shi X, Yuan N, Zhang Y, Du F, Jiang W. Kidney injury: An overlooked manifestation in autoimmune encephalitis. J Neuroimmunol 2024; 397:578472. [PMID: 39486221 DOI: 10.1016/j.jneuroim.2024.578472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
AIM To investigate the prevalence and clinical features of kidney injury in patients with autoimmune encephalitis (AE). METHODS Kidney injury was suspected in kidney-involving group due to persistent abnormal in urinary protein and serum albumin. Data on demographics and clinical features were compared between kidney-involving group and kidney-sparing group (patients without kidney injury) using Wilcoxon rank-sum test or chi-square test. Renal biopsy was conducted to identify the type of kidney injury. RESULTS Approximate 30 % (32 of 108) patients with AE were suspicious of kidney injury. Nine patients further tested 24 h urine total protein, and seven of them had an elevated urine protein higher than 150 mg. The predominantly patterns of kidney injury were elevated urine protein, decreased serum albumin and normal kidney function. Compared to kidney-sparing group, the spectrum of AE antibodies in kidney-involving group was different, manifested as less anti-N-methyl-d-aspartate receptor antibodies (50 % vs. 72.4 %, p = 0.025) and more anti-contactin-associated protein like 2 antibodies (18.8 % vs. 1.3 %, p = 0.003). Definite pathological changes indicative of IgA nephropathy and membranous nephropathy in renal biopsy of two cases provided evidence of autoimmune attacks. DISCUSSION Kidney injury occurred in considerable proportion of patients with AE. An in-depth screening for nephropathy could be essential for AE.
Collapse
Affiliation(s)
- Zhirong Fan
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Jing Li
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an 710032, China
| | - Yingchi Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Juan Kang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Di Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Lijuan Liu
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Min Li
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaodan Shi
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Na Yuan
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yuanli Zhang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Heresco-Levy U, Haviv J, Caine YG. NMDAR Down-Regulation: Dual - Hit Molecular Target For COPD - Depression Comorbidity. J Inflamm Res 2024; 17:7619-7625. [PMID: 39464345 PMCID: PMC11512766 DOI: 10.2147/jir.s487650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by sustained airflow limitation that represents one of the main causes of disability in modern society. Depression affects approximately 40% of COPD patients. Both COPD and depression are associated with chronic systemic inflammation and their comorbidity represents a critical unmet treatment need. N-methyl-D-aspartate glutamatergic receptors (NMDAR) are well characterized in the central nervous system (CNS) and widely expressed in lung tissue and inflammation-related cells. Accumulating evidence indicates that pathologic NMDAR up-regulation, leading to pro-inflammatory pathways activation and tissue damage, may play a crucial role in chronic lung injury as well as in depression. D-cycloserine, a bacteriostatic antibiotic used since the 1950's in tuberculosis, acts at therapeutic dosages also as a NMDAR functional antagonist and has antidepressant and anti-inflammatory effects. We hypothesize that NMDAR down-regulation may represent a unified molecular target for the treatment of COPD - depression comorbidity and may simultaneously alleviate both respiratory and depression symptomatology. We postulate that D-cycloserine treatment may achieve these dual - hit objectives and envisage that our hypotheses may apply to additional inflammation disorders that are frequently accompanied by depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Herzog Medical Center, Jerusalem, Israel
- Psychiatry Department, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
3
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Drummond ISA, de Oliveira JNS, Niella RV, Silva ÁJC, de Oliveira IS, de Souza SS, da Costa Marques CS, Corrêa JMX, Silva JF, de Lavor MSL. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals (Basel) 2024; 14:1941. [PMID: 38998053 PMCID: PMC11240452 DOI: 10.3390/ani14131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the therapeutic potential of amantadine in a vincristine-induced peripheral neuropathy model in rats. Forty-eight male Wistar rats were used. The treated groups received oral amantadine at doses of 2, 5, 12, 25 and 50 mg/kg, with daily applications for 14 days. The mechanical paw withdrawal threshold was measured using a digital analgesimeter. Immunohistochemical analysis of IL-6, TNFα, MIP1α, IL-10, CX3CR1, CXCR4, SOD, CAT and GPx, and enzymatic activity analysis of CAT, SOD and GPx were performed, in addition to quantitative PCR of Grp78, Chop, Ho1, Perk, Bax, Bcl-xL, Casp 3, Casp 9, IL-6, IL-10, IL-18 and IL-1β. The results showed an increase in nociceptive thresholds in animals that received 25 mg/kg and 50 mg/kg amantadine. Immunohistochemistry showed a decrease in the immunostaining of IL-6, TNFα, MIP1α and CX3CR1, and an increase in IL-10. CAT and SOD showed an increase in both immunochemistry and enzymatic analysis. qPCR revealed a reduced expression of genes related to endoplasmic reticulum stress and regulation in the expression of immunological and apoptotic markers. Amantadine demonstrated antinociceptive, anti-inflammatory and antioxidant effects in the vincristine-induced peripheral neuropathy model in rats, suggesting that amantadine may be considered an alternative approach for the treatment of vincristine-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
| | | | - Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Álvaro José Chávez Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Iago Santos de Oliveira
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Claire Souza da Costa Marques
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
5
|
Zong P, Legere N, Feng J, Yue L. TRP Channels in Excitotoxicity. Neuroscientist 2024:10738584241246530. [PMID: 38682490 DOI: 10.1177/10738584241246530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Glutamate excitotoxicity is a central mechanism contributing to cellular dysfunction and death in various neurological disorders and diseases, such as stroke, traumatic brain injury, epilepsy, schizophrenia, addiction, mood disorders, Huntington's disease, Alzheimer's disease, Parkinson's disease, multiple sclerosis, pathologic pain, and even normal aging-related changes. This detrimental effect emerges from glutamate binding to glutamate receptors, including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, N-methyl-d-aspartate receptors, kainate receptors, and GluD receptors. Thus, excitotoxicity could be prevented by targeting glutamate receptors and their downstream signaling pathways. However, almost all the glutamate receptor antagonists failed to attenuate excitotoxicity in human patients, mainly due to the limited understanding of the underlying mechanisms regulating excitotoxicity. Transient receptor potential (TRP) channels serve as ancient cellular sensors capable of detecting and responding to both external and internal stimuli. The study of human TRP channels has flourished in recent decades since the initial discovery of mammalian TRP in 1995. These channels have been found to play pivotal roles in numerous pathologic conditions, including excitotoxicity. In this review, our focus centers on exploring the intricate interactions between TRP channels and glutamate receptors in excitotoxicity.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
| | - Nicholas Legere
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT, USA
| |
Collapse
|
6
|
Nair A, Dudhedia U, Thakre M, Borkar N. Efficacy of memantine premedication in alleviating postoperative pain- A systematic review and meta-analysis. Saudi J Anaesth 2024; 18:86-94. [PMID: 38313717 PMCID: PMC10833015 DOI: 10.4103/sja.sja_398_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 02/06/2024] Open
Abstract
Many premedication agents with opioid-sparing properties have been used in patients undergoing various elective surgeries. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been used by many researchers as an opioid-sparing strategy. Various databases like PubMed, Scopus, Cochrane Library, and clinicaltrials.gov were searched after registering the review protocol in PROSPERO for randomized-controlled trials (RCTs) that investigated the efficacy and safety of memantine premedication in adult patients undergoing various elective surgeries. The risk of bias (RoB-2) scale was used to assess the quality of evidence. From the 225 articles that were identified after a database search, 3 studies were included for a qualitative systematic review and a quantitative meta-analysis. The pooled analysis revealed that the use of memantine provided better pain scores at 2nd (mean difference: -0.82, 95% CI: -1.60, -0.05, P = 0.04) with significant heterogeneity (P = 0.06; I² =71%), and 6 hours postoperatively (mean difference: -1.80, 95% CI: -2.23, -1.37, P < 0.00001), but not at 1 hour. The sedation scores at 1 hour were higher in the memantine group but comparable in the 2nd hour. The number of doses of rescue analgesia and nausea/vomiting in the postoperative period was comparable in both groups. The results of this review suggest that memantine premedication could provide better pain scores in the immediate postoperative period with acceptable adverse effects. However, the current evidence is insufficient to suggest the routine use of memantine as a premedication before elective surgeries.
