1
|
Martínez-Gallego I, Coatl-Cuaya H, Rodriguez-Moreno A. Astrocytes mediate two forms of spike timing-dependent depression at entorhinal cortex-hippocampal synapses. eLife 2024; 13:RP98031. [PMID: 39541232 PMCID: PMC11563576 DOI: 10.7554/elife.98031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The entorhinal cortex (EC) connects to the hippocampus sending different information from cortical areas that is first processed at the dentate gyrus (DG) including spatial, limbic and sensory information. Excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways of the EC connecting to granule cells of the DG play a role in memory encoding and information processing and are deeply affected in humans suffering Alzheimer's disease and temporal lobe epilepsy, contributing to the dysfunctions found in these pathologies. The plasticity of these synapses is not well known yet, as are not known the forms of long-term depression (LTD) existing at those connections. We investigated whether spike timing-dependent long-term depression (t-LTD) exists at these two different EC-DG synaptic connections in mice, and whether they have different action mechanisms. We have found two different forms of t-LTD, at LPP- and MPP-GC synapses and characterised their cellular and intracellular mechanistic requirements. We found that both forms of t-LTD are expressed presynaptically and that whereas t-LTD at LPP-GC synapses does not require NMDAR, t-LTD at MPP-GC synapses requires ionotropic NMDAR containing GluN2A subunits. The two forms of t-LTD require different group I mGluR, mGluR5 LPP-GC synapses and mGluR1 MPP-GC synapses. In addition, both forms of t-LTD require postsynaptic calcium, eCB synthesis, CB1R, astrocyte activity, and glutamate released by astrocytes. Thus, we discovered two novel forms of t-LTD that require astrocytes at EC-GC synapses.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Antonio Rodriguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| |
Collapse
|
2
|
Chiu DN, Carter BC. Extracellular glutamate is not modulated by cannabinoid receptor activity. Sci Rep 2024; 14:26889. [PMID: 39505963 PMCID: PMC11541540 DOI: 10.1038/s41598-024-75962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Cannabinoid receptor activation has been proposed to trigger glutamate release from astrocytes located in cortical layer 2/3. Here, we measure the basal concentration of extracellular glutamate in layer 2/3 of mouse somatosensory cortex and find it to be 20-30 nM. We further examine the effect of cannabinoid receptor signaling on extracellular glutamate, and find no evidence for increased extracellular glutamate upon cannabinoid receptor agonist application.
Collapse
Affiliation(s)
- Delia N Chiu
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Brett C Carter
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Psyrakis D, Jasiewicz J, Wehrmeister M, Bonni K, Lutz B, Kodirov SA. Progressive long-term synaptic depression at cortical inputs into the amygdala. Neuroscience 2024; 556:52-65. [PMID: 39094820 DOI: 10.1016/j.neuroscience.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The convergence of conditioned and unconditioned stimuli (CS and US) into the lateral amygdala (LA) serves as a substrate for an adequate fear response in vivo. This well-known Pavlovian paradigm modulates the synaptic plasticity of neurons, as can be proved by the long-term potentiation (LTP) phenomenon in vitro. Although there is an increasing body of evidence for the existence of LTP in the amygdala, only a few studies were able to show a reliable long-term depression (LTD) of excitation in this structure. We have used coronal brain slices and conducted patch-clamp recordings in pyramidal neurons of the lateral amygdala (LA). After obtaining a stable baseline excitatory postsynaptic current (EPSC) response at a holding potential of -70 mV, we employed a paired-pulse paradigm at 1 Hz at the same membrane potential and could observe a reliable LTD. The different durations of stimulation (ranging between 1.5-24 min) were tested first in the same neuron, but the intensity was kept constant. The latter paradigm resulted in a step-wise LTD with a gradually increasing magnitude under these conditions.
Collapse
Affiliation(s)
- Dimitrios Psyrakis
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Julia Jasiewicz
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Michael Wehrmeister
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Bonni
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Sodikdjon A Kodirov
- Institute of Physiological Chemistry and Pathobiochemistry, University Medical Center Mainz, Mainz, Germany; Center for Biomedical Studies, Department of Biological Sciences, University of Texas at Brownsville, TX 78520, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Institute of Biophysics, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
4
|
Stoll A, Maier A, Krauss P, Gerum R, Schilling A. Coincidence detection and integration behavior in spiking neural networks. Cogn Neurodyn 2024; 18:1753-1765. [PMID: 39104689 PMCID: PMC11297875 DOI: 10.1007/s11571-023-10038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 08/07/2024] Open
Abstract
Recently, the interest in spiking neural networks (SNNs) remarkably increased, as up to now some key advances of biological neural networks are still out of reach. Thus, the energy efficiency and the ability to dynamically react and adapt to input stimuli as observed in biological neurons is still difficult to achieve. One neuron model commonly used in SNNs is the leaky-integrate-and-fire (LIF) neuron. LIF neurons already show interesting dynamics and can be run in two operation modes: coincidence detectors for low and integrators for high membrane decay times, respectively. However, the emergence of these modes in SNNs and the consequence on network performance and information processing ability is still elusive. In this study, we examine the effect of different decay times in SNNs trained with a surrogate-gradient-based approach. We propose two measures that allow to determine the operation mode of LIF neurons: the number of contributing input spikes and the effective integration interval. We show that coincidence detection is characterized by a low number of input spikes as well as short integration intervals, whereas integration behavior is related to many input spikes over long integration intervals. We find the two measures to linearly correlate via a correlation factor that depends on the decay time. Thus, the correlation factor as function of the decay time shows a powerlaw behavior, which could be an intrinsic property of LIF networks. We argue that our work could be a starting point to further explore the operation modes in SNNs to boost efficiency and biological plausibility. Supplementary Information The online version of this article (10.1007/s11571-023-10038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Stoll
- Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Krauss
- Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
| | - Richard Gerum
- Department of Physics and Astronomy, York University, Toronto, Canada
| | - Achim Schilling
- Pattern Recognition Lab, University Erlangen-Nürnberg, Erlangen, Germany
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Elliott T. Stability against fluctuations: a two-dimensional study of scaling, bifurcations and spontaneous symmetry breaking in stochastic models of synaptic plasticity. BIOLOGICAL CYBERNETICS 2024; 118:39-81. [PMID: 38583095 DOI: 10.1007/s00422-024-00985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/12/2024] [Indexed: 04/08/2024]
Abstract
Stochastic models of synaptic plasticity must confront the corrosive influence of fluctuations in synaptic strength on patterns of synaptic connectivity. To solve this problem, we have proposed that synapses act as filters, integrating plasticity induction signals and expressing changes in synaptic strength only upon reaching filter threshold. Our earlier analytical study calculated the lifetimes of quasi-stable patterns of synaptic connectivity with synaptic filtering. We showed that the plasticity step size in a stochastic model of spike-timing-dependent plasticity (STDP) acts as a temperature-like parameter, exhibiting a critical value below which neuronal structure formation occurs. The filter threshold scales this temperature-like parameter downwards, cooling the dynamics and enhancing stability. A key step in this calculation was a resetting approximation, essentially reducing the dynamics to one-dimensional processes. Here, we revisit our earlier study to examine this resetting approximation, with the aim of understanding in detail why it works so well by comparing it, and a simpler approximation, to the system's full dynamics consisting of various embedded two-dimensional processes without resetting. Comparing the full system to the simpler approximation, to our original resetting approximation, and to a one-afferent system, we show that their equilibrium distributions of synaptic strengths and critical plasticity step sizes are all qualitatively similar, and increasingly quantitatively similar as the filter threshold increases. This increasing similarity is due to the decorrelation in changes in synaptic strength between different afferents caused by our STDP model, and the amplification of this decorrelation with larger synaptic filters.
