1
|
Shen Y, Shao M, Hao ZZ, Huang M, Xu N, Liu S. Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neurosci Bull 2024; 40:517-532. [PMID: 38194157 PMCID: PMC11003949 DOI: 10.1007/s12264-023-01160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/23/2023] [Indexed: 01/10/2024] Open
Abstract
Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.
Collapse
Affiliation(s)
- Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingting Shao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mengyao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Azevedo-Pereira RL, Manley NC, Dong C, Zhang Y, Lee AG, Zatulovskaia Y, Gupta V, Vu J, Han S, Berry JE, Bliss TM, Steinberg GK. Decoding the molecular crosstalk between grafted stem cells and the stroke-injured brain. Cell Rep 2023; 42:112353. [PMID: 37043353 PMCID: PMC10562513 DOI: 10.1016/j.celrep.2023.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.
Collapse
Affiliation(s)
| | - Nathan C Manley
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Chen Dong
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Stanford Genetics Bioinformatics Service Center, Stanford University, Stanford, CA 94305, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yulia Zatulovskaia
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Varun Gupta
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Vu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Summer Han
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jack E Berry
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Whitworth GB, Watson FL. Translating Ribosome Affinity Purification (TRAP) and Bioinformatic RNA-Seq Analysis in Post-metamorphic Xenopus laevis. Methods Mol Biol 2023; 2636:279-310. [PMID: 36881307 DOI: 10.1007/978-1-0716-3012-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Recent technical advances provide the ability to isolate and purify mRNAs from genetically distinct cell types so as to provide a broader view of gene expression as they relate to gene networks. These tools allow the genome of organisms undergoing different developmental or diseased states and environmental or behavioral conditions to be compared. Translating ribosome affinity purification (TRAP), a method using transgenic animals expressing a ribosomal affinity tag (ribotag) that targets ribosome-bound mRNAs, allows for the rapid isolation of genetically distinct populations of cells. In this chapter, we provide stepwise methods for carrying out an updated protocol for using the TRAP method in the South African clawed frog Xenopus laevis. A discussion of the experimental design and necessary controls and their rationale, along with a description of the bioinformatic steps involved in analyzing the Xenopus laevis translatome using TRAP and RNA-Seq, is also provided.
Collapse
Affiliation(s)
- Gregg B Whitworth
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - Fiona L Watson
- Department of Biology, Washington and Lee University, Lexington, VA, USA.
| |
Collapse
|
4
|
Ocañas SR, Pham KD, Blankenship HE, Machalinski AH, Chucair-Elliott AJ, Freeman WM. Minimizing the Ex Vivo Confounds of Cell-Isolation Techniques on Transcriptomic and Translatomic Profiles of Purified Microglia. eNeuro 2022; 9:ENEURO.0348-21.2022. [PMID: 35228310 PMCID: PMC8970438 DOI: 10.1523/eneuro.0348-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Modern molecular and biochemical neuroscience studies require analysis of specific cellular populations derived from brain tissue samples to disambiguate cell type-specific events. This is particularly true in the analysis of minority glial populations in the brain, such as microglia, which may be obscured in whole tissue analyses. Microglia have central functions in development, aging, and neurodegeneration and are a current focus of neuroscience research. A long-standing concern for glial biologists using in vivo models is whether cell isolation from CNS tissue could introduce ex vivo artifacts in microglia, which respond quickly to changes in the environment. Mouse microglia were purified by magnetic-activated cell sorting (MACS), as well as cytometer-based and cartridge-based fluorescence-activated cell sorting (FACS) approaches to compare and contrast performance. The Cx3cr1-NuTRAP mouse model was used to provide an endogenous fluorescent microglial marker and a microglial-specific translatome profile as a baseline comparison lacking cell isolation artifacts. All sorting methods performed similarly for microglial purity with main differences being in cell yield and time of isolation. Ex vivo activation signatures occurred principally during the initial tissue dissociation and cell preparation and not the cell sorting. The cell preparation-induced activational phenotype could be minimized by inclusion of transcriptional and translational inhibitors or non-enzymatic dissociation conducted entirely at low temperatures. These data demonstrate that a variety of microglial isolation approaches can be used, depending on experimental needs, and that inhibitor cocktails are effective at reducing cell preparation artifacts.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Harris E Blankenship
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
5
|
Mathis VP, Williams M, Fillinger C, Kenny PJ. Networks of habenula-projecting cortical neurons regulate cocaine seeking. SCIENCE ADVANCES 2021; 7:eabj2225. [PMID: 34739312 PMCID: PMC8570600 DOI: 10.1126/sciadv.abj2225] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/17/2021] [Indexed: 05/06/2023]
Abstract
How neurons in the medial prefrontal cortex broadcast stress-relevant information to subcortical brain sites to regulate cocaine relapse remains unclear. The lateral habenula (LHb) serves as a “hub” to filter and propagate stress- and aversion-relevant information in the brain. Here, we show that chemogenetic inhibition of cortical inputs to LHb attenuates relapse-like reinstatement of extinguished cocaine seeking in mice. Using an RNA sequencing–based brain mapping procedure with single-cell resolution, we identify networks of cortical neurons that project to LHb and then preferentially innervate different downstream brain sites, including the ventral tegmental area, median raphe nucleus, and locus coeruleus (LC). By using an intersectional chemogenetics approach, we show that inhibition of cortico-habenular neurons that project to LC, but not to other sites, blocks reinstatement of cocaine seeking. These findings highlight the remarkable complexity of descending cortical inputs to the habenula and identify a cortico-habenulo-hindbrain circuit that regulates cocaine seeking.
Collapse
Affiliation(s)
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
6
|
Baxter PS, Dando O, Emelianova K, He X, McKay S, Hardingham GE, Qiu J. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep 2021; 34:108882. [PMID: 33761343 PMCID: PMC7994374 DOI: 10.1016/j.celrep.2021.108882] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
Microglia, brain-resident macrophages, require instruction from the CNS microenvironment to maintain their identity and morphology and regulate inflammatory responses, although what mediates this is unclear. Here, we show that neurons and astrocytes cooperate to promote microglial ramification, induce expression of microglial signature genes ordinarily lost in vitro and in age and disease in vivo, and repress infection- and injury-associated gene sets. The influence of neurons and astrocytes separately on microglia is weak, indicative of synergies between these cell types, which exert their effects via a mechanism involving transforming growth factor β2 (TGF-β2) signaling. Neurons and astrocytes also combine to provide immunomodulatory cues, repressing primed microglial responses to weak inflammatory stimuli (without affecting maximal responses) and consequently limiting the feedback effects of inflammation on the neurons and astrocytes themselves. These findings explain why microglia isolated ex vivo undergo de-differentiation and inflammatory deregulation and point to how disease- and age-associated changes may be counteracted.