Collapse
Affiliation(s)
- Abhijit Nair
- Department of Anaesthesiology, Ibra Hospital, Ministry of Health-Oman, Ibra-414, Sultanate of Oman
| | - Ujjwalraj Dudhedia
- Department of Anaesthesiology and Pain Management, Dr. L. H. Hiranandani Hospital, Powai Mumbai, Maharashtra State, India
| | - Manish Thakre
- Department of Psychiatry, Government Medical College, Nagpur, Maharashtra State, India
| | - Nitinkumar Borkar
- Department of Pediatric Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
7
|
Chou X, Li X, Ma K, Shen Y, Min Z, Xiao W, Zhang J, Wu Q, Sun D. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166955. [PMID: 37704144 DOI: 10.1016/j.scitotenv.2023.166955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) is a commonly found environmental pollutant and is known to damage multiple organs with kidneys being the most common one. N-methyl-d-aspartate receptor 1 (NMDAR1) is a ligand-gated ion channel that is highly permeable to calcium ion (Ca2+). Because Cd2+ and Ca2+ have structural and physicochemical similarities, whether and how Cd could interfere NMDAR1 function to cause renal epithelial cells dysfunction remains unknown. In this study, we investigated the role of NMDAR1 in Cd-induced renal damage and found that Cd treatment upregulated NMDAR1 expression and promoted epithelial-mesenchymal transition (EMT) in mouse kidneys in vivo and human proximal tubular epithelial HK-2 cells in vitro, which were accompanied with activation of the inositol-requiring enzyme 1 (IRE-1α) / spliced X box binding protein-1 (XBP-1s) pathway, an indicative of endoplasmic reticulum (ER) stress. Mechanistically, NMDAR1 upregulation by Cd promoted Ca2+ channel opening and Ca2+ influx, resulting in ER stress and subsequently EMT in HK-2 cells. Inhibition of NMDAR1 by pharmacological antagonist MK-801 significantly attenuated Cd-induced Ca2+ influx, ER stress, and EMT. Pretreatment with the IRE-1α/XBP-1s pathway inhibitor STF-083010 also restored the epithelial phenotype of Cd-treated HK-2 cells. Therefore, our findings suggest that NMDAR1 activation mediates Cd-induced EMT in proximal epithelial cells likely through the IRE-1α/XBP-1s pathway, supporting the idea that NMDAR1 could be a potential therapeutic target for Cd-induced renal damage.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Xiaohu Li
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Zhen Min
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jingbo Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Qing Wu
- Department of Toxicology, School of Public Health, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China.
| |
Collapse
|
8
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
9
|
Liao W, Wen Y, Yang S, Duan Y, Liu Z. Research progress and perspectives of N-methyl-D-aspartate receptor in myocardial and cerebral ischemia-reperfusion injury: A review. Medicine (Baltimore) 2023; 102:e35490. [PMID: 37861505 PMCID: PMC10589574 DOI: 10.1097/md.0000000000035490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
There is an urgent need to find common targets for precision therapy, as there are no effective preventive therapeutic measures for combined clinical heart-brain organ protection and common pathways associated with glutamate receptors are involved in heart-brain injury, but current glutamate receptor-related clinical trials have failed. Ischemia-reperfusion injury (IRI) is a common pathological condition that occurs in multiple organs, including the heart and brain, and can lead to severe morbidity and mortality. N-methyl-D-aspartate receptor (NMDAR), a type of ionotropic glutamate receptor, plays a crucial role in the pathogenesis of IRI. NMDAR activity is mainly regulated by endogenous activators, agonists, antagonists, and voltage-gated channels, and activation leads to excessive calcium influx, oxidative stress, mitochondrial dysfunction, inflammation, apoptosis, and necrosis in ischemic cells. In this review, we summarize current research advances regarding the role of NMDAR in myocardial and cerebral IRI and discuss potential therapeutic strategies to modulate NMDAR signaling to prevent and treat IRI.
Collapse
Affiliation(s)
- Wei Liao
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuehui Wen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Zhan Q, Wang L, Liu N, Yuan Y, Deng L, Ding Y, Wang F, Zhou J, Xie L. Serum metabolomics study of narcolepsy type 1 based on ultra-performance liquid chromatography-tandem mass spectrometry. Amino Acids 2023; 55:1247-1259. [PMID: 37689600 PMCID: PMC10689557 DOI: 10.1007/s00726-023-03315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 09/11/2023]
Abstract
Narcolepsy is a chronic and underrecognized sleep disorder characterized by excessive daytime sleepiness and cataplexy. Furthermore, narcolepsy type 1 (NT1) has serious negative impacts on an individual's health, society, and the economy. Currently, many sleep centers lack the means to measure orexin levels in the cerebrospinal fluid. We aimed to analyze the characteristics of metabolite changes in patients with NT1, measured by ultra-performance liquid chromatography-tandem mass spectrometry. A principal component analysis (PCA), an orthogonal partial least square discriminant analysis (OPLS-DA), t tests, and volcano plots were used to construct a model of abnormal metabolic pathways in narcolepsy. We identified molecular changes in serum specimens from narcolepsy patients and compared them with control groups, including dehydroepiandrosterone, epinephrine, N-methyl-D-aspartic acid, and other metabolites, based on an OPLS-loading plot analysis. Nine metabolites yielded an area under the receiver operating curve > 0.75. Meanwhile, seven abnormal metabolic pathways were correlated with differential metabolites, such as metabolic pathways; neuroactive ligand‒receptor interaction; and glycine, serine, and threonine metabolism. To our knowledge, this is the first study to reveal the characteristic metabolite changes in sera from NT1 patients for the selection of potential blood biomarkers and the elucidation of NT1 pathogenesis.
Collapse
Affiliation(s)
- Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yuqing Yuan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liying Deng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yongmin Ding
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fen Wang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Luo Y, Yang S, Jiang M, Chu Y. LC-MS/MS-Based Serum Metabolomics and Transcriptome Analyses for the Mechanism of Augmented Renal Clearance. Int J Mol Sci 2023; 24:10459. [PMID: 37445637 DOI: 10.3390/ijms241310459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Augmented Renal Clearance (ARC) refers to the increased renal clearance of circulating solute in critically ill patients. In this study, the analytical research method of transcriptomics combined with metabolomics was used to study the pathogenesis of ARC at the transcriptional and metabolic levels. In transcriptomics, 534 samples from 5 datasets in the Gene Expression Omnibus database were analyzed and 834 differential genes associated with ARC were obtained. In metabolomics, we used Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry to determine the non-targeted metabolites of 102 samples after matching propensity scores, and obtained 45 differential metabolites associated with ARC. The results of the combined analysis showed that purine metabolism, arginine biosynthesis, and arachidonic acid metabolism were changed in patients with ARC. We speculate that the occurrence of ARC may be related to the alteration of renal blood perfusion by LTB4R, ARG1, ALOX5, arginine and prostaglandins E2 through inflammatory response, as well as the effects of CA4, PFKFB2, PFKFB3, PRKACB, NMDAR, glutamate and cAMP on renal capillary wall permeability.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yifan Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shu Yang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Chu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Londzin P, Cegieła U, Trawczyński M, Czuba ZP, Folwarczna J. Unfavorable effects of memantine on the skeletal system in female rats. Biomed Pharmacother 2023; 164:114921. [PMID: 37229803 DOI: 10.1016/j.biopha.2023.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist used in the treatment of Alzheimer's disease (AD). NMDA receptors are expressed on bone cells. The aim of the present study was to investigate the effects of memantine on the rat musculoskeletal system. Taking into account that most of female AD patients are postmenopausal, the study was carried out on intact and ovariectomized (estrogen-deficient) rats. Mature Wistar rats were divided into following groups: non-ovariectomized (NOVX) control rats, NOVX rats treated with memantine, ovariectomized (OVX) control rats, and OVX rats treated with memantine. Memantine (2 mg/kg p.o.) was administered once daily for four weeks, starting one week after ovariectomy. The serum bone turnover marker and cytokine levels, bone density, mass, mineralization, mechanical properties, histomorphometric parameters of compact and cancellous bone, skeletal muscle mass and grip strength were determined. In NOVX rats, memantine slightly decreased the strength of compact bone of the femoral diaphysis (parameters in the yield point) and unfavorably affected histomorphometric parameters of cancellous bone (the femoral epiphysis and metaphysis). In OVX rats, in which estrogen deficiency induced osteoporotic changes, memantine increased the phosphorus content in the femoral bone mineral. No other effects on bone were observed in the memantine-treated OVX rats. In conclusion, the results of the present study indicated slight damaging skeletal effects of memantine in rats with normal estrogen levels.
