1
|
Chehade NG, Gharbawie OA. Motor actions are spatially organized in motor and dorsal premotor cortex. eLife 2023; 12:e83196. [PMID: 37855376 PMCID: PMC10622145 DOI: 10.7554/elife.83196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2023] [Indexed: 10/20/2023] Open
Abstract
Frontal motor areas are central to controlling voluntary movements. In non-human primates, the motor areas contain independent, somatotopic, representations of the forelimb (i.e., motor maps). But are the neural codes for actions spatially organized within those forelimb representations? Addressing this question would provide insight into the poorly understood structure-function relationships of the cortical motor system. Here, we tackle the problem using high-resolution optical imaging and motor mapping in motor (M1) and dorsal premotor (PMd) cortex. Two macaque monkeys performed an instructed reach-to-grasp task while cortical activity was recorded with intrinsic signal optical imaging (ISOI). The spatial extent of activity in M1 and PMd was then quantified in relation to the forelimb motor maps, which we obtained from the same hemisphere with intracortical microstimulation. ISOI showed that task-related activity was concentrated in patches that collectively overlapped <40% of the M1 and PMd forelimb representations. The spatial organization of the patches was consistent across task conditions despite small variations in forelimb use. Nevertheless, the largest condition differences in forelimb use were reflected in the magnitude of cortical activity. Distinct time course profiles from patches in arm zones and patches in hand zones suggest functional differences within the forelimb representations. The results collectively support an organizational framework wherein the forelimb representations contain subzones enriched with neurons tuned for specific actions. Thus, the often-overlooked spatial dimension of neural activity appears to be an important organizing feature of the neural code in frontal motor areas.
Collapse
Affiliation(s)
- Nicholas G Chehade
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Center for Neuroscience, University of PittsburghPittsburghUnited States
| | - Omar A Gharbawie
- Department of Neurobiology, University of PittsburghPittsburghUnited States
- Systems Neuroscience Center, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Center for Neuroscience, University of PittsburghPittsburghUnited States
- Department of Bioengineering, University of PittsburghPittsburghUnited States
| |
Collapse
|
2
|
Bhatti MS, Frostig RD. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. Sci Rep 2023; 13:12799. [PMID: 37550353 PMCID: PMC10406860 DOI: 10.1038/s41598-023-39574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
We have previously demonstrated protection from impending cortical ischemic stroke is achievable by sensory stimulation of the ischemic area in an adult rat model of permanent middle cerebral artery occlusion (pMCAo). We have further demonstrated that a major underpinning mechanism that is necessary for such protection is the system of collaterals among cerebral arteries that results in reperfusion of the MCA ischemic territory. However, since such collateral flow is weak, it may be necessary but not sufficient for protection and therefore we sought other complementary mechanisms that contribute to sensory-based protection. We hypothesized that astrocytes-neuron lactate shuttle (ANLS) activation could be another potential underpinning mechanism that complements collateral flow in the protection process. Supporting our hypothesis, using functional imaging, pharmacological treatments, and postmortem histology, we showed that ANLS played a pivotal role in sensory stimulation-based protection of cortex and therefore serves as the other supporting mechanism underpinning the protection process.
Collapse
Affiliation(s)
- Mehwish S Bhatti
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
| | - Ron D Frostig
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, Irvine, CA, USA.
- Center for Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
4
|
Bhatti M, Frostig RD. Astrocyte-neuron lactate shuttle plays a pivotal role in sensory-based neuroprotection in a rat model of permanent middle cerebral artery occlusion. RESEARCH SQUARE 2023:rs.3.rs-2698138. [PMID: 37034797 PMCID: PMC10081351 DOI: 10.21203/rs.3.rs-2698138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
We have previously demonstrated protection from impending cortical stroke is achievable by sensory stimulation of the ischemic area in an adult rat model of permanent middle cerebral artery occlusion (pMCAo). We have further demonstrated that a major underpinning mechanism that is necessary for such protection is the system of collaterals among cerebral arteries that results in reperfusion of the MCA ischemic territory. However, since such collateral flow is weak, it may be necessary but not sufficient for protection and therefore we were seeking other complementary mechanisms that contribute to sensory-based protection. We hypothesized that astrocytes-to-neuron shuttle (ANLS) is another potential underpinning mechanism that could complement collateral flow in the protection process. Supporting our hypothesis, using functional imaging, pharmacological treatments, and postmortem histology, we show that ANLS has a pivotal role in sensory-based protection of cortex and therefor serves as the other supporting mechanism underpinning the protection process.
Collapse
|
5
|
Mohammadzadeh L, Alizadeh AM, Feiz MS, Jamali S, Abedi M, Latifi H, Haghparast A. Acute morphine administration, morphine dependence, and naloxone-induced withdrawal syndrome affect the resting-state functional connectivity and local field potentials of the rat prefrontal cortex. Behav Brain Res 2022; 427:113859. [PMID: 35337941 DOI: 10.1016/j.bbr.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Opiates are among the widely abused substances worldwide. Also, the clinical use of opioids can cause unwanted and potentially severe consequences such as developing tolerance and dependence. This study simultaneously measured the changes induced after morphine dependence and naloxone-induced withdrawal syndrome on the resting-state functional connectivity (rsFC) and local field potential (LFP) power in the prefrontal cortex of the rat. The obtained results revealed that acute morphine administration significantly increased the LFP power in all frequency bands, as well as the rsFC strength of the prefrontal cortex, and naloxone injection reversed this effect. In contrast, chronic morphine administration reduced neural activity and general correlation values in intrinsic signals, as well as the LFP power in all frequency bands. In morphine-dependent rats, after each morphine administration, the LFP power in all frequency bands and the rsFC strength of the prefrontal cortex were increased, and these effects were further enhanced after naloxone precipitated withdrawal syndrome. The present study concludes that general correlation merely reflects the field activity of the local cortices imaged.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Amir Mohammad Alizadeh
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Mohammad Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Shole Jamali
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mohaddeseh Abedi
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran; Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O.Box 19615-1178, Iran.
| |
Collapse
|
6
|
Guinto MC, Haruta M, Kurauchi Y, Saigo T, Kurasawa K, Ryu S, Ohta Y, Kawahara M, Takehara H, Tashiro H, Sasagawa K, Katsuki H, Ohta J. Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:026501. [PMID: 35166087 PMCID: PMC8843356 DOI: 10.1117/1.jbo.27.2.026501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Intrinsic optical signals (IOS) generated in the cortical tissue as a result of various interacting metabolic processes are used extensively to elucidate the underlying mechanisms that govern neurovascular coupling. However, current IOS measurements still often rely on bulky, tabletop imaging systems, and there remains a dearth of studies in freely moving subjects. Lightweight, miniature head-mounted imaging devices provide unique opportunities for investigating cortical dynamics in small animals under a variety of naturalistic behavioral settings. AIM The aim of this work was to monitor IOS in the somatosensory cortex of wild-type mice by developing a lightweight, biocompatible imaging device that readily lends itself to animal experiments in freely moving conditions. APPROACH Herein we describe a method for realizing long-term IOS imaging in mice using a 0.54-g, compact, CMOS-based, head-mounted imager. The two-part module, consisting of a tethered sensor plate and a base plate, allows facile assembly prior to imaging sessions and disassembly when the sensor is not in use. LEDs integrated into the device were chosen to illuminate the cortical mantle at two different wavelengths in the visible regime (λcenter: 535 and 625 nm) for monitoring volume- and oxygenation state-dependent changes in the IOS, respectively. To test whether the system can detect robust cortical responses, we recorded sensory-evoked IOS from mechanical stimulation of the hindlimbs (HL) of anesthetized mice in both acute and long-term implantation conditions. RESULTS Cortical IOS recordings in the primary somatosensory cortex hindlimb receptive field (S1HL) of anesthetized mice under green and red LED illumination revealed robust, multiphasic profiles that were time-locked to the mechanical stimulation of the contralateral plantar hindpaw. Similar intrinsic signal profiles observed in S1HL at 40 days postimplantation demonstrated the viability of the approach for long-term imaging. Immunohistochemical analysis showed that the brain tissue did not exhibit appreciable immune response due to the device implantation and operation. A proof-of-principle imaging session in a freely behaving mouse showed minimal locomotor impediment for the animal and also enabled estimation of blood flow speed. CONCLUSIONS We demonstrate the utility of a miniature cortical imaging device for monitoring IOS and related hemodynamic processes in both anesthetized and freely moving mice, cueing potential for applications to some neuroscientific studies of sensation and naturalistic behavior.