Collapse
Affiliation(s)
- Terry Elliott
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
6
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2024:10738584241236773. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
7
|
Chiu DN, Carter BC. Synaptotagmin 7 Sculpts Short-Term Plasticity at a High Probability Synapse. J Neurosci 2024; 44:e1756232023. [PMID: 38262726 PMCID: PMC10904093 DOI: 10.1523/jneurosci.1756-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.
Collapse
Affiliation(s)
- Delia N Chiu
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| | - Brett C Carter
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Choopani S, Kiani B, Aliakbari S, Babaie J, Golkar M, Pourbadie HG, Sayyah M. Latent toxoplasmosis impairs learning and memory yet strengthens short-term and long-term hippocampal synaptic plasticity at perforant pathway-dentate gyrus, and Schaffer collatterals-CA1 synapses. Sci Rep 2023; 13:8959. [PMID: 37268701 DOI: 10.1038/s41598-023-35971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Investigating long-term potentiation (LTP) in disease models provides essential mechanistic insight into synaptic dysfunction and relevant behavioral changes in many neuropsychiatric and neurological diseases. Toxoplasma (T) gondii is an intracellular parasite causing bizarre changes in host's mind including losing inherent fear of life-threatening situations. We examined hippocampal-dependent behavior as well as in vivo short- and long-term synaptic plasticity (STP and LTP) in rats with latent toxoplasmosis. Rats were infected by T. gondii cysts. Existence of REP-529 genomic sequence of the parasite in the brain was detected by RT-qPCR. Four and eight weeks after infection, spatial, and inhibitory memories of rats were assessed by Morris water maze and shuttle box tests, respectively. Eight weeks after infection, STP was assessed in dentate gyrus (DG) and CA1 by double pulse stimulation of perforant pathway and Shaffer collaterals, respectively. High frequency stimulation (HFS) was applied to induce LTP in entorhinal cortex-DG (400 Hz), and CA3-CA1 (200 Hz) synapses. T. gondii infection retarded spatial learning and memory performance at eight weeks post-infection period, whereas inhibitory memory was not changed. Unlike uninfected rats that normally showed paired-pulse depression, the infected rats developed paired-pulse facilitation, indicating an inhibitory synaptic network disruption. T. gondii-infected rats displayed strengthened LTP of both CA1-pyramidal and DG-granule cell population spikes. These data indicate that T. gondii disrupts inhibition/excitation balance and causes bizarre changes to the post-synaptic neuronal excitability, which may ultimately contribute to the abnormal behavior of the infected host.
Collapse
Affiliation(s)
- Samira Choopani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Bahereh Kiani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Damghan University, Damghan, Iran
| | - Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Jalal Babaie
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
10
|
Sheynikhovich D, Otani S, Bai J, Arleo A. Long-term memory, synaptic plasticity and dopamine in rodent medial prefrontal cortex: Role in executive functions. Front Behav Neurosci 2023; 16:1068271. [PMID: 36710953 PMCID: PMC9875091 DOI: 10.3389/fnbeh.2022.1068271] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mnemonic functions, supporting rodent behavior in complex tasks, include both long-term and (short-term) working memory components. While working memory is thought to rely on persistent activity states in an active neural network, long-term memory and synaptic plasticity contribute to the formation of the underlying synaptic structure, determining the range of possible states. Whereas, the implication of working memory in executive functions, mediated by the prefrontal cortex (PFC) in primates and rodents, has been extensively studied, the contribution of long-term memory component to these tasks received little attention. This review summarizes available experimental data and theoretical work concerning cellular mechanisms of synaptic plasticity in the medial region of rodent PFC and the link between plasticity, memory and behavior in PFC-dependent tasks. A special attention is devoted to unique properties of dopaminergic modulation of prefrontal synaptic plasticity and its contribution to executive functions.
Collapse
Affiliation(s)
- Denis Sheynikhovich
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France,*Correspondence: Denis Sheynikhovich ✉
| | - Satoru Otani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jing Bai
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
11
|
Martínez-Gallego I, Pérez-Rodríguez M, Coatl-Cuaya H, Flores G, Rodríguez-Moreno A. Adenosine and Astrocytes Determine the Developmental Dynamics of Spike Timing-Dependent Plasticity in the Somatosensory Cortex. J Neurosci 2022; 42:6038-6052. [PMID: 35768208 PMCID: PMC9351642 DOI: 10.1523/jneurosci.0115-22.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
During development, critical periods of synaptic plasticity facilitate the reordering and refinement of neural connections, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex (S1) exhibit a presynaptic form of spike timing-dependent long-term depression (t-LTD) that probably fulfills a role in synaptic refinement. This t-LTD persists until the fourth postnatal week in mice, disappearing thereafter. When we investigated the mechanisms underlying this maturation-related loss of t-LTD in either sex mouse slices, we found that it could be completely recovered by antagonizing adenosine type 1 receptors. By contrast, an agonist of A1R impeded the induction of t-LTD at P13-27. Furthermore, we found that the adenosine that mediated the loss of t-LTD at the end of the fourth week of development is most probably supplied by astrocytes. At more mature stages (P38-60), we found that the protocol used to induce t-LTD provokes t-LTP. We characterized the mechanisms underlying the induction of this form of LTP, and we found it to be expressed presynaptically, as witnessed by paired-pulse and coefficient of variation analysis. In addition, this form of presynaptic t-LTP requires the activation of NMDARs and mGlu1Rs, and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels. Nitric oxide is also required for t-LTP as a messenger in the postsynaptic neuron as are the adenosine and glutamate that are released in association with astrocyte signaling. These results provide direct evidence of the mechanisms that close the window of plasticity associated with t-LTD and that drive the switch in synaptic transmission from t-LTD to t-LTP at L4-L2/3 synapses, in which astrocytes play a central role.SIGNIFICANCE STATEMENT During development, critical periods of plasticity facilitate the reordering and refining of neural connections, allowing correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex exhibit a presynaptic form plasticity (LTD) that probably fulfills a role in synaptic refinement. It is present until the fourth postnatal week in mice, disappearing thereafter. The mechanisms that are responsible for this loss of plasticity are not clear. We describe here these mechanisms and those involved in the switch from LTD to LTP observed as the brain matures. Defining these events responsible for closing (and opening) plasticity windows may be important for brain repair, sensorial recovery, the treatment of neurodevelopmental disorders, and for educational policy.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| |
Collapse
|
12
|
Chiu DN, Carter BC. Synaptic NMDA receptor activity at resting membrane potentials. Front Cell Neurosci 2022; 16:916626. [PMID: 35928574 PMCID: PMC9345169 DOI: 10.3389/fncel.2022.916626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
NMDA receptors (NMDARs) are crucial for glutamatergic synaptic signaling in the mammalian central nervous system. When activated by glutamate and glycine/D-serine, the NMDAR ion channel can open, but current flux is further regulated by voltage-dependent block conferred by extracellular Mg2+ ions. The unique biophysical property of ligand- and voltage-dependence positions NMDARs as synaptic coincidence detectors, controlling a major source of synaptic Ca2+ influx. We measured synaptic currents in layer 2/3 neurons after stimulation in layer 4 of somatosensory cortex and found measurable NMDAR currents at all voltages tested. This NMDAR current did not require concurrent AMPAR depolarization. In physiological ionic conditions, the NMDAR current response at negative potentials was enhanced relative to ionic conditions typically used in slice experiments. NMDAR activity was also seen in synaptic recordings from hippocampal CA1 neurons, indicating a general property of NMDAR signaling. Using a fluorescent Ca2+ indicator, we measured responses to stimulation in layer 4 at individual synaptic sites, and Ca2+ influx could be detected even with AMPARs blocked. In current clamp recordings, we found that resting membrane potential was hyperpolarized by ∼7 mV and AP firing threshold depolarized by ∼4 mV in traditional compared to physiological ionic concentrations, and that NMDARs contribute to EPSPs at resting membrane potentials. These measurements demonstrate that, even in the presence of extracellular Mg2+ and absence of postsynaptic depolarization, NMDARs contribute to synaptic currents and Ca2+ influx.