Collapse
Affiliation(s)
- Paul S Baxter
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Owen Dando
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Katie Emelianova
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Xin He
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean McKay
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Jing Qiu
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh EH16 4TJ, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
7
|
Lipovsek M, Bardy C, Cadwell CR, Hadley K, Kobak D, Tripathy SJ. Patch-seq: Past, Present, and Future. J Neurosci 2021; 41:937-946. [PMID: 33431632 PMCID: PMC7880286 DOI: 10.1523/jneurosci.1653-20.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell transcriptomic approaches are revolutionizing neuroscience. Integrating this wealth of data with morphology and physiology, for the comprehensive study of neuronal biology, requires multiplexing gene expression data with complementary techniques. To meet this need, multiple groups in parallel have developed "Patch-seq," a modification of whole-cell patch-clamp protocols that enables mRNA sequencing of cell contents after electrophysiological recordings from individual neurons and morphologic reconstruction of the same cells. In this review, we first outline the critical technical developments that enabled robust Patch-seq experimental efforts and analytical solutions to interpret the rich multimodal data generated. We then review recent applications of Patch-seq that address novel and long-standing questions in neuroscience. These include the following: (1) targeted study of specific neuronal populations based on their anatomic location, functional properties, lineage, or a combination of these factors; (2) the compilation and integration of multimodal cell type atlases; and (3) the investigation of the molecular basis of morphologic and functional diversity. Finally, we highlight potential opportunities for further technical development and lines of research that may benefit from implementing the Patch-seq technique. As a multimodal approach at the intersection of molecular neurobiology and physiology, Patch-seq is uniquely positioned to directly link gene expression to brain function.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Cedric Bardy
- Laboratory for Human Neurophysiology and Genetics, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, SA, Australia
| | - Cathryn R Cadwell
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Kristen Hadley
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Cell Type-Specific In Vitro Gene Expression Profiling of Stem Cell-Derived Neural Models. Cells 2020; 9:cells9061406. [PMID: 32516938 PMCID: PMC7349756 DOI: 10.3390/cells9061406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic and genomic studies of brain disease increasingly demonstrate disease-associated interactions between the cell types of the brain. Increasingly complex and more physiologically relevant human-induced pluripotent stem cell (hiPSC)-based models better explore the molecular mechanisms underlying disease but also challenge our ability to resolve cell type-specific perturbations. Here, we report an extension of the RiboTag system, first developed to achieve cell type-restricted expression of epitope-tagged ribosomal protein (RPL22) in mouse tissue, to a variety of in vitro applications, including immortalized cell lines, primary mouse astrocytes, and hiPSC-derived neurons. RiboTag expression enables depletion of up to 87 percent of off-target RNA in mixed species co-cultures. Nonetheless, depletion efficiency varies across independent experimental replicates, particularly for hiPSC-derived motor neurons. The challenges and potential of implementing RiboTags in complex in vitro cultures are discussed.
Collapse
|
9
|
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020; 68:1692-1728. [PMID: 31958188 DOI: 10.1002/glia.23780] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lynette C Foo
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jaime Grutzendler
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emilie Hangen
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nathalie Linck
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, and Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Sara Regio
- Laboratory of Neurotherapies and Neuromodulation, Department of Clinical Neuroscience, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neurotherapies and Neuromodulation, Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sybille Rion
- Neuroimmunology and Neurodegeneration Section, The Neuroscience and Rare Diseases Discovery and Translational Area, F. Hoffman-La Roche, Basel, Switzerland
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Neurodegenerative Diseases Laboratory, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
10
|
Smith SJ, Sümbül U, Graybuck LT, Collman F, Seshamani S, Gala R, Gliko O, Elabbady L, Miller JA, Bakken TE, Rossier J, Yao Z, Lein E, Zeng H, Tasic B, Hawrylycz M. Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. eLife 2019; 8:47889. [PMID: 31710287 PMCID: PMC6881117 DOI: 10.7554/elife.47889] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
Seeking new insights into the homeostasis, modulation and plasticity of cortical synaptic networks, we have analyzed results from a single-cell RNA-seq study of 22,439 mouse neocortical neurons. Our analysis exposes transcriptomic evidence for dozens of molecularly distinct neuropeptidergic modulatory networks that directly interconnect all cortical neurons. This evidence begins with a discovery that transcripts of one or more neuropeptide precursor (NPP) and one or more neuropeptide-selective G-protein-coupled receptor (NP-GPCR) genes are highly abundant in all, or very nearly all, cortical neurons. Individual neurons express diverse subsets of NP signaling genes from palettes encoding 18 NPPs and 29 NP-GPCRs. These 47 genes comprise 37 cognate NPP/NP-GPCR pairs, implying the likelihood of local neuropeptide signaling. Here, we use neuron-type-specific patterns of NP gene expression to offer specific, testable predictions regarding 37 peptidergic neuromodulatory networks that may play prominent roles in cortical homeostasis and plasticity.
Collapse
Affiliation(s)
| | - Uygar Sümbül
- Allen Institute for Brain Science, Seattle, United States
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, United States
| | - Olga Gliko
- Allen Institute for Brain Science, Seattle, United States
| | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Jean Rossier
- Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, United States
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, United States
| | | |
Collapse
|
11
|
Li J, Wang GZ. Application of Computational Biology to Decode Brain Transcriptomes. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:367-380. [PMID: 31655213 PMCID: PMC6943780 DOI: 10.1016/j.gpb.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023]
Abstract
The rapid development of high-throughput sequencing technologies has generated massive valuable brain transcriptome atlases, providing great opportunities for systematically investigating gene expression characteristics across various brain regions throughout a series of developmental stages. Recent studies have revealed that the transcriptional architecture is the key to interpreting the molecular mechanisms of brain complexity. However, our knowledge of brain transcriptional characteristics remains very limited. With the immense efforts to generate high-quality brain transcriptome atlases, new computational approaches to analyze these high-dimensional multivariate data are greatly needed. In this review, we summarize some public resources for brain transcriptome atlases and discuss the general computational pipelines that are commonly used in this field, which would aid in making new discoveries in brain development and disorders.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Duran RCD, Wei H, Kim DH, Wu JQ. Invited Review: Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 2019; 45:538-556. [PMID: 30636336 PMCID: PMC6626588 DOI: 10.1111/nan.12541] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide transcriptional studies have demonstrated that tens of thousands of long non-coding RNAs (lncRNA) genes are expressed in the central nervous system (CNS) and that they exhibit tissue- and cell-type specificity. Their regulated and dynamic expression and their co-expression with protein-coding gene neighbours have led to the study of the functions of lncRNAs in CNS development and disorders. In this review, we describe the general characteristics, localization and classification of lncRNAs. We also elucidate the examples of the molecular mechanisms of nuclear and cytoplasmic lncRNA actions in the CNS and discuss common experimental approaches used to identify and unveil the functions of lncRNAs. Additionally, we provide examples of lncRNA studies of cell differentiation and CNS disorders including CNS injuries and neurodegenerative diseases. Finally, we review novel lncRNA-based therapies. Overall, this review highlights the important biological roles of lncRNAs in CNS functions and disorders.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., 64710, Mexico
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Dong H. Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Single-cell transcriptomics as a framework and roadmap for understanding the brain. J Neurosci Methods 2019; 326:108353. [PMID: 31351971 DOI: 10.1016/j.jneumeth.2019.108353] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 12/31/2022]
Abstract
A framework for interpreting and guiding experimental examination of the brain is essential for neuroscience. Recently, single-cell RNA sequencing and single-molecule fluorescent in situ hybridization have emerged as key technologies to generate such a framework at a single-cell resolution. These technologies provide a powerful complement for understanding gene expression in the brain: RNA sequencing enables genome-wide high-throughput quantification of gene expression, and in situ hybridization yields spatial registration of gene expression at a cellular resolution. Here, I discuss the insight that each of these technologies individually provide, and how they can be paired in principle and practice to resolve the cell-type-specific spatial organization of the brain. I further discuss the potential of cutting-edge spatial transcriptomics technologies that leverage the advantages of both techniques within the same assay, as well as how transcriptomic assays can be linked with higher-order features of brain structure and function. Such current and forthcoming transcriptomic technologies will have immense impact in generating an underlying logic of the nervous system, and will guide experiments and interpretations across molecular, cellular, circuit, and behavioural neuroscience.