Collapse
Affiliation(s)
- Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Urszula Cegieła
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marcin Trawczyński
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
13
|
Juin SK, Ouseph R, Gondim DD, Jala VR, Sen U. Diabetic Nephropathy and Gaseous Modulators. Antioxidants (Basel) 2023; 12:antiox12051088. [PMID: 37237955 DOI: 10.3390/antiox12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD). The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been shown to play an essential role in the development, progression, and ramification of DN depending on their availability and physiological actions. Although the studies on gasotransmitter regulations of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in the physiological relevance of the gaseous molecules and their multifaceted interaction with other potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the perspective of the present review highlights the possible therapeutic interventions of gasotransmitters in ameliorating this dreaded disease.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Division of Nephrology & Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dibson Dibe Gondim
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
14
|
Zakariaª EM, Abdel-Ghanyª RH, Elgharbawyª AS, Alsemehᵇ AE, Metwallyª SS. A novel approach to repositioning memantine for metabolic syndrome-induced steatohepatitis: Modulation of hepatic autophagy, inflammation, and fibrosis. Life Sci 2023; 319:121509. [PMID: 36822316 DOI: 10.1016/j.lfs.2023.121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
AIMS This study investigated the possible hepatoprotective effects of memantine, compared to pioglitazone, in rat steatohepatitis, emphasizing its role in modulating hepatic autophagy. MAIN METHODS Metabolic syndrome (MetS) was provoked in adult male Wistar rats by a high fructose/fat/salt regimen for eight weeks. Then, rats were administered either memantine or pioglitazone daily for 10 weeks (both at 20 mg/kg, orally). An oral glucose tolerance test (OGTT) was done at the end of the study, and serum liver enzymes, lipids, and fasting blood glucose were measured. Also, hepatic contents of inflammatory, oxidative, and autophagy markers were quantified. Additionally, histopathological examinations of general hepatic structure and glycogen content were performed. KEY FINDINGS Compared to the MetS rats, memantine normalized fasting serum insulin, Homeostatic Model Assessment (HOMA-IR), serum lipids, and liver enzymes (ALT and AST). Memantine also markedly reduced hepatic inflammatory markers; NF-κB and TNF-α. In addition, hepatic NRF2 and GSH were augmented, while hepatic MDA was reduced by memantine. Interestingly, livers of the memantine group showed elevated Beclin1 and LC3 and reduced p62 contents compared to the MetS group indicating that memantine preserved hepatic autophagy. Histopathological examination revealed that memantine ameliorated hepatic steatosis and inflammation. Pioglitazone also mitigated most of the steatohepatitis-related changes, however, memantine was more effective in most of the studied parameters. SIGNIFICANCE The hepatoprotective effect of memantine against steatohepatitis is mediated, at least partly, through conserving hepatic autophagy along with anti-inflammatory, antioxidant, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Esraa M Zakariaª
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Rasha H Abdel-Ghanyª
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Atef S Elgharbawyª
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amira Ebrahim Alsemehᵇ
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sami S Metwallyª
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
15
|
Li MW, Chao TC, Lim LY, Chang HH, Yang SSD. The Acute Effects and Mechanism of Ketamine on Nicotine-Induced Neurogenic Relaxation of the Corpus Cavernosum in Mice. Int J Mol Sci 2023; 24:ijms24086976. [PMID: 37108139 PMCID: PMC10138932 DOI: 10.3390/ijms24086976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The present study aimed to investigate the acute effects and the mechanism of ketamine on nicotine-induced relaxation of the corpus cavernosum (CC) in mice. This study measured the intra-cavernosal pressure (ICP) of male C57BL/6 mice and the CC muscle activities using an organ bath wire myograph. Various drugs were used to investigate the mechanism of ketamine on nicotine-induced relaxation. Direct ketamine injection into the major pelvic ganglion (MPG) inhibited MPG-induced increases in ICP. D-serine/L-glutamate-induced relaxation of the CC was inhibited by MK-801 (N-methyl-D-aspartate (NMDA) receptor inhibitor), and nicotine-induced relaxation was enhanced by D-serine/L-glutamate. NMDA had no effect on CC relaxation. Nicotine-induced relaxation of the CC was suppressed by mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist), lidocaine, guanethidine (an adrenergic neuronal blocker), Nw-nitro-L-arginine (a non-selective nitric oxide synthase inhibitor), MK-801, and ketamine. This relaxation was almost completely inhibited in CC strips pretreated with 6-hydroxydopamine (a neurotoxic synthetic organic compound). Ketamine inhibited cavernosal nerve neurotransmission via direct action on the ganglion and impaired nicotine-induced CC relaxation. The relaxation of the CC was dependent on the interaction of the sympathetic and parasympathetic nerves, which may be mediated by the NMDA receptor.
Collapse
Affiliation(s)
- Ming-Wei Li
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Tze-Chen Chao
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Li-Yi Lim
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Hsi-Hsien Chang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
| | - Stephen Shei-Dei Yang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
16
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
17
|
Manca E. Autoantibodies in Neuropsychiatric Systemic Lupus Erythematosus (NPSLE): Can They Be Used as Biomarkers for the Differential Diagnosis of This Disease? Clin Rev Allergy Immunol 2022; 63:194-209. [PMID: 34115263 PMCID: PMC9464150 DOI: 10.1007/s12016-021-08865-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a complex immunological disease where both environmental factors and genetic predisposition lead to the dysregulation of important immune mechanisms. Eventually, the combination of these factors leads to the production of self-reactive antibodies that can target any organ or tissue of the human body. Autoantibodies can form immune complexes responsible for both the organ damage and the most severe complications. Involvement of the central nervous system defines a subcategory of the disease, generally known with the denomination of neuropsychiatric systemic lupus erythematosus. Neuropsychiatric symptoms can range from relatively mild manifestations, such as headache, to more severe complications, such as psychosis. The evaluation of the presence of the autoantibodies in the serum of these patients is the most helpful diagnostic tool for the assessment of the disease. The scientific progresses achieved in the last decades helped researchers and physicians to discover some of autoepitopes targeted by the autoantibodies, although the majority of them have not been identified yet. Additionally, the central nervous system is full of epitopes that cannot be found elsewhere in the human body, for this reason, autoantibodies that selectively target these epitopes might be used for the differential diagnosis between patients with and without the neuropsychiatric symptoms. In this review, the most relevant data is reported with regard to mechanisms implicated in the production of autoantibodies and the most important autoantibodies found among patients with systemic lupus erythematosus with and without the neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Elias Manca
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
18
|
Jahan S, Redhu NS, Siddiqui AJ, Iqbal D, Khan J, Banawas S, Alaidarous M, Alshehri B, Mir SA, Adnan M, Pant AB. Nobiletin as a Neuroprotectant against NMDA Receptors: An In Silico Approach. Pharmaceutics 2022; 14:pharmaceutics14061123. [PMID: 35745697 PMCID: PMC9229780 DOI: 10.3390/pharmaceutics14061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
Excitotoxicity is a type of neurodegenerative disorder. It caused by excessive glutamate receptor activation, which leads to neuronal malfunction and fatality. The N-methyl-D-aspartate (NMDA) receptors are found in glutamatergic neurons, and their excessive activation is primarily responsible for excitotoxicity. They are activated by both glutamate binding and postsynaptic depolarization, facilitating Ca2+ entry upon activation. Therefore, they are now widely acknowledged as being essential targets for excitotoxicity issues. Molecular docking and molecular dynamics (MD) simulation analyses have demonstrated that nobiletin efficiently targets the binding pocket of the NMDA receptor protein and exhibits stable dynamic behavior at the binding site. In this study, five potential neuroprotectants, nobiletin, silibinin, ononin, ginkgolide B, and epigallocatechin gallate (EGCG), were screened against the glutamate NMDA receptors in humans via computational methods. An in silico ADMET study was also performed, to predict the pharmacokinetics and toxicity profile for the expression of good drug-like behavior and a non-toxic nature. It was revealed that nobiletin fulfills the criteria for all of the drug-likeness rules (Veber, Lipinski, Ghose, Muegge, and Egan) and has neither PAINS nor structural alerts (Brenks). In conclusion, nobiletin demonstrated a possible promising neuroprotectant activities compared to other selected phytochemicals. Further, it can be evaluated in the laboratory for promising therapeutic approaches for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
- Correspondence: or ; Tel.: +966-500590133
| | - Neeru Singh Redhu
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 55476, Saudi Arabia; (A.J.S.); (M.A.)
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia; (D.I.); (J.K.); (S.B.); (M.A.); (B.A.); (S.A.M.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 55476, Saudi Arabia; (A.J.S.); (M.A.)
| | - Aditya Bhushan Pant
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow 226001, Uttar Pradesh, India;
| |
Collapse
|
19
|
Is NMDA-Receptor-Mediated Oxidative Stress in Mitochondria of Peripheral Tissues the Essential Factor in the Pathogenesis of Hepatic Encephalopathy? J Clin Med 2022; 11:jcm11030827. [PMID: 35160278 PMCID: PMC8836479 DOI: 10.3390/jcm11030827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of increased ammonia-mediated brain dysfunction caused by impaired hepatic detoxification or when the blood bypasses the liver. Ammonia-activated signal transduction pathways of hyperactivated NMDA receptors (NMDAR) are shown to trigger a cascade of pathological reactions in the brain, leading to oxidative stress. NMDARs outside the brain are widely distributed in peripheral tissues, including the liver, heart, pancreas, and erythrocytes. To determine the contribution of these receptors to ammonia-induced oxidative stress in peripheral tissues, it is relevant to investigate if there are any ammonia-related changes in antioxidant enzymes and free radical formation and whether blockade of NMDARs prevents these changes. Methods: Hyperammonemia was induced in rats by ammonium acetate injection. Oxidative stress was measured as changes in antioxidant enzyme activities and O2•− and H2O2 production by mitochondria isolated from the tissues and cells mentioned above. The effects of the NMDAR antagonist MK-801 on oxidative stress markers and on tissue ammonia levels were evaluated. Results: Increased ammonia levels in erythrocytes and mitochondria isolated from the liver, pancreas, and heart of hyperammonemic rats are shown to cause tissue-specific oxidative stress, which is prevented completely (or partially in erythrocyte) by MK-801. Conclusions: These results support the view that the pathogenesis of HE is multifactorial and that ammonia-induced multiorgan oxidative stress-mediated by activation of NMDAR is an integral part of the disease and, therefore, the toxic effects of ammonia in НЕ may be more global than initially expected.
