1
|
Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology 2024; 50:153-163. [PMID: 39039139 PMCID: PMC11525584 DOI: 10.1038/s41386-024-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
The development of novel radiotracers for Positron Emission Tomography (PET) imaging agents targeting the synaptic vesicle glycoprotein 2 A (SV2A), an integral glycoprotein present in the membrane of all synaptic vesicles throughout the central nervous system, provides a method for the in vivo quantification of synaptic density. This is of particular interest in neuropsychiatric disorders given that synaptic alterations appear to underlie disease progression and symptom severity. In this review, we briefly describe the development of these SV2A tracers and the evaluation of quantification methods. Next, we discuss application of SV2A PET imaging to the study of depression, including a review of our findings demonstrating lower SV2A synaptic density in people with significant depressive symptoms and the use of a ketamine drug challenge to examine synaptogenesis in vivo. We then highlight the importance of performing translational PET imaging in animal models in conjunction with clinical imaging. We consider the ongoing challenges, possible solutions, and present preliminary findings from our lab demonstrating the translational benefit and potential of in vivo SV2A imaging in animal models of chronic stress. Finally, we discuss methodological improvements and future directions for SV2A imaging, potentially in conjunction with other neural markers.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
2
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Dickstein DL, Zhang R, Ru N, Vozenin MC, Perry BC, Wang J, Baulch J, Acharya MM, Limoli CL. Structural plasticity of pyramidal cell neurons measured after FLASH and conventional dose-rate irradiation. RESEARCH SQUARE 2024:rs.3.rs-4656938. [PMID: 39108471 PMCID: PMC11302692 DOI: 10.21203/rs.3.rs-4656938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Evidence shows that ultra-high dose-rate FLASH-radiotherapy (FLASH-RT) protects against normal tissue complications and functional decrements in the irradiated brain. Past work has shown that radiation-induced cognitive impairment, neuroinflammation and reduced structural complexity of granule cell neurons were not observed to the same extent after FLASH-RT (> MGy/s) compared to conventional dose-rate (CONV, 0.1 Gy/s) delivery. To explore the sensitivity of different neuronal populations to cranial irradiation and dose-rate modulation, hippocampal CA1 and medial prefrontal cortex (PFC) pyramidal neurons were analyzed by electron and confocal microscopy. Neuron ultrastructural analyses by electron microscopy after 10 Gy FLASH- or CONV-RT exposures indicated that irradiation had little impact on dendritic complexity and synapse density in the CA1, but did increase length and head diameter of smaller non-perforated synapses. Similarly, irradiation caused no change in PFC prelimbic/infralimbic axospinous synapse density, but reductions in non-perforated synapse diameters. While irradiation resulted in thinner myelin sheaths compared to controls, none of these metrics were dose-rate sensitive. Analysis of fluorescently labeled CA1 neurons revealed no radiation-induced or dose-rate-dependent changes in overall dendritic complexity or spine density, in contrast to our past analysis of granule cell neurons. Super-resolution confocal microscopy following a clinical dosing paradigm (3×10Gy) showed significant reductions in excitatory vesicular glutamate transporter 1 and inhibitory vesicular GABA transporter puncta density within the CA1 that were largely dose-rate independent. Collectively, these data reveal that, compared to granule cell neurons, CA1 and mPFC neurons are more radioresistant irrespective of radiation dose-rate.
Collapse
Affiliation(s)
| | | | - Ning Ru
- University of California, Irvine School of Medicine
| | | | | | - Juan Wang
- Uniformed Services University of Health Sciences
| | - Janet Baulch
- University of California, Irvine School of Medicine
| | | | | |
Collapse
|
4
|
Hyun J, Lovasi GS, Katz MJ, Derby CA, Lipton RB, Sliwinski MJ. Perceived but not objective measures of neighborhood safety and food environments are associated with longitudinal changes in processing speed among urban older adults. BMC Geriatr 2024; 24:551. [PMID: 38918697 PMCID: PMC11197239 DOI: 10.1186/s12877-024-05068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Although a growing body of literature documents the importance of neighborhood effects on late-life cognition, little is known about the relative strength of objective and subjective neighborhood measures on late-life cognitive changes. This study examined effects of objective and subjective neighborhood measures in three neighborhood domains (neighborhood safety, physical disorder, food environments) on longitudinal changes in processing speed, an early marker of cognitive aging and impairment. METHODS The analysis sample included 306 community-dwelling older adults enrolled in the Einstein Aging Study (mean age = 77, age range = 70 to 91; female = 67.7%; non-Hispanic White: 45.1%, non-Hispanic Black: 40.9%). Objective and subjective measures of neighborhood included three neighborhood domains (i.e., neighborhood safety, physical disorder, food environments). Processing speed was assessed using a brief Symbol Match task (unit: second), administered on a smartphone device six times a day for 16 days and repeated annually for up to five years. Years from baseline was used as the within-person time index. RESULTS Results from mixed effects models showed that subjective neighborhood safety (β= -0.028) and subjective availability of healthy foods (β= -0.028) were significantly associated with less cognitive slowing over time. When objective and subjective neighborhood measures were simultaneously examined, subjective availability of healthy foods remained significant (β= -0.028) after controlling for objective availability of healthy foods. Associations of objective neighborhood crime and physical disorder with processing speed seemed to be confounded by individual-level race and socioeconomic status; after controlling for these confounders, none of objective neighborhood measures showed significant associations with processing speed. CONCLUSION Subjective neighborhood safety and subjective availability of healthy foods, rather than objective measures, were associated with less cognitive slowing over time over a five-year period. Perception of one's neighborhood may be a more proximal predictor of cognitive health outcomes as it may reflect one's experiences in the environment. It would be important to improve our understanding of both objective and subjective neighborhood factors to improve cognitive health among older adults.
Collapse
Affiliation(s)
- Jinshil Hyun
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Gina S Lovasi
- Department of Epidemiology and Biostatistics, Drexel University, 3215 Market Street, 2nd Floor, Philadelphia, PA, 19104, USA
| | - Mindy J Katz
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Carol A Derby
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Richard B Lipton
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Martin J Sliwinski
- Department of Human Development and Family Studies and Center for Healthy Aging, The Pennsylvania State University, 402 Biobehavioral Health Building, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Gandy HM, Hollis F, Hernandez CM, McQuail JA. Aging or chronic stress impairs working memory and modulates GABA and glutamate gene expression in prelimbic cortex. Front Aging Neurosci 2024; 15:1306496. [PMID: 38259638 PMCID: PMC10800675 DOI: 10.3389/fnagi.2023.1306496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The glucocorticoid (GC) hypothesis posits that effects of stress and dysregulated hypothalamic-pituitary-adrenal axis activity accumulate over the lifespan and contribute to impairment of neural function and cognition in advanced aging. The validity of the GC hypothesis is bolstered by a wealth of studies that investigate aging of the hippocampus and decline of associated mnemonic functions. The prefrontal cortex (PFC) mediates working memory which also decreases with age. While the PFC is susceptible to stress and GCs, few studies have formally assessed the application of the GC hypothesis to PFC aging and working memory. Using parallel behavioral and molecular approaches, we compared the effects of normal aging versus chronic variable stress (CVS) on working memory and expression of genes that encode for effectors of glutamate and GABA signaling in male F344 rats. Using an operant delayed match-to-sample test of PFC-dependent working memory, we determined that normal aging and CVS each significantly impaired mnemonic accuracy and reduced the total number of completed trials. We then determined that normal aging increased expression of Slc6a11, which encodes for GAT-3 GABA transporter expressed by astrocytes, in the prelimbic (PrL) subregion of the PFC. CVS increased PrL expression of genes associated with glutamatergic synapses: Grin2b that encodes the GluN2B subunit of NMDA receptor, Grm4 that encodes for metabotropic glutamate receptor 4 (mGluR4), and Plcb1 that encodes for phospholipase C beta 1, an intracellular signaling enzyme that transduces signaling of Group I mGluRs. Beyond the identification of specific genes that were differentially expressed between the PrL in normal aging or CVS, examination of Log2 fold-changes for all expressed glutamate and GABA genes revealed a positive association between molecular phenotypes of aging and CVS in the PrL but no association in the infralimbic subregion. Consistent with predictions of the GC hypothesis, PFC-dependent working memory and PrL glutamate/GABA gene expression demonstrate comparable sensitivity to aging and chronic stress. However, changes in expression of specific genes affiliated with regulation of extracellular GABA in normal aging vs. genes encoding for effectors of glutamatergic signaling during CVS suggest the presence of unique manifestations of imbalanced inhibitory and excitatory signaling in the PFC.