Collapse
Affiliation(s)
- Mark Christian Guinto
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Makito Haruta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Yuki Kurauchi
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Taisuke Saigo
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Kazuki Kurasawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Sumika Ryu
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Yasumi Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Mamiko Kawahara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hironari Takehara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
- Kyushu University, Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroshi Katsuki
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Jun Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| |
Collapse
|
7
|
Kulesskaya N, Molotkov D, Sliepen S, Mugantseva E, Garcia Horsman A, Paveliev M, Rauvala H. Heparin-Binding Growth-Associated Molecule (Pleiotrophin) Affects Sensory Signaling and Selected Motor Functions in Mouse Model of Anatomically Incomplete Cervical Spinal Cord Injury. Front Neurol 2021; 12:738800. [PMID: 34938257 PMCID: PMC8685413 DOI: 10.3389/fneur.2021.738800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-binding growth-associated molecule (pleiotrophin) is a neurite outgrowth-promoting secretory protein that lines developing fiber tracts in juvenile CNS (central nervous system). Previously, we have shown that heparin-binding growth-associated molecule (HB-GAM) reverses the CSPG (chondroitin sulfate proteoglycan) inhibition on neurite outgrowth in the culture medium of primary CNS neurons and enhances axon growth through the injured spinal cord in mice demonstrated by two-photon imaging. In this study, we have started studies on the possible role of HB-GAM in enhancing functional recovery after incomplete spinal cord injury (SCI) using cervical lateral hemisection and hemicontusion mouse models. In vivo imaging of blood-oxygen-level-dependent (BOLD) signals associated with functional activity in the somatosensory cortex was used to assess the sensory functions during vibrotactile hind paw stimulation. The signal displays an exaggerated response in animals with lateral hemisection that recovers to the level seen in the sham-operated mice by injection of HB-GAM to the trauma site. The effect of HB-GAM treatment on sensory-motor functions was assessed by performance in demanding behavioral tests requiring integration of afferent and efferent signaling with central coordination. Administration of HB-GAM either by direct injection into the trauma site or by intrathecal injection improves the climbing abilities in animals with cervical hemisection and in addition enhances the grip strength in animals with lateral hemicontusion without affecting the spontaneous locomotor activity. Recovery of sensory signaling in the sensorimotor cortex by HB-GAM to the level of sham-operated mice may contribute to the improvement of skilled locomotion requiring integration of spatiotemporal signals in the somatosensory cortex.
Collapse
Affiliation(s)
- Natalia Kulesskaya
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dmitry Molotkov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sonny Sliepen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ekaterina Mugantseva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Arturo Garcia Horsman
- Real-time Imaging Laboratory, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikhail Paveliev
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Optical imaging reveals functional domains in primate sensorimotor cortex. Neuroimage 2020; 221:117188. [PMID: 32711067 PMCID: PMC7841645 DOI: 10.1016/j.neuroimage.2020.117188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 12/03/2022] Open
Abstract
Motor cortex (M1) and somatosensory cortex (S1) are central to arm and hand control. Efforts to understand encoding in M1 and S1 have focused on temporal relationships between neural activity and movement features. However, it remains unclear how the neural activity is spatially organized within M1 and S1. Optical imaging methods are well-suited for revealing the spatio-temporal organization of cortical activity, but their application is sparse in monkey sensorimotor cortex. Here, we investigate the effectiveness of intrinsic signal optical imaging (ISOI) for measuring cortical activity that supports arm and hand control in a macaque monkey. ISOI revealed spatial domains that were active in M1 and S1 in response to instructed reaching and grasping. The lateral M1 domains overlapped the hand representation and contained a population of neurons with peak firing during grasping. In contrast, the medial M1 domain overlapped the arm representation and a population of neurons with peak firing during reaching. The S1 domain overlapped the hand representations of areas 1 and 2 and a population of neurons with peak firing upon hand contact with the target. Our single unit recordings indicate that ISOI domains report the locations of spatial clusters of functionally related neurons. ISOI is therefore an effective tool for surveilling the neocortex for “hot zones” of activity that supports movement. Combining the strengths of ISOI with other imaging modalities (e.g., fMRI, 2-photon) and with electrophysiological methods can open new frontiers in understanding the spatio-temporal organization of cortical signals involved in movement control.
Collapse
|
9
|
Sanzeni A, Akitake B, Goldbach HC, Leedy CE, Brunel N, Histed MH. Inhibition stabilization is a widespread property of cortical networks. eLife 2020; 9:e54875. [PMID: 32598278 PMCID: PMC7324160 DOI: 10.7554/elife.54875] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Many cortical network models use recurrent coupling strong enough to require inhibition for stabilization. Yet it has been experimentally unclear whether inhibition-stabilized network (ISN) models describe cortical function well across areas and states. Here, we test several ISN predictions, including the counterintuitive (paradoxical) suppression of inhibitory firing in response to optogenetic inhibitory stimulation. We find clear evidence for ISN operation in mouse visual, somatosensory, and motor cortex. Simple two-population ISN models describe the data well and let us quantify coupling strength. Although some models predict a non-ISN to ISN transition with increasingly strong sensory stimuli, we find ISN effects without sensory stimulation and even during light anesthesia. Additionally, average paradoxical effects result only with transgenic, not viral, opsin expression in parvalbumin (PV)-positive neurons; theory and expression data show this is consistent with ISN operation. Taken together, these results show strong coupling and inhibition stabilization are common features of the cortex.
Collapse
Affiliation(s)
- Alessandro Sanzeni
- NIMH Intramural Program, National Institutes of HealthBethesdaUnited States
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Bradley Akitake
- NIMH Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Hannah C Goldbach
- NIMH Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Caitlin E Leedy
- NIMH Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Nicolas Brunel
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Mark H Histed
- NIMH Intramural Program, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
10
|
Mohammadzadeh L, Latifi H, Khaksar S, Feiz MS, Motamedi F, Asadollahi A, Ezzatpour M. Measuring the Frequency-Specific Functional Connectivity Using Wavelet Coherence Analysis in Stroke Rats Based on Intrinsic Signals. Sci Rep 2020; 10:9429. [PMID: 32523058 PMCID: PMC7286921 DOI: 10.1038/s41598-020-66246-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/17/2020] [Indexed: 12/28/2022] Open
Abstract
Optical intrinsic signal imaging (OISi) method is an optical technique to evaluate the functional connectivity (FC) of the cortex in animals. Already, using OISi, the FC of the cortex has been measured in time or frequency domain separately, and at frequencies below 0.08 Hz, which is not in the frequency range of hemodynamic oscillations which are able to track fast cortical events, including neurogenic, myogenic, cardiac and respiratory activities. In the current work, we calculated the wavelet coherence (WC) transform of the OISi time series to evaluate the cerebral response changes in the stroke rats. Utilizing WC, we measured FC at frequencies up to 4.5 Hz, and could monitor the time and frequency dependency of the FC simultaneously. The results showed that the WC of the brain diminished significantly in ischemic motor and somatosensory cortices. According to the statistical results, the signal amplitude, responsive area size, correlation, and wavelet coherence of the motor and the somatosensory cortices for stroke hemisphere were found to be significantly lower compared to the healthy hemisphere. The obtained results confirm that the OISi-based WC analysis is an efficient method to diagnose the relative severity of infarction and the size of the infarcted region after ischemic stroke.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran. .,Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, 1993893973, Iran
| | - Mohammad-Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Amir Asadollahi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Marzieh Ezzatpour
- Department of Physics, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|
11
|
Turner K, Pickering M, O'Connell PR, Jones JFX. The projection of anorectal afferents to cortex of the rat: Comparison of two methods of cortical mapping. Neurogastroenterol Motil 2019; 31:e13709. [PMID: 31452314 DOI: 10.1111/nmo.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The rat has served usefully as a model for fecal incontinence and exploration of the mechanism of action of sacral neuromodulation. However, there is a gap in knowledge concerning representation(s) on the primary sensory cortex of this anatomical region. METHODS Multi-electrode array (32 channels) and intrinsic optical signal (IOS) processing were used to map cortical activation sites following anorectal electrical stimulation in the rat. A simple method for expanding a 32-electrode array to a virtual 2700 array was refined. KEY RESULTS The IOS method identified activation of parietal cortex following anorectal or first sacral nerve root (S1) stimulation; however, the signal was poorly localized and large spontaneous vasomotion was observed in pial vessels. In contrast, the resulting high-density maps showed two anatomically distinct cortical activation sites to anorectal stimulation. CONCLUSIONS & INFERENCES There are two distinct sites of activation on the parietal cortex following anorectal stimulation in the rat. The implications for sacral neuromodulation as a therapy for fecal incontinence are discussed.
