1
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
2
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zenjanab MK, Pakchin PS, Fathi M, Abdolahinia ED, Adibkia K. Niosomes containing paclitaxel and gold nanoparticles with different coating agents for efficient chemo/photothermal therapy of breast cancer. Biomed Mater 2024; 19:035015. [PMID: 38422524 DOI: 10.1088/1748-605x/ad2ed5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer (BC) is one of the most common cancers in women, and chemotherapy is usually used to overcome this cancer. To improve drug delivery to cancer sites and reduce their side effects, nanocarriers such as niosomes (NIOs) are used. Moreover, a combination of other therapeutic methods like photothermal therapy (PTT) can help to enhance the chemotherapy effect. The aim of this research is the design a nanocarrier that simultaneously delivers chemotherapy and PTT agents. To achieve this goal, NIOs containing paclitaxel (PTX) as a chemotherapeutic agent and spherical gold nanoparticles (AuNPs) coated with citrate, chitosan (CS), and polyamidoamine (PAMAM) as a PTT agent were synthesized by thin hydration methods. Their physicochemical properties were determined by dynamic light scattering, UV-Vis, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) analysis. Cellular uptake, cell cytotoxicity, hyperthermia, and apoptosis effects of the proposed system were investigated in the MCF-7 BC cell line. The cellular uptake of NIOs/AuNPs-PAMAM (99.21%) and NIOs/AuNPs-CS (98.93%) by MCF-7 cells was higher than that of NIOs/AuNPs (79.55%), demonstrating that surface charge plays a key role in the cellular uptake of NPs. The MTT assay showed the cell viability of 45.48% for NIOs/AuNPs/PTX, 34.24% for NIOs/AuNPs-CS/PTX, and 37.67% for NIOs/AuNPs-PAMAM/PTX after 48 h of treatment. However, the application of hyperthermia significantly decreased the viability of cells treated with NIOs/AuNPs/PTX (37.72%), NIOs/AuNPs-CS/PTX (10.49%), and NIOs/AuNPs-PAMAM/PTX (4.1%) after 48 h. The apoptosis rate was high in NIOs/AuNPs-PAMAM/PTX (53.24%) and NIOs/AuNPs-CS/PTX (55.4%) confirming the data from MTT. In conclusion, the result revealed that combined PTT with chemotherapy increased cell cytotoxicity effects against the MCF-7 cells, and the AuNPs with various coating agents affected cellular uptake and hyperthermia which can be considered for efficient BC therapy.
Collapse
Affiliation(s)
- Masuomeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Panghal A, Flora SJS. Nanotechnology in the diagnostic and therapy for Alzheimer's disease. Biochim Biophys Acta Gen Subj 2024; 1868:130559. [PMID: 38191034 DOI: 10.1016/j.bbagen.2024.130559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by β-amyloid plaque, intraneuronal tangles, significant neuronal loss and cognitive deficit. Treatment in the early stages of the disease is crucial for preventing or perhaps reversing the neurodegeneration in the AD cases. However, none of the current diagnostic procedures are capable of early diagnosis of AD. Further, the available treatments merely provide symptomatic alleviation in AD and do not address the underlying illness. Therefore, there is no permanent cure for AD currently. Better therapeutic outcomes need the optimum drug concentration in the central nervous system (CNS) by traversing blood-brain-barrier (BBB). Nanotechnology offers enormous promise to transform the treatment and diagnostics of neurodegenerative diseases. Nanotechnology based diagnostic tools, drug delivery systems and theragnostic are capable of highly sensitive molecular detection, effective drug targeting and their combination. Significant work has been done in this area over the last decade and prospective results have been obtained in AD therapy. This review explores the various applications of nanotechnology in addressing the varied facets of AD, ranging from early detection to therapeutic interventions. This review also looks at how nanotechnology can help with the development of disease-modifying medicines, such as the delivery of anti-amyloid, anti-tau, cholinesterase inhibitors, antioxidants and hormonal drugs. In conclusion, this paper discusses the role of nanotechnology in the early detection of AD, effective drug targeting to the CNS and theragnostic applications in the management of AD.
Collapse
Affiliation(s)
- Archna Panghal
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Panjab 160012, India; Institute of Pharmaceutical Sciences, Era Medical University, Safarajganj, Lucknow 226003, U.P., India.
| |
Collapse
|
5
|
Shahbazi-Gahrouei D, Choghazardi Y, Kazemzadeh A, Naseri P, Shahbazi-Gahrouei S. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol 2023. [PMID: 37139612 DOI: 10.1049/nbt2.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yazdan Choghazardi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Kazemzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paria Naseri
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
6
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
7
|
Gheata A, Gaulier G, Campargue G, Vuilleumier J, Kaiser S, Gautschi I, Riporto F, Beauquis S, Staedler D, Diviani D, Bonacina L, Gerber-Lemaire S. Photoresponsive Nanocarriers Based on Lithium Niobate Nanoparticles for Harmonic Imaging and On-Demand Release of Anticancer Chemotherapeutics. ACS NANOSCIENCE AU 2022; 2:355-366. [PMID: 35996436 PMCID: PMC9389616 DOI: 10.1021/acsnanoscienceau.1c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nanoparticle-based
drug delivery systems have the potential for
increasing the efficiency of chemotherapeutics by enhancing the drug
accumulation at specific target sites, thereby reducing adverse side
effects and mitigating patient acquired resistance. In particular,
photo-responsive nanomaterials have attracted much interest due to
their ability to release molecular cargos on demand upon light irradiation.
In some settings, they can also provide complementary information
by optical imaging on the (sub)cellular scale. We herein present a
system based on lithium niobate harmonic nanoparticles (LNO HNPs)
for the decoupled multi-harmonic cell imaging and near-infrared light-triggered
delivery of an erlotinib derivative (ELA) for the treatment
of epidermal growth factor receptor (EGFR)-overexpressing carcinomas.
The ELA cargo was covalently conjugated to the surface
of silica-coated LNO HNPs through a coumarinyl photo-cleavable linker,
achieving a surface loading of the active molecule of 27 nmol/mg NPs.