Collapse
|
14
|
Chung MT, Kurabayashi K, Cai D. Single-cell RT-LAMP mRNA detection by integrated droplet sorting and merging. LAB ON A CHIP 2019; 19:2425-2434. [PMID: 31187105 DOI: 10.1039/c9lc00161a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in transcriptomic analysis at single-cell resolution reveal cell-to-cell heterogeneity in a biological sample with unprecedented resolution. Partitioning single cells in individual micro-droplets and harvesting each cell's mRNA molecules for next-generation sequencing has proven to be an effective method for profiling transcriptomes from a large number of cells at high throughput. However, the assays to recover the full transcriptomes are time-consuming in sample preparation and require expensive reagents and sequencing cost. Many biomedical applications, such as pathogen detection, prefer highly sensitive, reliable and low-cost detection of selected genes. Here, we present a droplet-based microfluidic platform that permits seamless on-chip droplet sorting and merging, which enables completing multi-step reaction assays within a short time. By sequentially adding lysis buffers and reactant mixtures to micro-droplet reactors, we developed a novel workflow of single-cell reverse transcription loop-mediated-isothermal amplification (scRT-LAMP) to quantify specific mRNA expression levels in different cell types within one hour. Including single cell encapsulation, sorting, lysing, reactant addition, and quantitative mRNA detection, the fully on-chip workflow provides a rapid, robust, and high-throughput experimental approach for a wide variety of biomedical studies.
Collapse
Affiliation(s)
- Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA. and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105, USA. and Department of Electrical Engineering and Computer Sci., University of Michigan, Ann Arbor, MI 48105, USA
| | - Dawen Cai
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA. and Biophysics, College of LS&A, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ. Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 2019; 159:1325-1345. [PMID: 29561359 DOI: 10.1097/j.pain.0000000000001217] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (∼140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug-gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs. Comparison of hDRG and tibial nerve transcriptomes suggests trafficking of neuronal mRNA to axons in adult hDRG, and are consistent with studies of axonal transport in rodent sensory neurons. We present our work as an online, searchable repository (https://www.utdallas.edu/bbs/painneurosciencelab/sensoryomics/drgtxome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics and a blueprint for cross-species transcriptomic analyses.
Collapse
Affiliation(s)
- Pradipta Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andrew Torck
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Lilyana Quigley
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Matthew Neiman
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chandranshu Rao
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tiffany Lam
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ji-Young Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael Q Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
16
|
Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, Jackson WS, Petzold GC. Stroke target identification guided by astrocyte transcriptome analysis. Glia 2018; 67:619-633. [DOI: 10.1002/glia.23544] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Melvin Schleif
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Hana Matušková
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| | - Thomas Ulas
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | - Kristian Händler
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Toni Schumacher
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Khalid Tai
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Joachim L. Schultze
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Gabor C. Petzold
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| |
Collapse
|
17
|
Gray JM, Spiegel I. Cell-type-specific programs for activity-regulated gene expression. Curr Opin Neurobiol 2018; 56:33-39. [PMID: 30529822 DOI: 10.1016/j.conb.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
Abstract
Experience leaves a lasting mark on neural circuit function in part through activity-regulated gene (ARG) expression. New genome wide approaches have revealed that ARG programs are highly cell-type-specific, raising the possibility that they mediate different forms of experience-dependent plasticity in different cell types. The cell-type specificity of these gene programs is achieved by a combination of cell-intrinsic mechanisms that determine the transcriptional response of each neuronal subtype to a given stimulus and by cell-extrinsic mechanisms that influence the nature of the stimulus a cell receives. A better understanding of these mechanisms could usher in an era of molecular systems neuroscience in which genetic perturbations of cell-type-specific plasticities are assessed using electrophysiology and in vivo imaging to reveal the neural basis of adaptive behaviors.
Collapse
Affiliation(s)
- Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, United States.
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
18
|
Kole K, Celikel T. Neocortical Microdissection at Columnar and Laminar Resolution for Molecular Interrogation. ACTA ACUST UNITED AC 2018; 86:e55. [PMID: 30285322 DOI: 10.1002/cpns.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heterogeneous organization of the mammalian neocortex poses a challenge for elucidating the molecular mechanisms underlying its physiological processes. Although high-throughput molecular methods are increasingly deployed in neuroscience, their anatomical specificity is often lacking. In this unit, we introduce a targeted microdissection technique that enables extraction of high-quality RNA and proteins at high anatomical resolution from acutely prepared brain slices. We exemplify its utility by isolating single cortical columns and laminae from the mouse primary somatosensory (barrel) cortex. Tissues can be isolated from living slices in minutes, and the extracted RNA and protein are of sufficient quantity and quality to be used for RNA sequencing and mass spectrometry. This technique will help to increase the anatomical specificity of molecular studies of the neocortex, and the brain in general, as it is applicable to any brain structure that can be identified using optical landmarks in living slices. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Qiu J, Dando O, Baxter PS, Hasel P, Heron S, Simpson TI, Hardingham GE. Mixed-species RNA-seq for elucidation of non-cell-autonomous control of gene transcription. Nat Protoc 2018; 13:2176-2199. [DOI: 10.1038/s41596-018-0029-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Neumann EK, Comi TJ, Spegazzini N, Mitchell JW, Rubakhin SS, Gillette MU, Bhargava R, Sweedler JV. Multimodal Chemical Analysis of the Brain by High Mass Resolution Mass Spectrometry and Infrared Spectroscopic Imaging. Anal Chem 2018; 90:11572-11580. [PMID: 30188687 DOI: 10.1021/acs.analchem.8b02913] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain functions through chemical interactions between many different cell types, including neurons and glia. Acquiring comprehensive information on complex, heterogeneous systems requires multiple analytical tools, each of which have unique chemical specificity and spatial resolution. Multimodal imaging generates complementary chemical information via spatially localized molecular maps, ideally from the same sample, but requires method enhancements that span from data acquisition to interpretation. We devised a protocol for performing matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance-mass spectrometry imaging (MSI), followed by infrared (IR) spectroscopic imaging on the same specimen. Multimodal measurements from the same tissue provide precise spatial alignment between modalities, enabling more advanced image processing such as image fusion and sharpening. Performing MSI first produces higher quality data from each technique compared to performing IR imaging before MSI. The difference is likely due to fixing the tissue section during MALDI matrix removal, thereby preventing analyte degradation occurring during IR imaging from an unfixed specimen. Leveraging the unique capabilities of each modality, we utilized pan sharpening of MS (mass spectrometry) ion images with selected bands from IR spectroscopy and midlevel data fusion. In comparison to sharpening with histological images, pan sharpening can employ a plethora of IR bands, producing sharpened MS images while retaining the fidelity of the initial ion images. Using Laplacian pyramid sharpening, we determine the localization of several lipids present within the hippocampus with high mass accuracy at 5 μm pixel widths. Further, through midlevel data fusion of the imaging data sets combined with k-means clustering, the combined data set discriminates between additional anatomical structures unrecognized by the individual imaging approaches. Significant differences between molecular ion abundances are detected between relevant structures within the hippocampus, such as the CA1 and CA3 regions. Our methodology provides high quality multiplex and multimodal chemical imaging of the same tissue sample, enabling more advanced data processing and analysis routines.