Collapse
Affiliation(s)
- Delia N Chiu
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany
| | - Brett C Carter
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany
| |
Collapse
|
13
|
Role of Group I Metabotropic Glutamate Receptors in Spike Timing-Dependent Plasticity. Int J Mol Sci 2022; 23:ijms23147807. [PMID: 35887155 PMCID: PMC9317389 DOI: 10.3390/ijms23147807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity (STDP) at hippocampal and neocortical synapses. Their roles of participating in the underlying mechanisms for detection of activity coincidence in STDP induction are debated, and diverse findings support models involving mGluRs in STDP forms in which NMDARs do not operate as classical postsynaptic coincidence detectors. Here, we briefly review the involvement of group I mGluRs in STDP and their possible role as coincidence detectors.
Collapse
|
14
|
Moro F, Hardy E, Fain B, Dalgaty T, Clémençon P, De Prà A, Esmanhotto E, Castellani N, Blard F, Gardien F, Mesquida T, Rummens F, Esseni D, Casas J, Indiveri G, Payvand M, Vianello E. Neuromorphic object localization using resistive memories and ultrasonic transducers. Nat Commun 2022; 13:3506. [PMID: 35717413 PMCID: PMC9206646 DOI: 10.1038/s41467-022-31157-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl's neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task.
Collapse
Affiliation(s)
- Filippo Moro
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France.
| | - Emmanuel Hardy
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Bruno Fain
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Thomas Dalgaty
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- CEA, LIST, Université Grenoble Alpes, 38054, Grenoble, France
| | - Paul Clémençon
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- Insect Biology Research Institute, Université de Tours, 37020, Tours, France
| | - Alessio De Prà
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
- DPIA, Università degli Studi di Udine, 33100, Udine, Italy
| | | | | | - François Blard
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | | | - Thomas Mesquida
- CEA, LIST, Université Grenoble Alpes, 38054, Grenoble, France
| | | | - David Esseni
- DPIA, Università degli Studi di Udine, 33100, Udine, Italy
| | - Jérôme Casas
- Insect Biology Research Institute, Université de Tours, 37020, Tours, France
| | - Giacomo Indiveri
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057, Zürich, Switzerland
| | - Melika Payvand
- Institute for Neuroinformatics, University of Zürich and ETH Zürich, 8057, Zürich, Switzerland
| | - Elisa Vianello
- CEA, LETI, Université Grenoble Alpes, 38054, Grenoble, France.
| |
Collapse
|
15
|
Chindemi G, Abdellah M, Amsalem O, Benavides-Piccione R, Delattre V, Doron M, Ecker A, Jaquier AT, King J, Kumbhar P, Monney C, Perin R, Rössert C, Tuncel AM, Van Geit W, DeFelipe J, Graupner M, Segev I, Markram H, Muller EB. A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex. Nat Commun 2022; 13:3038. [PMID: 35650191 PMCID: PMC9160074 DOI: 10.1038/s41467-022-30214-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Oren Amsalem
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ruth Benavides-Piccione
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Vincent Delattre
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Doron
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Aurélien T Jaquier
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - James King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Caitlin Monney
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Rössert
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Anil M Tuncel
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Michael Graupner
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Idan Segev
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland. .,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada. .,CHU Sainte-Justine Research Center, Montréal, QC, Canada. .,Quebec Artificial Intelligence Institute (Mila), Montréal, Canada.
| |
Collapse
|
16
|
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022; 16:886629. [PMID: 35601529 PMCID: PMC9120417 DOI: 10.3389/fncir.2022.886629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-positive neurons are the largest class of GABAergic, inhibitory neurons in the central nervous system. In the cortex, these fast-spiking cells provide feedforward and feedback synaptic inhibition onto a diverse set of cell types, including pyramidal cells, other inhibitory interneurons, and themselves. Cortical inhibitory networks broadly, and cortical parvalbumin-expressing interneurons (cPVins) specifically, are crucial for regulating sensory plasticity during both development and adulthood. Here we review the functional properties of cPVins that enable plasticity in the cortex of adult mammals and the influence of cPVins on sensory activity at four spatiotemporal scales. First, cPVins regulate developmental critical periods and adult plasticity through molecular and structural interactions with the extracellular matrix. Second, they activate in precise sequence following feedforward excitation to enforce strict temporal limits in response to the presentation of sensory stimuli. Third, they implement gain control to normalize sensory inputs and compress the dynamic range of output. Fourth, they synchronize broad network activity patterns in response to behavioral events and state changes. Much of the evidence for the contribution of cPVins to plasticity comes from classic models that rely on sensory deprivation methods to probe experience-dependent changes in the brain. We support investigating naturally occurring, adaptive cortical plasticity to study cPVin circuits in an ethologically relevant framework, and discuss recent insights from our work on maternal experience-induced auditory cortical plasticity.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States
| | - Stephen D. Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
17
|
Presynaptic NMDA Receptors Influence Ca2+ Dynamics by Interacting with Voltage-Dependent Calcium Channels during the Induction of Long-Term Depression. Neural Plast 2022; 2022:2900875. [PMID: 35178084 PMCID: PMC8844386 DOI: 10.1155/2022/2900875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
Spike-timing-dependent long-term depression (t-LTD) of glutamatergic layer (L)4-L2/3 synapses in developing neocortex requires activation of astrocytes by endocannabinoids (eCBs), which release glutamate onto presynaptic NMDA receptors (preNMDARs). The exact function of preNMDARs in this context is still elusive and strongly debated. To elucidate their function, we show that bath application of the eCB 2-arachidonylglycerol (2-AG) induces a preNMDAR-dependent form of chemically induced LTD (eCB-LTD) in L2/3 pyramidal neurons in the juvenile somatosensory cortex of rats. Presynaptic Ca2+ imaging from L4 spiny stellate axons revealed that action potential (AP) evoked Ca2+ transients show a preNMDAR-dependent broadening during eCB-LTD induction. However, blockade of voltage-dependent Ca2+ channels (VDCCs) did not uncover direct preNMDAR-mediated Ca2+ transients in the axon. This suggests that astrocyte-mediated glutamate release onto preNMDARs does not result in a direct Ca2+ influx, but that it instead leads to an indirect interaction with presynaptic VDCCs, boosting axonal Ca2+ influx. These results reveal one of the main remaining missing pieces in the signaling cascade of t-LTD at developing cortical synapses.