The resulting nanoconjugates (LNO-CM-ELA NPs) were successfully
imaged upon pulsed laser excitation at 1250 nm in EGFR-overexpressing
human prostate cancer cells DU145 by detecting the second harmonic
emission at 625 nm, in the tissue transparency window. Tuning the
laser at 790 nm resulted in the uncaging of the ELA cargo
as a result of the second harmonic emission of the inorganic HNP core
at 395 nm. This protocol induced a significant growth inhibition in
DU145 cells, which was only observed upon specific irradiation at
790 nm, highlighting the promising capabilities of LNO-CM-ELA NPs for theranostic applications.
Collapse
Affiliation(s)
- Adrian Gheata
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, Lausanne CH-1015, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics, Université de Genève, 22 Chemin de Pinchat, Genève CH-1211, Switzerland
| | - Gabriel Campargue
- Department of Applied Physics, Université de Genève, 22 Chemin de Pinchat, Genève CH-1211, Switzerland
| | - Jérémy Vuilleumier
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, Lausanne CH-1015, Switzerland
| | - Simon Kaiser
- Department of Biomedical Sciences, Université de Lausanne, 7 Rue du Bugnon, Lausanne CH-1005, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, Université de Lausanne, 7 Rue du Bugnon, Lausanne CH-1005, Switzerland
| | | | | | - Davide Staedler
- Department of Biomedical Sciences, Université de Lausanne, 7 Rue du Bugnon, Lausanne CH-1005, Switzerland
| | - Dario Diviani
- Department of Biomedical Sciences, Université de Lausanne, 7 Rue du Bugnon, Lausanne CH-1005, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics, Université de Genève, 22 Chemin de Pinchat, Genève CH-1211, Switzerland
| | - Sandrine Gerber-Lemaire
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Group for Functionalized Biomaterials, EPFL SB ISIC SCI-SB-SG, Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
8
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
9
|
Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, Iqubal SMS, Bahafi A, More SS, Shaikh IA, Mannasaheb BA, Othman N, Maqbul MS, Ahmad MZ. Plant-Based Synthesis of Gold Nanoparticles and Theranostic Applications: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041391. [PMID: 35209180 PMCID: PMC8875495 DOI: 10.3390/molecules27041391] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Bionanotechnology is a branch of science that has revolutionized modern science and technology. Nanomaterials, especially noble metals, have attracted researchers due to their size and application in different branches of sciences that benefit humanity. Metal nanoparticles can be synthesized using green methods, which are good for the environment, economically viable, and facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles (NPs), which have been generated using various materials. On the other hand, chemically produced nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′ tunable features make them sophisticated tools in the biomedical platform, especially for developing new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders. Therefore, this review outlines the theranostic approach, the different plant materials utilized in theranostic applications, and future directions based on current breakthroughs in these fields.
Collapse
Affiliation(s)
- Uday M. Muddapur
- Department of Biotechnology, KLE Technological University, Hubbali 580031, India
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia; (M.M.G.); (B.A.M.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 66462, Saudi Arabia;
| | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - S. M. Shakeel Iqubal
- Department of General Science, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
- Correspondence: (U.M.M.); (S.M.S.I.)
| | - Amal Bahafi
- Department of Pharmaceutical Chemistry, Ibn Sina National College for Medical Studies, Al Mahajar Street, P.O. Box 31906, Jeddah 21418, Saudi Arabia;
| | - Sunil S. More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560078, Karnataka, India;
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | | | - Noordin Othman
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 41311, Saudi Arabia;
- Department of Clinical Pharmacy, School of Pharmacy, Management and Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Selangor, Malaysia
| | - Muazzam Sheriff Maqbul
- Department of Microbiology and Immunology, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| |
Collapse
|
10
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
11
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|
12
|
Understanding structural and molecular properties of complexes of nucleobases and Au13 golden nanocluster by DFT calculations and DFT-MD simulation. Sci Rep 2021; 11:435. [PMID: 33432001 PMCID: PMC7801688 DOI: 10.1038/s41598-020-80161-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The characterization of the complexes of biomolecules and nanostructures is highly interesting and benefits the rational development and design of nano-materials and nano-devices in nano-biotechnology. In this work, we have used dispersion corrected density functional theory (DFT-D) as well as DFT based molecular dynamics simulations to provide an atomistic understanding of interaction properties of DNA nucleobases and Au13 nanocluster. Various active sites of interacting molecules considering their relative orientation and distance are explored. Our goal is to stimulate the binding characteristics between two entities and evaluate this through the interaction energy, the charge transfer, the electronic structure, and the specific role of the molecular properties of the nucleobase-Au13 system. The primary outcomes of this comprehensive research illuminated that nucleic bases have potent affinity for binding to the Au cluster being chemisorption type and following the trend: Adenine > Cytosine > Guanine > Thymine. The AIM analysis indicated that the binding nature of the interacting species was predominantly partial covalent and high polar. We discuss the bearing of our findings in view of gene-nanocarrier, biosensing applications as well as nanodevices for sequencing of DNA.
Collapse
|
13
|
Ahmad MZ, Rizwanullah M, Ahmad J, Alasmary MY, Akhter MH, Abdel-Wahab BA, Warsi MH, Haque A. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1869737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | | | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Musarrat Husain Warsi
- Department of Pharmaceutics, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020; 13:E24. [PMID: 33374391 PMCID: PMC7823416 DOI: 10.3390/pharmaceutics13010024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Early detection, right therapeutic intervention, and simultaneous effectiveness mapping are considered the critical factors in successful cancer therapy. Nevertheless, these factors experience the limitations of conventional cancer diagnostics and therapeutics delivery approaches. Along with providing the targeted therapeutics delivery, advances in nanomedicines have allowed the combination of therapy and diagnostics in a single system (called cancer theranostics). This paper discusses the progress in the pre-clinical and clinical development of therapeutics, diagnostics, and theranostics cancer nanomedicines. It has been well evident that compared to the overabundance of works that claimed success in pre-clinical studies, merely 15 and around 75 cancer nanomedicines are approved, and currently under clinical trials, respectively. Thus, we also brief the critical bottlenecks in the successful clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; or
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK;
| | - Wael Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.); (W.M.); (M.K.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
15
|
Álvarez-González B, Rozalen M, Fernández-Perales M, Álvarez MA, Sánchez-Polo M. Methotrexate Gold Nanocarriers: Loading and Release Study: Its Activity in Colon and Lung Cancer Cells. Molecules 2020; 25:molecules25246049. [PMID: 33371436 PMCID: PMC7767463 DOI: 10.3390/molecules25246049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
In the present study, the synthesis of gold nanoparticles (AuNPs) loaded with methotrexate (MTX) has been carried out in order to obtain controlled size and monodispersed nanocarriers of around 20 nm. The characterization study shows metallic AuNPs with MTX polydispersed on the surface. MTX is linked by the replacement of citrate by the MTX carboxyl group. The drug release profiles show faster MTX release when it is conjugated, which leads to the best control of plasma concentration. Moreover, the enhanced release observed at pH 5 could take advantage of the pH gradients that exist in tumor microenvironments to achieve high local drug concentrations. AuNP–MTX conjugates were tested by flow cytometry against lung (A-549) and colon (HTC-116) cancer cell lines. Results for A-549 showed a weaker dose–response effect than for colon cancer ones. This could be related to the presence of folate receptors in line HTC-116 in comparison to line A-549, supporting the specific uptake of folate-conjugated AuNP–MTX by folate receptor positive tumor cells. Conjugates exhibited considerably higher cytotoxic effects compared with the effects of equal doses of free MTX. Annexin V-PI tests sustained the cell death mechanism of apoptosis, which is normally disabled in cancer cells.