Collapse
|
21
|
Zajaczkowski EL, Zhao QY, Zhang ZH, Li X, Wei W, Marshall PR, Leighton LJ, Nainar S, Feng C, Spitale RC, Bredy TW. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling. ACS Chem Neurosci 2018; 9:1858-1865. [PMID: 29874042 PMCID: PMC6272126 DOI: 10.1021/acschemneuro.8b00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.
Collapse
Affiliation(s)
- Esmi L. Zajaczkowski
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Qiong-Yi Zhao
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zong Hong Zhang
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiang Li
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wei Wei
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul R. Marshall
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura J. Leighton
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Chao Feng
- Department of Pharmaceutical Sciences
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences
- Department of Chemistry, University of California, Irvine, Irvine, California, 92697, United States
| | - Timothy W. Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H. Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer's disease. JCI Insight 2018; 3:121109. [PMID: 29997299 PMCID: PMC6124528 DOI: 10.1172/jci.insight.121109] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain. By identifying and validating anti-ACSA-2 and anti-CD49a antibodies as cell surface markers for astrocytes and vascular endothelial cells, respectively, and using established antibodies to isolate microglia and oligodendrocytes, we document that these 4 major cell types are isolated with high purity and RNA quality. We validated our procedure by performing acute peripheral LPS challenge, while highlighting the underappreciated changes occurring in astrocytes and vascular endothelia in addition to microglia. Furthermore, we assessed cell type-specific gene expression changes in response to amyloid pathology in a mouse model of Alzheimer's disease. Our CoBrA methodology can be readily implemented to interrogate multiple CNS cell types in any mouse model at any age.
Collapse
Affiliation(s)
| | | | - Ethan R. Roy
- Huffington Center on Aging
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Baiping Wang
- Huffington Center on Aging
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Huffington Center on Aging
- Department of Molecular and Cellular Biology, and
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Ibrahim LA, Huang JJ, Wang SZ, Kim YJ, Zhang LI, Tao HW. Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cereb Cortex 2018; 31:5049854. [PMID: 29982390 DOI: 10.1093/cercor/bhy154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/12/2022] Open
Abstract
Elucidating axonal and dendritic projection patterns of individual neurons is a key for understanding the cytoarchitecture of neural circuits in the brain. This requires genetic approaches to achieve Golgi-like sparse labeling of desired types of neurons. Here, we explored a novel strategy of stochastic gene activation with regulated sparseness (STARS), in which the stochastic choice between 2 competing Cre-lox recombination events is controlled by varying the lox efficiency and cassette length. In a created STARS transgenic mouse crossed with various Cre driver lines, sparse neuronal labeling with a relatively uniform level of sparseness was achieved across different brain regions and cell types in both central and peripheral nervous systems. Tracing of individual type II peripheral auditory fibers revealed for the first time that they undergo experience-dependent developmental refinement, which is impaired by attenuating external sound input. Our results suggest that STARS strategy can be applied for circuit mapping and sparse gene manipulation.
Collapse
Affiliation(s)
- Leena A Ibrahim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Medical Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Sheng-Zhi Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Young J Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. Sci Rep 2018; 8:8868. [PMID: 29892006 PMCID: PMC5995803 DOI: 10.1038/s41598-018-27293-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Elucidating brain cell type specific gene expression patterns is critical towards a better understanding of how cell-cell communications may influence brain functions and dysfunctions. We set out to compare and contrast five human and murine cell type-specific transcriptome-wide RNA expression data sets that were generated within the past several years. We defined three measures of brain cell type-relative expression including specificity, enrichment, and absolute expression and identified corresponding consensus brain cell “signatures,” which were well conserved across data sets. We validated that the relative expression of top cell type markers are associated with proxies for cell type proportions in bulk RNA expression data from postmortem human brain samples. We further validated novel marker genes using an orthogonal ATAC-seq dataset. We performed multiscale coexpression network analysis of the single cell data sets and identified robust cell-specific gene modules. To facilitate the use of the cell type-specific genes for cell type proportion estimation and deconvolution from bulk brain gene expression data, we developed an R package, BRETIGEA. In summary, we identified a set of novel brain cell consensus signatures and robust networks from the integration of multiple datasets and therefore transcend limitations related to technical issues characteristic of each individual study.