Collapse
|
20
|
Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol 2021; 910:174455. [PMID: 34461125 DOI: 10.1016/j.ejphar.2021.174455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that was initially indicated for the treatment of moderate to severe Alzheimer's disease. It is now also considered for a variety of other pathologies in which activation of NMDA receptors apparently contributes to the pathogenesis and progression of disease. In addition to the central nervous system (CNS), NMDA receptors can be found in non-neuronal cells and tissues that recently have become an interesting research focus. Some studies have shown that glutamate signaling plays a role in cell transformation and cancer progression. In addition, these receptors may play a role in cardiovascular disorders. In this review, we focus on the most recent findings for memantine with respect to its pharmacological effects in a range of diseases, including inflammatory disorders, cardiovascular diseases, cancer, neuropathy, as well as retinopathy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hamid Soraya
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Wong D, Broberg DN, Doad J, Umoh JU, Bellyou M, Norley CJD, Holdsworth DW, Montero-Odasso M, Beauchet O, Annweiler C, Bartha R. Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer's Disease Following Chronic Vitamin D Deficiency. J Alzheimers Dis 2021; 81:375-388. [PMID: 33780366 DOI: 10.3233/jad-201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-β exposure and glutamate toxicity. OBJECTIVE To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.
Collapse
Affiliation(s)
- Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dana N Broberg
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jagroop Doad
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joseph U Umoh
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Chris J D Norley
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Olivier Beauchet
- Department of Medicine, University of Montreal and McGill University, Montreal, QC, Canada
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UPRES EA 4638, University of Angers, Angers, France
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Luo F, Wu L, Xie G, Gao F, Zhang Z, Chen G, Liu Z, Zha L, Zhang G, Sun Y, Zhang Z, Wang Y. Dual-Functional MN-08 Attenuated Pulmonary Arterial Hypertension Through Vasodilation and Inhibition of Pulmonary Arterial Remodeling. Hypertension 2021; 77:1787-1798. [PMID: 33775126 DOI: 10.1161/hypertensionaha.120.15994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fangcheng Luo
- From the Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (F.L., L.W.)
| | - Liangmiao Wu
- From the Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (F.L., L.W.)
| | - Guoqing Xie
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - FangFang Gao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zhixiang Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Guangying Chen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zheng Liu
- School of Stomatology and Medicine, Foshan University, P. R. China (Z.L.)
| | - Ling Zha
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, China (G.X., F.G., Zhixiang Zhang, G.C., L.Z., G.Z., Y.S., Zaijun Zhang, Y.W.)
| |
Collapse
|
24
|
Liu L, Gu M, Liu J, Liu Q, Xu X, Fan R, Peng F, Jiang Y. The Effect on the Kidney in Patients With Anti-N-methyl D-aspartate Receptor Antibody Encephalitis. Front Neurol 2021; 12:601495. [PMID: 33643189 PMCID: PMC7907499 DOI: 10.3389/fneur.2021.601495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/15/2021] [Indexed: 11/27/2022] Open
Abstract
Objectives: The function of the N-methyl-D-aspartate receptor (NMDAR) in the kidney has been studied. However, the effect on the kidney from anti-NAMDAR antibody encephalitis has not been investigated thus far. Methods: Case data were collected from 82 patients with anti-NMDAR antibody encephalitis and 166 age- and sex-matched healthy controls (HCs). Clinical characteristics, urinalysis [including urine pH and urine specific gravity (SG)], serum creatinine (Scr), and estimated glomerular filtration rate (eGFR) based on Cr levels were evaluated. Results: At initial admission, urine pH levels and urine SG levels in anti-NMDAR antibody encephalitis patients were significantly higher and lower, respectively, than HCs (both p < 0.001). There were no significant differences in Scr and eGFR between anti-NMDAR antibody encephalitis patients and HCs. Urine pH levels in patients with anti-NMDAR antibody <1:32 were significantly lower than those in patients with anti-NMDAR antibody ≥1:32 (p = 0.029). Urine pH levels were significantly lower (p = 0.004) and urine SG levels were significantly higher (p = 0.027) in a follow-up evaluation 3 months after treatment. Conclusions: The changes in urinalysis occur in patients with anti-NMDAR antibody encephalitis. The pathophysiological changes in anti-NMDAR antibody encephalitis were not limited to the CNS.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Meifeng Gu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Liu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Neurology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Xiaofeng Xu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Fan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Optimization and validation of a chiral CE-LIF method for quantitation of aspartate, glutamate and serine in murine osteocytic and osteoblastic cells. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122259. [DOI: 10.1016/j.jchromb.2020.122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
|
26
|
The Role of Cardiac N-Methyl-D-Aspartate Receptors in Heart Conditioning-Effects on Heart Function and Oxidative Stress. Biomolecules 2020; 10:biom10071065. [PMID: 32708792 PMCID: PMC7408261 DOI: 10.3390/biom10071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 μmol/L) and the NMDAR antagonists memantine (100 μmol/L) and MK-801 (30 μmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Collapse
|
27
|
Glutamate-Gated NMDA Receptors: Insights into the Function and Signaling in the Kidney. Biomolecules 2020; 10:biom10071051. [PMID: 32679780 PMCID: PMC7407907 DOI: 10.3390/biom10071051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) is a glutamate-gated ionotropic receptor that intervenes in most of the excitatory synaptic transmission within the central nervous system (CNS). Aside from being broadly distributed in the CNS and having indispensable functions in the brain, NMDAR has predominant roles in many physiological and pathological processes in a wide range of non-neuronal cells and tissues. The present review outlines current knowledge and understanding of the physiological and pathophysiological functions of NMDAR in the kidney, an essential excretory and endocrine organ responsible for the whole-body homeostasis. The review also explores the recent findings regarding signaling pathways involved in NMDAR-mediated responses in the kidney. As established from diverse lines of research reviewed here, basal levels of receptor activation within the kidney are essential for the maintenance of healthy tubular and glomerular function, while a disproportionate activation can lead to a disruption of NMDAR's downstream signaling pathways and a myriad of pathophysiological consequences.
Collapse
|
28
|
Kalev-Zylinska ML, Hearn JI, Makhro A, Bogdanova A. N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned? Front Physiol 2020; 11:577. [PMID: 32625106 PMCID: PMC7311790 DOI: 10.3389/fphys.2020.00577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) provides a pathway for glutamate-mediated inter-cellular communication, best known for its role in the brain but with multiple examples of functionality in non-neuronal cells. Data previously published by others and us provided ex vivo evidence that NMDARs regulate platelet and red blood cell (RBC) production. Here, we summarize what is known about these hematopoietic roles of the NMDAR. Types of NMDAR subunits expressed in megakaryocytes (platelet precursors) and erythroid cells are more commonly found in the developing rather than adult brain, suggesting trophic functions. Nevertheless, similar to their neuronal counterparts, hematopoietic NMDARs function as ion channels, and are permeable to calcium ions (Ca2+). Inhibitors that block open NMDAR (memantine and MK-801) interfere with megakaryocytic maturation and proplatelet formation in primary culture. The effect on proplatelet formation appears to involve Ca2+ influx-dependent regulation of the cytoskeletal remodeling. In contrast to normal megakaryocytes, NMDAR effects in leukemic Meg-01 cells are diverted away from differentiation to increase proliferation. NMDAR hypofunction triggers differentiation of Meg-01 cells with the bias toward erythropoiesis. The underlying mechanism involves changes in the intracellular Ca2+ homeostasis, cell stress pathways, and hematopoietic transcription factors that upon NMDAR inhibition shift from the predominance of megakaryocytic toward erythroid regulators. This ability of NMDAR to balance both megakaryocytic and erythroid cell fates suggests receptor involvement at the level of a bipotential megakaryocyte-erythroid progenitor. In human erythroid precursors and circulating RBCs, NMDAR regulates intracellular Ca2+ homeostasis. NMDAR activity supports survival of early proerythroblasts, and in mature RBCs NMDARs impact cellular hydration state, hemoglobin oxygen affinity, and nitric oxide synthase activity. Overexcitation of NMDAR in mature RBCs leads to Ca2+ overload, K+ loss, RBC dehydration, and oxidative stress, which may contribute to the pathogenesis of sickle cell disease. In summary, there is growing evidence that glutamate-NMDAR signaling regulates megakaryocytic and erythroid cells at different stages of maturation, with some intriguing differences emerging in NMDAR expression and function between normal and diseased cells. NMDAR signaling may provide new therapeutic opportunities in hematological disease, but in vivo applicability needs to be confirmed.