Collapse
Affiliation(s)
- Beatriz Álvarez-González
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (B.Á.-G.); (M.F.-P.); (M.S.-P.)
| | - Marisa Rozalen
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (B.Á.-G.); (M.F.-P.); (M.S.-P.)
- Correspondence: ; Tel.: +34-958-248526
| | - María Fernández-Perales
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (B.Á.-G.); (M.F.-P.); (M.S.-P.)
| | - Miguel A. Álvarez
- Department of Inorganic and Organic Chemistry, Faculty of Science, University of Jaén, Campus las Lagunillas s/n, 23071 Jaén, Spain;
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (B.Á.-G.); (M.F.-P.); (M.S.-P.)
| |
Collapse
|
16
|
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev Vaccines 2020; 19:1053-1071. [DOI: 10.1080/14760584.2020.1858058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University College of Pharmacy, Alkharj Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Department of Internal Medicine, College of Medicine, Najran University Hospital, Najran, Kingdom of Saudi Arabia
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine Assiut University, Assiut, Egypt
| | - Sohail Akhter
- Center for Molecular Biophysics (CBM), CNRS UPR4301; LE STUDIUM Loire Valley Institute for Advanced Studies, Orleans, France
| |
Collapse
|
17
|
Martínez-Rovira I, Seksek O, Dokic I, Brons S, Abdollahi A, Yousef I. Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst 2020; 145:2345-2356. [PMID: 31993615 DOI: 10.1039/c9an02350j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of nanoparticles (NP) as dose enhancers in radiotherapy (RT) is a growing research field. Recently, the use of NP has been extended to charged particle therapy in order to improve the performance in radioresistant tumors. However, the biological mechanisms underlying the synergistic effects involved in NP-RT approaches are not clearly understood. Here, we used the capabilities of synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) as a bio-analytical tool to elucidate the NP-induced cellular damage at the molecular level and at a single-cell scale. F98 glioma cells doped with AuNP and GdNP were irradiated using several types of medical ion beams (proton, helium, carbon and oxygen). Differences in cell composition were analyzed in the nucleic acids, protein and lipid spectral regions using multivariate methods (Principal Component Analysis, PCA). Several NP-induced cellular modifications were detected, such as conformational changes in secondary protein structures, intensity variations in the lipid CHx stretching bands, as well as complex DNA rearrangements following charged particle therapy irradiations. These spectral features seem to be correlated with the already shown enhancement both in the DNA damage response and in the reactive oxygen species (ROS) production by the NP, which causes cell damage in the form of protein, lipid, and/or DNA oxidations. Vibrational features were NP-dependent due to the NP heterogeneous radiosensitization capability. Our results provided new insights into the molecular changes in response to NP-based RT treatments using ion beams, and highlighted the relevance of SR-FTIRM as a useful and precise technique for assessing cell response to innovative radiotherapy approaches.
Collapse
Affiliation(s)
- I Martínez-Rovira
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| | - O Seksek
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France and Université de Paris, IJCLab, 91405 Orsay, France
| | - I Dokic
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - S Brons
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - A Abdollahi
- Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany and Clinical Cooperation Unite Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - I Yousef
- MIRAS beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain.
| |
Collapse
|
18
|
Hossain MK. Nanoassembly of gold nanoparticles: An active substrate for size-dependent surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118759. [PMID: 32795952 DOI: 10.1016/j.saa.2020.118759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Nanoassembly of gold nanoparticles has been achieved through a simple and facile process without using any surfactants or linkers. Atomic force microscopy confirmed assemblies of several tens of microns, whereas tiny interparticle gaps less than 5 nm was revealed by scanning electron microscopy. Such nanoassemblies with tiny interparticle gaps were found to be highly surface-enhanced Raman scattering (SERS)-active with enhancement factor in the order of 6 to 8. Contrary to usual trends in nanoparticles size dependent SERS enhancement, such 2D nanoassemblies of different sizes of nanoparticles showed relatively broadened SERS enhancement distribution. Finite difference time domain (FDTD) analysis was employed to highlight the EM-field distribution in connection to such giant SERS enhancement. In depth and hotsite-wise analysis on EM near-field distributions for monomers, dimers and septamers of 50 nm of gold nanoparticles were carried out at three specific incident polarizations (i.e. s-, 45° and p-polarizations). At s- and p-polarization the strongest hotsites were having the EM near-field distributions in the range of 124.8 and 133.3 V/m respectively with lower population of confined EM near-fields. Such correlated investigation will be indispensable to understand and interpret hierarchical and functional nanoassemblies from its unit nanoparticle blocks for the advances of technological breakthroughs.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Center of Research Excellence in Renewable Energy (CoRERE), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 131261, Saudi Arabia; K.A.CARE Energy Research & Innovation Center at Dhahran, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
19
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
20
|
Camacho SA, Kobal MB, Almeida AM, Toledo KA, Oliveira ON, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020; 194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil.