Collapse
|
18
|
Role of NMDAR plasticity in a computational model of synaptic memory. Sci Rep 2021; 11:21182. [PMID: 34707139 PMCID: PMC8551337 DOI: 10.1038/s41598-021-00516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
A largely unexplored question in neuronal plasticity is whether synapses are capable of encoding and learning the timing of synaptic inputs. We address this question in a computational model of synaptic input time difference learning (SITDL), where N-methyl-d-aspartate receptor (NMDAR) isoform expression in silent synapses is affected by time differences between glutamate and voltage signals. We suggest that differences between NMDARs' glutamate and voltage gate conductances induce modifications of the synapse's NMDAR isoform population, consequently changing the timing of synaptic response. NMDAR expression at individual synapses can encode the precise time difference between signals. Thus, SITDL enables the learning and reconstruction of signals across multiple synapses of a single neuron. In addition to plausibly predicting the roles of NMDARs in synaptic plasticity, SITDL can be usefully applied in artificial neural network models.
Collapse
|
19
|
Inglebert Y, Debanne D. Calcium and Spike Timing-Dependent Plasticity. Front Cell Neurosci 2021; 15:727336. [PMID: 34616278 PMCID: PMC8488271 DOI: 10.3389/fncel.2021.727336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Since its discovery, spike timing-dependent synaptic plasticity (STDP) has been thought to be a primary mechanism underlying the brain's ability to learn and to form new memories. However, despite the enormous interest in both the experimental and theoretical neuroscience communities in activity-dependent plasticity, it is still unclear whether plasticity rules inferred from in vitro experiments apply to in vivo conditions. Among the multiple reasons why plasticity rules in vivo might differ significantly from in vitro studies is that extracellular calcium concentration use in most studies is higher than concentrations estimated in vivo. STDP, like many forms of long-term synaptic plasticity, strongly depends on intracellular calcium influx for its induction. Here, we discuss the importance of considering physiological levels of extracellular calcium concentration to study functional plasticity.
Collapse
Affiliation(s)
- Yanis Inglebert
- UNIS, UMR1072, INSERM, Aix-Marseille University, Marseille, France.,Department of Pharmacology and Therapeutics and Cell Information Systems, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
20
|
Cepeda-Prado EA, Khodaie B, Quiceno GD, Beythien S, Edelmann E, Lessmann V. Calcium-Permeable AMPA Receptors Mediate Timing-Dependent LTP Elicited by Low Repeat Coincident Pre- and Postsynaptic Activity at Schaffer Collateral-CA1 Synapses. Cereb Cortex 2021; 32:1682-1703. [PMID: 34498663 DOI: 10.1093/cercor/bhab306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
High-frequency stimulation induced long-term potentiation (LTP) and low-frequency stimulation induced LTD are considered as cellular models of memory formation. Interestingly, spike timing-dependent plasticity (STDP) can induce equally robust timing-dependent LTP (t-LTP) and t-LTD in response to low frequency repeats of coincident action potential (AP) firing in presynaptic and postsynaptic cells. Commonly, STDP paradigms relying on 25-100 repeats of coincident AP firing are used to elicit t-LTP or t-LTD, but the minimum number of repeats required for successful STDP is barely explored. However, systematic investigation of physiologically relevant low repeat STDP paradigms is of utmost importance to explain learning mechanisms in vivo. Here, we examined low repeat STDP at Schaffer collateral-CA1 synapses by pairing one presynaptic AP with either one postsynaptic AP (1:1 t-LTP), or a burst of 4 APs (1:4 t-LTP) and found 3-6 repeats to be sufficient to elicit t-LTP. 6× 1:1 t-LTP required postsynaptic Ca2+ influx via NMDARs and L-type VGCCs and was mediated by increased presynaptic glutamate release. In contrast, 1:4 t-LTP depended on postsynaptic metabotropic GluRs and ryanodine receptor signaling and was mediated by postsynaptic insertion of AMPA receptors. Unexpectedly, both 6× t-LTP variants were strictly dependent on activation of postsynaptic Ca2+-permeable AMPARs but were differentially regulated by dopamine receptor signaling. Our data show that synaptic changes induced by only 3-6 repeats of mild STDP stimulation occurring in ≤10 s can take place on time scales observed also during single trial learning.
Collapse
Affiliation(s)
- Efrain A Cepeda-Prado
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany
| | - Gloria D Quiceno
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Swantje Beythien
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, Magdeburg 39120, Germany.,OVGU International ESF-funded Graduate School ABINEP, Magdeburg 39104, Germany.,Center for Behavioral Brain Sciences, Magdeburg 39104, Germany
| |
Collapse
|
21
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|
22
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
23
|
Egaña-Huguet J, Saumell-Esnaola M, Achicallende S, Soria-Gomez E, Bonilla-Del Río I, García Del Caño G, Barrondo S, Sallés J, Gerrikagoitia I, Puente N, Elezgarai I, Grandes P. Lack of the Transient Receptor Potential Vanilloid 1 Shifts Cannabinoid-Dependent Excitatory Synaptic Plasticity in the Dentate Gyrus of the Mouse Brain Hippocampus. Front Neuroanat 2021; 15:701573. [PMID: 34305539 PMCID: PMC8294191 DOI: 10.3389/fnana.2021.701573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) participates in synaptic functions in the brain. In the dentate gyrus, post-synaptic TRPV1 in the granule cell (GC) dendritic spines mediates a type of long-term depression (LTD) of the excitatory medial perforant path (MPP) synapses independent of pre-synaptic cannabinoid CB1 receptors. As CB1 receptors also mediate LTD at these synapses, both CB1 and TRPV1 might be influencing the activity of each other acting from opposite synaptic sites. We tested this hypothesis in the MPP–GC synapses of mice lacking TRPV1 (TRPV1-/-). Unlike wild-type (WT) mice, low-frequency stimulation (10 min at 10 Hz) of TRPV1-/- MPP fibers elicited a form of long-term potentiation (LTP) that was dependent on (1) CB1 receptors, (2) the endocannabinoid 2-arachidonoylglycerol (2-AG), (3) rearrangement of actin filaments, and (4) nitric oxide signaling. These functional changes were associated with an increase in the maximum binding efficacy of guanosine-5′-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) stimulated by the CB1 receptor agonist CP 55,940, and a significant decrease in receptor basal activation in the TRPV1-/- hippocampus. Finally, TRPV1-/- hippocampal synaptosomes showed an augmented level of the guanine nucleotide-binding (G) Gαi1, Gαi2, and Gαi3 protein alpha subunits. Altogether, the lack of TRPV1 modifies CB1 receptor signaling in the dentate gyrus and causes the shift from CB1 receptor-mediated LTD to LTP at the MPP–GC synapses.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Gontzal García Del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain.,Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
24
|
Andrade-Talavera Y, Rodríguez-Moreno A. Synaptic Plasticity and Oscillations in Alzheimer's Disease: A Complex Picture of a Multifaceted Disease. Front Mol Neurosci 2021; 14:696476. [PMID: 34220451 PMCID: PMC8248350 DOI: 10.3389/fnmol.2021.696476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer’s disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics. Currently under debate, the named amyloid hypothesis points to amyloid-beta peptide 1–42 (Aβ42) as the trigger of the functional deviations underlying cognitive impairment in AD. However, there are missing functional mechanistic data that comprehensively dissect the early subtle changes that lead to synaptic dysfunction and subsequent neuronal network collapse in AD. The convergence of the study of both, mechanisms underlying brain plasticity, and neuronal network dynamics, may represent the most efficient approach to address the early triggering and aberrant mechanisms underlying the progressive clinical cognitive impairment in AD. Here we comment on the emerging integrative roles of brain plasticity and network oscillations in AD research and on the future perspectives of research in this field.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
25
|
Kesner P, Schohl A, Warren EC, Ma F, Ruthazer ES. Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development. Cell Rep 2021; 32:107955. [PMID: 32726620 DOI: 10.1016/j.celrep.2020.107955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
To study contributions of N-methyl-D-aspartate receptors (NMDARs) in presynaptic and postsynaptic neurons of the developing visual system, we microinject antisense Morpholino oligonucleotide (MO) against GluN1 into one cell of two-cell-stage Xenopus laevis embryos. The resulting bilateral segregation of MO induces postsynaptic NMDAR (postNMDAR) knockdown in tectal neurons on one side and presynaptic NMDAR (preNMDAR) knockdown in ganglion cells projecting to the other side. PostNMDAR knockdown reduces evoked NMDAR- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated retinotectal currents. Although the frequency of spontaneous synaptic events is increased, the probability of evoked release is reduced. PreNMDAR knockdown results in larger evoked and unitary synaptic responses. Structurally, postNMDAR and preNMDAR knockdown produce complementary effects. Axonal arbor complexity is reduced by preNMDAR-MO and increased by postNMDAR-MO, whereas tectal dendritic arbors exhibit the inverse. The current study illustrates distinct roles for pre- and postNMDARs in circuit development and reveals extensive transsynaptic regulation of form and function.