Collapse
Affiliation(s)
- Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - James I. Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
29
|
Cardioprotective effects of memantine in myocardial ischemia: Ex vivo and in vivo studies. Eur J Pharmacol 2020; 882:173277. [PMID: 32544502 DOI: 10.1016/j.ejphar.2020.173277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) refers to the loss of cardiomyocytes due to inadequate coronary blood flow and subsequently a reduced oxygen supply. Activation of N-methyl-D-aspartate (NMDA) receptors has been linked to myocardial infarction. The aim of the present study was to determine the cardioprotective effects of memantine, in myocardial infarction both in ex vivo and in vivo models. Effects of memantine on the electrocardiogram (ECG) pattern, cardiodynamic parameters, infarct size and lipid peroxidation were evaluated in the isolated perfused rat heart. Moreover, in in vivo studies in rats, the protective effects of memantine on isoproterenol-induced myocardial infarction model (administration of 100 mg/kg isoproterenol subcutaneously for 2 consecutive days) was evaluated by measuring ECG pattern, mean arterial pressure, malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, cardiac tumor necrosis factor-alpha (TNF-α) level and cardiac remodeling. The results from the ex vivo isolated perfused heart showed that memantine treatment increased heart rate, left ventricular systolic pressure and left ventricular maximal rate of pressure increase, and decreased cardiac arrhythmia, MDA level and infarct size in comparison to ischemia/reperfusion (IR) group. The isoproterenol-induced MI (Iso) as used in the in vivo model demonstrated that MDA levels and MPO activity were decreased in memantine groups. Memantine treatment reduced the expression of cardiac TNF-α in comparison to Iso group. Cardiac fibrosis and hypertrophy were lower in memantine groups. In conclusion, memantine exerts cardioprotective effects in models of myocardial infarction, which may be attributed to reduction of pro-inflammatory and oxidative stress factors and subsequently a decrease in cardiac remodeling.
Collapse
|
30
|
Martin KS, Azzolini M, Lira Ruas J. The kynurenine connection: how exercise shifts muscle tryptophan metabolism and affects energy homeostasis, the immune system, and the brain. Am J Physiol Cell Physiol 2020; 318:C818-C830. [DOI: 10.1152/ajpcell.00580.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tryptophan catabolism through the kynurenine pathway generates a variety of bioactive metabolites. Physical exercise can modulate kynurenine pathway metabolism in skeletal muscle and thus change the concentrations of select compounds in peripheral tissues and in the central nervous system. Here we review recent advances in our understanding of how exercise alters tryptophan-kynurenine metabolism in muscle and its subsequent local and distal effects. We propose that the effects of kynurenine pathway metabolites on skeletal muscle, adipose tissue, immune system, and the brain suggest that some of these compounds could qualify as exercise-induced myokines. Indeed, some of the more recently discovered biological activities for kynurenines include many of the best-known benefits of exercise: improved energy homeostasis, promotion of an anti-inflammatory environment, and neuroprotection. Finally, by considering the tissue expression of the different membrane and cytosolic receptors for kynurenines, we discuss known and potential biological activities for these tryptophan metabolites.
Collapse
Affiliation(s)
- Kyle S. Martin
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Jorge Lira Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
31
|
Bozic M, Caus M, Rodrigues-Diez RR, Pedraza N, Ruiz-Ortega M, Garí E, Gallel P, Panadés MJ, Martinez A, Fernández E, Valdivielso JM. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun 2020; 11:1943. [PMID: 32327648 PMCID: PMC7181766 DOI: 10.1038/s41467-020-15732-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Kidney fibrosis is a highly deleterious process and a final manifestation of chronic kidney disease. Alpha-(α)-synuclein (SNCA) is an actin-binding neuronal protein with various functions within the brain; however, its role in other tissues is unknown. Here, we describe the expression of SNCA in renal epithelial cells and demonstrate its decrease in renal tubules of murine and human fibrotic kidneys, as well as its downregulation in renal proximal tubular epithelial cells (RPTECs) after TGF-β1 treatment. shRNA-mediated knockdown of SNCA in RPTECs results in de novo expression of vimentin and α-SMA, while SNCA overexpression represses TGF-β1-induced mesenchymal markers. Conditional gene silencing of SNCA in RPTECs leads to an exacerbated tubulointerstitial fibrosis (TIF) in two unrelated in vivo fibrotic models, which is associated with an increased activation of MAPK-p38 and PI3K-Akt pathways. Our study provides an evidence that disruption of SNCA signaling in RPTECs contributes to the pathogenesis of renal TIF by facilitating partial epithelial-to-mesenchymal transition and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Milica Bozic
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| | - Maite Caus
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Raul R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Science, IRBLleida, University of Lleida, Lleida, Spain
| | - Pilar Gallel
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Maria José Panadés
- Department of Pathology and Molecular Genetics, University Hospital Arnau de Vilanova and University of Lleida, IRBLleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - Elvira Fernández
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research in Lleida (IRBLleida) and RedInRen Retic, ISCIII, Spain.
| |
Collapse
|
32
|
The Effects of N-Methyl-D-Aspartate Receptor Blockade on Oxidative Status in Heart During Conditioning Maneuvers. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2019-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
N-methyl-D-aspartate receptor (NMDAR) belongs to iono-tropic glutamate receptor family. The most prominent roles of the NMDAR are related to the physiological and pathophysiological processes of the central nervous system (CNS). The link between NMDAR and cardiovascular pathology came into focus due to detrimental effects of homocysteine on the cardiovascular system. Regarding the fact that NMDAR affects Ca2+ homeostasis in cells, one of the main mechanisms which mediate adverse effects of glutamate dyshomeostasis and abnormal NMDAR activity is oxidative stress. Both in ischemia and during reperfusion, there are imbalance in Ca2+ and production of reactive species, which remains one of the basic mechanisms underlining the overall cardiomyocyte death due to myocardial infarction. The aim of this study was to assess the effects of blockade of NMDAR in heart using MK-801, in preconditioning and postconditioning fashion and to compare the values of oxidative stress biomarkers. We used Langendorff technique of isolated heart. In the control group, all isolated rat hearts were subjected to global ischemia after stabilization period (perfusion of the whole heart with Krebs-Henseleit solution was stopped) for 20 minutes, followed by 30 minutes of reperfusion. In the preconditioning group, after stabilization period, hearts were perfused with MK-801 for 5 minutes, before global ischemia of 20 minutes which was followed by 30 minutes reperfusion. In the postconditioning group, hearts were perfused with MK-801 during the first 3 minutes of reperfusion. Results of this study showed antioxidative effects of NMDAR inhibition in pre- and postconditioning of the isolated rat heart.
Collapse
|
33
|
Goldsmith PJ. NMDAR PAMs: Multiple Chemotypes for Multiple Binding Sites. Curr Top Med Chem 2019; 19:2239-2253. [PMID: 31660834 DOI: 10.2174/1568026619666191011095341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a member of the ionotropic glutamate receptor (iGluR) family that plays a crucial role in brain signalling and development. NMDARs are nonselective cation channels that are involved with the propagation of excitatory neurotransmission signals with important effects on synaptic plasticity. NMDARs are functionally and structurally complex receptors, they exist as a family of subtypes each with its own unique pharmacological properties. Their implication in a variety of neurological and psychiatric conditions means they have been a focus of research for many decades. Disruption of NMDAR-related signalling is known to adversely affect higherorder cognitive functions (e.g. learning and memory) and the search for molecules that can recover (or even enhance) receptor output is a current strategy for CNS drug discovery. A number of positive allosteric modulators (PAMs) that specifically attempt to overcome NMDAR hypofunction have been discovered. They include various chemotypes that have been found to bind to several different binding sites within the receptor. The heterogeneity of chemotype, binding site and NMDAR subtype provide a broad landscape of ongoing opportunities to uncover new features of NMDAR pharmacology. Research on NMDARs continues to provide novel mechanistic insights into receptor activation and this review will provide a high-level overview of the research area and discuss the various chemical classes of PAMs discovered so far.