| |
Collapse
|
21
|
Jefremow A, Neurath MF. Nanoparticles in Gastrooncology. Visc Med 2020; 36:88-94. [PMID: 32355665 PMCID: PMC7184848 DOI: 10.1159/000506908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastrointestinal malignancies have the greatest incidence and cancer-associated death rates worldwide. Routine therapeutic modalities include surgery, chemotherapy and radiation but they often fail to reach the goal of cancer-free survival. SUMMARY In the light of this urgent medical need for the treatment of GI tumors, nanotech-nology-based approaches, i.e. nanomedicine, promise new therapeutic options. Using nanoparticles instead of classically designed drugs, targeting anticancer agents directly to the tumor site may revolutionize both diagnostic and therapeutic tools thereby facilitating the identification and elimination of malignant cells. Importantly, diagnostic insight and therapeutic effects can be achieved simultaneously through the same nanoparticle. Additionally, a nanoparticle may be loaded with more than one agent, thereby further increasing the value and power of the nanotechnology approach in oncologic therapeutic concepts. Although most insight into mechanisms of nanomedicine has been gained from in vitro and preclinical in vivo models, few clinical trials have been conducted, and nanomedicine-based concepts are already part of standard treatment algorithms. However, despite substantial progress it remains a challenge to design nanoparticles that feature all desirable characteristics at the same time. KEY MESSAGES This review seeks to provide substantial insight into the current status of nanomedicine-based approaches employed for diagnostic and/or therapeutic purposes in the field of gastrointestinal cancers by highlighting achievements and pointing out unresolved issues that need to be further addressed by future research attempts.
Collapse
Affiliation(s)
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch Pharm Res 2020; 43:46-57. [PMID: 31993968 DOI: 10.1007/s12272-020-01206-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Over the past few decades, hyperthermia therapy (HTT) has become one of the most promising strategies to treat cancer. HTT has been applied with nanotechnology to overcome drawbacks such as non-selectivity and invasiveness and to maximize therapeutic efficacy. The high temperature of HTT induces protein denaturation that leads to apoptosis or necrosis. It can also enhance the effects of other cancer therapies because heat-damaged tissues reduce radioresistance and help accumulate anticancer drugs. Gold nanoparticles and superparamagnetic iron oxide with different energy sources are commonly used as hyperthermia agents. New types of nanoparticles such as those whose surface is coated with several polymers and those modified with targeting moieties have been studied as novel HTT agents. In this review, we introduce principles and applications of nanotechnology-based HTT using gold nanoparticles and superparamagnetic iron oxide.
Collapse
|
23
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Wang L, Wang M, Zhou B, Zhou F, Murray C, Towner RA, Smith N, Saunders D, Xie G, Chen WR. PEGylated reduced-graphene oxide hybridized with Fe 3O 4 nanoparticles for cancer photothermal-immunotherapy. J Mater Chem B 2019; 7:7406-7414. [PMID: 31710067 PMCID: PMC7003986 DOI: 10.1039/c9tb00630c] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoimmunotherapy has attracted much attention recently for the treatment of metastatic tumors. The development of smart nanocomposites for imaging-guided therapies is needed to improve the efficacy of cancer treatment. Herein, a PEGylated nanocomposite was developed for photothermal-immunotherapy. In particular, this nanocomposite was formulated by hybridizing Fe3O4 nanoparticles (FNPs) with reduced-graphene oxide (rGO) through electrostatic interaction, modified by PEG-NH2 on the surface of FNPs/rGO. The FNPs/rGO-PEG nanocomposites are excellent agents for photothermal therapy (PTT) under irradiation by an 805 nm laser. This nanocomposite could promote the activity of the host antitumor immune response efficiently because of the reduction of tumor-associated macrophages by the incorporation of FNPs. In our experiments, we observed FNPs/rGO-PEG based PTT induced immunogenic cell death accompanied by the release of danger-associated molecular patterns. We also found that FNPs/rGO-PEG + laser irradiation of animal tumors could activate dendritic cells (DCs) in tumor draining lymph nodes. In vivo antitumor studies revealed that FNPs/rGO-PEG nanocomposites, when combined with laser irradiation, could result in desirable photothermal effects and destroy primary tumors. Moreover, intratumoral injection of FNPs/rGO-PEG nanocomposites into 4T1 orthotopic mouse breast tumors, in combination with near-infrared laser irradiation, significantly increased the median survival time of tumor-bearing animals. FNPs/rGO-PEG nanocomposites could also be used for magnetic resonance imaging, which may lead to a MRI-guided photothermal-immunotherapy for metastatic cancers. This study could lead to a cancer treatment strategy that combines PTT with immunotherapies using FNPs/rGO-PEG nanocomposites.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, P. R. China. and Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | - Meng Wang
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Benqing Zhou
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Feifan Zhou
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Cynthia Murray
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, P. R. China.
| | - Wei R Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| |
Collapse
|
25
|
Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 2019; 312:108814. [PMID: 31509734 DOI: 10.1016/j.cbi.2019.108814] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.
Collapse
|
26
|
Zhu Y, Xu H, Wei X, He H. Single-Cell Detection and Photostimulation on a Microfluidic Chip Aided with Gold Nanorods. Cytometry A 2019; 97:39-45. [PMID: 31282093 DOI: 10.1002/cyto.a.23855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023]
Abstract
Gold nanorods (GNRs) can be easily designed and synthesized to respond to photons in the near infrared (NIR) band. The photostimulation by laser irradiation can be mediated and enhanced by GNRs to introduce localized damage to cells for photodynamic/photothermal therapy (PDT or PTT). In this study, we show that cells stained with GNRs can be detected and stimulated simultaneously by short flashes of femtosecond-laser irradiation on a microfluidic system effectively. In the relatively high-throughput cell flow, the two-photon luminescence from GNRs can be excited and detected. The GNRs also mediate and enhance the transient photostimulation of the cells. After photostimulation, cells can remain alive, go to apoptosis, or necrosis, respectively. The stimulation effect is strongly dependent on the photon density and stimulation duration. We found the cells remain alive, go to apoptosis or necrosis, dependent on the GNR staining, the laser illumination pattern and duration. Hence, our system provides a simple and effective method for high-throughput cell stimulation and analysis on chip. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Xu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Physics, Foshan University, Foshan, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Morales-Dalmau J, Vilches C, Sanz V, de Miguel I, Rodríguez-Fajardo V, Berto P, Martínez-Lozano M, Casanovas O, Durduran T, Quidant R. Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. NANOSCALE 2019; 11:11331-11339. [PMID: 31166337 DOI: 10.1039/c9nr01198f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy to address some of the limitations of traditional biomedical sensing, imaging and therapy modalities. Its applicability and efficacy are, in part, hindered by the difficulty in both controllably delivering nanoparticles to specific regions and accurately monitoring them in tissue. Gold nanoparticles are among the most extensively used inorganic nanoparticles which benefit from high biocompatibility, flexible functionalization, strong and tunable resonant absorption, and production scalability. Moreover, their capability to enhance optical fields at their plasmon resonance enables local boosting of non-linear optical processes, which are otherwise very inefficient. In particular, two-photon induced luminescence (TPL) in gold offers high signal specificity for monitoring gold nanoparticles in a biological environment. In this article, we demonstrate that TPL microscopy provides a robust sub-micron-resolution technique able to quantify accumulated gold nanorods (GNRs) both in cells and in tissues. First, the temporal accumulation of GNRs with two different surface chemistries was measured in 786-O cells during the first 24 hours of incubation, and at different nanoparticle concentrations. Subsequently, GNR accumulation in mice, 6 h and 24 hours after tail vein injection, was quantified by TPL microscopy in biopsied tissue from kidney, spleen, liver and clear cell renal cell carcinoma (ccRCC) tumors, in good agreement with inductively coupled mass spectroscopy. Our data suggest that TPL microscopy stands as a powerful tool to understand and quantify the delivery mechanisms of gold nanoparticles, highly relevant to the development of future theranostic medicines.