Collapse
Affiliation(s)
- Philip Kesner
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Anne Schohl
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Elodie C Warren
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Fan Ma
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal QC H3A 2B4, Canada.
| |
Collapse
|
26
|
Louth EL, Jørgensen RL, Korshoej AR, Sørensen JCH, Capogna M. Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons. Front Cell Neurosci 2021; 15:668980. [PMID: 33967700 PMCID: PMC8102156 DOI: 10.3389/fncel.2021.668980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Synapses in the cerebral cortex constantly change and this dynamic property regulated by the action of neuromodulators such as dopamine (DA), is essential for reward learning and memory. DA modulates spike-timing-dependent plasticity (STDP), a cellular model of learning and memory, in juvenile rodent cortical neurons. However, it is unknown whether this neuromodulation also occurs at excitatory synapses of cortical neurons in mature adult mice or in humans. Cortical layer V pyramidal neurons were recorded with whole cell patch clamp electrophysiology and an extracellular stimulating electrode was used to induce STDP. DA was either bath-applied or optogenetically released in slices from mice. Classical STDP induction protocols triggered non-hebbian excitatory synaptic depression in the mouse or no plasticity at human cortical synapses. DA reverted long term synaptic depression to baseline in mouse via dopamine 2 type receptors or elicited long term synaptic potentiation in human cortical synapses. Furthermore, when DA was applied during an STDP protocol it depressed presynaptic inhibition in the mouse but not in the human cortex. Thus, DA modulates excitatory synaptic plasticity differently in human vs. mouse cortex. The data strengthens the importance of DA in gating cognition in humans, and may inform on therapeutic interventions to recover brain function from diseases.
Collapse
Affiliation(s)
- Emma Louise Louth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | | | | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Center for Proteins in Memory-PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Abstract
Spike-timing-dependent plasticity (STDP) is considered as a primary mechanism underlying formation of new memories during learning. Despite the growing interest in activity-dependent plasticity, it is still unclear whether synaptic plasticity rules inferred from in vitro experiments are correct in physiological conditions. The abnormally high calcium concentration used in in vitro studies of STDP suggests that in vivo plasticity rules may differ significantly from in vitro experiments, especially since STDP depends strongly on calcium for induction. We therefore studied here the influence of extracellular calcium on synaptic plasticity. Using a combination of experimental (patch-clamp recording and Ca2+ imaging at CA3-CA1 synapses) and theoretical approaches, we show here that the classic STDP rule in which pairs of single pre- and postsynaptic action potentials induce synaptic modifications is not valid in the physiological Ca2+ range. Rather, we found that these pairs of single stimuli are unable to induce any synaptic modification in 1.3 and 1.5 mM calcium and lead to depression in 1.8 mM. Plasticity can only be recovered when bursts of postsynaptic spikes are used, or when neurons fire at sufficiently high frequency. In conclusion, the STDP rule is profoundly altered in physiological Ca2+, but specific activity regimes restore a classical STDP profile.
Collapse
|
28
|
Wong HHW, Rannio S, Jones V, Thomazeau A, Sjöström PJ. NMDA receptors in axons: there's no coincidence. J Physiol 2020; 599:367-387. [PMID: 33141440 DOI: 10.1113/jp280059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
In the textbook view, N-methyl-d-aspartate (NMDA) receptors are postsynaptically located detectors of coincident activity in Hebbian learning. However, controversial presynaptically located NMDA receptors (preNMDARs) have for decades been repeatedly reported in the literature. These preNMDARs have typically been implicated in the regulation of short-term and long-term plasticity, but precisely how they signal and what their functional roles are have been poorly understood. The functional roles of preNMDARs across several brain regions and different forms of plasticity can differ vastly, with recent discoveries showing key involvement of unusual subunit composition. Increasing evidence shows preNMDAR can signal through both ionotropic action by fluxing calcium and in metabotropic mode even in the presence of magnesium blockade. We argue that these unusual properties may explain why controversy has surrounded this receptor type. In addition, the expression of preNMDARs at some synapse types but not others can underlie synapse-type-specific plasticity. Last but not least, preNMDARs are emerging therapeutic targets in disease states such as neuropathic pain. We conclude that axonally located preNMDARs are required for specific purposes and do not end up there by accident.
Collapse
Affiliation(s)
- Hovy Ho-Wai Wong
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - Sabine Rannio
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Victoria Jones
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Aurore Thomazeau
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| | - P Jesper Sjöström
- Department of Medicine, Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
29
|
Deperrois N, Graupner M. Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity. PLoS Comput Biol 2020; 16:e1008265. [PMID: 32976516 PMCID: PMC7549837 DOI: 10.1371/journal.pcbi.1008265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023] Open
Abstract
Synaptic efficacy is subjected to activity-dependent changes on short- and long time scales. While short-term changes decay over minutes, long-term modifications last from hours up to a lifetime and are thought to constitute the basis of learning and memory. Both plasticity mechanisms have been studied extensively but how their interaction shapes synaptic dynamics is little known. To investigate how both short- and long-term plasticity together control the induction of synaptic depression and potentiation, we used numerical simulations and mathematical analysis of a calcium-based model, where pre- and postsynaptic activity induces calcium transients driving synaptic long-term plasticity. We found that the model implementing known synaptic short-term dynamics in the calcium transients can be successfully fitted to long-term plasticity data obtained in visual- and somatosensory cortex. Interestingly, the impact of spike-timing and firing rate changes on plasticity occurs in the prevalent firing rate range, which is different in both cortical areas considered here. Our findings suggest that short- and long-term plasticity are together tuned to adapt plasticity to area-specific activity statistics such as firing rates. Synaptic long-term plasticity, the long-lasting change in efficacy of connections between neurons, is believed to underlie learning and memory. Synapses furthermore change their efficacy reversibly in an activity-dependent manner on the subsecond time scale, referred to as short-term plasticity. It is not known how both synaptic plasticity mechanisms—long- and short-term—interact during activity epochs. To address this question, we used a biologically-inspired plasticity model in which calcium drives changes in synaptic efficacy. We applied the model to plasticity data from visual- and somatosensory cortex and found that synaptic changes occur in very different firing rate ranges, which correspond to the prevalent firing rates in both structures. Our results suggest that short- and long-term plasticity act in a well concerted fashion.