Collapse
Affiliation(s)
- Keira Turner
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mark Pickering
- School of Medicine, University College Dublin, Dublin, Ireland
| | - P Ronan O'Connell
- School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - James F X Jones
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Hong KS, Zafar A. Existence of Initial Dip for BCI: An Illusion or Reality. Front Neurorobot 2018; 12:69. [PMID: 30416440 PMCID: PMC6212489 DOI: 10.3389/fnbot.2018.00069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the motivation of many hemodynamic response (HR)-based neuroimaging modalities. The increase in neuronal activity causes the increase in CBF that is indirectly measured by HR modalities. Upon functional stimulation, the HR is mainly categorized in three durations: (i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any subsequent increase in CBF and spatially more specific to the site of neuronal activity. Despite additional evidence from various HR modalities on the presence of initial dip in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of an initial dip in HR is still under debate. This article reviews the existence and elusive nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer interface using fNIRS is examined in detail. The best possible application for the initial dip utilization and its future implications using fNIRS are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Amad Zafar
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
13
|
Hancock AM, Frostig RD. Hypertension prevents a sensory stimulation-based collateral therapeutic from protecting the cortex from impending ischemic stroke damage in a spontaneously hypersensitive rat model. PLoS One 2018; 13:e0206291. [PMID: 30352082 PMCID: PMC6198990 DOI: 10.1371/journal.pone.0206291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Assessing potential stroke treatments in the presence of risk factors can improve screening of treatments prior to clinical trials and is important in testing the efficacy of treatments in different patient populations. Here, we test our noninvasive, nonpharmacological sensory stimulation treatment in the presence of the main risk factor for ischemic stroke, hypertension. Utilizing functional imaging, blood flow imaging, and histology, we assessed spontaneously hypertensive rats (SHRs) pre- and post-permanent middle cerebral artery occlusion (pMCAO). Experimental groups included a treatment SHR group (sensory-stimulated group), control untreated SHR group (no sensory stimulation), and a treated (sensory-stimulated) Wistar-Kyoto normotensive group. Unlike our previous studies, which showed sensory-based complete protection from impending ischemic cortical stroke damage in rats as seen in the treated Wistar-Kyoto group, we found that SHRs at 24hr post-pMCAO lacked evoked cortical activation, had a significant reduction in blood flow within the MCA, and sustained very large infarcts regardless of whether they received stimulation treatment. If translatable, this work highlights a potential need for a combined treatment plan when delivering sensory stimulation treatment in this patient population.
Collapse
Affiliation(s)
- Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ron D. Frostig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
14
|
von Bornstädt D, Gertz K, Lagumersindez Denis N, Seners P, Baron JC, Endres M. Sensory stimulation in acute stroke therapy. J Cereb Blood Flow Metab 2018; 38:1682-1689. [PMID: 30073883 PMCID: PMC6168904 DOI: 10.1177/0271678x18791073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 02/06/2023]
Abstract
The beneficial effects of cortical activation for functional recovery after ischemic stroke have been well described. However, little is known about the role of early sensory stimulation, i.e. stimulation during first 6 h after stroke onset even during acute treatment. In recent years, various preclinical studies reported significant effects of acute sensory stimulation that range from entire neuroprotection to increased infarct volumes by 30-50%. Systematic knowledge about the effect of acute sensory stimulation on stroke outcome is highly relevant as stroke patients are subject to uncontrolled sensory stimulation during transport, acute treatment, and critical care. This article discusses the current stage of knowledge about acute sensory stimulation and provides directions for future experimental and clinical trials.
Collapse
Affiliation(s)
- Daniel von Bornstädt
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Center for Stroke Research Berlin, Berlin, Germany
| | - Karen Gertz
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Nielsen Lagumersindez Denis
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| | - Pierre Seners
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U894, France
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, University Paris Descartes, INSERM U894, France
| | - Matthias Endres
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site, Berlin, Germany
| |
Collapse
|
15
|
Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EMC. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0360. [PMID: 27574312 PMCID: PMC5003860 DOI: 10.1098/rstb.2015.0360] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Ying Ma
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mariel G Kozberg
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hang Yu
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
16
|
Knutsen PM, Mateo C, Kleinfeld D. Precision mapping of the vibrissa representation within murine primary somatosensory cortex. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0351. [PMID: 27574305 DOI: 10.1098/rstb.2015.0351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 11/12/2022] Open
Abstract
The ability to form an accurate map of sensory input to the brain is an essential aspect of interpreting functional brain signals. Here, we consider the somatotopic map of vibrissa-based touch in the primary somatosensory (vS1) cortex of mice. The vibrissae are represented by a Manhattan-like grid of columnar structures that are separated by inter-digitating septa. The development, dynamics and plasticity of this organization is widely used as a model system. Yet, the exact anatomical position of this organization within the vS1 cortex varies between individual mice. Targeting of a particular column in vivo therefore requires prior mapping of the activated cortical region, for instance by imaging the evoked intrinsic optical signal (eIOS) during vibrissa stimulation. Here, we describe a procedure for constructing a complete somatotopic map of the vibrissa representation in the vS1 cortex using eIOS. This enables precise targeting of individual cortical columns. We found, using C57BL/6 mice, that although the precise location of the columnar field varies between animals, the relative spatial arrangement of the columns is highly preserved. This finding enables us to construct a canonical somatotopic map of the vibrissae in the vS1 cortex. In particular, the position of any column, in absolute anatomical coordinates, can be established with near certainty when the functional representations in the vS1 cortex for as few as two vibrissae have been mapped with eIOS.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Per M Knutsen
- Department of Physics, UC San Diego, La Jolla, CA, USA
| | - Celine Mateo
- Department of Physics, UC San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, UC San Diego, La Jolla, CA, USA Section of Neurobiology, UC San Diego, La Jolla, CA, USA Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Hancock AM, Frostig RD. Testing the effects of sensory stimulation as a collateral-based therapeutic for ischemic stroke in C57BL/6J and CD1 mouse strains. PLoS One 2017; 12:e0183909. [PMID: 28902897 PMCID: PMC5597132 DOI: 10.1371/journal.pone.0183909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Utilizing a rat model of ischemic stroke, we have previously shown that sensory stimulation can completely protect rats from impending ischemic damage of cortex if this treatment is delivered within the first two hours post-permanent middle cerebral artery occlusion (pMCAo). The current study sought to extend our findings in rats to mice, which would allow new avenues of research not available in rats. Thus, young adult C57BL/6J and CD1 mice were tested for protection from ischemic stroke with the same protective sensory stimulation-based treatment. Cortical activity and blood flow were assessed with intrinsic signal optical imaging (ISOI) and laser speckle imaging (LSI), respectively, and histological analysis (TTC) was performed at the completion of the experiments. Standing in stark contrast to the positive results observed in rats, in both strains we found that there were no differences between treated and untreated mice at 24 hours post-pMCAo in terms of infarct volume, negative functional imaging results, and major reduction in retrograde collateral blood flow as compared to pre-pMCAo baseline and surgical controls. Also, no differences were found between the strains in terms of theses variables. Potential reasons for the differences between rats and mice are discussed.