Collapse
Affiliation(s)
- Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114:108764. [DOI: 10.1016/j.biopha.2019.108764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
|
29
|
Rajasekharreddy P, Huang C, Busi S, Rajkumari J, Tai MH, Liu G. Green Synthesized Nanomaterials as Theranostic Platforms for Cancer Treatment: Principles, Challenges and the Road Ahead. Curr Med Chem 2019; 26:1311-1327. [DOI: 10.2174/0929867324666170309124327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.
Collapse
Affiliation(s)
- Pala Rajasekharreddy
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618-1908, United States
| | - Chao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry- 605014, India
| | - Jobina Rajkumari
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry- 605014, India
| | - Ming-Hong Tai
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
30
|
Mahato K, Nagpal S, Shah MA, Srivastava A, Maurya PK, Roy S, Jaiswal A, Singh R, Chandra P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech 2019; 9:57. [PMID: 30729081 PMCID: PMC6352626 DOI: 10.1007/s13205-019-1577-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/13/2023] Open
Abstract
Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.
Collapse
Affiliation(s)
- Kuldeep Mahato
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| | - Sahil Nagpal
- Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Mahero Ayesha Shah
- Julius Maximilians Universität Würzburg, Faculty of medicine Uniklinik, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Ananya Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana Mahendergarh, Haryana, 123031 India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175001 India
| | - Renu Singh
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities 2004 Folwell Ave, Saint Paul, MN 55108 USA
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
31
|
Martínez-Rovira I, Seksek O, Yousef I. A synchrotron-based infrared microspectroscopy study on the cellular response induced by gold nanoparticles combined with X-ray irradiations on F98 and U87-MG glioma cell lines. Analyst 2019; 144:6352-6364. [DOI: 10.1039/c9an01109a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synchrotron-based infrared microspectroscopy is a powerful tool for nanoparticle-based treatment response at single cell-level.
Collapse
Affiliation(s)
- I. Martínez-Rovira
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| | - O. Seksek
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC)
- Centre National de la Recherche Scientifique (CNRS); Université Paris Sud
- Université Paris-Saclay
- Campus Universitaire
- F-91400 Orsay
| | - I. Yousef
- MIRAS Beamline BL01
- ALBA-CELLS Synchrotron
- 08290 Cerdanyola del Vallès
- Spain
| |
Collapse
|
32
|
|
33
|
Current Status and Prospects of Chitosan: Metal Nanoparticles and Their Applications as Nanotheranostic Agents. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
34
|
Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J. Applications of Noble Metal-Based Nanoparticles in Medicine. Int J Mol Sci 2018; 19:E4031. [PMID: 30551592 PMCID: PMC6320918 DOI: 10.3390/ijms19124031] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Nanoparticles have unique, size-dependent properties, which means they are widely used in various branches of industry. The ability to control the properties of nanoparticles makes these nanomaterials very interesting for medicine and pharmacology. The application of nanoparticles in medicine is associated with the design of specific nanostructures, which can be used as novel diagnostic and therapeutic modalities. There are a lot of applications of nanoparticles, e.g., as drug delivery systems, radiosensitizers in radiation or proton therapy, in bioimaging, or as bactericides/fungicides. This paper aims to introduce the characteristics of noble metal-based nanoparticles with particular emphasis on their applications in medicine and related sciences.
Collapse
Affiliation(s)
- Bartosz Klębowski
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Joanna Depciuch
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Magdalena Parlińska-Wojtan
- Department of Condensed Matter Physics, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Medical College, 30-663 Krakow, Poland.
| |
Collapse
|
35
|
Soni K, Kohli K. Sulforaphane-decorated gold nanoparticle for anti-cancer activity: in vitro and in vivo studies. Pharm Dev Technol 2018; 24:427-438. [PMID: 30063165 DOI: 10.1080/10837450.2018.1507038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aims to develop sulforaphane-loaded gold nanoparticles (SFN-GNPs) as a potential nanomedicine against the solid tumors. Citrate-mediated electrolysis optimized by four-factor three-level Box-Behnken experimental design was used to get nanoparticles of size <200 nm. The formulation was characterized and evaluated for cytotoxicity B16-F10, MCF-7, SW-620 and Caco-2 cell line. Single dose oral pharmacokinetics, gamma scintigraphy-based bio-distribution and tumor regression studies were conducted to evaluate the in vivo performance. Optimized SFN-GNPs showed spherical morphology with a particle size of 147.23 ± 5.321 nm, the zeta potential of -12.7 ± 1.73 mV, entrapment efficiency of 83.17 ± 3.14% and percentage drug loading of 37.26 ± 2.33%. With SFN-GNPs, both SFN (75.99 ± 2.36%) and gold (58.11 ± 2.48%) were able to permeate through the intestinal wall in 48 h. SFN-GNPs were able to bring LC50 of <100 µg/ml in all the cytotoxicity assays, more than 5-fold increase in AUC0-t, enhanced retention at tumor site as well as significant pre-induction tumor growth inhibition and post-induction tumor reduction as compared to plain SFN solution.