Collapse
Affiliation(s)
- Paul J Goldsmith
- Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, GU20 6PH, United Kingdom
| |
Collapse
|
34
|
Sperber PS, Siegerink B, Huo S, Rohmann JL, Piper SK, Prüss H, Heuschmann PU, Endres M, Liman TG. Serum Anti-NMDA (N-Methyl-D-Aspartate)-Receptor Antibodies and Long-Term Clinical Outcome After Stroke (PROSCIS-B). Stroke 2019; 50:3213-3219. [PMID: 31526121 DOI: 10.1161/strokeaha.119.026100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background and Purpose- NMDAR1-abs (anti-N-Methyl-D-Aspartate receptor GluN1 antibodies), predominantly known in the context of autoimmune encephalitis, have been observed in serum of healthy individuals. A previous study found smaller stroke magnetic resonance imaging lesion growth in seropositive patients, suggesting a neuroprotective effect of these antibodies. The impact of NMDAR1-abs seropositivity on long-term functional outcome and recurrent vascular events and death after first-ever stroke remains unclear. Methods- Data from the Prospective Cohort with Incident Stroke-Berlin were used. NMDAR1-abs (ie, IgM, IgA, and IgG) were measured in serum within 7 days after first stroke. Outcomes of interest included modified Rankin Scale at one year and the time-to-event of a combined end point (recurrent stroke, myocardial infarction, and all-cause mortality) within 3 years. We calculated odds ratios from adjusted partial proportional odds models and subsequently compared outcome of patients with low titers (1:10; 1:32; and 1:100), and high titers (1:320; 1:1000) to seronegative patients. Furthermore, we estimated hazard ratios for a secondary vascular event or death in NMDAR1-abs seropositive compared to seronegative patients in models adjusted for confounders. Results- The analyses included 583 patients with antibody measurements (39% female, median National Institutes of Health Stroke Scale:2, IQR:1-4), and NMDAR1-abs were observed in 76 (13%) patients. NMDAR1-abs seroprevalence was not associated with functional outcome (odds ratio=1.27; 95% CI, 0.77-2.09); sub-group analyses, however, showed worse outcome in patients with high titers (odds ratio=3.47; 95% CI, 1.54-7.80). Seropositive patients had an increased risk for a secondary vascular event or death (hazard ratios =1.83, 95% CI, 1.10-3.05). Conclusions- In our study, NMDAR1-abs seropositivity was not associated with functional outcome at one year after stroke, however, high titers (≥1:320) were associated with poor functional outcome. Furthermore, NMDAR1-abs seropositivity was associated with increased cardiovascular risk within 3 years after first stroke, independently from other risk factors. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT01363856.
Collapse
Affiliation(s)
- Pia S Sperber
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany
| | - Bob Siegerink
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany
| | - Shufan Huo
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie (S.H., H.P., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany
| | - Jessica L Rohmann
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,Institute of Public Health (J.L.R.), Charité-Universitätsmedizin Berlin, Germany
| | - Sophie K Piper
- Institute of Biometry and Clinical Epidemiology (S.K.P.), Charité-Universitätsmedizin Berlin, Germany.,Berlin Institute of Health (S.K.P), Charité-Universitätsmedizin Berlin, Germany
| | - Harald Prüss
- Klinik und Hochschulambulanz für Neurologie (S.H., H.P., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,German Center for Neurodegenerative Disease DZNE (H.P., M.E.), partner site Berlin Charité-Universitätsmedizin Berlin, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Germany (P.U.H.).,Clinical Trial Center Würzburg, University Hospital Würzburg, Germany (P.U.H.)
| | - Matthias Endres
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie (S.H., H.P., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,Excellence Cluster Neurocure (M.E.), Charité-Universitätsmedizin Berlin, Germany.,German Center for Neurodegenerative Disease DZNE (H.P., M.E.), partner site Berlin Charité-Universitätsmedizin Berlin, Germany.,German Center for Cardiovascular Research DZHK (M.E., T.G.L.), partner site Berlin Charité-Universitätsmedizin Berlin, Germany
| | - Thomas G Liman
- From the Center for Stroke Research Berlin (P.S.S., B.S., S.H., J.L.R., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie (S.H., H.P., M.E., T.G.L.), Charité-Universitätsmedizin Berlin, Germany.,German Center for Cardiovascular Research DZHK (M.E., T.G.L.), partner site Berlin Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
35
|
Luo F, Wu L, Zhang Z, Zhu Z, Liu Z, Guo B, Li N, Ju J, Zhou Q, Li S, Yang X, Mak S, Han Y, Sun Y, Wang Y, Zhang G, Zhang Z. The dual-functional memantine nitrate MN-08 alleviates cerebral vasospasm and brain injury in experimental subarachnoid haemorrhage models. Br J Pharmacol 2019; 176:3318-3335. [PMID: 31180578 DOI: 10.1111/bph.14763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebral vasospasm and neuronal apoptosis after subarachnoid haemorrhage (SAH) is the major cause of morbidity and mortality in SAH patients. So far, single-target agents have not prevented its occurrence. Memantine, a non-competitive NMDA re3ceptor antagonist, is known to alleviate brain injury and vasospasm in experimental models of SAH. Impairment of NO availability also contributes to vasospasm. Recently, we designed and synthesized a memantine nitrate MN-08, which has potent dual functions: neuroprotection and vasodilation. Here, we have tested the therapeutic effects of MN-08 in animal models of SAH. EXPERIMENTAL APPROACH Binding to NMDA receptors (expressed in HEK293 cells), NO release and vasodilator effects of MN-08 were assessed in vitro. Therapeutic effects of MN-08 were investigated in vivo, using rat and rabbit SAH models. KEY RESULTS MN-08 bound to the NMDA receptor, slowly releasing NO in vitro and in vivo. Consequently, MN-08 relaxed the pre-contracted middle cerebral artery ex vivo and increased blood flow velocity in small vessels of the mouse cerebral cortex. It did not, however, lower systemic blood pressure. In an endovascular perforation rat model of SAH, MN-08 improved the neurological scores and ameliorated cerebral vasospasm. Moreover, MN-08 also alleviated cerebral vasospasm in a cisterna magna single-injection model in rabbits. MN-08 attenuated neural cell apoptosis in both rat and rabbit models of SAH. Importantly, the therapeutic benefit of MN-08 was greater than that of memantine. CONCLUSION AND IMPLICATIONS MN-08 has neuroprotective potential and can ameliorate vasospasm in experimental SAH models.
Collapse
Affiliation(s)
- Fangcheng Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zhixiang Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zheng Liu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Ning Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jun Ju
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, Shenzhen, China
| | - Shinghung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
36
|
Srejovic I, Jakovljevic V, Zivkovic V, Djuric D. Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2017-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
N-methyl-D-aspartate (NMDA) receptors belong to ionotropic glutamate receptor family, together with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, kainite receptors and δ-receptors. All of these receptors are tetramers composed of four subunits. NMDA receptors have several unique features in relation to other ionotropic glutamate receptors: requirement for simultaneous action of two coagonists, glutamate and glycine; dual control of receptor activation, ligand-dependent (by glutamate and glycine) and voltage-dependent (Mg2+ block) control; and influx of considerable amounts of Ca2+ following receptor activation. Increasing number of researches deals with physiological and pathophysiological roles of NMDA receptors outside of nerve tissues, especially in the cardiovascular system. NMDA receptors are found in all cell types represented in cardiovascular system, and their overstimulation in pathological conditions, such as hyperhomocysteinemia, is related to a range of cardiovascular disorders. On the other hand we demonstrated that blockade of NMDA receptors depresses heart function. There is a need for the intensive study of NMDA receptor in cardiovascular system as potential theraputical target both in prevention and treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
37
|
Wu D, Woods PS, Duong HT, Mutlu GM. Role of Cellular Metabolism in Pulmonary Diseases. Am J Respir Cell Mol Biol 2019; 59:127-129. [PMID: 29634283 DOI: 10.1165/rcmb.2018-0103ro] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David Wu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Heng T Duong
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
38
|
NMDA Receptor-Mediated Signaling Pathways Enhance Radiation Resistance, Survival and Migration in Glioblastoma Cells-A Potential Target for Adjuvant Radiotherapy. Cancers (Basel) 2019; 11:cancers11040503. [PMID: 30970642 PMCID: PMC6520759 DOI: 10.3390/cancers11040503] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/22/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca2+-permeable NMDARs in three glioblastoma cell lines. Therefore, we investigated the impact of this receptor on cell survival, migration and DNA double-strand break (DSB) repair in the presence of both, glutamate and NMDAR antagonists, and after clinically relevant doses of ionizing radiation. Our results indicate that treatment with NMDAR antagonists slowed the growth and migration of glutamate-releasing LN229 cells, suggesting that activation of NMDARs facilitate tumor expansion. Furthermore, we found that DSB-repair upon radiation was more effective in the presence of glutamate. In contrast, antagonizing the NMDAR or the Ca2+-dependent transcription factor CREB impaired DSB-repair similarly and resulted in a radiosensitizing effect in LN229 and U-87MG cells, indicating a common link between NMDAR signaling and CREB activity in glioblastoma. Since the FDA-approved NMDAR antagonists memantine and ifenprodil showed differential radiosensitizing effects, these compounds may constitute novel optimizations for therapeutic interventions in glioblastoma.