Collapse
Affiliation(s)
- Nicolas Deperrois
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France
| | - Michael Graupner
- Université de Paris, CNRS, SPPIN - Saints-Pères Paris Institute for the Neurosciences, F-75006 Paris, France
- * E-mail:
| |
Collapse
|
30
|
Ebner C, Clopath C, Jedlicka P, Cuntz H. Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell Rep 2020; 29:4295-4307.e6. [PMID: 31875541 PMCID: PMC6941234 DOI: 10.1016/j.celrep.2019.11.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/02/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022] Open
Abstract
A large number of experiments have indicated that precise spike times, firing rates, and synapse locations crucially determine the dynamics of long-term plasticity induction in excitatory synapses. However, it remains unknown how plasticity mechanisms of synapses distributed along dendritic trees cooperate to produce the wide spectrum of outcomes for various plasticity protocols. Here, we propose a four-pathway plasticity framework that is well grounded in experimental evidence and apply it to a biophysically realistic cortical pyramidal neuron model. We show in computer simulations that several seemingly contradictory experimental landmark studies are consistent with one unifying set of mechanisms when considering the effects of signal propagation in dendritic trees with respect to synapse location. Our model identifies specific spatiotemporal contributions of dendritic and axo-somatic spikes as well as of subthreshold activation of synaptic clusters, providing a unified parsimonious explanation not only for rate and timing dependence but also for location dependence of synaptic changes. A phenomenological synaptic plasticity rule is applied to a pyramidal neuron model Model reproduces rate-, timing-, and location-dependent plasticity results Active dendrites allow plasticity via dendritic spikes and subthreshold events Cooperative plasticity exists across the dendritic tree and within single branches
Collapse
Affiliation(s)
- Christian Ebner
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute for Biology, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Claudia Clopath
- Computational Neuroscience Laboratory, Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | - Peter Jedlicka
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020; 32:108097. [PMID: 32877679 PMCID: PMC7487777 DOI: 10.1016/j.celrep.2020.108097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022] Open
Abstract
Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.
Collapse
Affiliation(s)
- Tiago Campelo
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Elisabete Augusto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Aron de Miranda
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Come Camus
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France; University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, 33000 Bordeaux, France.
| | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
32
|
Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat Commun 2020; 11:4388. [PMID: 32873805 PMCID: PMC7463247 DOI: 10.1038/s41467-020-18024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/31/2020] [Indexed: 01/31/2023] Open
Abstract
Presynaptic spike timing-dependent long-term depression (t-LTD) at hippocampal CA3-CA1 synapses is evident until the 3rd postnatal week in mice, disappearing during the 4th week. At more mature stages, we found that the protocol that induced t-LTD induced t-LTP. We characterized this form of t-LTP and the mechanisms involved in its induction, as well as that driving this switch from t-LTD to t-LTP. We found that this t-LTP is expressed presynaptically at CA3-CA1 synapses, as witnessed by coefficient of variation, number of failures, paired-pulse ratio and miniature responses analysis. Additionally, this form of presynaptic t-LTP does not require NMDARs but the activation of mGluRs and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels and the release of Ca2+ from intracellular stores. Nitric oxide is also required as a messenger from the postsynaptic neuron. Crucially, the release of adenosine and glutamate by astrocytes is required for t-LTP induction and for the switch from t-LTD to t-LTP. Thus, we have discovered a developmental switch of synaptic transmission from t-LTD to t-LTP at hippocampal CA3-CA1 synapses in which astrocytes play a central role and revealed a form of presynaptic LTP and the rules for its induction. Presynaptic spike timing-dependent long-term depression at hippocampal CA3-CA1 synapses is evident until the third postnatal week in mice. The authors show that maturation beyond four weeks is associated with a switch to long-term potentiation in which astrocytes play a central role.
Collapse
|
33
|
Tazerart S, Mitchell DE, Miranda-Rottmann S, Araya R. A spike-timing-dependent plasticity rule for dendritic spines. Nat Commun 2020; 11:4276. [PMID: 32848151 PMCID: PMC7449969 DOI: 10.1038/s41467-020-17861-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2020] [Indexed: 12/03/2022] Open
Abstract
The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape. Furthermore, the induction of t-LTP with 2P glutamate uncaging in clustered spines (<5 μm apart) enhances LTP through a NMDA receptor-mediated spine calcium accumulation and actin polymerization-dependent neck shrinkage, whereas t-LTD was dependent on NMDA receptors and disrupted by the activation of clustered spines but recovered when separated by >40 μm. These results indicate that synaptic cooperativity disrupts t-LTD and extends the temporal window for the induction of t-LTP, leading to STDP only encompassing LTP.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Diana E Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Soledad Miranda-Rottmann
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada.
| |
Collapse
|
34
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|
35
|
Bennett M. An Attempt at a Unified Theory of the Neocortical Microcircuit in Sensory Cortex. Front Neural Circuits 2020; 14:40. [PMID: 32848632 PMCID: PMC7416357 DOI: 10.3389/fncir.2020.00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
The neocortex performs a wide range of functions, including working memory, sensory perception, and motor planning. Despite this diversity in function, evidence suggests that the neocortex is made up of repeating subunits ("macrocolumns"), each of which is largely identical in circuitry. As such, the specific computations performed by these macrocolumns are of great interest to neuroscientists and AI researchers. Leading theories of this microcircuit include models of predictive coding, hierarchical temporal memory (HTM), and Adaptive Resonance Theory (ART). However, these models have not yet explained: (1) how microcircuits learn sequences input with delay (i.e., working memory); (2) how networks of columns coordinate processing on precise timescales; or (3) how top-down attention modulates sensory processing. I provide a theory of the neocortical microcircuit that extends prior models in all three ways. Additionally, this theory provides a novel working memory circuit that extends prior models to support simultaneous multi-item storage without disrupting ongoing sensory processing. I then use this theory to explain the functional origin of a diverse set of experimental findings, such as cortical oscillations.