Collapse
Affiliation(s)
- Kriti Soni
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard University , New Delhi , India
| | - Kanchan Kohli
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard University , New Delhi , India
| |
Collapse
|
36
|
Photothermally Controlled Methotrexate Release System Using β-Cyclodextrin and Gold Nanoparticles. NANOMATERIALS 2018; 8:nano8120985. [PMID: 30486514 PMCID: PMC6315352 DOI: 10.3390/nano8120985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for β-CD/MTX and AuNPs + β-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + β-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX.
Collapse
|
37
|
Li Z, Hu Y, Miao Z, Xu H, Li C, Zhao Y, Li Z, Chang M, Ma Z, Sun Y, Besenbacher F, Huang P, Yu M. Dual-Stimuli Responsive Bismuth Nanoraspberries for Multimodal Imaging and Combined Cancer Therapy. NANO LETTERS 2018; 18:6778-6788. [PMID: 30288978 DOI: 10.1021/acs.nanolett.8b02639] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Development of stimuli-responsive theranostics is of great importance for precise cancer diagnosis and treatment. Herein, bovine serum albumin (BSA) modified bismuth nanoraspberries (Bi-BSA NRs) are developed as cancer theranostic agents for multimodal imaging and chemo-photothermal combination therapy. The Bi-BSA NRs are synthesized in aqueous phase via a facile reduction method using Bi2O3 nanospheres as the sacrificial template. The morphology, biocompatibility, photothermal effect, drug loading/releasing abilities, chemotherapy effect, synergistic chemo-photothermal therapy efficacy, and multimodal imaging capacities of Bi-BSA NRs have been investigated. The results show that the NRs possess multiple unique features including (i) raspberry-like morphology with high specific surface area (∼52.24 m2·g-1) and large cavity (total pore volume ∼0.30 cm3·g-1), promising high drug loading capacity (∼69 wt %); (ii) dual-stimuli responsive drug release, triggered by acidic pH and NIR laser irradiation; (iii) infrared thermal (IRT), photoacoustic (PA) and X-ray computed tomography (CT) trimodality imaging with the CT contrast enhanced efficiency as high as ∼66.7 HU·mL·mg-1; (iv) 100% tumor elimination through the combination chemo-photothermal therapy. Our work highlights the great potentials of Bi-BSA NRs as a versatile theranostics for multimodal imaging and combination therapy.
Collapse
Affiliation(s)
- Zhenglin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Condensed Matter Science and Technology Institute , Harbin Institute of Technology , Harbin 150001 , China
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy , Aarhus University , Aarhus 8000 , Denmark
| | - Ying Hu
- School of Life Science and Technology , Harbin Institute of Technology , Harbin 150001 , China
| | - Zhaohua Miao
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Han Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Chunxiao Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Yan Zhao
- Condensed Matter Science and Technology Institute , Harbin Institute of Technology , Harbin 150001 , China
| | - Zhuo Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Manli Chang
- Department of Laboratory Medicine , The Second Affiliated Hospital of Harbin Medical University , Harbin 150001 , China
| | - Zhuo Ma
- School of Life Science and Technology , Harbin Institute of Technology , Harbin 150001 , China
| | - Ye Sun
- Condensed Matter Science and Technology Institute , Harbin Institute of Technology , Harbin 150001 , China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy , Aarhus University , Aarhus 8000 , Denmark
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
38
|
Tabassum N, Verma V, Kumar M, Kumar A, Singh B. Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell Tissue Res 2018; 374:427-438. [PMID: 30302547 DOI: 10.1007/s00441-018-2928-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Nanomedicine is the spin-off of modern medicine and nanotechnology and aims to prevent and treat diseases using nanoscale materials such as biocompatible nanoparticles and nanorobots. Targeted cellular and tissue-specific clinical applications with maximal therapeutic effects and insignificant side effects could be achieved by the pursuit of nanotechnology in medicine and healthcare regimen. The majority of conventional cancer therapies eliminate the cells of the tumor but not the cancer stem cells (CSCs). Conversely, the use of nanotechnology in CSC-based therapies is an emerging field of biomedical sciences. This article summarizes the recent trends and application of nanomedicine especially in CSC therapy along with its limitations.
Collapse
Affiliation(s)
- Nazish Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India.
| | - Manoj Kumar
- National Institute for Research in Environmental Health (NIREH), ICMR, Kamla Nehru Hospital Building, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur, India
| |
Collapse
|
39
|
Nazli A, Baig MW, Zia M, Ali M, Shinwari ZK, Haq IU. Plant-based metallic nanoparticles as potential theranostics agents: bioinspired tool for imaging and treatment. IET Nanobiotechnol 2018; 12:869-878. [PMID: 30247124 PMCID: PMC8675965 DOI: 10.1049/iet-nbt.2017.0325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Theranostic approach provides us a platform where diagnosis and treatment can be carried out simultaneously. Biosynthesis of theranostic-capable nanoparticles (NPs) can be carried out by phytoconstituents present inside the plants that can act as capping as well as stabilising agents by offering several advantages over chemical and physical methods. This article highlights the theranostic role of NPs with emphasis on potential of plants to produce these NPs through ecofriendly approach that is called 'Green synthesis'. Biosynthesis, advantages, and disadvantages of plant-based theronostics have been discussed for better understanding. Moreover, this article has highlighted the approaches required to optimise the plant-mediated synthesis of NPs and to avoid the toxicity of these agents. Anticipating all of the challenges, the authors expect biogenic NPs can appear as potential diagnostic and therapeutic agents in near future.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
40
|
Sharma JN, Pattadar DK, Mainali BP, Zamborini FP. Size Determination of Metal Nanoparticles Based on Electrochemically Measured Surface-Area-to-Volume Ratios. Anal Chem 2018; 90:9308-9314. [PMID: 29926722 DOI: 10.1021/acs.analchem.8b01905] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here we report the electrochemical determination of the surface-area-to-volume ratio (SA/ V) of Au nanospheres (NSs) attached to electrode surfaces for size analysis. The SA is determined by electrochemically measuring the number of coulombs of charge passed during the reduction of surface Au2O3 following Au NS oxidation in HClO4, whereas V is determined by electrochemically measuring the coulombs of charge passed during the complete oxidative dissolution of all of the Au in the Au NSs in the presence of Br- to form aqueous soluble AuBr4-. Assuming a spherical geometry and taking into account the total number of Au NSs on the electrode surface, the SA/ V is theoretically equal to 3/radius. A plot of the electrochemically measured SA/ V versus 1/radius for five different-sized Au NSs is linear with a slope of 1.8 instead of the expected value of 3. Following attachment of the Au NSs to the electrode and ozone treatment, the plot of SA/ V versus 1/radius is linear with a slope of 3.5, and the size based on electrochemistry matches very closely with those measured by scanning electron microscopy. We believe the ozone cleans the Au NS surface, allowing a more accurate measurement of the SA.