Collapse
|
39
|
Abstract
Pain management is complex regardless of whether the pain is acute or chronic in nature or non-cancer or cancer related. In addition, relatively few pain pharmacotherapy options with adequate efficacy and safety data currently exist. Consequently, interest in the role of NMDA receptor antagonists as a pharmacological pain management strategy has surfaced. This narrative review provides an overview of the NMDA receptor and elaborates on the pharmacotherapeutic profile and pain management literature findings for the following NMDA receptor antagonists: ketamine, memantine, dextromethorphan, and magnesium. The literature on this topic is characterized by small studies, many of which exhibit methodological flaws. To date, ketamine is the most studied NMDA receptor antagonist for both acute and chronic pain management. Although further research about NMDA receptor antagonists for analgesia is needed and the optimal dosage/administration regimens for these drugs have yet to be determined, ketamine appears to hold the most promise and may be of particular value in the perioperative pain management realm.
Collapse
|
40
|
Lu L, Hogan-Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX, Anderson CM. Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab 2019; 39:481-496. [PMID: 29072857 PMCID: PMC6421257 DOI: 10.1177/0271678x17734100] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Astrocytes express neurotransmitter receptors that serve as sensors of synaptic activity and initiate signals leading to activity-dependent local vasodilation and increases in blood flow. We previously showed that arteriolar vasodilation produced by activation of cortical astrocytes is dependent on endothelial nitric oxide synthase (eNOS) and endogenous agonists of N-methyl-D-aspartate (NMDA) receptors. Here, we tested the hypothesis that these effects are mediated by NMDA receptors expressed by brain endothelial cells. Primary endothelial cultures expressed NMDA receptor subunits and produced nitric oxide in response to co-agonists, glutamate and D-serine. In cerebral cortex in situ, immunoelectron microscopy revealed that endothelial cells express the GluN1 NMDA receptor subunit at basolateral membrane surfaces in an orientation suitable for receiving intercellular messengers from brain cells. In cortical slices, activation of astrocytes by two-photon flash photolysis of a caged Ca2+ compound or application of a metabotropic glutamate receptor agonist caused endothelial NO generation and local vasodilation. These effects were mitigated by NMDA receptor antagonists and conditional gene silencing of endothelial GluN1, indicating at least partial dependence on endothelial NMDA receptors. Our observations identify a novel astrocyte-endothelial vasodilatory signaling axis that could contribute to endothelium-dependent vasodilation in brain functional hyperemia.
Collapse
Affiliation(s)
- Lingling Lu
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - Adam D Hogan-Cann
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - Andrea K Globa
- 2 Department of Cellular and Physiological Sciences and the Djavad Mowafaghian Center for Brain Health, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ping Lu
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| | - James I Nagy
- 3 Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Shernaz X Bamji
- 2 Department of Cellular and Physiological Sciences and the Djavad Mowafaghian Center for Brain Health, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Christopher M Anderson
- 1 Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba and Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, Canada
| |
Collapse
|
41
|
Abbaszadeh S, Javidmehr A, Askari B, Janssen PM, Soraya H. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: A cardioprotective agent? Biomed Pharmacother 2018; 108:1237-1243. [DOI: 10.1016/j.biopha.2018.09.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/08/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
|
42
|
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II type 1 receptor blockers decrease kynurenic acid production in rat kidney in vitro. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:209-217. [PMID: 30370429 DOI: 10.1007/s00210-018-1572-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
Glutamate (GLU) mainly through N-methyl-D-aspartate (NMDA) receptors plays pivotal role in kidney function regulation. Kynurenic acid (KYNA), a GLU receptors antagonist, is synthesized from kynurenine by kynurenine aminotransferases (KATs). Previously, it was shown that angiotensin II type 1 receptor blockers (ARBs) decrease KYNA production in rat brain in vitro. The aim of this study was to examine the influence of six ARBs: candesartan, irbesartan, losartan, olmesartan, telmisartan, and valsartan on KYNA production on rat kidney in vitro. The effect of ARBs was determined in kidney homogenates and on isolated KAT II enzyme. Among tested ARBs, irbesartan was the most effective KYNA synthesis inhibitor with IC50 of 14.4 μM. Similar effects were observed after losartan (IC50 45.9 μM) and olmesartan administration (IC50 108.1 μM), whereas candesartan (IC50 475.3 μM), valsartan (IC50 513.9 μM), and telmisartan (IC50 669.5 μM) displayed lower activity in KYNA synthesis inhibition in rat kidney homogenates in vitro. On the other hand, valsartan (IC50 27.5 μM) was identified to be the strongest KAT II inhibitor in rat kidney in vitro. Candesartan, losartan, and telmisartan suppressed KAT II activity with IC50 equal to 83.2, 83.3, and 108.3 μM, respectively. Olmesartan and irbesartan were the weakest KAT II inhibitors with IC50 values of 237.4 and 809.9 μM, respectively. Moreover, molecular docking suggested that studied ARBs directly bind to an active site of KAT II. In conclusion, our results indicate that ARBs decrease KYNA synthesis in rat kidney through enzymatic inhibition of KAT II, which may have impact on kidney function.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
43
|
Palmai Z, Houenoussi K, Cohen-Kaminsky S, Tchertanov L. How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors? PLoS One 2018; 13:e0201234. [PMID: 30075003 PMCID: PMC6075769 DOI: 10.1371/journal.pone.0201234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/11/2018] [Indexed: 12/05/2022] Open
Abstract
NMDA-type glutamate receptors (NMDAR) are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system. NMDAR dysfunction has been found to be involved in various neurological disorders. Recent crystallographic and EM studies have shown the static structure of different states of the non-human NMDARs. Here we describe a model of a human NMDA receptor (hNMDAR) and its molecular dynamics (MD) before and after the binding of agonist ligands, glutamate and glycine. It is shown that the binding of ligands promotes a global reduction in molecular flexibility that produces a more tightly packed conformation than the unbound hNMDAR, and a higher cooperative regularity of moving. The ligand-induced synchronization of motion, identified on all structural levels of the modular hNMDA receptor is apparently a fundamental factor in channel gating. Although the time scale of the MD simulations (300 ns) was not sufficient to observe the complete gating event, the obtained data has shown the ligand-induced stabilization of hNMDAR that conforms the “going to be open state”. We propose a mechanistic dynamic model of the ligand-dependent gating mechanism in the hNMDA receptor. At the binding of the ligands, the differently twisted conformations of the highly flexible receptor are stabilized in unique conformation with a linear molecular axis, which is a condition that is optimal for pore development. By searching the receptor surface, we have identified three new pockets, which are different from the pockets described in the literature as the potential and known positive allosteric modulator binding sites. A successful docking of two NMDAR modulators to their binding sites validates the model of a human NMDA receptor as a biological relevant target.
Collapse
Affiliation(s)
- Zoltan Palmai
- Centre de Mathématiques et de Leurs Applications (CMLA), ENS Paris-Saclay, CNRS-UMR 8536, Cachan, France
| | - Kimberley Houenoussi
- Centre de Mathématiques et de Leurs Applications (CMLA), ENS Paris-Saclay, CNRS-UMR 8536, Cachan, France
| | - Sylvia Cohen-Kaminsky
- Laboratoire d’Excellence en Recherche sur le Médicament et l’Innovation Thérapeutique (LabEx LERMIT), DHU TORINO (Thorax Innovation), INSERM UMR-S 999 - Université Paris- Saclay – IPSIT, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Luba Tchertanov
- Centre de Mathématiques et de Leurs Applications (CMLA), ENS Paris-Saclay, CNRS-UMR 8536, Cachan, France
- * E-mail:
| |
Collapse
|
44
|
Dumas SJ, Bru-Mercier G, Courboulin A, Quatredeniers M, Rücker-Martin C, Antigny F, Nakhleh MK, Ranchoux B, Gouadon E, Vinhas MC, Vocelle M, Raymond N, Dorfmüller P, Fadel E, Perros F, Humbert M, Cohen-Kaminsky S. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation 2018; 137:2371-2389. [PMID: 29444988 DOI: 10.1161/circulationaha.117.029930] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Calcium/pharmacology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Endothelin-1/pharmacology
- Glutamic Acid/metabolism
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Gilles Bru-Mercier
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Audrey Courboulin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marceau Quatredeniers
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Catherine Rücker-Martin
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Fabrice Antigny
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Morad K Nakhleh
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Benoit Ranchoux
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elodie Gouadon
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Maria-Candida Vinhas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Matthieu Vocelle
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Nicolas Raymond
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Peter Dorfmüller
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Elie Fadel
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Frédéric Perros
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
- AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H.)