Collapse
Affiliation(s)
- Aneeka M. Hancock
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Ron D. Frostig
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
19
|
Zarella MD, Ts'o DY. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2. Eye Brain 2017; 9:1-12. [PMID: 28761385 PMCID: PMC5516621 DOI: 10.2147/eb.s105609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
Collapse
Affiliation(s)
- Mark D Zarella
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel Y Ts'o
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
20
|
Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules. J Neurosci 2017; 37:7513-7533. [PMID: 28674167 DOI: 10.1523/jneurosci.3560-16.2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Connectivity mapping based on resting-state activity in mice has revealed functional motifs of correlated activity. However, the rules by which motifs organize into larger functional modules that lead to hemisphere wide spatial-temporal activity sequences is not clear. We explore cortical activity parcellation in head-fixed, quiet awake GCaMP6 mice from both sexes by using mesoscopic calcium imaging. Spectral decomposition of spontaneous cortical activity revealed the presence of two dominant frequency modes (<1 and ∼3 Hz), each of them associated with a unique spatial signature of cortical macro-parcellation not predicted by classical cytoarchitectonic definitions of cortical areas. Based on assessment of 0.1-1 Hz activity, we define two macro-organizing principles: the first being a rotating polymodal-association pinwheel structure around which activity flows sequentially from visual to barrel then to hindlimb somatosensory; the second principle is correlated activity symmetry planes that exist on many levels within a single domain such as intrahemispheric reflections of sensory and motor cortices. In contrast, higher frequency activity >1 Hz yielded two larger clusters of coactivated areas with an enlarged default mode network-like posterior region. We suggest that the apparent constrained structure for intra-areal cortical activity flow could be exploited in future efforts to normalize activity in diseases of the nervous system.SIGNIFICANCE STATEMENT Increasingly, functional connectivity mapping of spontaneous activity is being used to reveal the organization of the brain. However, because the brain operates across multiple space and time domains a more detailed understanding of this organization is necessary. We used in vivo wide-field calcium imaging of the indicator GCaMP6 in head-fixed, awake mice to characterize the organization of spontaneous cortical activity at different spatiotemporal scales. Correlation analysis defines the presence of two to three superclusters of activity that span traditionally defined functional territories and were frequency dependent. This work helps define the rules for how different cortical areas interact in time and space. We provide a framework necessary for future studies that explore functional reorganization of brain circuits in disease models.
Collapse
|
21
|
Golkowski D, Ranft A, Kiel T, Riedl V, Kohl P, Rohrer G, Pientka J, Berger S, Preibisch C, Zimmer C, Mashour GA, Schneider G, Kochs EF, Ilg R, Jordan D. Coherence of BOLD signal and electrical activity in the human brain during deep sevoflurane anesthesia. Brain Behav 2017; 7:e00679. [PMID: 28729926 PMCID: PMC5516594 DOI: 10.1002/brb3.679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/23/2016] [Accepted: 02/16/2017] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Changes in neural activity induce changes in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) signal. Commonly, increases in BOLD signal are ascribed to cellular excitation. OBJECTIVE The relationship between electrical activity and BOLD signal in the human brain was probed on the basis of burst suppression EEG. This condition includes two distinct states of high and low electrical activity. METHODS Resting-state simultaneous EEG and BOLD measurements were acquired during deep sevoflurane anesthesia with burst suppression EEG in nineteen healthy volunteers. Afterwards, fMRI volumes were assigned to one of the two states (burst or suppression) as defined by the EEG. RESULTS In the frontal, parietal and temporal lobes as well as in the basal ganglia, BOLD signal increased after burst onset in the EEG and decreased after onset of EEG suppression. In contrast, BOLD signal in the occipital lobe was anticorrelated to electrical activity. This finding was obtained consistently in a general linear model and in raw data. CONCLUSIONS In human brains exhibiting burst suppression EEG induced by sevoflurane, the positive correlation between BOLD signal and electrical brain activity could be confirmed in most gray matter. The exceptional behavior of the occipital lobe with an anticorrelation of BOLD signal and electrical activity might be due to specific neurovascular coupling mechanisms that are pronounced in the deeply anesthetized brain.
Collapse
Affiliation(s)
- Daniel Golkowski
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Andreas Ranft
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Tobias Kiel
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Valentin Riedl
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Philipp Kohl
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Guido Rohrer
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Joachim Pientka
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Sebastian Berger
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Christine Preibisch
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Claus Zimmer
- Department of Neuroradiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - George A Mashour
- Department of Anesthesiology University of Michigan Medical School Ann Arbor MI USA
| | - Gerhard Schneider
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Eberhard F Kochs
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Rüdiger Ilg
- Department of Neurology Klinikum rechts der Isar der Technischen Universität München München Germany.,Department of Neurology Asklepios Kliniken Bad Tölz Germany
| | - Denis Jordan
- Department of Anesthesiology Klinikum rechts der Isar der Technischen Universität München München Germany
| |
Collapse
|
22
|
Gratton G, Chiarelli AM, Fabiani M. From brain to blood vessels and back: a noninvasive optical imaging approach. NEUROPHOTONICS 2017; 4:031208. [PMID: 28413807 PMCID: PMC5384652 DOI: 10.1117/1.nph.4.3.031208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/10/2017] [Indexed: 06/01/2023]
Abstract
The seminal work of Grinvald et al. has paved the way for the use of intrinsic optical signals measured with reflection methods for the analysis of brain function. Although this work has focused on the absorption signal associated with deoxygenation, due to its detailed mapping ability and good signal-to-noise ratio, Grinvald's group has also described other intrinsic signals related to increased blood flow, scattering effects directly related to neural activation, and pulsation effects related to arterial function. These intrinsic optical signals can also be measured using noninvasive diffuse optical topographic and tomographic imaging (DOT) methods that can be applied to humans. Here we compare the reflection and DOT methods and the evidence for each type of intrinsic signal in these two domains, with particular attention to work that has been conducted in our laboratory. This work reveals the refined two-way relationship that exists between vascular and neural phenomena in the brain: arterial health is related to normal brain structure and function, both across individuals and across brain regions within an individual, and neural function influences blood flow to specific cortical regions. DOT methods can provide quantitative tools for investigating these relationships in normal human subjects.
Collapse
Affiliation(s)
- Gabriele Gratton
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Antonio M. Chiarelli
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| | - Monica Fabiani
- University of Illinois at Urbana Champaign, Psychology Department, Champaign, Illinois, United States
- University of Illinois at Urbana Champaign, Beckman Institute, Urbana, Illinois, United States
| |
Collapse
|
23
|
Frostig RD, Chen-Bee CH, Johnson BA, Jacobs NS. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship. NEUROPHOTONICS 2017; 4:031217. [PMID: 28630879 PMCID: PMC5467767 DOI: 10.1117/1.nph.4.3.031217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/12/2017] [Indexed: 06/17/2023]
Abstract
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.
Collapse
Affiliation(s)
- Ron D. Frostig
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| | - Cynthia H. Chen-Bee
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Brett A. Johnson
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
| | - Nathan S. Jacobs
- University of California Irvine, Department of Neurobiology and Behavior, Irvine, California, United States
- University of California Irvine, Center for the Neurobiology of Learning and Memory, Irvine, California, United States
| |
Collapse
|
24
|
Intrinsic signal optical imaging of visual brain activity: Tracking of fast cortical dynamics. Neuroimage 2017; 148:160-168. [PMID: 28063974 DOI: 10.1016/j.neuroimage.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022] Open
Abstract
Hemodynamic-based brain imaging techniques are typically incapable of monitoring brain activity with both high spatial and high temporal resolutions. In this study, we have used intrinsic signal optical imaging (ISOI), a relatively high spatial resolution imaging technique, to examine the temporal resolution of the hemodynamic signal. We imaged V1 responses in anesthetized monkey to a moving light spot. Movies of cortical responses clearly revealed a focus of hemodynamic response traveling across the cortical surface. Importantly, at different locations along the cortical trajectory, response timecourses maintained a similar tri-phasic shape and shifted sequentially across cortex with a predictable delay. We calculated the time between distinguishable timecourses and found that the temporal resolution of the signal at which two events can be reliably distinguished is about 80 milliseconds. These results suggest that hemodynamic-based imaging is suitable for detecting ongoing cortical events at high spatial resolution and with temporal resolution relevant for behavioral studies.