Collapse
Affiliation(s)
- Hannah M. Gandy
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Joseph A. McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Ghaffari-Nasab A, Javani G, Yousefi H, Sharafkhani R, Taghizadeh S. Prolonged stress-induced depression-like behaviors in aged rats are mediated by endoplasmic reticulum stress and apoptosis in the hippocampus. Neurosci Res 2024; 198:39-46. [PMID: 37392834 DOI: 10.1016/j.neures.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Structural and functional recovery from stress-induced depression is impaired in the context of aging brain. Since investigating the molecular substrates that facilitate behavioral recovery may have important implications for understanding brain plasticity and resilience of individuals, we studied depressive-like behaviors in young and aged rats 6 weeks after chronic stress exposure as a recovery period and examined the levels of TNF-α and IL-6 inflammatory cytokines, NADH oxidase activity, NADPH oxidase, endoplasmic reticulum (ER) stress markers, and apoptosis in the hippocampus. Young (3 months old) and aged (22 months old) male Wistar rats were divided into four groups; young control (Young), depression model of young rats that received chronic stress procedure followed by a 6-week recovery period (Young+S), aged control (Aged), and depression model of aged rats that received chronic stress procedure followed by a 6-week recovery period (Aged+S). After the recovery period, aged but not young rats showed depression-like behaviors, evaluated by the sucrose preference test (SPT) and forced swimming test (FST), coincided with the altered levels of TNF-α, IL-6, NADH oxidase activity, NADPH oxidase, GRP78, CHOP, and cleaved caspase-12 in the hippocampus of these animals. These data suggested that oxidative and ER stress-induced apoptosis in the aging hippocampus may affect the recovery-related outcomes after the stress paradigm.
Collapse
Affiliation(s)
- Arshad Ghaffari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Gonja Javani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran.
| | - Rahim Sharafkhani
- School of Health, Khoy University of Medical Sciences, Khoy, the Islamic Republic of Iran
| | - Sajjad Taghizadeh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, the Islamic Republic of Iran
| |
Collapse
|
7
|
Ghaffari-Nasab A, Javani G, Mohaddes G, Alipour MR. Aging impairs recovery from stress-induced depression in male rats possibly by alteration of microRNA-101 expression and Rac1/RhoA pathway in the prefrontal cortex. Biogerontology 2023; 24:957-969. [PMID: 37642806 DOI: 10.1007/s10522-023-10056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Along with altering brain responses to stress, aging may also impair recovery from depression symptoms. In the present study, we investigated depressive-like behaviors in young and aged rats and assayed the levels of microRNA-101 (miR-101), Rac1/RhoA, PSD-95, and GluR1 in the prefrontal cortex (PFC) after stress cessation and after a recovery period. Young (3 months old) and aged (22 months old) male Wistar rats were divided into six groups; Young control (YNG), young rats received chronic stress for four weeks (YNG + CS), young rats received chronic stress for four weeks followed by a 6-week recovery period (YNG + CS + REC), Aged control (AGED), aged rats received chronic stress for four weeks (AGED + CS), and aged rats received chronic stress for four weeks followed by a 6-week recovery period (AGED + CS + REC). Stress-induced depression, evaluated by the sucrose preference test (SPT) and forced swimming test (FST), was yet observed after the recovery period in aged but not in young rats, which were accompanied by unchanged levels of miR-101, Rac1/RhoA, GluR1, and PSD-95 in the PFC of aged rats. These data suggested that impaired synaptic plasticity of glutamatergic synapses via the miR-101/Rac1/RhoA pathway may contribute to the delayed behavioral recovery after stress exposure observed in aging animals.
Collapse
Affiliation(s)
| | - Gonja Javani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51666-14766, Iran.
| |
Collapse
|
8
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
9
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
10
|
Li F, Wang Y, Wang X, Zhao Y, Xie F, Qian LJ. Dynamic effects of chronic unpredictable mild stress on the hippocampal transcriptome in rats. Mol Med Rep 2022; 25:110. [PMID: 35119083 PMCID: PMC8845063 DOI: 10.3892/mmr.2022.12626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/06/2022] Open
Abstract
Stress causes extensive changes in hippocampal genomic expression, leading to changes in hippocampal structure and function. The dynamic changes in hippocampal gene expression caused by stress of different durations are still unknown. mRNA sequencing was used to analyze the hippocampal transcriptome of rats subjected to chronic unpredictable mild stress (CUMS) of different durations. Compared with the control, 501, 442 and 235 differentially expressed genes (DEGs) were detected in the hippocampus of rats subjected to CUMS for 3 days and 2 and 6 weeks, respectively. Gene Ontology (GO) analysis was used to determine the potential mechanism underlying the dynamic harmful effects of stress on the hippocampus; Certain GO terms of the down‑regulated DEGs in CUMS (3 days) rats were also found in the up‑regulated DEGs in CUMS (6 weeks) rats. These results showed opposing regulation patterns of DEGs between CUMS at 3 days and 6 weeks, which suggested a functional change from adaptation to damage in during the early and late stages of chronic stress. GO analysis for upregulated genes in rats subjected to CUMS for 3 days and 2 weeks suggested significant changes in 'extracellular matrix' and 'wound healing'. Upregulated genes in rats subjected to CUMS for 2 weeks were involved in changes associated with visual function. GO analysis of DEGs in rats subjected to CUMS for 6 weeks revealed increased expression of genes associated with 'apoptotic process' and 'aging' and decreased expression of those associated with inhibition of cell proliferation and cell structure. These results suggest that the early and middle stages of chronic stress primarily promote adaptive regulation and damage repair in the organism, while the late stage of chronic stress leads to damage in the hippocampus.
Collapse
Affiliation(s)
- Feng Li
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Ying Wang
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Xue Wang
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Yun Zhao
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Fang Xie
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Ling-Jia Qian
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| |
Collapse
|
11
|
Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats. Mech Ageing Dev 2022; 202:111632. [PMID: 35065970 DOI: 10.1016/j.mad.2022.111632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Impaired mitochondrial function and abnormalities in the tryptophan (Trp)-kynurenine (Kyn) pathway are linked to age-related mood disorders. This study investigated the effect of intracerebroventricular (ICV) injection of the mitochondria isolated from young rat brain on depression-like behaviors of aged rats subjected to chronic mild stress (CMS). Aged (22 months old) male rats were randomly assigned into four groups: Aged, Aged + Mit, Aged + CMS, and Aged + CMS + Mit. Anxiety- and depression-like behaviors were assessed using elevated plus maze (EPM), open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT). Mitochondrial membrane potential (MMP), ATP levels, indoleamine 2, 3-dioxygenase (IDO) levels, and Kyn metabolites were measured in the prefrontal cortex (PFC). Golgi Cox staining was used to investigate the neuronal morphology. Mitotherapy decreased immobility time and anhedonia in the FST; increased open arm time and entries in the EPM; decreased grooming and increased rearing, center time, and the entrance in the OFT. Mitotherapy also reduced IDO and Kyn metabolites, restored MMP and ATP production, and enhanced dendritic length and spine density in the PFC. Overall, mitotherapy improved anxiety-and depression-like behaviors in aged rats and it could be considered as a new therapeutic strategy for age-related depressive disorders.