Collapse
Affiliation(s)
- Jay N Sharma
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - Dhruba K Pattadar
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - Badri P Mainali
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - Francis P Zamborini
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
41
|
Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. SENSORS 2018; 18:s18072246. [PMID: 30002306 PMCID: PMC6068536 DOI: 10.3390/s18072246] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
Abstract
Gold nanoparticles (AuNPs) are currently under intense investigation for biomedical and biotechnology applications, thanks to their ease in preparation, stability, biocompatibility, multiple surface functionalities, and size-dependent optical properties. The most commonly used method for AuNP synthesis in aqueous solution is the reduction of tetrachloroauric acid (HAuCl4) with trisodium citrate. We have observed variations in the pH and in the concentration of the gold colloidal suspension synthesized under standard conditions, verifying a reduction in the reaction yield by around 46% from pH 5.3 (2.4 nM) to pH 4.7 (1.29 nM). Citrate-capped AuNPs were characterized by UV-visible spectroscopy, TEM, EDS, and zeta-potential measurements, revealing a linear correlation between pH and the concentration of the generated AuNPs. This result can be attributed to the adverse effect of protons both on citrate oxidation and on citrate adsorption onto the gold surface, which is required to form the stabilization layer. Overall, this study provides insight into the effect of the pH over the synthesis performance of the method, which would be of particular interest from the point of view of large-scale manufacturing processes.
Collapse
|
42
|
Ahmad J, Akhter S, Rizwanullah M, Khan MA, Pigeon L, Addo RT, Greig NH, Midoux P, Pichon C, Kamal MA. Nanotechnology Based Theranostic Approaches in Alzheimer's Disease Management: Current Status and Future Perspective. Curr Alzheimer Res 2018; 14:1164-1181. [PMID: 28482786 DOI: 10.2174/1567205014666170508121031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), a cognitive dysfunction/dementia state amongst the elders is characterized by irreversible neurodegeneration due to varied pathophysiology. Up till now, anti-AD drugs having different pharmacology have been developed and used in clinic. Yet, these medications are not curative and only lowering the AD associated symptoms. Improvement in treatment outcome required drug targeting across the blood-brain barrier (BBB) to the central nervous system (CNS) in optimal therapeutic concentration. Nanotechnology based diagnostic tools, drug carriers and theranostics offer highly sensitive molecular detection, effective drug targeting and their combination. Over the past decade, significant works have been done in this area and we have seen very remarkable outocome in AD therapy. Various nanoparticles from organic and inorganic nanomaterial category have successfully been investigated against AD. CONCLUSION This paper discussed the role of nanoparticles in early detection of AD, effective drug targeting to brain and theranostic (diagnosis and therapy) approaches in AD's management.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, UP- 229010. India
| | - Sohail Akhter
- LE STUDIUM® Loire Valley Institute for Advanced Studies, Centre-Val de Loire Region, Orleans, France
| | - Md Rizwanullah
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062. India
| | - Lucie Pigeon
- Nucleic acids transfer by non viral methods, Centre de Biophysique Moleculaire, CNRS UPR4301, Orleans, France
| | - Richard T Addo
- Union University, School of Pharmacy Room 149 Providence Hall, 1050 Union University Drive, Jackson, TN 38305. United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224. United States
| | - Patrick Midoux
- Nucleic acids transfer by non viral methods, Centre de Biophysique Moleculaire, CNRS UPR4301, Orleans, France
| | - Chantal Pichon
- Nucleic acids transfer by non viral methods, Centre de Biophysique Moleculaire, CNRS UPR4301, Orleans, France
| | | |
Collapse
|
43
|
Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018; 25:4208-4223. [PMID: 28933296 PMCID: PMC5860929 DOI: 10.2174/0929867324666170920160030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Megan Livingston
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, 64710, Mexico
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, 35124, Italy
- Nanoinspired Biomedicine Laboratory, Institute of Pediatric Research, Fondazione Citta della Speranza, 35129, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, United States
| |
Collapse
|
44
|
Hu Y, Chi C, Wang S, Wang L, Liang P, Liu F, Shang W, Wang W, Zhang F, Li S, Shen H, Yu X, Liu H, Tian J. A Comparative Study of Clinical Intervention and Interventional Photothermal Therapy for Pancreatic Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700448. [PMID: 28682465 DOI: 10.1002/adma.201700448] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Although nanoparticle-based photothermal therapy (PTT) has been intensively investigated recently, its comparative efficiency with any clinical cancer treatments has been rarely explored. Herein for the first time we report a systematic comparative study of clinical iodine-125 (125 I) interstitial brachytherapy (IBT-125-I) and interventional PTT (IPTT) in an orthotopic xenograft model of human pancreatic cancer. IPTT, based on the nanoparticles composing of anti-urokinase plasminogen activator receptor (uPAR) antibody, polyethylene glycol (PEG), and indocyanine green (ICG) modified gold nanoshells (hereinafter uIGNs), is directly applied to local pancreatic tumor deep in the abdomen. In comparison to IBT-125-I, a 25% higher median survival rate of IPTT with complete ablation by one-time intervention has been achieved. The IPTT could also inhibit pancreatic tumor metastasis which can be harnessed for effective cancer immunotherapy. All results show that this IPTT is a safe and radical treatment for eradicating tumor cells, and may benefit future clinical pancreatic cancer patients.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Interventional Ultrasound, General Hospital of People's Liberation Army, Beijing, 100853, China
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunhao Wang
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingxiong Wang
- Cancer Center lab, Division of Internal Medicine, General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Fangyi Liu
- Department of Interventional Ultrasound, General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiwei Wang
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengrong Zhang
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Heyun Shen
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoling Yu
- Department of Interventional Ultrasound, General Hospital of People's Liberation Army, Beijing, 100853, China
| | - Huiyu Liu
- Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|
46
|