Collapse
|
25
|
Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci 2016; 10:66. [PMID: 27445782 PMCID: PMC4923185 DOI: 10.3389/fncom.2016.00066] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Psychology, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological CyberneticsTübingen, Germany; Divison of Imaging Science and Biomedical Engineering, University of ManchesterManchester, UK
| |
Collapse
|
26
|
Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging. Neural Plast 2016; 2016:1923160. [PMID: 27144032 PMCID: PMC4837289 DOI: 10.1155/2016/1923160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input.
Collapse
|
27
|
Konecky SD, Wilson RH, Hagen N, Mazhar A, Tkaczyk TS, Frostig RD, Tromberg BJ. Hyperspectral optical tomography of intrinsic signals in the rat cortex. NEUROPHOTONICS 2015; 2:045003. [PMID: 26835483 PMCID: PMC4718192 DOI: 10.1117/1.nph.2.4.045003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/19/2015] [Indexed: 05/20/2023]
Abstract
We introduce a tomographic approach for three-dimensional imaging of evoked hemodynamic activity, using broadband illumination and diffuse optical tomography (DOT) image reconstruction. Changes in diffuse reflectance in the rat somatosensory cortex due to stimulation of a single whisker were imaged at a frame rate of 5 Hz using a hyperspectral image mapping spectrometer. In each frame, images in 38 wavelength bands from 484 to 652 nm were acquired simultaneously. For data analysis, we developed a hyperspectral DOT algorithm that used the Rytov approximation to quantify changes in tissue concentration of oxyhemoglobin ([Formula: see text]) and deoxyhemoglobin (ctHb) in three dimensions. Using this algorithm, the maximum changes in [Formula: see text] and ctHb were found to occur at [Formula: see text] and [Formula: see text] beneath the surface of the cortex, respectively. Rytov tomographic reconstructions revealed maximal spatially localized increases and decreases in [Formula: see text] and ctHb of [Formula: see text] and [Formula: see text], respectively, with these maximum changes occurring at [Formula: see text] poststimulus. The localized optical signals from the Rytov approximation were greater than those from modified Beer-Lambert, likely due in part to the inability of planar reflectance to account for partial volume effects.
Collapse
Affiliation(s)
- Soren D. Konecky
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
| | - Nathan Hagen
- Rice University, Department of Biomedical Engineering, 6500 Main Street, Houston, Texas 77030, United States
| | - Amaan Mazhar
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
| | - Tomasz S. Tkaczyk
- Rice University, Department of Biomedical Engineering, 6500 Main Street, Houston, Texas 77030, United States
| | - Ron D. Frostig
- University of California, Irvine, Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, California 92697, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
| | - Bruce J. Tromberg
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Laser Microbeam and Medical Program, 1002 Health Sciences Road, Irvine, California 92612, United States
- University of California, Irvine, Department of Biomedical Engineering, 5200 Engineering Hall, Irvine, California 92697, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
28
|
Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab 2015; 35:1579-86. [PMID: 26082013 PMCID: PMC4640302 DOI: 10.1038/jcbfm.2015.140] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022]
Abstract
We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.
Collapse
|
29
|
Arnett MT, Herman DH, McGee AW. Deficits in tactile learning in a mouse model of fragile X syndrome. PLoS One 2014; 9:e109116. [PMID: 25296296 PMCID: PMC4189789 DOI: 10.1371/journal.pone.0109116] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
The fragile X mental retardation 1 mutant mouse (Fmr1 KO) recapitulates several of the neurologic deficits associated with Fragile X syndrome (FXS). As tactile hypersensitivity is a hallmark of FXS, we examined the sensory representation of individual whiskers in somatosensory barrel cortex of Fmr1 KO and wild-type (WT) mice and compared their performance in a whisker-dependent learning paradigm, the gap cross assay. Fmr1 KO mice exhibited elevated responses to stimulation of individual whiskers as measured by optical imaging of intrinsic signals. In the gap cross task, initial performance of Fmr1 KO mice was indistinguishable from WT controls. However, while WT mice improved significantly with experience at all gap distances, Fmr1 KO mice displayed significant and specific deficits in improvement at longer distances which rely solely on tactile information from whiskers. Thus, Fmr1 KO mice possess altered cortical responses to sensory input that correlates with a deficit in tactile learning.
Collapse
Affiliation(s)
- Megan T. Arnett
- Developmental Neuroscience Program, Saban Research Institute, Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - David H. Herman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Aaron W. McGee
- Developmental Neuroscience Program, Saban Research Institute, Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Stehberg J, Dang PT, Frostig RD. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 2014; 8:93. [PMID: 25309339 PMCID: PMC4174042 DOI: 10.3389/fnana.2014.00093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/23/2014] [Indexed: 11/23/2022] Open
Abstract
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Phat T Dang
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Department of Biomedical Engineering, University of California, Irvine Irvine, CA, USA ; The Center for the Neurobiology of Learning and Memory, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
31
|
Lay CC, Frostig RD. Complete protection from impending stroke following permanent middle cerebral artery occlusion in awake, behaving rats. Eur J Neurosci 2014; 40:3413-21. [PMID: 25216240 DOI: 10.1111/ejn.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
Using a rodent model of ischemic stroke [permanent middle cerebral artery occlusion (pMCAO)], our laboratory has previously demonstrated that sensory-evoked cortical activation via mechanical single whisker stimulation treatment delivered under an anesthetized condition within 2 h of ischemic onset confers complete protection from impending infarct. There is a limited time window for this protection; rats that received the identical treatment at 3 h following ischemic onset lost neuronal function and sustained a substantial infarct. Rats in these studies, however, were anesthetized with sodium pentobarbital or isoflurane, whereas most human stroke patients are typically awake. To optimize our animal model, the present study examined, using functional imaging, histological, and behavioral analysis, whether self-induced sensorimotor stimulation is also protective in unrestrained, behaving rats that actively explore an enriched environment. Rats were revived from anesthesia either immediately or at 3 h after pMCAO, at which point they were allowed to freely explore an enriched environment. Rats that explored immediately after ischemic onset maintained normal cortical function and did not sustain infarct, even when their whiskers were clipped. Rats that were revived at 3 h post-pMCAO exhibited eliminated cortical function and sustained cortical infarct. Further, the data suggested that the level of individual active exploration could influence the outcome. Thus, early activation of the ischemic cortical area via unrestrained exploration resulted in protection from ischemic infarct, whereas late activation resulted in infarct, irrespective of the level of arousal or whisker-specific stimulation.
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA, 92697-4550, USA; The Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; The Center for Hearing Research, University of California, Irvine, CA, USA
| | | |
Collapse
|
32
|
Abookasis D, Shochat A, Nesher E, Pinhasov A. Exploring diazepam's effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:2184-2195. [PMID: 25071958 PMCID: PMC4102358 DOI: 10.1364/boe.5.002184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/27/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work's major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups' differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging.