Collapse
|
25
|
Cembrowski MS, Menon V. Continuous Variation within Cell Types of the Nervous System. Trends Neurosci 2018; 41:337-348. [DOI: 10.1016/j.tins.2018.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
|
26
|
Higo N, Sato A, Yamamoto T, Oishi T, Nishimura Y, Murata Y, Onoe H, Isa T, Kojima T. Comprehensive analysis of area‐specific and time‐dependent changes in gene expression in the motor cortex of macaque monkeys during recovery from spinal cord injury. J Comp Neurol 2018; 526:1110-1130. [DOI: 10.1002/cne.24396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
| | - Akira Sato
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
| | - Tatsuya Yamamoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
- Department of Physical Therapy, Faculty of Medical and Health SciencesTsukuba International UniversityTsuchiura Ibaraki Japan
| | - Takao Oishi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Systems Neuroscience SectionPrimate Research Institute, Kyoto University, KanrinInuyama Aichi Japan
| | - Yukio Nishimura
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba Ibaraki Japan
| | - Hirotaka Onoe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Division of Bio‐function Dynamics ImagingCenter for Life Science Technologies (CLST), RIKENKobe Hyogo Japan
| | - Tadashi Isa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Department of Developmental PhysiologyNational Institute for Physiological Sciences (NIPS), National Institutes of Natural SciencesOkazaki Aichi Japan
- The Graduate University for Advanced Studies (SOKENDAI)Hayama Kanagawa Japan
| | - Toshio Kojima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)Kawaguchi Saitama Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKENYokohama Kanagawa Japan
- Health Care CenterToyohashi University of TechnologyToyohashi Aichi Japan
| |
Collapse
|
27
|
Mito M, Kadota M, Tanaka K, Furuta Y, Abe K, Iwasaki S, Nakagawa S. Cell Type-Specific Survey of Epigenetic Modifications by Tandem Chromatin Immunoprecipitation Sequencing. Sci Rep 2018; 8:1143. [PMID: 29348483 PMCID: PMC5773701 DOI: 10.1038/s41598-018-19494-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
The nervous system of higher eukaryotes is composed of numerous types of neurons and glia that together orchestrate complex neuronal responses. However, this complex pool of cells typically poses analytical challenges in investigating gene expression profiles and their epigenetic basis for specific cell types. Here, we developed a novel method that enables cell type-specific analyses of epigenetic modifications using tandem chromatin immunoprecipitation sequencing (tChIP-Seq). FLAG-tagged histone H2B, a constitutive chromatin component, was first expressed in Camk2a-positive pyramidal cortical neurons and used to purify chromatin in a cell type-specific manner. Subsequent chromatin immunoprecipitation using antibodies against H3K4me3-a chromatin modification mainly associated with active promoters-allowed us to survey the histone modifications in Camk2a-positive neurons. Indeed, tChIP-Seq identified hundreds of H3K4me3 modifications in promoter regions located upstream of genes associated with neuronal functions and genes with unknown functions in cortical neurons. tChIP-Seq provides a versatile approach to investigating the epigenetic modifications of particular cell types in vivo.
Collapse
Affiliation(s)
- Mari Mito
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.,RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mitsutaka Kadota
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kaori Tanaka
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-Minamimachi, Chuou-ku, Kobe, 650-0047, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit and RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe, 650-0047, Japan
| | - Kuniya Abe
- Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, 351-0198, Japan.
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan. .,RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
28
|
Eisinger BE, Zhao X. Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res 2018; 371:7-21. [PMID: 29127518 PMCID: PMC5826587 DOI: 10.1007/s00441-017-2718-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Adult hippocampal neurogenesis occurs throughout life and supports healthy brain functions. The production of new neurons decreases with age, and deficiencies in adult neurogenesis are associated with neurodevelopmental and degenerative disease. The rate of neurogenesis is dynamically sensitive to an individual's environmental conditions and experiences, and certain stimuli are known robustly to enhance neurogenesis in rodent models, including voluntary exercise, enriched environment, and electroconvulsive shock. In these models, information about an organism's environment and physiological state are relayed to neurogenic cell types within the hippocampus through a series of tissue and cellular interfaces, ultimately eliciting a neurogenic response from neural stem cells and newborn neurons. Therefore, an understanding of the way that novel genes and proteins act in specific cell types within this circuit-level context is of scientific and therapeutic value. Several well-studied neurotrophic factors have been implicated in environmentally enhanced neurogenesis. This review highlights recently discovered, novel molecular mediators of neurogenesis in response to environmental cues and summarizes the contribution of advanced, large-scale gene expression and function assessment technology to past, present, and future efforts aimed at elucidating cell-type-specific molecular mediators of environmentally enhanced neurogenesis.
Collapse
Affiliation(s)
- Brian E Eisinger
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
29
|
Lutz PE, Mechawar N, Turecki G. Neuropathology of suicide: recent findings and future directions. Mol Psychiatry 2017; 22:1395-1412. [PMID: 28696430 DOI: 10.1038/mp.2017.141] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Suicide is a major public health concern and a leading cause of death in most societies. Suicidal behaviour is complex and heterogeneous, likely resulting from several causes. It associates with multiple factors, including psychopathology, personality traits, early-life adversity and stressful life events, among others. Over the past decades, studies in fields ranging from neuroanatomy, genetics and molecular psychiatry have led to a model whereby behavioural dysregulation, including suicidal behaviour (SB), develops as a function of biological adaptations in key brain systems. More recently, the unravelling of the unique epigenetic processes that occur in the brain has opened promising avenues in suicide research. The present review explores the various facets of the current knowledge on suicidality and discusses how the rapidly evolving field of neurobehavioural epigenetics may fuel our ability to understand, and potentially prevent, SB.
Collapse
Affiliation(s)
- P-E Lutz
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - G Turecki
- McGill Group for Suicide Studies, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
30
|
McKeever PM, Kim T, Hesketh AR, MacNair L, Miletic D, Favrin G, Oliver SG, Zhang Z, St George-Hyslop P, Robertson J. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 57:104-119. [PMID: 28628896 DOI: 10.1016/j.neurobiolaging.2017.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Cholinergic neurotransmission is impaired in Alzheimer's disease (AD), and loss of basal forebrain cholinergic neurons is a key component of disease pathogenicity and symptomatology. To explore the molecular basis of this cholinergic dysfunction, we paired translating ribosome affinity purification (TRAP) with RNA sequencing (TRAP-Seq) to identify the actively translating mRNAs in anterior forebrain cholinergic neurons in the TgCRND8 mouse model of AD. Bioinformatic analyses revealed the downregulation of 67 of 71 known cholinergic-related transcripts, consistent with cholinergic neuron dysfunction in TgCRND8 mice, as well as transcripts related to oxidative phosphorylation, neurotrophins, and ribosomal processing. Upregulated transcripts included those related to axon guidance, glutamatergic synapses and kinase activity and included AD-risk genes Sorl1 and Ptk2b. In contrast, the total transcriptome of the anterior forebrain showed upregulation in cytokine signaling, microglia, and immune system pathways, including Trem2, Tyrobp, and Inpp5d. Hence, TRAP-Seq clearly distinguished the differential gene expression alterations occurring in cholinergic neurons of TgCRND8 mice compared with wild-type littermates, providing novel candidate pathways to explore for therapeutic development in AD.
Collapse
Affiliation(s)
- Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - TaeHyung Kim
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada
| | - Andrew R Hesketh
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Laura MacNair
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Denise Miletic
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Giorgio Favrin
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Stephen G Oliver
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 2017; 19:1131-41. [PMID: 27571192 DOI: 10.1038/nn.4366] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Cellular specialization is particularly prominent in mammalian nervous systems, which are composed of millions to billions of neurons that appear in thousands of different 'flavors' and contribute to a variety of functions. Even in a single brain region, individual neurons differ greatly in their morphology, connectivity and electrophysiological properties. Systematic classification of all mammalian neurons is a key goal towards deconstructing the nervous system into its basic components. With the recent advances in single-cell gene expression profiling technologies, it is now possible to undertake the enormous task of disentangling neuronal heterogeneity. High-throughput single-cell RNA sequencing and multiplexed quantitative RT-PCR have become more accessible, and these technologies enable systematic categorization of individual neurons into groups with similar molecular properties. Here we provide a conceptual and practical guide to classification of neural cell types using single-cell gene expression profiling technologies.