Collapse
|
12
|
Zajner C, Spreng RN, Bzdok D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J Neurophysiol 2021; 126:2138-2157. [PMID: 34817294 PMCID: PMC8715056 DOI: 10.1152/jn.00339.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level. NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
García-Moreno JA, Cañadas-Pérez F, García-García J, Roldan-Tapia MD. Cognitive Reserve and Anxiety Interactions Play a Fundamental Role in the Response to the Stress. Front Psychol 2021; 12:673596. [PMID: 34539485 PMCID: PMC8446200 DOI: 10.3389/fpsyg.2021.673596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/03/2021] [Indexed: 12/21/2022] Open
Abstract
The aims of the present study were to assess the possible interaction between Cognitive Reserve (CR) and State Anxiety (SA) on adrenocortical and physiological responses in coping situations. Forty healthy, middle-aged men completed the Cognitive Reserve Scale and the State-Trait Anxiety Inventory. We used an Observational Fear Conditioning (OFC) paradigm in order to assess emotional learning and to induce stress. Electrodermal activity (EDA) and salivary cortisol concentrations were measured throughout the conditions. Our results indicate that those who indicated having higher state anxiety showed a lower capacity for learning the contingency, along with presenting higher salivary cortisol peak response following the observational fear-conditioning paradigm. The most prominent finding was the interaction between cognitive reserve and state anxiety on cortisol response to the post observational fear-conditioning paradigm. Thus, those who showed a high anxiety-state and, at the same time, a high cognitive reserve did not present an increased salivary cortisol response following the observational fear-conditioning paradigm. Given these results, we postulate that the state anxiety reported by participants, reflects emotional activation that hinders the attention needed to process and associate emotional stimuli. However, cognitive reserve has an indirect relation with conditioning, enabling better emotional learning. In this context, cognitive reserve demonstrated a protective effect on hormonal response in coping situations, when reported anxiety or emotional activation were high. These findings suggest that cognitive reserve could be used as a tool to deal with the effects of stressors in life situations, limiting development of the allostatic load.
Collapse
Affiliation(s)
- Jose A García-Moreno
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| | - Fernando Cañadas-Pérez
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| | | | - María D Roldan-Tapia
- CERNEP Research Center, University of Almeria, Almería, Spain.,CEINSAUAL Research Center, University of Almeria, Almería, Spain
| |
Collapse
|
15
|
Hair glucocorticoids and resting-state frontal lobe oxygenation: Findings from The Irish Longitudinal Study on Ageing. Psychoneuroendocrinology 2021; 125:105107. [PMID: 33352472 DOI: 10.1016/j.psyneuen.2020.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
Cerebral blood flow and oxygenation are crucial for maintaining healthy brain structure and function, with hypoperfusion and hypometabolism associated with neurodegenerative and neuropsychiatric conditions. Chronic stress and elevated cortisol have also been associated with cognitive decline, poor mental health and peripheral vascular and cerebrovascular changes. It is plausible that glucocorticoids could alter brain structure and function through increased vulnerability to hypoperfusion and reduced oxygenation. The aim of the current study was to investigate the association between hair glucocorticoids (GCs) and frontal lobe oxygenation using near-infra red spectroscopy (NIRS) in a population sample of 1078 older adults. Data from Wave 3 of The Irish Longitudinal Study of Ageing was analysed. Hair samples were taken for the analysis of glucocorticoids and NIRS was used to measure frontal lobe oxygenation. After both minimal and full adjustment for covariates, hair cortisol and the cortisol-to-cortisone ratio were associated with lower Tissue Saturation Index (TSI; cortisol: B = -0.37, CI -0.60 to -0.14, p = .002; ratio: B = -0.43, CI -0.70 to -0.16, p = .002). Cortisone was not significantly associated with TSI (B = -0.17, CI -0.55 to.21, p = .388). The finding of an inverse relationship between frontal lobe oxygenation and GCs as assessed over a period of months may indicate that reduced oxygenation is one pathway through which chronically elevated GCs affect brain health and function. However, no causality can be inferred from the current data and prospective studies are required to interrogate this.
Collapse
|
16
|
Chen JJ, Shen JX, Yu ZH, Pan C, Han F, Zhu XL, Xu H, Xu RT, Wei TY, Lu YP. The Antidepressant Effects of Resveratrol are Accompanied by the Attenuation of Dendrite/Dendritic Spine Loss and the Upregulation of BDNF/p-cofilin1 Levels in Chronic Restraint Mice. Neurochem Res 2021; 46:660-674. [PMID: 33392910 DOI: 10.1007/s11064-020-03200-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Depression afflicts more than 300 million people worldwide, but there is currently no universally effective drug in clinical practice. In this study, chronic restraint stress (CRS)-induced mice depression model was used to study the antidepressant effects of resveratrol and its mechanism. Our results showed that resveratrol significantly attenuated depression-like behavior in mice. Consistent with behavioral changes, resveratrol significantly attenuated CRS-induced reduction in the density of dendrites and dendritic spines in both hippocampus and medial prefrontal cortex (mPFC). Meanwhile, in hippocampus and mPFC, resveratrol consistently alleviated CRS-induced cofilin1 activation by increasing its ser3 phosphorylation. In addition, cofilin1 immunofluorescence distribution in neuronal inner peri-membrane in controls, and cofilin1 diffusely distribution in the cytoplasm in CRS group were common in hippocampus. However, the distribution of cofilin1 in mPFC was reversed. Pearson's correlation analysis revealed that there was a significant positive correlation found between the sucrose consumption in sucrose preference test and the dendrite density in multiple sub-regions of hippocampus and mPFC, and a significant negative correlation between the immobility time in tail suspension test and the dendrite/dendritic spine density in several different areas of hippocampus and mPFC. P-cofilin1 was significantly positively correlated with the overall dendritic spine density in mPFC as well as with the overall dendrite density or BDNF in the hippocampus. Our results suggest that the BDNF/cofilin1 pathway, in which cofilin1 may be activated in a brain-specific manner, was involved in resveratrol's attenuating the dendrite and dendritic spine loss and behavioral abnormality.
Collapse
Affiliation(s)
- Jing-Jing Chen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Jun-Xian Shen
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Zong-Hao Yu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
- Department of Anatomy, Wannan Medical College, No. 22 Wenchang West Road, Wuhu, 241002, China
| | - Hui Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
- Anhui College of Traditional Chinese Medicine, No. 18 Wuxiashan West Road, Wuhu, 241002, China
| | - Rui-Ting Xu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Tong-Yao Wei
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.
| |
Collapse
|
17
|
Mograbi KDM, Suchecki D, da Silva SG, Covolan L, Hamani C. Chronic unpredictable restraint stress increases hippocampal pro-inflammatory cytokines and decreases motivated behavior in rats. Stress 2020; 23:427-436. [PMID: 31928117 DOI: 10.1080/10253890.2020.1712355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most chronic stress protocols are too laborious or do not abide by the two main characteristics of the stress concept: uncontrollability and unpredictability. The goal of this study was to establish a simple and reliable model of chronic stress, while maintaining the main features of the concept. Animals were exposed to chronic movement restraint with variable duration (2, 4 or 6 h, in an unpredictable schedule) for 3 weeks and assessed in several physiological and behavioral readouts known to reflect chronic stress states. Body weight, levels of plasma corticosterone, hippocampal pro-and anti-inflammatory cytokines, anxiety-like (novelty suppressed feeding and elevated plus maze) and motivated behaviors (sucrose negative contrast test and forced swim test) were evaluated three days after the end of the chronic protocol. Stressed animals had a lower body weight gain, higher levels of cytokines in the hippocampus, reduced suppression of a low concentration sucrose solution and increased immobility in the forced swim test. Based on these data, we suggest that chronic movement restraint with variable duration may be a suitable and simple protocol for the study of changes induced by chronic stress and for the testing of possible treatments relevant to psychiatry.