Collapse
Affiliation(s)
- David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel
| | - Ariel Shochat
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 40700, Israel
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
33
|
Functional Imaging of Cerebral Oxygenation with Intrinsic Optical Contrast and Phosphorescent Probes. NEUROMETHODS 2014. [DOI: 10.1007/978-1-62703-785-3_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Hancock AM, Lay CC, Davis MF, Frostig RD. Sensory Stimulation-Based Complete Protection from Ischemic Stroke Remains Stable at 4 Months Post-Occlusion of MCA. JOURNAL OF NEUROLOGICAL DISORDERS 2013; 1:135. [PMID: 24634892 PMCID: PMC3952275 DOI: 10.4172/2329-6895.1000135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Previous research from our lab has shown that when using a rodent model of ischemic stroke (permanent middle cerebral artery occlusion), mild sensory stimulation, when delivered within two hours of ischemic onset, completely protects the cortex from impending ischemic stroke damage when assessed 24 hours post-occlusion. However, the long-term stability of this protection remains unclear. Using intrinsic signal optical imaging for assessment of cortical function, laser speckle imaging for assessment of blood flow, a battery of behavioral tests and cresyl violet for histological assessment, the present study examined whether this protection was long-lasting. When assessed 4 months post-occlusion (this length of time being equivalent to 10-15 years in humans), rats receiving sensory stimulation treatment immediately after ischemic onset exhibit normal neuronal and vascular function, and they are behaviorally and histologically equivalent to healthy controls (surgical shams). Thus, the complete neuroprotection due to cortical activation via sensory stimulation remains stable with time. These findings add support to the translational potential of this sensory stimulation-based treatment.
Collapse
Affiliation(s)
- Aneeka M Hancock
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
| | - Christopher C Lay
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
- The Center for Hearing Research, University of California, Irvine, California, USA
| | - Melissa F Davis
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, California, USA
- The Center for Hearing Research, University of California, Irvine, California, USA
| |
Collapse
|
35
|
Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 2013; 16:889-97. [PMID: 23749145 DOI: 10.1038/nn.3426] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
What is the nature of the vascular architecture in the cortex that allows the brain to meet the energy demands of neuronal computations? We used high-throughput histology to reconstruct the complete angioarchitecture and the positions of all neuronal somata of multiple cubic millimeter regions of vibrissa primary sensory cortex in mouse. Vascular networks were derived from the reconstruction. In contrast with the standard model of cortical columns that are tightly linked with the vascular network, graph-theoretical analyses revealed that the subsurface microvasculature formed interconnected loops with a topology that was invariant to the position and boundary of columns. Furthermore, the calculated patterns of blood flow in the networks were unrelated to location of columns. Rather, blood sourced by penetrating arterioles was effectively drained by the penetrating venules to limit lateral perfusion. This analysis provides the underpinning to understand functional imaging and the effect of penetrating vessels strokes on brain viability.
Collapse
Affiliation(s)
- Pablo Blinder
- Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
36
|
Frostig RD, Lay CC, Davis MF. A rat's whiskers point the way toward a novel stimulus-dependent, protective stroke therapy. Neuroscientist 2013; 19:313-28. [PMID: 23047156 PMCID: PMC3710106 DOI: 10.1177/1073858412462607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke is the fourth leading cause of death in the United States and the leading cause of long-term disability. Ischemic stroke, due to an interruption in blood supply, is particularly prevalent; 87% of all strokes are ischemic. Unfortunately, current options for acute treatment are extremely limited and there is a great need for new treatment strategies. This review will discuss evidence that mild sensory stimulation can completely protect the jeopardized brain from an impending stroke in a rodent model. When delivered within the first 2 hours following ischemic onset, this stimulation results in complete protection, including a full reestablishment of cortical function, sensorimotor capabilities, and blood flow. Identical stimulation, however, initiated 3 hours following ischemic onset, results in an increase in damage compared with untreated animals. The protective effect is not specific to a single sensory modality, anesthesia, or age, and increasing evoked cortical activity by increasing stimulation accelerates recovery. Taken together, these findings demonstrate that cortical activity is a critical factor for protection and suggest a new, exciting potential avenue for the development of acute stroke treatment strategies that may produce a noninvasive, drug-free, equipment-free, and side effect-free means of protecting from ischemic stroke.
Collapse
Affiliation(s)
- Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
37
|
Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD. Early stimulation treatment provides complete sensory-induced protection from ischemic stroke under isoflurane anesthesia. Eur J Neurosci 2013; 38:2445-52. [PMID: 23586641 DOI: 10.1111/ejn.12217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/07/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
Abstract
Using a rodent model of ischemia [permanent middle cerebral artery occlusion (pMCAO)], previous studies demonstrated that whisker stimulation treatment completely protects the cortex from impending stroke when initiated within 2 h following pMCAO. When initiated 3 h post-pMCAO, the identical treatment exacerbates stroke damage. Rats in these studies, however, were anesthetised with sodium pentobarbital, whereas human stroke patients are typically awake. To overcome this drawback, our laboratory has begun to use the anesthetic isoflurane, which allows rats to rapidly recover from pMCAO within minutes, to test stimulation treatment in awake rats and to determine whether isoflurane has an effect upon the pMCAO stroke model. We found no difference in infarct volume between pMCAO in untreated controls under either sodium pentobarbital or isoflurane, and the primary finding was that rats that received treatment immediately post-pMCAO maintain cortical function and no stroke damage, whereas rats that received treatment 3 h post-pMCAO exhibited eliminated cortical activity and extensive stroke damage. The only difference between anesthetics was the broad extent of evoked cortical activity observed during both functional imaging and electrophysiological recording, suggesting that the extent of evoked activity evident under isoflurane anesthesia is supported by underlying neuronal activity. Given the high degree of similarity with previous data, we conclude that the pMCAO stroke model is upheld with the use of isoflurane. This study demonstrated that the isoflurane-anesthetised rat pMCAO model can be used for cerebrovascular studies, and allows for highly detailed investigation of potential novel treatments for ischemic stroke using awake, behaving animals.
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
38
|
Heider B, Siegel RM. Optical imaging of visually guided reaching in macaque posterior parietal cortex. Brain Struct Funct 2013; 219:495-509. [PMID: 23392845 DOI: 10.1007/s00429-013-0513-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Sensorimotor transformation for reaching movements in primates requires a large network of visual, parietal, and frontal cortical areas. We performed intrinsic optical imaging over posterior parietal cortex including areas 7a and the dorsal perilunate in macaque monkeys during visually guided hand movements. Reaching was performed while foveating one of nine static reach targets; thus eye-position-varied concurrently with reach position. The hemodynamic reflectance signal was analyzed during specific phases of the task including pre-reach, reach, and touch epochs. The eye position maps changed substantially as the task progressed: First, direction of spatial tuning shifted from a weak preference close to the center to the lower eye positions in both cortical areas. Overall tuning strength was greater in area 7a. Second, strength of spatial tuning increased from the early pre-reach to the later touch epoch. These consistent temporal changes suggest that dynamic properties of the reflectance signal were modulated by task parameters. The peak amplitude and peak delay of the reflectance signal showed considerable differences between eye position but were similar between areas. Compared with a detection task using a lever response, the reach task yielded higher amplitudes and longer delays. These findings demonstrate a spatially tuned topographical representation for reaching in both areas and suggest a strong synergistic combination of various feedback signals that result in a spatially tuned amplification of the hemodynamic response in posterior parietal cortex.
Collapse
Affiliation(s)
- Barbara Heider
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ, 07102, USA,
| | | |
Collapse
|
39
|
Noninvasive diffusive optical imaging of the auditory response to birdsong in the zebra finch. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:227-38. [PMID: 23322445 DOI: 10.1007/s00359-012-0788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023]
Abstract
Songbirds communicate by learned vocalizations with concomitant changes in neurophysiological and genomic activities in discrete parts of the brain. Here, we tested a novel implementation of diffusive optical imaging (also known as diffuse optical imaging, DOI) for monitoring brain physiology associated with vocal signal perception. DOI noninvasively measures brain activity using red and near-infrared light delivered through optic fibers (optodes) resting on the scalp. DOI does not harm subjects, so it raises the possibility of repeatedly measuring brain activity and the effects of accumulated experience in the same subject over an entire life span, all while leaving tissue intact for further study. We developed a custom-made apparatus for interfacing optodes to the zebra finch (Taeniopygia guttata) head using 3D modeling software and rapid prototyping technology, and applied it to record responses to presentations of birdsong in isoflurane-anesthetized zebra finches. We discovered a subtle but significant difference between the hemoglobin spectra of zebra finches and mammals which has a major impact in how hemodynamic responses are interpreted in the zebra finch. Our measured responses to birdsong playback were robust, highly repeatable, and readily observed in single trials. Responses were complex in shape and closely paralleled responses described in mammals. They were localized to the caudal medial portion of the brain, consistent with response localization from prior gene expression, electrophysiological, and functional magnetic resonance imaging studies. These results define an approach for collecting neurophysiological data from songbirds that should be applicable to diverse species and adaptable for studies in awake behaving animals.