Collapse
Affiliation(s)
- Max Bennett
- Independent Researcher, New York, NY, United States
| |
Collapse
|
36
|
Aceto G, Re A, Mattera A, Leone L, Colussi C, Rinaudo M, Scala F, Gironi K, Barbati SA, Fusco S, Green T, Laezza F, D'Ascenzo M, Grassi C. GSK3β Modulates Timing-Dependent Long-Term Depression Through Direct Phosphorylation of Kv4.2 Channels. Cereb Cortex 2020; 29:1851-1865. [PMID: 29790931 DOI: 10.1093/cercor/bhy042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3β knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3β influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3β and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3β role in synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Aceto
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agnese Re
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Andrea Mattera
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Claudia Colussi
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Marco Rinaudo
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Katia Gironi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Thomas Green
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
37
|
Pérez-Rodríguez M, Arroyo-García LE, Prius-Mengual J, Andrade-Talavera Y, Armengol JA, Pérez-Villegas EM, Duque-Feria P, Flores G, Rodríguez-Moreno A. Adenosine Receptor-Mediated Developmental Loss of Spike Timing-Dependent Depression in the Hippocampus. Cereb Cortex 2020; 29:3266-3281. [PMID: 30169759 PMCID: PMC6644873 DOI: 10.1093/cercor/bhy194] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023] Open
Abstract
Critical periods of synaptic plasticity facilitate the reordering and refining of neural connections during development, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. Presynaptic spike timing-dependent long-term depression (t-LTD) exists in the hippocampus, which depends on the activation of NMDARs and that probably fulfills a role in synaptic refinement. This t-LTD is present until the third postnatal week in mice, disappearing in the fourth week of postnatal development. We were interested in the mechanisms underlying this maturation related loss of t-LTD and we found that at CA3–CA1 synapses, presynaptic NMDA receptors (pre-NMDARs) are tonically active between P13 and P21, mediating an increase in glutamate release during this critical period of plasticity. Conversely, at the end of this critical period (P22–P30) and coinciding with the loss of t-LTD, these pre-NMDARs are no longer tonically active. Using immunogold electron microscopy, we demonstrated the existence of pre-NMDARs at Schaffer collateral synaptic boutons, where a decrease in the number of pre-NMDARs during development coincides with the loss of both tonic pre-NMDAR activation and t-LTD. Interestingly, this t-LTD can be completely recovered by antagonizing adenosine type 1 receptors (A1R), which also recovers the tonic activation of pre-NMDARs at P22–P30. By contrast, the induction of t-LTD was prevented at P13–P21 by an agonist of A1R, as was tonic pre-NMDAR activation. Furthermore, we found that the adenosine that mediated the loss of t-LTD during the fourth week of development is supplied by astrocytes. These results provide direct evidence for the mechanism that closes the window of plasticity associated with t-LTD, revealing novel events probably involved in synaptic remodeling during development.
Collapse
Affiliation(s)
- Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Luis E Arroyo-García
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain.,Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - José Prius-Mengual
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José A Armengol
- Human Anatomy and Embryology Unit, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Eva M Pérez-Villegas
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Paloma Duque-Feria
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
38
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
39
|
Mechanisms Underlying Long-Term Synaptic Zinc Plasticity at Mouse Dorsal Cochlear Nucleus Glutamatergic Synapses. J Neurosci 2020; 40:4981-4996. [PMID: 32434779 DOI: 10.1523/jneurosci.0175-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
In many brain areas, such as the neocortex, limbic structures, and auditory brainstem, synaptic zinc is released from presynaptic terminals to modulate neurotransmission. As such, synaptic zinc signaling modulates sensory processing and enhances acuity for discrimination of different sensory stimuli. Whereas sensory experience causes long-term changes in synaptic zinc signaling, the mechanisms underlying this long-term synaptic zinc plasticity remain unknown. To study these mechanisms in male and female mice, we used in vitro and in vivo models of zinc plasticity observed at the zinc-rich glutamatergic dorsal cochlear nucleus (DCN) parallel fiber synapses onto cartwheel cells. High-frequency stimulation of DCN parallel fiber synapses induced LTD of synaptic zinc signaling (Z-LTD), evidenced by reduced zinc-mediated inhibition of EPSCs. Low-frequency stimulation induced LTP of synaptic zinc signaling (Z-LTP), evidenced by enhanced zinc-mediated inhibition of EPSCs. Pharmacological manipulations of Group 1 metabotropic glutamate receptors (G1 mGluRs) demonstrated that G1 mGluR activation is necessary and sufficient for inducing Z-LTD and Z-LTP. Pharmacological manipulations of Ca2+ dynamics indicated that rises in postsynaptic Ca2+ are necessary and sufficient for Z-LTD induction. Electrophysiological measurements assessing postsynaptic expression mechanisms, and imaging studies with a ratiometric extracellular zinc sensor probing zinc release, supported that Z-LTD is expressed, at least in part, via reductions in presynaptic zinc release. Finally, exposure of mice to loud sound caused G1 mGluR-dependent Z-LTD at DCN parallel fiber synapses, thus validating our in vitro results. Together, our results reveal a novel mechanism underlying activity- and experience-dependent plasticity of synaptic zinc signaling.SIGNIFICANCE STATEMENT In the neocortex, limbic structures, and auditory brainstem, glutamatergic nerve terminals corelease zinc to modulate excitatory neurotransmission and sensory responses. Moreover, sensory experience causes bidirectional, long-term changes in synaptic zinc signaling. However, the mechanisms of this long-term synaptic zinc plasticity remain unknown. Here, we identified a novel Group 1 mGluR-dependent mechanism that causes bidirectional, long-term changes in synaptic zinc signaling. Our results highlight new mechanisms of brain adaptation during sensory processing, and potentially point to mechanisms of disorders associated with pathologic adaptation, such as tinnitus.
Collapse
|
40
|
Abstract
Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.
Collapse
|
41
|
Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8:F1000 Faculty Rev-1940. [PMID: 31807283 PMCID: PMC6871362 DOI: 10.12688/f1000research.18949.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the GRIN genes that encode N-methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in GRIN2A and GRIN2B. Comparison of clinical phenotypes shows that GRIN2A variants are commonly associated with an epileptic phenotype but that GRIN2B variants are commonly found in patients with neurodevelopmental disorders. These observations emphasize the distinct roles that the gene products serve in circuit function and suggest that functional analysis of GRIN2A and GRIN2B variation may provide insight into the molecular mechanisms, which will allow more accurate subclassification of clinical phenotypes. Furthermore, characterization of the pharmacological properties of variant receptors could provide the first opportunity for translational therapeutic strategies for these GRIN-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Scott J Myers
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Hongjie Yuan
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, USA
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen F Traynelis
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Chian-Ming Low
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Stella A, Quaglio P, Torre E, Grün S. 3d-SPADE: Significance evaluation of spatio-temporal patterns of various temporal extents. Biosystems 2019; 185:104022. [PMID: 31449837 DOI: 10.1016/j.biosystems.2019.104022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
The Spike Pattern Detection and Evaluation (SPADE) analysis is a method to find reoccurring spike patterns in parallel spike train data, and to determine their statistical significance. Here we introduce an extension of the original statistical testing procedure which explicitly accounts for the temporal duration of the patterns. The extension improves the performance in the presence of patterns with different durations, as here demonstrated by application to various synthetic data. We further introduce an implementation of SPADE in form of a sub-module of the Python library Elephant (ELEctroPHysiological ANalysis Toolkit). The code is made publicly available on GitHub, together with detailed documentation, tutorials, and the results presented here.