Collapse
Affiliation(s)
| | - Deborah Suchecki
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sérgio Gomes da Silva
- Hospital do Câncer de Muriaé - Fundação Cristiano Varella, Centro Universitário UNIFAMINAS, Muriaé, Brazil
| | - Luciene Covolan
- Departament of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Division of Neurosurgery, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Grover HM, Smith PM, Ferguson AV. Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. J Neuroendocrinol 2020; 32:e12855. [PMID: 32436241 DOI: 10.1111/jne.12855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.
Collapse
Affiliation(s)
- Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Pauline M Smith
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
19
|
Socioeconomic disadvantage, brain morphometry, and attentional bias to threat in middle childhood. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:309-326. [PMID: 30460484 DOI: 10.3758/s13415-018-00670-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Socioeconomic disadvantage is associated with higher rates of psychopathology as well as hippocampus, amygdala and prefrontal cortex structure. However, little is known about how variations in brain morphometry are associated with socio-emotional risks for mood disorders in children growing up in families experiencing low income. In the current study, using structural magnetic resonance imaging, we examined the relationship between socioeconomic disadvantage and gray matter volume in the hippocampus, amygdala, and ventrolateral prefrontal cortex in a sample of children (n = 34) in middle childhood. Using an affective dot probe paradigm, we examined the association between gray matter volume in these regions and attentional bias to threat, a risk marker for mood disorders including anxiety disorders. We found that lower income-to-needs ratio was associated with lower bilateral hippocampal and right amygdala volume, but not prefrontal cortex volumes. Moreover, lower attentional bias to threat was associated with greater left hippocampal volume. We provide evidence of a relationship between income-related variations in brain structure and attentional bias to threat, a risk for mood disorders. Therefore, these findings support an environment-morphometry-behavior relationship that contributes to the understanding of income-related mental health disparities in childhood.
Collapse
|
20
|
Kline SA, Mega MS. Stress-Induced Neurodegeneration: The Potential for Coping as Neuroprotective Therapy. Am J Alzheimers Dis Other Demen 2020; 35:1533317520960873. [PMID: 32969239 PMCID: PMC10623922 DOI: 10.1177/1533317520960873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Stress responses are essential for survival, but become detrimental to health and cognition with chronic activation. Chronic hypothalamic-pituitary-adrenal axis release of glucocorticoids induces hypothalamic-pituitary-adrenal axis dysfunction and neuronal loss, decreases learning and memory, and modifies glucocorticoid receptor/mineralocorticoid receptor expression. Elderly who report increased stress are nearly 3 times more likely to develop Alzheimer's disease, have decreased global cognition and faster cognitive decline than those reporting no stress. Patients with mild cognitive impairment are more sensitive to stress compared to healthy elderly and those with Alzheimer's disease. Stress may also transduce neurodegeneration via the gut microbiome. Coping styles determine hippocampal mineralocorticoid receptor expression in mice, indicating that coping modifies cortisol's effect on the brain. Identifying neuroprotective coping strategies that lessen the burden of stress may prevent or slow cognitive decline. Treatments and education designed to reduce stress should be recognized as neuroprotective.
Collapse
|
21
|
Breach MR, Moench KM, Wellman CL. Social instability in adolescence differentially alters dendritic morphology in the medial prefrontal cortex and its response to stress in adult male and female rats. Dev Neurobiol 2019; 79:839-856. [PMID: 31612626 DOI: 10.1002/dneu.22723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Adolescence is an important period for HPA axis development and synapse maturation and reorganization in the prefrontal cortex (PFC). Thus, stress during adolescence could alter stress-sensitive brain regions such as the PFC and may alter the impact of future stressors on these brain regions. Given that women are more susceptible to many stress-linked psychological disorders in which dysfunction of PFC is implicated, and that this increased vulnerability emerges in adolescence, stress during this time could have sex-dependent effects. Therefore, we investigated the effects of adolescent social instability stress (SIS) on dendritic morphology of Golgi-stained pyramidal cells in the medial PFC of adult male and female rats. We then examined dendritic reorganization following chronic restraint stress (CRS) with and without a rest period in adult rats that had been stressed in adolescence. Adolescent SIS conferred long-term alterations in prelimbic of males and females, whereby females show reduced apical length and basilar thin spine density and males show reduced basilar length. CRS in adulthood failed to produce immediate dendritic remodeling in SIS rats. However, CRS followed by a rest period reduced apical dendritic length and increases mushroom spine density in adolescently stressed adult males. Conversely, CRS followed by rest produced apical outgrowth and decreased mushroom spine density in adolescently stressed adult females. These results suggest that stress during adolescence alters development of the PFC and modulates stress-induced dendritic changes in adulthood.
Collapse
Affiliation(s)
- Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
22
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
23
|
Voglewede RL, Vandemark KM, Davidson AM, DeWitt AR, Heffler MD, Trimmer EH, Mostany R. Reduced sensory-evoked structural plasticity in the aging barrel cortex. Neurobiol Aging 2019; 81:222-233. [PMID: 31323444 DOI: 10.1016/j.neurobiolaging.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Impairments in synaptic connectivity have been linked to cognitive deficits in age-related neurodegenerative disorders and healthy aging. However, the anatomical and structural bases of these impairments have not been identified yet. A hallmark of neural plasticity in young adults is short-term synaptic rearrangement, yet aged animals already display higher synaptic turnover rates at the baseline. Using two-photon excitation (2PE) microscopy, we explored if this elevated turnover alters the aged brain's response to plasticity. Following a sensory-evoked plasticity protocol involving whisker stimulation, aged mice display reduced spine dynamics (gain, loss, and turnover), decreased spine clustering, and lower spine stability when compared to young adult mice. These results suggest a deficiency of the cortical neurons of aged mice to structurally incorporate new sensory experiences, in the form of clustered, long-lasting synapses, into already existing cortical circuits. This research provides the first evidence linking experience-dependent plasticity with in vivo spine dynamics in the aged brain and supports a model of both reduced synaptic plasticity and reduced synaptic tenacity in the aged somatosensory system.
Collapse
Affiliation(s)
- Rebecca L Voglewede
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kaeli M Vandemark
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Andrew M Davidson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA; Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Annie R DeWitt
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Marissa D Heffler
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA; Department of Biomedical Engineering, Tulane University School of Science and Engineering, Lindy Boggs Center Suite 500, New Orleans, LA, USA
| | - Emma H Trimmer
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ricardo Mostany
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, LA, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
24
|
Dioli C, Patrício P, Sousa N, Kokras N, Dalla C, Guerreiro S, Santos-Silva MA, Rego AC, Pinto L, Ferreiro E, Sotiropoulos I. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields. Transl Psychiatry 2019; 9:143. [PMID: 31028242 PMCID: PMC6486609 DOI: 10.1038/s41398-019-0477-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic stress, a suggested precipitant of brain pathologies, such as depression and Alzheimer's disease, is known to impact on brain plasticity by causing neuronal remodeling as well as neurogenesis suppression in the adult hippocampus. Although many studies show that stressful conditions reduce the number of newborn neurons in the adult dentate gyrus (DG), little is known about whether and how stress impacts on dendritic development and structural maturation of these newborn neurons. We, herein, demonstrate that chronic stress impacts differentially on doublecortin (DCX)-positive immature neurons in distinct phases of maturation. Specifically, the density of the DCX-positive immature neurons whose dendritic tree reaches the inner molecular layer (IML) of DG is reduced in stressed animals, whereas their dendritic complexity is increased. On the contrary, no change on the density of DCX-positive neurons whose dendritic tree extends to the medial/outer molecular layer (M/OML) of the DG is found under stress conditions, whereas the dendritic complexity of these cells is diminished. In addition, DCX+ cells displayed a more complex and longer arbor in the dendritic compartments located in the granular cell layer of the DG under stress conditions; on the contrary, their dendritic segments localized into the M/OML were shorter and less complex. These findings suggest that the neuroplastic effects of chronic stress on dendritic maturation and complexity of DCX+ immature neurons vary based on the different maturation stage of DCX-positive cells and the different DG sublayer, highlighting the complex and dynamic stress-driven neuroplasticity of immature neurons in the adult hippocampus.