Collapse
|
40
|
Chen-Bee CH, Zhou Y, Jacobs NS, Lim B, Frostig RD. Whisker array functional representation in rat barrel cortex: transcendence of one-to-one topography and its underlying mechanism. Front Neural Circuits 2012. [PMID: 23205005 PMCID: PMC3506988 DOI: 10.3389/fncir.2012.00093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The one-to-one relationship between whiskers, barrels, and barrel columns described for rat barrel cortex demonstrates that the organization of cortical function adheres to topographical and columnar principles. Supporting evidence is typically based on a single or few whiskers being stimulated, although behaving rats rely on the use of all their whiskers. Less is known about the cortical response when many whiskers are stimulated. Here, we use intrinsic signal optical imaging and supra- and sub-threshold electrophysiology recordings to map and characterize the cortical response to an array of all large whiskers. The cortical response was found to possess a single peak located centrally within a large activation spread, thereby no longer conveying information about the individual identities of the stimulated whiskers (e.g., many local peaks). Using modeling and pharmacological manipulations, we determined that this single central peak, plus other salient properties, can be predicted by and depends on large cortical activation spreads evoked by individual whisker stimulation. Compared to single whisker stimulation, the peak magnitude was comparable in strength and the response area was 2.6-fold larger, with both exhibiting a reduction in variability that was particularly pronounced (3.8x) for the peak magnitude. Findings extended to a different collection (subset) of whiskers. Our results indicate the rat barrel cortex response to multi-site stimulation transcends one-to-one topography to culminate in a large activation spread with a single central peak, and offer a potential neurobiological mechanism for the psychophysical phenomenon of multi-site stimulation being perceived as though a single, central site has been stimulated.
Collapse
Affiliation(s)
- Cynthia H Chen-Bee
- Department of Neurobiology and Behavior, University of California Irvine, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Szűcs D, Killikelly C, Cutini S. Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task. Brain Res 2012; 1477:27-36. [DOI: 10.1016/j.brainres.2012.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 07/17/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
42
|
Lay CC, Davis MF, Chen-Bee CH, Frostig RD. Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. J Am Heart Assoc 2012; 1:e001255. [PMID: 23130160 PMCID: PMC3487352 DOI: 10.1161/jaha.112.001255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals. METHODS AND RESULTS Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into "treated" and "untreated" groups. Treated aged rats received intermittent single-whisker stimulation during a 120-minute period immediately after pMCAO, whereas untreated aged rats did not. These animals were assessed using a battery of behavioral tests 1 week before and 1 week after pMCAO, after which their brains were stained for infarct. An additional treated aged group and a treated young adult group also were imaged with functional imaging. Results demonstrated that the recovery of treated aged animals was indistinguishable from that of the treated young adult animals. Treated aged rats had fully intact sensorimotor behavior and no infarct, whereas untreated aged rats were impaired and sustained cortical infarct. CONCLUSIONS Taken together, our results confirm that single-whisker stimulation is protective in an aged rodent pMCAO model, despite age-associated stroke vulnerability. These findings further suggest potential for translation to the more clinically relevant older adult human population. (J Am Heart Assoc. 2012;1:e001255 doi: 10.1161/JAHA.112.001255.).
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for the Neurobiology of Learning and Memory, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for Hearing Research, University of California, Irvine, CA (C.C.L, R.D.F.)
| | | | | | | |
Collapse
|
43
|
Liao LD, Lin CT, Shih YYI, Duong TQ, Lai HY, Wang PH, Wu R, Tsang S, Chang JY, Li ML, Chen YY. Transcranial imaging of functional cerebral hemodynamic changes in single blood vessels using in vivo photoacoustic microscopy. J Cereb Blood Flow Metab 2012; 32:938-51. [PMID: 22472612 PMCID: PMC3367230 DOI: 10.1038/jcbfm.2012.42] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical imaging of changes in total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO(2)) provides a means to investigate brain hemodynamic regulation. However, high-resolution transcranial imaging remains challenging. In this study, we applied a novel functional photoacoustic microscopy technique to probe the responses of single cortical vessels to left forepaw electrical stimulation in mice with intact skulls. Functional changes in HbT, CBV, and SO(2) in the superior sagittal sinus and different-sized arterioles from the anterior cerebral artery system were bilaterally imaged with unambiguous 36 × 65-μm(2) spatial resolution. In addition, an early decrease of SO(2) in single blood vessels during activation (i.e., 'the initial dip') was observed. Our results indicate that the initial dip occurred specifically in small arterioles of activated regions but not in large veins. This technique complements other existing imaging approaches for the investigation of the hemodynamic responses in single cerebral blood vessels.
Collapse
Affiliation(s)
- Lun-De Liao
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. BIOMEDICAL OPTICS EXPRESS 2012; 3:777-91. [PMID: 22574265 PMCID: PMC3345806 DOI: 10.1364/boe.3.000777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/10/2012] [Accepted: 03/25/2012] [Indexed: 05/17/2023]
Abstract
Imaging blood flow or oxygenation changes using optical techniques is useful for monitoring cortical activity in healthy subjects as well as in diseased states such as stroke or epilepsy. However, in order to gain a better understanding of hemodynamics in conscious, freely moving animals, these techniques must be implemented in a small scale, portable design that is adaptable to a wearable format. We demonstrate a novel system which combines the two techniques of laser speckle contrast imaging and intrinsic optical signal imaging simultaneously, using compact laser sources, to monitor induced cortical ischemia in a full field format with high temporal acquisition rates. We further demonstrate the advantages of using combined measurements of speckle contrast and oxygenation to establish absolute flow velocities, as well as to statistically distinguish between veins and arteries. We accomplish this system using coherence reduction techniques applied to Vertical Cavity Surface Emitting Lasers (VCSELs) operating at 680, 795 and 850 nm. This system uses minimal optical components and can easily be adapted into a portable format for continuous monitoring of cortical hemodynamics.
Collapse
Affiliation(s)
- Hart Levy
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Dene Ringuette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,Canada
| | - Ofer Levi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
45
|
Davis DJ, Sachdev R, Pieribone VA. Effect of high velocity, large amplitude stimuli on the spread of depolarization in S1 "barrel" cortex. Somatosens Mot Res 2011; 28:73-85. [PMID: 22150170 DOI: 10.3109/08990220.2011.613177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined the effect of large, controlled whisker movements, delivered at a high speed, on the amplitude and spread of depolarization in the anesthetized mouse barrel cortex. The stimulus speed was varied between 1500 and 6000°/s and the extent of movement was varied between 4° and 16°. The rate of rise of the response was linearly related to the rate of rise of the stimulus. The initial spatial extent of cortical activation was also related to the rate of rise of the stimulus: that is, the faster the stimulus onset, the faster the rate of rise of the response, the larger the extent of cortex activated initially. The spatial extent of the response and the rate of rise of the response were not correlated with changes in the deflection amplitude. However, slower, longer lasting stimuli produced an Off response, making the actual extent of activation larger for the slowest rising stimuli. These results indicate that the spread of cortical activation depends on stimulus features.