Collapse
Affiliation(s)
| | - Bosiljka Tasic
- Department of Molecular Genetics, Allen Institute for Brain Science, Seattle, Washington, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
32
|
Whitworth GB, Misaghi BC, Rosenthal DM, Mills EA, Heinen DJ, Watson AH, Ives CW, Ali SH, Bezold K, Marsh-Armstrong N, Watson FL. Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Dev Biol 2017; 426:360-373. [PMID: 27471010 PMCID: PMC5897040 DOI: 10.1016/j.ydbio.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
Unlike adult mammals, adult frogs regrow their optic nerve following a crush injury, making Xenopus laevis a compelling model for studying the molecular mechanisms that underlie neuronal regeneration. Using Translational Ribosome Affinity Purification (TRAP), a method to isolate ribosome-associated mRNAs from a target cell population, we have generated a transcriptional profile by RNA-Seq for retinal ganglion cells (RGC) during the period of recovery following an optic nerve injury. Based on bioinformatic analysis using the Xenopus laevis 9.1 genome assembly, our results reveal a profound shift in the composition of ribosome-associated mRNAs during the early stages of RGC regeneration. As factors involved in cell signaling are rapidly down-regulated, those involved in protein biosynthesis are up-regulated alongside key initiators of axon development. Using the new genome assembly, we were also able to analyze gene expression profiles of homeologous gene pairs arising from a whole-genome duplication in the Xenopus lineage. Here we see evidence of divergence in regulatory control among a significant proportion of pairs. Our data should provide a valuable resource for identifying genes involved in the regeneration process to target for future functional studies, in both naturally regenerative and non-regenerative vertebrates.
Collapse
Affiliation(s)
- G B Whitworth
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - B C Misaghi
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - D M Rosenthal
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - E A Mills
- Johns Hopkins University School of Medicine, Solomon H. Snyder Dept. of Neuroscience and Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - D J Heinen
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - A H Watson
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - C W Ives
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - S H Ali
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - K Bezold
- Department of Biology, Washington and Lee University, Lexington, VA, United States
| | - N Marsh-Armstrong
- Johns Hopkins University School of Medicine, Solomon H. Snyder Dept. of Neuroscience and Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - F L Watson
- Department of Biology, Washington and Lee University, Lexington, VA, United States.
| |
Collapse
|
33
|
Nikonova EV, Gilliland JDA, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017; 40:3608773. [PMID: 28419375 PMCID: PMC6075396 DOI: 10.1093/sleep/zsx059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Study objective To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Methods Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. Results There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Conclusions Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined.
Collapse
Affiliation(s)
- Elena V Nikonova
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Jason DA Gilliland
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Keith Q Tanis
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alexei A Podtelezhnikov
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alison M Rigby
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Raymond J Galante
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Eva M Finney
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - John J Renger
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
34
|
Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Márkus NM, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI, Hardingham GE. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 2017; 8:15132. [PMID: 28462931 PMCID: PMC5418577 DOI: 10.1038/ncomms15132] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
The influence that neurons exert on astrocytic function is poorly understood. To investigate this, we first developed a system combining cortical neurons and astrocytes from closely related species, followed by RNA-seq and in silico species separation. This approach uncovers a wide programme of neuron-induced astrocytic gene expression, involving Notch signalling, which drives and maintains astrocytic maturity and neurotransmitter uptake function, is conserved in human development, and is disrupted by neurodegeneration. Separately, hundreds of astrocytic genes are acutely regulated by synaptic activity via mechanisms involving cAMP/PKA-dependent CREB activation. This includes the coordinated activity-dependent upregulation of major astrocytic components of the astrocyte-neuron lactate shuttle, leading to a CREB-dependent increase in astrocytic glucose metabolism and elevated lactate export. Moreover, the groups of astrocytic genes induced by neurons or neuronal activity both show age-dependent decline in humans. Thus, neurons and neuronal activity regulate the astrocytic transcriptome with the potential to shape astrocyte-neuron metabolic cooperation.
Collapse
Affiliation(s)
- Philip Hasel
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Owen Dando
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore 560065, India
| | - Zoeb Jiwaji
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Paul Baxter
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Alison C. Todd
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Samuel Heron
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Nóra M. Márkus
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie McQueen
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David W. Hampton
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Megan Torvell
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sachin S. Tiwari
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sean McKay
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Abel Eraso-Pichot
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Edifici M, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine, Barcelona 08028, Spain
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Roser Masgrau
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Edifici M, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Edifici M, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Institució Catalana De Recerca I Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4SB, UK
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore 560065, India
| | - David J. A. Wyllie
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - T. Ian Simpson
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Giles E. Hardingham
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9XD, UK
- 10UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, 47 Little France Crescent, Edinburgh EH16 4TJ, , UK
| |
Collapse
|
35
|
Cell-selective proteomics for biological discovery. Curr Opin Chem Biol 2017; 36:50-57. [PMID: 28088696 DOI: 10.1016/j.cbpa.2016.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022]
Abstract
Cells alter the proteome to respond to environmental and developmental cues. Global analysis of proteomic responses is of limited value in heterogeneous environments, where there is no 'average' cell. Advances in sequencing, protein labeling, mass spectrometry, and data analysis have fueled recent progress in the investigation of specific subpopulations of cells in complex systems. Here we highlight recently developed chemical tools that enable cell-selective proteomic analysis of complex biological systems, from bacterial pathogens to whole animals.
Collapse
|
36
|
Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm. eNeuro 2016; 3:eN-NWR-0169-16. [PMID: 27957530 PMCID: PMC5136615 DOI: 10.1523/eneuro.0169-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
The increasing availability of transcriptomic technologies within the last decade has facilitated high-throughput identification of gene expression differences that define distinct cell types as well as the molecular pathways that drive their specification. The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we present a method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting. Through microarray analysis, we uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with more than 300 genes differentially expressed within these two cell populations. Among the differentially expressed genes confirmed through in vivo expression validation, several genes that mark “immaturity” are expressed within postmitotic ipsilateral RGCs. Moreover, at least one complementary pair, Igf1 and Igfbp5, is upregulated in contralateral or ipsilateral RGCs, respectively, and may represent signaling pathways that determine ipsilateral versus contralateral RGC identity. Importantly, the cell cycle regulator cyclin D2 is highly expressed in peripheral ventral retina with a dynamic expression pattern that peaks during the period of ipsilateral RGC production. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.
Collapse
|
37
|
Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep 2016; 6:33999. [PMID: 27666089 PMCID: PMC5036045 DOI: 10.1038/srep33999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular β-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated.
Collapse
|
38
|
Tagliafierro L, Bonawitz K, Glenn OC, Chiba-Falek O. Gene Expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues. Front Mol Neurosci 2016; 9:72. [PMID: 27587997 PMCID: PMC4988976 DOI: 10.3389/fnmol.2016.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/02/2016] [Indexed: 12/05/2022] Open
Abstract
Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty of obtaining homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc.) has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific—neuronal, astrocytes—expression profiles of genes implicated in neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM). The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®). The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method's feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the potential to significantly advance the field.