Collapse
Affiliation(s)
- Chrysoula Dioli
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Patrícia Patrício
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno Sousa
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nikolaos Kokras
- 0000 0001 2155 0800grid.5216.0First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- 0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Guerreiro
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel A. Santos-Silva
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Cristina Rego
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute of Biochemistry, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Luísa Pinto
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Elisabete Ferreiro
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research of the University of Coimbra (IIIUC), Coimbra, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
| |
Collapse
|
25
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
26
|
The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression. Biol Psychiatry 2019; 85:517-526. [PMID: 30449530 PMCID: PMC6380918 DOI: 10.1016/j.biopsych.2018.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND A parallel downregulation of brain-derived neurotrophic factor (BDNF) and somatostatin (SST), a marker of inhibitory gamma-aminobutyric acid interneurons that target pyramidal cell dendrites, has been reported in several brain areas of subjects with major depressive disorder (MDD). Rodent genetic studies suggest that they are linked and that both contribute to the illness. However, the mechanism by which they contribute to the pathophysiology of the illness has remained elusive. METHODS With quantitative polymerase chain reaction, we determined the expression level of BDNF transcript variants and synaptic markers in the prefrontal cortex of patients with MDD and matched control subjects (n = 19/group) and of C57BL/6J mice exposed to chronic stress or control conditions (n = 12/group). We next suppressed Bdnf transcripts with long 3' untranslated region (L-3'-UTR) using short hairpin RNA and investigated changes in cell morphology, gene expression, and behavior. RESULTS L-3'-UTRs containing BDNF messenger RNAs, which migrate to distal dendrites of pyramidal neurons, are selectively reduced, and their expression was highly correlated with SST expression in the prefrontal cortex of subjects with MDD. A similar downregulation occurs in mice submitted to chronic stress. We next show that Bdnf L-3'-UTR knockdown is sufficient to induce 1) dendritic shrinkage in cortical neurons, 2) cell-specific MDD-like gene changes (including Sst downregulation), and 3) depressive- and anxiety-like behaviors. The translational validity of the Bdnf L-3'-UTR short hairpin RNA-treated mice was confirmed by significant cross-species correlation of changes in MDD-associated gene expression. CONCLUSIONS These findings provide evidence for a novel MDD-related pathological mechanism linking local neurotrophic support, pyramidal cell structure, dendritic inhibition, and mood regulation.
Collapse
|
27
|
Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111:503-516. [DOI: 10.1016/j.biopha.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023] Open
|
28
|
Kalvas LB. The Life Course Health Development Model: A theoretical research framework for paediatric delirium. J Clin Nurs 2019; 28:2351-2360. [PMID: 30653772 DOI: 10.1111/jocn.14776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
AIMS AND OBJECTIVES To create a framework for future research through application and critique of the Life Course Health Development Model to the phenomenon of paediatric delirium. BACKGROUND Delirium in the paediatric intensive care unit is associated with increased duration of mechanical ventilation, length of stay and mortality. Nurses are uniquely positioned at the bedside to identify, prevent and treat delirium. An understanding of the potential long-term consequences of paediatric delirium is necessary to provide impetus for nursing research and practice change. The Life Course Health Development Model is a valuable tool when considering the multiple mechanisms and processes through which the experience of delirium could affect a child's life trajectory. DESIGN Critical review of the literature through application and critique of the Life Course Health Development Model in the context of paediatric delirium. Gaps in the current understanding of paediatric delirium, as well as future directions for research and practice, are discussed. METHODS The seven core principles of the model are considered in the context of paediatric delirium. Each of the principles has the potential to further understanding of paediatric delirium and identify areas for future inquiry. This discussion leads to a critique of the ability of the model to lead future research and practice change. CONCLUSIONS The Life Course Health Development Model depicts a process in which the acute and severe stress of critical illness leads to maladaptive neurologic changes that contribute to the development of delirium and impair a child's life trajectory. RELEVANCE TO CLINICAL PRACTICE By emphasising the potential lifelong consequences for critically ill children who experience delirium, this application of the Life Course Health Development Model will stimulate discussion, research and practice change among paediatric clinicians and researchers.
Collapse
|
29
|
Key periods of cognitive decline in a nonhuman primate model of cognitive aging, the common marmoset (Callithrix jacchus). Neurobiol Aging 2019; 74:1-14. [DOI: 10.1016/j.neurobiolaging.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022]
|
30
|
Beneficial Effects of Physical Activity and Crocin Against Adolescent Stress Induced Anxiety or Depressive-Like Symptoms and Dendritic Morphology Remodeling in Prefrontal Cortex in Adult Male Rats. Neurochem Res 2019; 44:917-929. [DOI: 10.1007/s11064-019-02727-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/09/2019] [Indexed: 01/16/2023]
|
31
|
Adolescent exposure to Δ 9-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry 2019; 24:588-600. [PMID: 30283037 PMCID: PMC6430678 DOI: 10.1038/s41380-018-0243-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022]
Abstract
Neuronal circuits within the prefrontal cortex (PFC) mediate higher cognitive functions and emotional regulation that are disrupted in psychiatric disorders. The PFC undergoes significant maturation during adolescence, a period when cannabis use in humans has been linked to subsequent vulnerability to psychiatric disorders such as addiction and schizophrenia. Here, we investigated in a rat model the effects of adolescent exposure to Δ9-tetrahydrocannabinol (THC), a psychoactive component of cannabis, on the morphological architecture and transcriptional profile of layer III pyramidal neurons-using cell type- and layer-specific high-resolution microscopy, laser capture microdissection and next-generation RNA-sequencing. The results confirmed known normal expansions in basal dendritic arborization and dendritic spine pruning during the transition from late adolescence to early adulthood that were accompanied by differential expression of gene networks associated with neurodevelopment in control animals. In contrast, THC exposure disrupted the normal developmental process by inducing premature pruning of dendritic spines and allostatic atrophy of dendritic arborization in early adulthood. Surprisingly, there was minimal overlap of the developmental transcriptomes between THC- and vehicle-exposed rats. THC altered functional gene networks related to cell morphogenesis, dendritic development, and cytoskeleton organization. Marked developmental network disturbances were evident for epigenetic regulators with enhanced co-expression of chromatin- and dendrite-related genes in THC-treated animals. Dysregulated PFC co-expression networks common to both the THC-treated animals and patients with schizophrenia were enriched for cytoskeletal and neurite development. Overall, adolescent THC exposure altered the morphological and transcriptional trajectory of PFC pyramidal neurons, which could enhance vulnerability to psychiatric disorders.