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.).
- University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.)
| |
Collapse
|
45
|
Understanding Potential Drug Side Effects: Can We Translate Molecular Mechanisms to Clinical Applications? Anesthesiology 2017; 127:6-8. [PMID: 28475557 DOI: 10.1097/aln.0000000000001666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Srejovic I, Zivkovic V, Nikolic T, Jeremic N, Stojic I, Jeremic J, Djuric D, Jakovljevic V. Modulation of N-methyl-d-aspartate receptors in isolated rat heart. Can J Physiol Pharmacol 2017; 95:1327-1334. [PMID: 28758414 DOI: 10.1139/cjpp-2017-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considering the limited data on the role of NMDA-Rs in the cardiovascular system, the aim of the present study was to examine the effects of NMDA and DL-Hcy TLHC, alone and in combination with glycine, memantine, and ifenprodil, in the isolated rat heart. The hearts of Wistar albino rats were retrogradely perfused according to the Langendorff technique at a constant perfusion pressure. The experimental protocol for all experimental groups included the stabilization period, application of estimated substance for 5 min, followed by a washout period of 10 min. Using a sensor placed in the left ventricle, we registered the following parameters of myocardial function: dp/dtmax, dp/dtmin, SLVP, DVLP, HR; CF was measured using flowmetry). We estimated the following oxidative stress biomarkers in the coronary venous effluent using spectrophotometry: TBARS, NO2-, O2-, and H2O2. NMDA alone did not induce any change in any of the observed parameters, while DL-Hcy TLHC alone, as well as a combined application of NMDA and DL-Hcy TLHC with glycine, induced a reduction of most cardiodynamic parameters. Memantine and ifenprodil induced a reduction of cardiodynamic parameters and CF, as well as some oxidative stress biomarkers.
Collapse
Affiliation(s)
- Ivan Srejovic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora Stojic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Jeremic
- b Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Djuric
- c Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- a Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,d Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
47
|
Estradiol mitigates ischemia reperfusion-induced acute renal failure through NMDA receptor antagonism in rats. Mol Cell Biochem 2017; 434:33-40. [PMID: 28432550 DOI: 10.1007/s11010-017-3034-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
In the present study, we investigated possible involvement of N-methyl-D-aspartate receptors (NMDAR) in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute renal failure (ARF) in rats. Bilateral renal ischemia of 40 min followed by reperfusion for 24 h induced ARF in male wistar rats. Quantification of serum creatinine, creatinine clearance (CrCl), blood urea nitrogen (BUN), uric acid, potassium, fractional excretion of sodium (FeNa), and urinary microproteins was done to assess I/R-induced renal damage in rats. Oxidative stress in kidneys was measured in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin & eosin and periodic acid Schiff stains were used to reveal structural changes in renal tissues. Estradiol benzoate (0.5 and 1.0 mg/kg, intraperitoneally, i.p.) was administered 1 h prior to I/R in rats. In separate groups, rats were treated with NMDAR agonists, glutamic acid (200 mg/kg, i.p.), and spermidine (20 mg/kg, i.p.) before administration of estradiol. Marked increase in serum creatinine, BUN, uric acid, serum potassium, FeNa, microproteinuria, and reduction in CrCl demonstrated I/R-induced ARF in rats. Treatment with estradiol mitigated I/R-induced changes in serum/urine parameters. Moreover, estrogen attenuated oxidative stress and structural changes in renal tissues. Prior administration of glutamic acid and spermidine abolished estradiol mediated renoprotection in rats. These results indicate the involvement of NMDAR in estradiol mediated renoprotective effect. In conclusion, we suggest that NMDAR antagonism serves as one of the mechanisms in estradiol-mediated protection against I/R-induced ARF in rats.
Collapse
|
48
|
Cicone F, Viertl D, Quintela Pousa AM, Denoël T, Gnesin S, Scopinaro F, Vozenin MC, Prior JO. Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play. Front Med (Lausanne) 2017; 4:35. [PMID: 28424774 PMCID: PMC5372793 DOI: 10.3389/fmed.2017.00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland.,Nuclear Medicine, Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ana Maria Quintela Pousa
- Laboratory of Radiation Oncology, Service of Radiation-Oncology, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Thibaut Denoël
- Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland
| | - Silvano Gnesin
- Institute of Radiation Physics, University Hospital of Lausanne, Lausanne, Switzerland
| | - Francesco Scopinaro
- Nuclear Medicine, Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Service of Radiation-Oncology, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Du E, McAllister P, Venna VR, Xiao L. Clinically Relevant Concentrations of Ketamine Inhibit Osteoclast Formation In Vitro in Mouse Bone Marrow Cultures. J Cell Biochem 2016; 118:914-923. [PMID: 27775174 DOI: 10.1002/jcb.25772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022]
Abstract
Ketamine has been used safely in clinics for decades for analgesia and anesthesia. It is increasingly popular in clinical practice due to its new uses and importance for emergency procedures. It is known that ketamine is sequestered in the bone marrow and the major receptors for ketamine, noncompetitive N-methyl-d-aspartate receptors (NMDARs), are expressed in osteoclasts (OCs) and osteoblasts. However, the impact of ketamine on OCs or osteoblasts is unknown. In this study, we investigated the effects of ketamine on osteoclastogenesis and regulation of NMDARs expression in vitro. Bone marrows (BMs) or bone marrow macrophages (BMMs) were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) with or without ketamine for up to 6 days. OC formation peaked at day 5. On day 5 of culture, ketamine inhibited OC formation from both BM and BMM cultures at clinically relevant concentrations (3-200 µM). Ketamine inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) in BMM cultures. Inhibition of ketamine on RANKL-induced osteoclastogenesis is associated with down-regulation of NMDARs. In addition, ketamine significantly inhibited the M-CSF induced migration of BMMs, inhibited cell fusion and significantly increased mature OC apoptosis. We conclude that clinically relevant concentrations of ketamine inhibit OC formation in both BM and BMM cultures in vitro through inhibiting migration and fusion process and enhancing mature OC apoptosis. It is likely that ketamine regulates osteoclastogenesis, at least in part, via its effects on NMDAR expression. J. Cell. Biochem. 118: 914-923, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erxia Du
- Department of Medicine, UConn Health, Farmington, Connecticut
| | - Patrick McAllister
- Department of Medicine, UConn Health, Farmington, Connecticut.,Department of Biology, UConn Health, Farmington, Connecticut
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Liping Xiao
- Department of Medicine, UConn Health, Farmington, Connecticut.,Department of Psychiatry, UConn Health, Farmington, Connecticut
| |
Collapse
|
50
|
Stojic I, Srejovic I, Zivkovic V, Jeremic N, Djuric M, Stevanovic A, Milanovic T, Djuric D, Jakovljevic V. The effects of verapamil and its combinations with glutamate and glycine on cardiodynamics, coronary flow and oxidative stress in isolated rat heart. J Physiol Biochem 2016; 73:141-153. [PMID: 27812957 DOI: 10.1007/s13105-016-0534-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
Abstract
The role of N-methyl-D-aspartate receptor (NMDA-R) in heart is still unclear. For these ionotropic glutamate receptors is characteristic the necessity of both co-agonists, glutamate and glycine, for their activation, which primarily allows influx of calcium. The aim of the present study was to examine the effects of verapamil, as a calcium channel blocker, alone and its combination with glycine and/or glutamate on cardiac function, coronary flow, and oxidative stress in isolated rat heart or to examine the effects of potential activation of NMDA-R in isolated rat heart. The hearts of male Wistar albino rats were excised and perfused according to Langendorff technique, and cardiodynamic parameters and coronary flow were determined during the administration of verapamil and its combinations with glutamate and/or glycine. The oxidative stress biomarkers, including thiobarbituric acid-reactive substances, nitrites, superoxide anion radical, and hydrogen peroxide, were each determined spectrophotometrically from coronary venous effluent. The greatest decline in parameters of cardiac contractility and systolic pressure was in the group that was treated with verapamil only, while minimal changes were observed in group treated with all three tested substances. Also, the largest changes in coronary flow were in the group treated only with verapamil, and at least in the group that received all three tested substances, as well as the largest increase in oxidative stress parameters. Based on the obtained results, it can be concluded that NMDA-R activation allows sufficient influx of calcium to increase myocardial contractility and systolic pressure, as well as short-term increase of oxidative stress.
Collapse
Affiliation(s)
- Isidora Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Djuric
- University Clinical Hospital Center "Dr Dragisa Misovic", University of Belgrade, Belgrade, Serbia
| | - Ana Stevanovic
- University Clinical Hospital Center "Dr Dragisa Misovic", University of Belgrade, Belgrade, Serbia
| | - Tamara Milanovic
- Department of Biochemistry, Faculty of Medicine, University of Prishtina/Kosovska Mitrovica, Kosovska Mitrovica, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian," Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|