Collapse
Affiliation(s)
- Alessandra Stella
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Brain Inst I (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Pietro Quaglio
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Brain Inst I (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany.
| | - Emiliano Torre
- Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Zürich, Switzerland; Risk Lab, ETH Zürich, Zürich, Switzerland
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), JARA Brain Inst I (INM-10), Jülich Research Centre, Jülich, Germany; Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
43
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Brzosko Z, Mierau SB, Paulsen O. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future. Neuron 2019; 103:563-581. [DOI: 10.1016/j.neuron.2019.05.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
|
45
|
Joo K, Cho KH, Youn SH, Jang HJ, Rhie DJ. Layer-specific involvement of endocannabinoid signaling in muscarinic-induced long-term depression in layer 2/3 pyramidal neurons of rat visual cortex. Brain Res 2019; 1712:124-131. [DOI: 10.1016/j.brainres.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 02/01/2023]
|
46
|
Peñasco S, Rico-Barrio I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Achicallende S, Ramos A, Reguero L, Elezgarai I, Nahirney PC, Christie BR, Grandes P. Endocannabinoid long-term depression revealed at medial perforant path excitatory synapses in the dentate gyrus. Neuropharmacology 2019; 153:32-40. [PMID: 31022405 DOI: 10.1016/j.neuropharm.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system modulates synaptic plasticity in the hippocampus, but a link between long-term synaptic plasticity and the type 1 cannabinoid (CB1) receptor at medial perforant path (MPP) synapses remains elusive. Here, immuno-electron microscopy in adult mice showed that ∼26% of the excitatory synaptic terminals in the middle 1/3 of the dentate molecular layer (DML) contained CB1 receptors, and field excitatory postsynaptic potentials evoked by MPP stimulation were inhibited by CB1 receptor activation. In addition, MPP stimulation at 10 Hz for 10 min triggered CB1 receptor-dependent excitatory long-term depression (eCB-eLTD) at MPP synapses of wild-type mice but not on CB1-knockout mice. This eCB-eLTD was group I mGluR-dependent, required intracellular calcium influx and 2-arachydonoyl-glycerol (2-AG) synthesis but did not depend on N-methyl-d-aspartate (NMDA) receptors. Overall, these results point to a functional role for CB1 receptors with eCB-eLTD at DML MPP synapses and further involve these receptors in memory processing within the adult brain.
Collapse
Affiliation(s)
- Sara Peñasco
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irantzu Rico-Barrio
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Sonia María Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, E-48940, Leioa, Spain; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada.
| |
Collapse
|
47
|
Casas-Torremocha D, Porrero C, Rodriguez-Moreno J, García-Amado M, Lübke JHR, Núñez Á, Clascá F. Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices. Brain Struct Funct 2019; 224:1627-1645. [PMID: 30919051 PMCID: PMC6509070 DOI: 10.1007/s00429-019-01862-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.
Collapse
Affiliation(s)
- Diana Casas-Torremocha
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - César Porrero
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier Rodriguez-Moreno
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María García-Amado
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-Brain Medicine, Aachen, Germany
| | - Ángel Núñez
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.
| |
Collapse
|
48
|
Sun W, Wong JM, Gray JA, Carter BC. Incomplete block of NMDA receptors by intracellular MK-801. Neuropharmacology 2018; 143:122-129. [PMID: 30227149 PMCID: PMC8920045 DOI: 10.1016/j.neuropharm.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
NMDA receptors (NMDARs) are essential components in glutamatergic synaptic signaling. The NMDAR antagonist MK-801 has been a valuable pharmacological tool in evaluating NMDAR function because it binds with high affinity to the NMDAR ion channel pore and is non-competitive with ligand binding. MK-801 has also been used to selectively inhibit NMDAR current in only the cell being recorded by including the drug in the intracellular recording solution. Here, we report that intracellular MK-801 (iMK-801) only partially inhibits synaptic NMDAR currents at +40 mV at both cortical layer 4 to layer 2/3 and hippocampal Schaffer collateral to CA1 synapses. Furthermore, iMK-801 incompletely inhibits heterologously expressed NMDAR currents at -60 mV, consistent with a model of iMK-801 having a very slow binding rate and consequently ∼30,000 times lower affinity than MK-801 applied to the extracellular side of the receptor. While iMK-801 can be used as a qualitative tool to study reduced postsynaptic NMDAR function, it cannot be assumed to completely block NMDARs at concentrations typically used in experiments.
Collapse
Affiliation(s)
- Weinan Sun
- Vollum Institute, Oregon Health & Science University, Portland, USA
| | - Jonathan M. Wong
- Center for Neuroscience, University of California, Davis, USA,Neuroscience Graduate Program, University of California, Davis, USA
| | - John A. Gray
- Center for Neuroscience, University of California, Davis, USA,Neurology Department, University of California, Davis, USA
| | - Brett C. Carter
- Vollum Institute, Oregon Health & Science University, Portland, USA,European Neuroscience Institute Göttingen, Germany,Corresponding author: Corresponding author: Brett C. Carter, European Neuroscience Institute Gőttingen, Grisebachstrasse 5, Gőttingen Germany 37077, Phone: +49 51 39 13898,
| |
Collapse
|
49
|
Augustin SM, Lovinger DM. Functional Relevance of Endocannabinoid-Dependent Synaptic Plasticity in the Central Nervous System. ACS Chem Neurosci 2018; 9:2146-2161. [PMID: 29400439 DOI: 10.1021/acschemneuro.7b00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid (eCB) signaling system plays a key role in short-term and long-term synaptic plasticity in brain regions involved in various neural functions ranging from action selection to appetite control. This review will explore the role of eCBs in shaping neural circuit function to regulate behaviors. In particular, we will discuss the behavioral consequences of eCB mediated long-term synaptic plasticity in different brain regions. This review brings together evidence from in vitro and ex vivo studies and points out the need for more in vivo studies.
Collapse
Affiliation(s)
- Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| |
Collapse
|
50
|
Bara A, Manduca A, Bernabeu A, Borsoi M, Serviado M, Lassalle O, Murphy M, Wager-Miller J, Mackie K, Pelissier-Alicot AL, Trezza V, Manzoni OJ. Sex-dependent effects of in utero cannabinoid exposure on cortical function. eLife 2018; 7:e36234. [PMID: 30201092 PMCID: PMC6162091 DOI: 10.7554/elife.36234] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Cannabinoids can cross the placenta, thus may interfere with fetal endocannabinoid signaling during neurodevelopment, causing long-lasting deficits. Despite increasing reports of cannabis consumption during pregnancy, the protracted consequences of prenatal cannabinoid exposure (PCE) remain incompletely understood. Here, we report sex-specific differences in behavioral and neuronal deficits in the adult progeny of rat dams exposed to low doses of cannabinoids during gestation. In males, PCE reduced social interaction, ablated endocannabinoid long-term depression (LTD) and heightened excitability of prefrontal cortex pyramidal neurons, while females were spared. Group 1 mGluR and endocannabinoid signaling regulate emotional behavior and synaptic plasticity. Notably, sex-differences following PCE included levels of mGluR1/5 and TRPV1R mRNA. Finally, positive allosteric modulation of mGlu5 and enhancement of anandamide levels restored LTD and social interaction in PCE adult males. Together, these results highlight marked sexual differences in the effects of PCE and introduce strategies for reversing detrimental effects of PCE.
Collapse
Affiliation(s)
- Anissa Bara
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Antonia Manduca
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Axel Bernabeu
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- APHMCHU Conception, Service de PsychiatrieMarseilleFrance
| | - Milene Borsoi
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Michela Serviado
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Olivier Lassalle
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| | - Michelle Murphy
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Jim Wager-Miller
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Ken Mackie
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
- Gill CentreIndiana UniversityBloomingtonUnited States
| | - Anne-Laure Pelissier-Alicot
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
- APHMCHU Conception, Service de PsychiatrieMarseilleFrance
- APHMCHU Timone Adultes, Service de Médecine LégaleMarseilleFrance
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of ScienceUniversity Roma TreRomeItaly
| | - Olivier J Manzoni
- Aix Marseille University, INSERM, INMEDMarseilleFrance
- Cannalab, Cannabinoids Neuroscience Research International Associated LaboratoryIndiana UniversityIndianaUnited States
| |
Collapse
|