Collapse
|
32
|
Barfield ET, Gourley SL. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci Biobehav Rev 2018; 95:535-558. [PMID: 30477984 PMCID: PMC6392187 DOI: 10.1016/j.neubiorev.2018.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The tropomyosin/tyrosine receptor kinase B (trkB) and glucocorticoid receptor (GR) regulate neuron structure and function and the hormonal stress response. Meanwhile, disruption of trkB and GR activity (e.g., by chronic stress) can perturb neuronal morphology in cortico-limbic regions implicated in stressor-related illnesses like depression. Further, several of the short- and long-term neurobehavioral consequences of stress depend on the developmental timing and context of stressor exposure. We review how the levels and activities of trkB and GR in the prefrontal cortex (PFC) change during development, interact, are modulated by stress, and are implicated in depression. We review evidence that trkB- and GR-mediated signaling events impact the density and morphology of dendritic spines, the primary sites of excitatory synapses in the brain, highlighting effects in adolescents when possible. Finally, we review the role of neurotrophin and glucocorticoid systems in stress-related metaplasticity. We argue that better understanding the long-term effects of developmental stressors on PFC trkB, GR, and related factors may yield insights into risk for chronic, remitting depression and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Graduate Program in Neuroscience, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA; Molecular and Systems Pharmacology Program, Emory University, 954 Gatewood Rd. NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
33
|
Qing W, Li F, Wang X, Quan C, Ouyang W, Liao Q. Inhibiting RIP1 Improves Chronic Stress-Induced Cognitive Impairments in D-Galactose-Induced Aging Mice. Front Behav Neurosci 2018; 12:234. [PMID: 30356849 PMCID: PMC6190884 DOI: 10.3389/fnbeh.2018.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence shows that chronic stress can affect both the structure and function of the brain resulting in decreased synaptic plasticity and cognitive dysfunction. Although several studies have indicated that aged brains are more vulnerable to chronic stress, it remains unknown how to prevent stress-induced memory deficits in aged animals. Neuroinflammation plays an important role in the pathogenesis of chronic stress-related brain dysfunction. Receptor-interacting protein 1 (RIP1) is a key molecule that can modulate inflammation, apoptosis, and necroptosis. Here, we investigated whether inhibiting RIP1 using necrostatin-1 during chronic stress could improve chronic stress-related brain dysfunction in D-galactose-induced aging mice. The stressed mice underwent restraint stress for 14 days. Necrostatin-1 (6.25 mg/kg) or vehicle was administered intraperitoneally once every 3 days during the stress period. Locomotor activity was tested using the open field test and cognitive function was assessed using the novel object recognition and Barnes maze tests. The hippocampus was collected to assess neuroinflammation (Iba1, IL-1α, IL-1β, TNF-α, and C1q), necroptosis [RIP1, RIP3, mixed lineage kinase domain-like (MLKL), and NF-κB], neuroplasticity (doublecortin, NR1, NR2A, NR2B, GluA1, and GluA2), and the expression of glucocorticoid and mineralocorticoid receptors. Blood samples were collected to quantify the levels of corticosterone. We found that chronic stress induced obvious memory impairment and neuroinflammation, decreased neurogenesis and GluA2 expression, and increased the expression of RIP1 and NF-κB. Inhibiting RIP1 by necrostatin-1 during chronic stress rescued the memory impairment and alleviated the pathological changes induced by stress. These suggest that inhibiting RIP1 using necrostatin-1 improves chronic stress-related brain dysfunction in D-galactose-induced aging mice. The potential mechanisms include limitation of neuroinflammation and the rescue of neurogenesis and GluA2 expression.
Collapse
Affiliation(s)
- Wenxiang Qing
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Li
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chengxuan Quan
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Xie H, Wall J, Wang X. Relationships in Ongoing Structural Maintenances of the Two Cerebral Cortices of an Individual Brain. J Exp Neurosci 2018; 12:1179069518795875. [PMID: 30202210 PMCID: PMC6122241 DOI: 10.1177/1179069518795875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
A human brain has separate left and right cerebral cortices, each of which must
be continuously structurally maintained during adulthood. There is no
understanding of how ongoing structural maintenances of separate parts of a
mature individual brain, including the 2 cortices, are related. To explore this
issue, this study used an unconventional N-of-1 magnetic resonance imaging
time-series paradigm to identify relationships between maintenances of
structural thicknesses of the 2 cortices in an adult human brain over week
intervals for 6 months. The results suggest that maintenances of left and right
cortical thicknesses were symmetrically related in some, but asymmetrically
related in other, respects. For matched times, thickness magnitudes and
variations on the 2 sides were positively correlated and appeared to reflect
maintenance symmetry. Maintenance relationships also extended from earlier to
later times with temporal continuity and apparent “if-then” contingencies which
were reflected in symmetry and asymmetry dynamics spanning 1- to 2-week periods.
The findings suggest concepts of individual brain cortical maintenance symmetry,
asymmetry, and temporal continuity dynamics that have not been previously
recognized. They have implications for defining cortical maintenance traits or
states and for development of N-of-1 precision medicine paradigms that can
contribute to understanding individual brain health.
Collapse
Affiliation(s)
- Hong Xie
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - John Wall
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Xin Wang
- William R. Bauer Human Brain MRI Laboratory and Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.,William R. Bauer Human Brain MRI Laboratory and Departments of Psychiatry and Radiology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
35
|
Casaletto KB, Staffaroni AM, Elahi F, Fox E, Crittenden PA, You M, Neuhaus J, Glymour M, Bettcher BM, Yaffe K, Kramer JH. Perceived Stress is Associated with Accelerated Monocyte/Macrophage Aging Trajectories in Clinically Normal Adults. Am J Geriatr Psychiatry 2018; 26:952-963. [PMID: 30017239 PMCID: PMC6108924 DOI: 10.1016/j.jagp.2018.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/01/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Chronic stress is associated with poorer age-related cognition, but the mechanisms of this relationship are not well understood. Aging increases expression of activated macrophages, leading to exacerbated immune responses to stressors. We examined the impact of stress and aging on macrophage-related inflammation and cognition in clinically normal adults. METHODS Three hundred eighty clinically normal adults were followed longitudinally (age M = 73 years; visit range: 1-8; M = 2.5 visits). Participants completed the Perceived Stress Scale, a neuropsychological battery, and blood draws. Plasma was analyzed for cytokines related to macrophage function (interleukin 6, tumor necrosis factor alpha, macrophage inflammatory protein-1 alpha, macrophage inflammatory protein-1 beta). Linear mixed-effects examined the effects of age, baseline stress, and their interaction predicting macrophage cytokines, adjusting for sex, education, and depressive symptoms. Latent growth curve models assessed the mediating role of macrophage cytokines in the relationship between age and cognition in high or low stress. RESULTS Baseline perceived stress interacted with age to predict macrophage cytokines longitudinally. Specifically, high-stress adults demonstrated accelerated age-related elevations in macrophage cytokines across time. Macrophage cytokines negatively tracked with executive functioning longitudinally. Macrophage cytokines mediated 19% of the relationship between age and executive function in high-stress, but not low-stress, adults. CONCLUSIONS Our data provide evidence of accelerated immune aging among individuals with high stress. Elevated macrophage cytokine trajectories mediated the effect of age on executive function only in individuals with high stress, suggesting these constructs may be more tightly linked in elevated stress contexts. Stress interventions are warranted to optimize immune aging, with possible downstream cognitive benefits among even clinically normal adults.
Collapse
|
36
|
Ross JA, Gliebus G, Van Bockstaele EJ. Stress induced neural reorganization: A conceptual framework linking depression and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:136-151. [PMID: 28803923 PMCID: PMC5809232 DOI: 10.1016/j.pnpbp.2017.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/29/2022]
Abstract
Chronic stress is a risk factor for a number of physiological disorders including cardiovascular disease, obesity and gastrointestinal disorders, as well as psychiatric and neurodegenerative disorders. There are a number of underlying molecular and cellular mechanisms altered in the course of chronic stress, which may increase the vulnerability of individuals to develop psychiatric disorders such as depression, and neurodegenerative disorders such as Alzheimer's Disease (AD). This is evident in the influence of stress on large-scale brain networks, including the resting state Default Mode Network (DMN), the effects of stress on neuronal circuitry and architecture, and the cellular and molecular adaptations to stress, which may render individuals with stress related psychiatric disorders more vulnerable to neurodegenerative disease later in life. These alterations include decreased negative feedback inhibition of the hypothalamic pituitary axis (HPA) axis, decreased dendritic arborization and spine density in the prefrontal cortex (PFC) and hippocampus, and the release of proinflammatory cytokines, which may suppress neurogenesis and promote neuronal cell death. Each of these factors are thought to play a role in stress-related psychiatric disease as well as AD, and have been observed in clinical and post-mortem studies of individuals with depression and AD. The goal of the current review is to summarize clinical and preclinical evidence supporting a role for chronic stress as a putative link between neuropsychiatric and neurodegenerative disease. Moreover, we provide a rationale for the importance of taking a medical history of stress-related psychiatric diseases into consideration during clinical trial design, as they may play an important role in the etiology of AD in stratified patient populations.