Collapse
Affiliation(s)
- Douglas J Davis
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
46
|
Mishra AM, Ellens DJ, Schridde U, Motelow JE, Purcaro MJ, DeSalvo MN, Enev M, Sanganahalli BG, Hyder F, Blumenfeld H. Where fMRI and electrophysiology agree to disagree: corticothalamic and striatal activity patterns in the WAG/Rij rat. J Neurosci 2011; 31:15053-64. [PMID: 22016539 PMCID: PMC3432284 DOI: 10.1523/jneurosci.0101-11.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/27/2011] [Accepted: 08/14/2011] [Indexed: 11/21/2022] Open
Abstract
The relationship between neuronal activity and hemodynamic changes plays a central role in functional neuroimaging. Under normal conditions and in neurological disorders such as epilepsy, it is commonly assumed that increased functional magnetic resonance imaging (fMRI) signals reflect increased neuronal activity and that fMRI decreases represent neuronal activity decreases. Recent work suggests that these assumptions usually hold true in the cerebral cortex. However, less is known about the basis of fMRI signals from subcortical structures such as the thalamus and basal ganglia. We used WAG/Rij rats (Wistar albino Glaxo rats of Rijswijk), an established animal model of human absence epilepsy, to perform fMRI studies with blood oxygen level-dependent and cerebral blood volume (CBV) contrasts at 9.4 tesla, as well as laser Doppler cerebral blood flow (CBF), local field potential (LFP), and multiunit activity (MUA) recordings. We found that, during spike-wave discharges, the somatosensory cortex and thalamus showed increased fMRI, CBV, CBF, LFP, and MUA signals. However, the caudate-putamen showed fMRI, CBV, and CBF decreases despite increases in LFP and MUA signals. Similarly, during normal whisker stimulation, the cortex and thalamus showed increases in CBF and MUA, whereas the caudate-putamen showed decreased CBF with increased MUA. These findings suggest that neuroimaging-related signals and electrophysiology tend to agree in the cortex and thalamus but disagree in the caudate-putamen. These opposite changes in vascular and electrical activity indicate that caution should be applied when interpreting fMRI signals in both health and disease from the caudate-putamen, as well as possibly from other subcortical structures.
Collapse
Affiliation(s)
- Asht Mangal Mishra
- Departments of Neurology
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | | | | | | | | | | | - Basavaraju G. Sanganahalli
- Diagnostic Radiology
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Fahmeed Hyder
- Diagnostic Radiology
- Biomedical Engineering, and
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hal Blumenfeld
- Departments of Neurology
- Neurobiology
- Neurosurgery
- Core Center for Quantitative Neuroscience with Magnetic Resonance, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
47
|
Mild sensory stimulation reestablishes cortical function during the acute phase of ischemia. J Neurosci 2011; 31:11495-504. [PMID: 21832179 DOI: 10.1523/jneurosci.1741-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When delivered within 1 and in most cases 2 h of permanent middle cerebral artery occlusion (pMCAO), mild sensory stimulation (intermittent single whisker stimulation) was shown to be completely neuroprotective 24 h after pMCAO in a rodent model of ischemic stroke, according to assessment with multiple techniques (Lay et al., 2010). The acute effect of stimulation treatment on the ischemic cortex, however, has yet to be reported. Here we characterize cortical function and perfusion during the 120 min whisker stimulation period in four experimental groups with treatment initiated 0, 1, 2 (protected groups), or 3 h (unprotected group) post-pMCAO using multiple techniques. According to functional imaging, a gradual return of evoked whisker functional representation to baseline levels was initiated with treatment onset and completed within the treatment period. Evoked neuronal activity and reperfusion to the ischemic area also showed a gradual recovery in protected animals. Surprisingly, a similar recovery profile was observed in response to treatment in all protected animals, regardless of treatment onset time. Nonstimulated pMCAO control group data demonstrate that reperfusion is not spontaneous. This makes the complete protection observed in the majority of animals stimulated at 2 h post-pMCAO even more surprising, as these animals recovered despite having been in a severely ischemic state for two full hours. In summary, when delivered within a 2 h window post-pMCAO, whisker stimulation treatment initiated reperfusion and a gradual recovery of cortical function that was completed or nearly completed within the treatment period.
Collapse
|
48
|
Munro EA, Levy H, Ringuette D, O'Sullivan TD, Levi O. Multi-modality optical neural imaging using coherence control of VCSELs. OPTICS EXPRESS 2011; 19:10747-61. [PMID: 21643331 DOI: 10.1364/oe.19.010747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Neural optical imaging can evaluate cortical hemodynamic fluctuations which reflect neural activity and disease state. We evaluate the use of vertical-cavity surface-emitting lasers (VCSELs) as illumination source for simultaneous imaging of blood flow and tissue oxygenation dynamics ex vivo and in vivo and demonstrate optical imaging of blood flow changes and oxygenation changes in response to induced ischemia. Using VCSELs we show a rapid switching from a single-mode to a special multi-mode rapid current sweep operation and noise values reduced to within a factor of 40% compared to non-coherent LED illumination. These VCSELs are promising for long-term portable continuous monitoring of brain dynamics in freely moving animals.
Collapse
Affiliation(s)
- Elizabeth A Munro
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | | | | | | | | |
Collapse
|
49
|
Davis MF, Lay CC, Chen-Bee CH, Frostig RD. Amount but not pattern of protective sensory stimulation alters recovery after permanent middle cerebral artery occlusion. Stroke 2011; 42:792-8. [PMID: 21317269 DOI: 10.1161/strokeaha.110.607135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Using a rodent model of ischemia (permanent middle cerebral artery occlusion), our laboratory previously demonstrated that 4.27 minutes of patterned single-whisker stimulation delivered over 120 minutes can fully protect from impending damage when initiated within 2 hours of permanent middle cerebral artery occlusion ("early"). When initiated 3 hours postpermanent middle cerebral artery occlusion ("late"), stimulation resulted in irreversible damage. Here we investigate the effect of altering pattern, distribution, or amount of stimulation in this model. METHODS We assessed the cortex using functional imaging and histological analysis with altered stimulation treatment protocols. In 2 groups of animals we administered the same number of whisker deflections but in a random rather than patterned fashion distributed either over 120 minutes or condensed into 10 minutes postpermanent middle cerebral artery occlusion. We also tested increased (full-whisker array versus single-whisker) stimulation. RESULTS Early random whisker stimulation (condensed or dispersed) resulted in protection equivalent to early patterned stimulation. Early full-whisker array patterned stimulation also resulted in complete protection but promoted faster recovery. Late full-whisker array patterned stimulation, however, resulted in loss of evoked function and infarct volumes larger than those sustained by single-whisker counterparts. CONCLUSIONS When induced early on after ischemic insult, stimulus-evoked cortical activity, irrespective of the parameters of peripheral stimulation that induced it, seems to be the important variable for neuroprotection.
Collapse
Affiliation(s)
- Melissa F Davis
- University of California-Irvine, 2205 McGaugh Hall, Ring Road, Department of Neurobiology & Behavior, UCI, Irvine CA 92697, USA
| | | | | | | |
Collapse
|
50
|
Cutini S, Scarpa F, Scatturin P, Jolicœur P, Pluchino P, Zorzi M, Dell'Acqua R. A hemodynamic correlate of lateralized visual short-term memories. Neuropsychologia 2010; 49:1611-21. [PMID: 21163274 DOI: 10.1016/j.neuropsychologia.2010.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/27/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
Abstract
Neuroimaging studies attempting to isolate the neural substrate of visual short-term memory in humans have concentrated on the behavior of neurons populating the posterior part of the parietal cortex as a possible source of visual short-term memory capacity limits. Using a standard change-detection task, fMRI studies have shown that maintenance of bilaterally encoded objects elicited bilateral increases of hemodynamic activation in the intra-parietal and intra-occipital sulci (IPS-IOS) proportional to the number of objects retained in visual short-term memory. We used a spatially cued variant of the change-detection task to record hemodynamic responses to unilaterally encoded objects using functional near-infrared spectroscopy (fNIRS). Electrophysiological studies that employed this task have shown that maintenance of unilaterally encoded objects elicited posterior unilateral (contralateral) increase in event-related negativity proportional to the number of objects retained in visual short-term memory. We therefore examined whether contralateral increases in oxy-hemoglobin concentration correlated with the number of retained objects. Contrary to the idea that bilateral increases in BOLD responses and unilateral increases in event-related negativity may be different reflections of the same underlying neural/functional processing, memory-related increases in oxy-hemoglobin concentration were found bilaterally even when objects had to be encoded unilaterally. The present findings suggest that EEG and fMRI/fNIRS techniques reveal distinct neural signatures of the mechanisms supporting visual short-term memory.
Collapse
Affiliation(s)
- Simone Cutini
- Department of Developmental Psychology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|