Collapse
Affiliation(s)
- Lidia Tagliafierro
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Kirsten Bonawitz
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Omolara C Glenn
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical CenterDurham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
39
|
LoVerso PR, Cui F. Cell type-specific transcriptome profiling in mammalian brains. Front Biosci (Landmark Ed) 2016; 21:973-85. [PMID: 27100485 DOI: 10.2741/4434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A mammalian brain contains numerous types of cells. Advances in neuroscience in the past decade allow us to identify and isolate neural cells of interest from mammalian brains. Recent developments in high-throughput technologies, such as microarrays and next-generation sequencing (NGS), provide detailed information on gene expression in pooled cells on a genomic scale. As a result, many novel genes have been found critical in cell type-specific transcriptional regulation. These differentially expressed genes can be used as molecular signatures, unique to a particular class of neural cells. Use of this gene expression-based approach can further differentiate neural cell types into subtypes, potentially linking some of them with neurological diseases. In this article, experimental techniques used to purify neural cells are described, followed by a review on recent microarray- or NGS-based transcriptomic studies of common neural cell types. The future prospects of cell type-specific research are also discussed.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, One Lomb Memorial Dr., Rochester, NY 14623,
| |
Collapse
|
40
|
Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 2016; 5:e14997. [PMID: 27113915 PMCID: PMC4846374 DOI: 10.7554/elife.14997] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
Clarifying gene expression in narrowly defined neuronal populations can provide insight into cellular identity, computation, and functionality. Here, we used next-generation RNA sequencing (RNA-seq) to produce a quantitative, whole genome characterization of gene expression for the major excitatory neuronal classes of the hippocampus; namely, granule cells and mossy cells of the dentate gyrus, and pyramidal cells of areas CA3, CA2, and CA1. Moreover, for the canonical cell classes of the trisynaptic loop, we profiled transcriptomes at both dorsal and ventral poles, producing a cell-class- and region-specific transcriptional description for these populations. This dataset clarifies the transcriptional properties and identities of lesser-known cell classes, and moreover reveals unexpected variation in the trisynaptic loop across the dorsal-ventral axis. We have created a public resource, Hipposeq (http://hipposeq.janelia.org), which provides analysis and visualization of these data and will act as a roadmap relating molecules to cells, circuits, and computation in the hippocampus. DOI:http://dx.doi.org/10.7554/eLife.14997.001 Both mouse and human brains are made up of many millions of cells called neurons that are interconnected to form circuits. These neurons are not all the same, because different classes of neurons express different complements of genes. Neurons that express similar genes tend to look and act alike, whereas neurons that express different genes tend to be dissimilar. Cembrowski et al. have used a technique called next-generation RNA sequencing (RNA-seq) to determine which genes are expressed in groups of neurons that represent the main cell types found in a part of the brain called the hippocampus. This brain region is important for memory, and was chosen because the location and appearance of the main cell types in the hippocampus were already well understood. The approach revealed that the main types of neurons in the mouse hippocampus are all very different from each other in terms of gene expression, and that even neurons of the same type can exhibit large differences across the hippocampus. Cembrowski et al. created a website that will allow other researchers to easily navigate, analyze, and visualize gene expression data in these populations of neurons. Future work could next make use of recent technological advances to analyze gene expression in individual neurons, rather than groups of cells, to provide an even more detailed picture. It is also hoped that understanding the differences in gene expression will guide examination of how the hippocampus contributes to memory and what goes wrong in diseases that affect this region of the brain. DOI:http://dx.doi.org/10.7554/eLife.14997.002
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brenda C Shields
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
41
|
Kawasawa YI, Salzberg AC, Li M, Šestan N, Greer CA, Imamura F. RNA-seq analysis of developing olfactory bulb projection neurons. Mol Cell Neurosci 2016; 74:78-86. [PMID: 27073125 DOI: 10.1016/j.mcn.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022] Open
Abstract
Transmission of olfactory information to higher brain regions is mediated by olfactory bulb (OB) projection neurons, the mitral and tufted cells. Although mitral/tufted cells are often characterized as the OB counterpart of cortical projection neurons (also known as pyramidal neurons), they possess several unique morphological characteristics and project specifically to the olfactory cortices. Moreover, the molecular networks contributing to the generation of mitral/tufted cells during development are largely unknown. To understand the developmental patterns of gene expression in mitral/tufted cells in the OB, we performed transcriptome analyses targeting purified OB projection neurons at different developmental time points with next-generation RNA sequencing (RNA-seq). Through these analyses, we found 1202 protein-coding genes that are temporally differentially-regulated in developing projection neurons. Among them, 388 genes temporally changed their expression level only in projection neurons. The data provide useful resource to study the molecular mechanisms regulating development of mitral/tufted cells. We further compared the gene expression profiles of developing mitral/tufted cells with those of three cortical projection neuron subtypes, subcerebral projection neurons, corticothalamic projection neurons, and callosal projection neurons, and found that the molecular signature of developing olfactory projection neuron bears resemblance to that of subcerebral neurons. We also identified 3422 events that change the ratio of splicing isoforms in mitral/tufted cells during maturation. Interestingly, several genes expressed a novel isoform not previously reported. These results provide us with a broad perspective of the molecular networks underlying the development of OB projection neurons.
Collapse
Affiliation(s)
- Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA; Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Anna C Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Nenad Šestan
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Charles A Greer
- Department of Neuroscience, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA; Department of Neurosurgery, Yale School of Medicine, 300 Cedar St., New Haven, CT 06510, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| |
Collapse
|
42
|
Iijima T, Hidaka C, Iijima Y. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains. Neurosci Res 2016; 109:1-8. [PMID: 26853282 DOI: 10.1016/j.neures.2016.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 10/25/2022]
Abstract
Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.
Collapse
Affiliation(s)
- Takatoshi Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan.
| | - Chiharu Hidaka
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Yoko Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Tokai University Institute of Innovative Science and Technology, 4-1-1 Kitakaname, Hiratsuka City, Kanagawa 259-1292, Japan; School of Medicine, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| |
Collapse
|
43
|
Yang CP, Fu CC, Sugino K, Liu Z, Ren Q, Liu LY, Yao X, Lee LP, Lee T. Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting. Development 2015; 143:411-21. [PMID: 26700685 DOI: 10.1242/dev.129163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
Abstract
A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.
Collapse
Affiliation(s)
- Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chi-Cheng Fu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyong Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke P Lee
- Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
44
|
Fuzik J, Zeisel A, Máté Z, Calvigioni D, Yanagawa Y, Szabó G, Linnarsson S, Harkany T. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 2015; 34:175-183. [PMID: 26689544 PMCID: PMC4745137 DOI: 10.1038/nbt.3443] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/02/2015] [Indexed: 02/08/2023]
Affiliation(s)
- János Fuzik
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Amit Zeisel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniela Calvigioni
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni JC, Logan DW. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 2015; 5:18178. [PMID: 26670777 PMCID: PMC4680959 DOI: 10.1038/srep18178] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel gene expression in other cellularly heterogeneous systems.