Collapse
Affiliation(s)
- Jennifer A. Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102
| | - Gediminas Gliebus
- Department of Neurology, Drexel Neuroscience Institute, Philadelphia, PA 19107
| | | |
Collapse
|
37
|
Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry 2018; 23:1614-1625. [PMID: 28761082 PMCID: PMC5794672 DOI: 10.1038/mp.2017.159] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
Stress, a prevalent experience in modern society, is a major risk factor for many psychiatric disorders. Although sensorimotor abnormalities are often present in these disorders, little is known about how stress affects the sensory cortex. Combining behavioral analyses with in vivo synaptic imaging, we show that stressful experiences lead to progressive, clustered loss of dendritic spines along the apical dendrites of layer (L) 5 pyramidal neurons (PNs) in the mouse barrel cortex, and such spine loss closely associates with deteriorated performance in a whisker-dependent texture discrimination task. Furthermore, the activity of parvalbumin-expressing inhibitory interneurons (PV+ INs) decreases in the stressed mouse due to reduced excitability of these neurons. Importantly, both behavioral defects and structural changes of L5 PNs are prevented by selective pharmacogenetic activation of PV+INs in the barrel cortex during stress. Finally, stressed mice raised under environmental enrichment (EE) maintain normal activation of PV+ INs, normal texture discrimination, and L5 PN spine dynamics similar to unstressed EE mice. Our findings suggest that the PV+ inhibitory circuit is crucial for normal synaptic dynamics in the mouse barrel cortex and sensory function. Pharmacological, pharmacogenetic and environmental approaches to prevent stress-induced maladaptive behaviors and synaptic malfunctions converge on the regulation of PV+ IN activity, pointing to a potential therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA,Correspondence: Dr. Yi Zuo, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA, , Phone: +1-831-459-3812, Fax: +1-831-459-3139
| |
Collapse
|
38
|
Chan TE, Grossman YS, Bloss EB, Janssen WG, Lou W, McEwen BS, Dumitriu D, Morrison JH. Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex. Front Aging Neurosci 2018; 10:146. [PMID: 29875653 PMCID: PMC5974224 DOI: 10.3389/fnagi.2018.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain.
Collapse
Affiliation(s)
- Thomas E. Chan
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Yael S. Grossman
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Erik B. Bloss
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - William G. Janssen
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, Department of Neuroscience, Rockefeller University, New York, NY, United States
| | - Dani Dumitriu
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - John H. Morrison
- Department of Neuroscience, The Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- California National Primate Research Center, Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
39
|
Ortiz JB, Conrad CD. The impact from the aftermath of chronic stress on hippocampal structure and function: Is there a recovery? Front Neuroendocrinol 2018; 49:114-123. [PMID: 29428548 DOI: 10.1016/j.yfrne.2018.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Chronic stress results in functional and structural changes to the brain and especially the hippocampus. Decades of research have provided insights into the mechanisms by which chronic stress impairs hippocampal-mediated cognition and the corresponding reduction of hippocampal CA3 apical dendritic complexity. Yet, when chronic stress ends and time passes, which we refer to as a "post-stress rest period," hippocampal-mediated spatial memory deficits begin to improve and CA3 apical dendritic arbors increase in complexity. The processes by which the hippocampus improves from a chronically stressed state are not simply the reversal of the mechanisms that produced spatial memory deficits and CA3 apical dendritic retraction. This review will discuss our current understanding of how a chronically stressed hippocampus improves after a post-stress rest period. Untangling the mechanisms that allow for this post-stress plasticity is a critical next step in understanding how to promote resilience in the face of stressors.
Collapse
Affiliation(s)
- J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
40
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
41
|
Macht VA, Reagan LP. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective. Front Neuroendocrinol 2018; 49:31-42. [PMID: 29258741 DOI: 10.1016/j.yfrne.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States.
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, United States; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, United States
| |
Collapse
|
42
|
Dong H, Keegan JM, Hong E, Gallardo C, Montalvo-Ortiz J, Wang B, Rice KC, Csernansky J. Corticotrophin releasing factor receptor 1 antagonists prevent chronic stress-induced behavioral changes and synapse loss in aged rats. Psychoneuroendocrinology 2018; 90:92-101. [PMID: 29477954 PMCID: PMC5864558 DOI: 10.1016/j.psyneuen.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/25/2018] [Accepted: 02/14/2018] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests that chronic stress can alter brain structure and function and promote the development of neuropsychiatric disorders, such as depression and Alzheimer's disease. Although the results of several studies have indicated that aged brains are more vulnerable to chronic stress, it remains unknown whether antagonists of a key stress regulator, the corticotrophin releasing factor receptor 1 (CRF1), can prevent stress-induced anxiety and memory deficits in animal models. In this study, we evaluated the potential benefits of two CRF1 antagonists, R121919 and antalarmin, for preventing stress-induced anxiety-related behavioral and memory deficits and neurodegeneration in aged rats. We stressed rats using isolation-restraint for 3 months starting from the 18 months of age. Subsets of animals were administrated either R121919 or antalarmin through food chow for 3 months, followed by a series of behavioral, biochemical and morphological analyses. We found that stressed aged rats displayed body weight losses and increased corticosterone levels, as well as anxiety-related behaviors and memory deficits. Additionally, chronic stress induced a loss of cortical dendritic spines and synapses. However, R121919 and antalarmin both prevented stress-induced behavioral changes including anxiety-related behaviors and memory deficits and prevented synapse loss, perhaps through reversing HPA axis dysfunction. These results suggest that CRF1 antagonists may hold promise as a potential therapy for preventing stress-induced anxiety and memory deficits in aged individuals.
Collapse
Affiliation(s)
- Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | - Jack M Keegan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Ellie Hong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Christopher Gallardo
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Janitza Montalvo-Ortiz
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Becky Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Kenner C. Rice
- National Institute on Drug Abuse, and National Institute Alcohol Abuse and Alcoholism Intramural Research Program, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - John Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Dario MFR, Sara T, Estela CO, Margarita PM, Guillermo ET, Fernando RDF, Javier SL, Carmen P. Stress, Depression, Resilience and Ageing: A Role for the LPA-LPA1 Pathway. Curr Neuropharmacol 2018; 16:271-283. [PMID: 28699486 PMCID: PMC5843979 DOI: 10.2174/1570159x15666170710200352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Chronic stress affects health and the quality of life, with its effects being particularly relevant in ageing due to the psychobiological characteristics of this population. However, while some people develop psychiatric disorders, especially depression, others seem very capable of dealing with adversity. There is no doubt that along with the identification of neurobiological mechanisms involved in developing depression, discovering which factors are involved in positive adaptation under circumstances of extreme difficulty will be crucial for promoting resilience. METHODS Here, we review recent work in our laboratory, using an animal model lacking the LPA1 receptor, together with pharmacological studies and clinical evidence for the possible participation of the LPA1 receptor in mood and resilience to stress. RESULTS Substantial evidence has shown that the LPA1 receptor is involved in emotional regulation and in coping responses to chronic stress, which, if dysfunctional, may induce vulnerability to stress and predisposition to the development of depression. Given that there is commonality of mechanisms between those involved in negative consequences of stress and in ageing, this is not surprising, considering that the LPA1 receptor may be involved in coping with adversity during ageing. CONCLUSION Alterations in this receptor may be a susceptibility factor for the presence of depression and cognitive deficits in the elderly population. However, because this is only a promising hypothesis based on previous data, future studies should focus on the involvement of the LPA-LPA1 pathway in coping with stress and resilience in ageing.