Raja MA, Arif M, Feng C, Zeenat S, Liu CG. Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. J Biomater Appl 2017; 31:1182-1195. [PMID: 28081668 DOI: 10.1177/0885328216681184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel pH-responsive polymer based on amphiphilic N-acetyl histidine and arginine-grafted chitosan was synthesized using N-acetyl histidine as hydrophobic segment and arginine as hydrophilic segment by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-mediated coupling reactions as anticancer drug delivery system for doxorubicin. The structure of the synthesized polymer was confirmed by Fourier transform infrared and 1H nuclear magnetic resonance analysis. Due to self-association behavior, N-acetyl histidine and arginine-grafted chitosan structured nanoparticles with in size range of 204 nm. N-acetyl histidine and arginine-grafted chitosan with different substitution degree of N-acetyl histidine were initially prepared and characterized. The critical micelle concentration decreased with increasing substitution degree of N-acetyl histidine. Furthermore, N-acetyl histidine and arginine-grafted chitosan nanoparticles exhibited an acidic pH-triggered aggregation and disassembling nature. The doxorubicin-encapsulated nanoparticles based on synthesized conjugate ( N-acetyl histidine and arginine-grafted chitosan/doxorubicin nanoparticles) showed a sustained drug release pattern, which could be hastened under acidic pH conditions but delayed with increasing substitution degree of N-acetyl histidine. Anticancer effects demonstrated that N-acetyl histidine and arginine-grafted chitosan/doxorubicin nanoparticles could suppress both sensitive and resistant human breast tumor cell line (MCF-7) efficiently in a dose- and time-dependent pattern. Confocal microscopy results evidenced increased cellular uptake and enhanced retention of the synthesized nanoparticles in drug-resistant cells demonstrating better efficacy of nanoparticles over native doxorubicin. These results suggest that N-acetyl histidine and arginine-grafted chitosan/doxorubicin nanoparticles might be promising carriers for delivery of hydrophobic drug doxorubicin against drug-resistant tumors.
Collapse
Affiliation(s)
- Mazhar Ali Raja
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Muhammad Arif
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Chao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Shah Zeenat
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Chen-Guang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| |
Collapse
|
47
|
Mukha I, Vityuk N, Severynovska O, Eremenko A, Smirnova N. The pH-Dependent Stucture and Properties of Au and Ag Nanoparticles Produced by Tryptophan Reduction. NANOSCALE RESEARCH LETTERS 2016; 11:101. [PMID: 26909781 PMCID: PMC4766180 DOI: 10.1186/s11671-016-1318-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 06/01/2023]
Abstract
In the work, an attempt was made to combine different experimental conditions to obtain stable gold and silver nanoparticles in the presence of amino acid tryptophan. The pH-dependent properties of gold and silver nanoparticles were studied. UV/visible spectroscopy and laser desorption/ionization mass spectrometry data confirm kynurenine pathway for tryptophan conversion in such systems.
Collapse
Affiliation(s)
- Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine.
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine.
| | - Olga Severynovska
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine.
| | - Anna Eremenko
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine.
| | - Nataliia Smirnova
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov Str., Kyiv, 03164, Ukraine.
| |
Collapse
|
48
|
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol 2016; 7:8. [PMID: 27867425 PMCID: PMC5095165 DOI: 10.1186/s12645-016-0021-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is currently used in around 50% of cancer treatments and relies on the deposition of energy directly into tumour tissue. Although it is generally effective, some of the deposited energy can adversely affect healthy tissue outside the tumour volume, especially in the case of photon radiation (gamma and X-rays). Improved radiotherapy outcomes can be achieved by employing ion beams due to the characteristic energy deposition curve which culminates in a localised, high radiation dose (in form of a Bragg peak). In addition to ion radiotherapy, novel sensitisers, such as nanoparticles, have shown to locally increase the damaging effect of both photon and ion radiation, when both are applied to the tumour area. Amongst the available nanoparticle systems, gold nanoparticles have become particularly popular due to several advantages: biocompatibility, well-established methods for synthesis in a wide range of sizes, and the possibility of coating of their surface with a large number of different molecules to provide partial control of, for example, surface charge or interaction with serum proteins. This gives a full range of options for design parameter combinations, in which the optimal choice is not always clear, partially due to a lack of understanding of many processes that take place upon irradiation of such complicated systems. In this review, we summarise the mechanisms of action of radiation therapy with photons and ions in the presence and absence of nanoparticles, as well as the influence of some of the core and coating design parameters of nanoparticles on their radiosensitisation capabilities.
Collapse
Affiliation(s)
- Kaspar Haume
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Soraia Rosa
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Sophie Grellet
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Małgorzata A. Śmiałek
- Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Karl T. Butterworth
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | | | - Kevin M. Prise
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Lisburn Road, Belfast, BT9 7BL UK
| | - Jon Golding
- Department of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Nigel J. Mason
- Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
49
|
Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8567-8585. [PMID: 27461909 DOI: 10.1002/adma.201602080] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.
Collapse
Affiliation(s)
- Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Shaohua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongdajie, Beijing, 100071, P. R. China
| | - Yangyang Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Huisheng Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
50
|
Mocan L, Matea CT, Bartos D, Mosteanu O, Pop T, Mocan T, Iancu C. Advances in cancer research using gold nanoparticles mediated photothermal ablation. ACTA ACUST UNITED AC 2016; 89:199-202. [PMID: 27152068 PMCID: PMC4849375 DOI: 10.15386/cjmed-573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022]
Abstract
Recent research suggests that nanotechnologies may lead to the development of novel cancer treatment. Gold nanoparticles with their unique physical and chemical properties hold great hopes for the development of thermal-based therapies against human malignancies. This review will focus on various strategies that have been developed to use gold nanoparticles as photothermal agents against human cancers.
Collapse
Affiliation(s)
- Lucian Mocan
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Cristian T Matea
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Dana Bartos
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Gastroenterology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Pop
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Gastroenterology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornel Iancu
- 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| |
Collapse
|