Collapse
Affiliation(s)
- Luis R Saraiva
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom.,Department of Experimental Genetics, Sidra Medical &Research Center, Qatar Foundation, PO Box 26999, Doha, Qatar
| | - Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Masayo Omura
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Antonio Scialdone
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
LoVerso PR, Wachter CM, Cui F. Cross-species Transcriptomic Comparison of In Vitro and In Vivo Mammalian Neural Cells. Bioinform Biol Insights 2015; 9:153-64. [PMID: 26640375 PMCID: PMC4662426 DOI: 10.4137/bbi.s33124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022] Open
Abstract
The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level.
Collapse
Affiliation(s)
- Peter R LoVerso
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Christopher M Wachter
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
47
|
Shen SQ, Myers CA, Hughes AEO, Byrne LC, Flannery JG, Corbo JC. Massively parallel cis-regulatory analysis in the mammalian central nervous system. Genome Res 2015; 26:238-55. [PMID: 26576614 PMCID: PMC4728376 DOI: 10.1101/gr.193789.115] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/12/2015] [Indexed: 01/23/2023]
Abstract
Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in functionally interpreting these data. To address this issue, massively parallel reporter assays (MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells, and the resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. Here, we present two advances that extend the biological relevance and applicability of MPRAs. First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling across the targeted regions and markedly increasing the length of CREs that can be readily assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing delivery to target organs in vivo. As a proof of concept, we introduce a capture library of about 46,000 constructs, corresponding to roughly 3500 DNase I hypersensitive (DHS) sites, into the mouse retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach should enable massively parallel functional analysis of a wide range of CREs in any organ or species that can be infected by AAV, such as nonhuman primates and human stem cell–derived organoids.
Collapse
Affiliation(s)
- Susan Q Shen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Andrew E O Hughes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Leah C Byrne
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
48
|
Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, Kim JC, Cook MN, Dymecki SM. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System. Neuron 2015; 88:774-91. [PMID: 26549332 DOI: 10.1016/j.neuron.2015.10.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/06/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023]
Abstract
Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance.
Collapse
Affiliation(s)
- Benjamin W Okaty
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan E Freret
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin D Rood
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rachael D Brust
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan L Hennessy
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Danielle deBairos
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jun Chul Kim
- Psychology Department, University of Toronto, 100 St. George Street, Toronto ON, M5S 3G3, Canada
| | - Melloni N Cook
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN 38152, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Cai Y, Zhong X, Wang Y, Yang J. Screening feature genes of astrocytoma using a combined method of microarray gene expression profiling and bioinformatics analysis. Int J Clin Exp Med 2015; 8:18004-18012. [PMID: 26770395 PMCID: PMC4694295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
The aim of our study was to find feature genes associated with astrocytoma and correlative gene functions which can distinguish cancer tissue from adjacent non-tumor astrocyte tissues. Gene expression profile GSE15824 was downloaded from Gene Expression Omnibus database which included 8 astrocytoma tissues and 3 adjacent non-tumor astrocyte samples. The raw data were first transformed into probe-level data and the differentially expressed genes (DEGs) between tissues of patients with astrocytoma and normal specimen were identified using T-test in samr package of R. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was applied to analyze the gene ontology (GO) enrichment on gene functions and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, corresponding protein-protein interaction (PPI) networks of DEGs was constructed using the Cytoscape based on the data collected from STRING online datasets. A total of 3072 genes, including 1799 up-regulated genes and 1273 down-regulated genes, were filtered as DEGs, and we learnt that the DEGs including AQP4, PMP2, SRARCL1 and SLC1A2CAMs etc and that AQP4 was most significantly related to cell osmotic pressure. Three feature genes in KEGG pathway are highly enriched in cancer specimen while two genes are in the normal tissues. The discovery of featured genes significantly related to the regulation of cell osmotic pressure, has the potential to use in clinic for diagnosis of astrocytoma in future. In addition, it has a great significance on studying mechanism, distinguishing normal and cancer tissues, and exploring new treatments for astrocytoma. However, further experiments were needed to confirm our result.
Collapse
Affiliation(s)
- Yong Cai
- Department of Neurosurgery, The First People's Hospital of Huzhou Huzhou 313000, Zhejiang, China
| | - Xingming Zhong
- Department of Neurosurgery, The First People's Hospital of Huzhou Huzhou 313000, Zhejiang, China
| | - Yiqi Wang
- Department of Neurosurgery, The First People's Hospital of Huzhou Huzhou 313000, Zhejiang, China
| | - Jianguo Yang
- Department of Neurosurgery, The First People's Hospital of Huzhou Huzhou 313000, Zhejiang, China
| |
Collapse
|
50
|
Cook-Snyder DR, Jones A, Reijmers LG. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci 2015; 8:56. [PMID: 26557053 PMCID: PMC4617378 DOI: 10.3389/fnmol.2015.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023] Open
Abstract
The brain contains a large variety of projection neurons with different functional properties. The functional properties of projection neurons arise from their connectivity with other neurons and their molecular composition. We describe a novel tool for obtaining the gene expression profiles of projection neurons that are anatomically defined by the location of their soma and axon terminals. Our tool utilizes adeno-associated virus serotype 9 (AAV9), which we found to retrogradely transduce projection neurons after injection at the site of the axon terminals. We used AAV9 to express Enhanced Green Fluorescent Protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a), which enables the immunoprecipitation of EGFP-tagged ribosomes and associated mRNA with a method known as Translating Ribosome Affinity Purification (TRAP). To achieve high expression of the EGFP-L10a protein in projection neurons, we placed its expression under control of a 1.3 kb alpha-calcium/calmodulin-dependent protein kinase II (Camk2a) promoter. We injected the AAV9-Camk2a-TRAP virus in either the hippocampus or the bed nucleus of the stria terminalis (BNST) of the mouse brain. In both brain regions the 1.3 kb Camk2a promoter did not confer complete cell-type specificity around the site of injection, as EGFP-L10a expression was observed in Camk2a-expressing neurons as well as in neuronal and non-neuronal cells that did not express Camk2a. In contrast, cell-type specific expression was observed in Camk2a-positive projection neurons that were retrogradely transduced by AAV9-Camk2a-TRAP. Injection of AAV9-Camk2a-TRAP into the BNST enabled the use of TRAP to collect ribosome-bound mRNA from basal amygdala projection neurons that innervate the BNST. AAV9-Camk2a-TRAP provides a single-virus system that can be used for the molecular profiling of anatomically defined projection neurons in mice and other mammalian model organisms. In addition, AAV9-Camk2a-TRAP may enable the discovery of protein synthesis events that support information storage in projection neurons.
Collapse
Affiliation(s)
- Denise R Cook-Snyder
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA ; Department of Biology and Neuroscience Program, Carthage College Kenosha, WI, USA
| | - Alexander Jones
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA ; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Leon G Reijmers
- Department of Neuroscience, School of Medicine, Tufts University Boston, MA, USA
| |
Collapse
|