Collapse
Affiliation(s)
- Moreno-Fernández Román Dario
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Tabbai Sara
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Castilla-Ortega Estela
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Pérez-Martín Margarita
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de
Málaga; Málaga 29071, Spain
| | - Estivill-Torrús Guillermo
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitarios de Málaga, Málaga, Spain
| | - Rodríguez de Fonseca Fernando
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga; Málaga 29010, Spain
| | - Santin Luis Javier
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| | - Pedraza Carmen
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga; Málaga 29071, Spain
| |
Collapse
|
44
|
Sampedro-Piquero P, Álvarez-Suárez P, Begega A. Coping with Stress During Aging: The Importance of a Resilient Brain. Curr Neuropharmacol 2018; 16:284-296. [PMID: 28925881 PMCID: PMC5843980 DOI: 10.2174/1570159x15666170915141610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/12/2017] [Accepted: 01/01/1970] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Resilience is the ability to achieve a positive outcome when we are in the face of adversity. It supposes an active resistance to adversity by coping mechanisms in which genetic, molecular, neural and environmental factors are involved. Resilience has been usually studied in early ages and few is known about it during aging. METHODS In this review, we will address the age-related changes in the brain mechanisms involved in regulating the stress response. Furthermore, using the EE paradigm, we analyse the resilient potential of this intervention and its neurobiological basis. In this case, we will focus on identifying the characteristics of a resilient brain (modifications in HPA structure and function, neurogenesis, specific neuron types, glia, neurotrophic factors, nitric oxide synthase or microRNAs, among others). RESULTS The evidence suggests that a healthy lifestyle has a crucial role to promote a resilient brain during aging. Along with the behavioral changes described, a better regulation of HPA axis, enhanced levels of postmitotic type-3 cells or changes in GABAergic neurotransmission are some of the brain mechanisms involved in resilience. CONCLUSION Future research should identify different biomarkers that increase the resistance to develop mood disorders and based on this knowledge, develop new potential therapeutic targets.
Collapse
Affiliation(s)
- P. Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las CC, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Spain
| | - P. Álvarez-Suárez
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| | - A. Begega
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| |
Collapse
|
45
|
Wheelan N, Kenyon CJ, Harris AP, Cairns C, Al Dujaili E, Seckl JR, Yau JL. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids. Psychoneuroendocrinology 2018; 89:13-22. [PMID: 29306773 PMCID: PMC5890827 DOI: 10.1016/j.psyneuen.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Christopher J. Kenyon
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Anjanette P. Harris
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Emad Al Dujaili
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Jonathan R. Seckl
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Joyce L.W. Yau
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom,Corresponding author at: Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| |
Collapse
|
46
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
47
|
Nava N, Treccani G, Alabsi A, Kaastrup Mueller H, Elfving B, Popoli M, Wegener G, Nyengaard JR. Temporal Dynamics of Acute Stress-Induced Dendritic Remodeling in Medial Prefrontal Cortex and the Protective Effect of Desipramine. Cereb Cortex 2018; 27:694-705. [PMID: 26523035 DOI: 10.1093/cercor/bhv254] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Stressful events are associated with increased risk of mood disorders. Volumetric reductions have been reported in brain areas critical for the stress response, such as medial prefrontal cortex (mPFC), and dendritic remodeling has been proposed as an underlying factor. Here, we investigated the time-dependent effects of acute stress on dendritic remodeling within the prelimbic (PL) region of the PFC, and whether treatment with the antidepressant desipramine (DMI) may interfere. Rodents were subjected to foot-shock stress: dendritic length and spine density were analyzed 1 day, 7 days, and 14 days after stress. Acute stress produced increased spine density and decreased cofilin phosphorylation at 1 day, paralleled with dendritic retraction. An overall shift in spine population was observed at 1 day, resulting in a stress-induced increase in small spines. Significant atrophy of apical dendrites was observed at 1 day, which was prevented by chronic DMI, and at 14 days after stress exposure. Chronic DMI resulted in dendritic elaboration at 7 days but did not prevent the effects of FS-stress. Collectively, these data demonstrate that 1) acute stressors may induce rapid and sustained changes of PL neurons; and 2) chronic DMI may protect neurons from rapid stress-induced synaptic changes.
Collapse
Affiliation(s)
- Nicoletta Nava
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus C 8000, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark.,Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan 20133, Italy
| | - Abdelrahman Alabsi
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging,Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Heidi Kaastrup Mueller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan 20133, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov 8240, Denmark.,Pharmaceutical Research Center of Excellence, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging,Aarhus University Hospital, Aarhus C 8000, Denmark
| |
Collapse
|
48
|
Wall J, Xie H, Wang X. An Exploration Into Short-Interval Maintenance of Adult Hemispheric Cortical Thickness at an Individual Brain Level. J Exp Neurosci 2017; 11:1179069517733453. [PMID: 28989284 PMCID: PMC5624352 DOI: 10.1177/1179069517733453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
Adult cerebral cortical structure is thought to be statically maintained over short intervals. This view is based on group average findings but has never been studied at the individual level. This issue was examined with an unconventional longitudinal magnetic resonance imaging design which measured hemispheric mean cortical thickness of an adult man repeatedly at week intervals over 6 months. These measures were compared with measurement error estimates to test the current prediction that thickness measures would be statically maintained within measurement error variation. The results did not support this prediction. Thickness underwent incremental and decremental fluctuations which ranged up to 0.12 mm and 5.83% over week and multiweek intervals and which differed from measurement error variation. These exploratory analyses suggest a working hypothesis that short-interval cortical structural maintenance in an individual can involve fluctuations in thickness. If confirmed, this hypothesis has potential implications for cortical maintenance mechanisms and precision medicine approaches.
Collapse
Affiliation(s)
- John Wall
- William R. Bauer Human Brain MRI Laboratory, Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Hong Xie
- William R. Bauer Human Brain MRI Laboratory, Department of Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Xin Wang
- William R. Bauer Human Brain MRI Laboratory, Departments of Psychiatry, Radiology, and Neurosciences, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
49
|
McEwen BS. Epigenetic Interactions and the Brain-Body Communication. PSYCHOTHERAPY AND PSYCHOSOMATICS 2017; 86:1-4. [PMID: 27884000 DOI: 10.1159/000449150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
50
|
Moench KM, Wellman CL. Differential dendritic remodeling in prelimbic cortex of male and female rats during recovery from chronic stress. Neuroscience 2017; 357:145-159. [PMID: 28596115 PMCID: PMC5555043 DOI: 10.1016/j.neuroscience.2017.05.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Chronic stress produces differential dendritic remodeling of pyramidal neurons in medial prefrontal cortex of male and female rats. In males, this dendritic remodeling is reversible. However, the timeline of recovery, as well as the potential for reversibility in females, is unknown. Here, we examined dendritic recovery of pyramidal neurons in layer II-II of prelimbic cortex in male and female rats following chronic restraint stress (3h/day for 10days). Dendritic morphology and spine density were analyzed immediately following the cessation of stress, or following a 7- or 10-day recovery period. Chronic stress produced apical dendritic retraction in males, which was coupled with a decrease in the density of stubby spine on apical dendrites. Further, following a 10-day recovery period, the morphology of neurons from stressed rats resembled that of unstressed rats. Male rats given a 7-day recovery period had apical dendritic outgrowth compared to unstressed rats. Immediately after cessation of stress, females showed only minimal dendritic remodeling. The morphology of neurons in stressed females resembled those of unstressed rats following only 7days of recovery, at which time there was also a significant increase in stubby spine density. Males and females also showed different changes in baseline corticosterone concentrations during recovery. These findings not only indicate that dendritic remodeling in prelimbic cortex following chronic stress is different between males and females, but also suggest chronic stress induces differential hypothalamic-pituitary-adrenal axis dysregulation in males and females. These differences may have important implications for responses to subsequent stressors.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|