1
|
Matera A, Compagnion AC, Pedicone C, Kotah JM, Ivanov A, Monsorno K, Labouèbe G, Leggio L, Pereira-Iglesias M, Beule D, Mansuy-Aubert V, Williams TL, Iraci N, Sierra A, Marro SG, Goate AM, Eggen BJL, Kerr WG, Paolicelli RC. Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus. Immunity 2025; 58:197-217.e13. [PMID: 39657671 DOI: 10.1016/j.immuni.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Pedicone
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Barrio Sarriena s/n, Leioa, Spain
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Barrio Sarriena, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain
| | - Samuele G Marro
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William G Kerr
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Ibiayo AG, Yang LZ, Liu IY. The role of netrin G1-netrin-G-ligand-1 in schizophrenia. Tzu Chi Med J 2025; 37:1-9. [PMID: 39850395 PMCID: PMC11753516 DOI: 10.4103/tcmj.tcmj_83_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/11/2024] [Accepted: 06/20/2024] [Indexed: 01/25/2025] Open
Abstract
Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ. This review article emphasized the structure and expression of Netrin G1/NGL-1 in the brain, its dysregulation in SCZ patients, and its role in synaptic plasticity, synaptic interaction, learning and memory, microglia neurotrophic activity, and possible signaling between Netrin G1/NGL-1, postsynaptic density protein 95, and cyclin-dependent kinase-like 5 in synaptic morphogenesis. Pharmaceutical targets and the potential use of Netrin G1/NGL-1 as treatment targets or biomarkers for SCZ were also discussed.
Collapse
Affiliation(s)
| | - Luo-Zhu Yang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Zhang Q, Fujita M. Why nature evolved GPI-anchored proteins: unique structure characteristics enable versatile cell surface functions. Glycobiology 2024; 34:cwae089. [PMID: 39530348 PMCID: PMC11632373 DOI: 10.1093/glycob/cwae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
It remains a mystery why nature evolved the unique structural characteristics of GPI-anchored proteins (GPI-APs) and continues to sustain the complex, energy-intensive process of synthesizing these proteins. GPI-APs, despite their small size, rely on the coordinated activity of nearly 30 genes for their synthesis and remodeling, raising important evolutionary questions. The biological advantages of GPI-APs lie in their ability to rapidly redistribute across the cell membrane, localize within lipid rafts, utilize unique intracellular trafficking pathways, and function as both membrane-bound and soluble proteins. These properties allow GPI-APs to participate in diverse cellular processes such as synaptic plasticity, immune regulation, and signal transduction, highlighting their indispensable roles. Additionally, the shedding capability of GPI-APs extends their functional reach, adding further versatility to their biological roles. This review not only summarizes these key insights but also explores the broader implications of GPI-APs in cell signaling and disease. By understanding the evolutionary necessity of GPI-APs, we can better appreciate their complexity and potential as therapeutic targets.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 305-8577, Japan
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Kittke V, Zhao C, Lam DD, Harrer P, Krezel W, Schormair B, Oexle K, Winkelmann J. RLS-associated MEIS transcription factors control distinct processes in human neural stem cells. Sci Rep 2024; 14:28986. [PMID: 39578497 PMCID: PMC11584712 DOI: 10.1038/s41598-024-80266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
MEIS1 and MEIS2 encode highly conserved homeodomain transcription factors crucial for developmental processes in a wide range of tissues, including the brain. They can execute redundant functions when co-expressed in the same cell types, but their roles during early stages of neural differentiation have not been systematically compared. By separate knockout and overexpression of MEIS1 and MEIS2 in human neural stem cells, we find they control specific sets of target genes, associated with distinct biological processes. Integration of DNA binding sites with differential transcriptomics implicates MEIS1 to co-regulate gene expression by interaction with transcription factors of the SOX and FOX families. MEIS1 harbors the strongest risk factor for restless legs syndrome (RLS). Our data suggest that MEIS1 can directly regulate the RLS-associated genes NTNG1, MDGA1 and DACH1, constituting new approaches to study the elusive pathomechanism or RLS.
Collapse
Affiliation(s)
- Volker Kittke
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Philip Harrer
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany.
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- DZPG (German Center for Mental Health), Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
5
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
6
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Gao X, Ye J, Huang X, Huang S, Luo W, Zeng D, Li S, Tang M, Mai R, Li Y, Lin Y, Liang R. Research progress of the netrins and their receptors in cancer. J Cell Mol Med 2024; 28:e18241. [PMID: 38546656 PMCID: PMC10977403 DOI: 10.1111/jcmm.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 11/12/2024] Open
Abstract
Netrins, a family of secreted and membrane-associated proteins, can regulate axonal guidance, morphogenesis, angiogenesis, cell migration, cell survival, and tumorigenesis. Four secreted netrins (netrin 1, 3, 4 and 5) and two glycosylphosphatidylinositols-anchored membrane proteins, netrin-G1 and G2, have been identified in mammals. Netrins and their receptors can serve as a biomarker and molecular therapeutic target for pathological differentiation, diagnosis and prognosis of malignant cancers. We review here the potential roles of the netrins family and their receptors in cancer.
Collapse
Affiliation(s)
- Xing Gao
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Jiazhou Ye
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Xi Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shilin Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Wenfeng Luo
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Dandan Zeng
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shizhou Li
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Minchao Tang
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rongyun Mai
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yongqiang Li
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yan Lin
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rong Liang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| |
Collapse
|
8
|
Green MV, Gallegos DA, Boua JV, Bartelt LC, Narayanan A, West AE. Single-Nucleus Transcriptional Profiling of GAD2-Positive Neurons From Mouse Lateral Habenula Reveals Distinct Expression of Neurotransmission- and Depression-Related Genes. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:686-697. [PMID: 37881543 PMCID: PMC10593960 DOI: 10.1016/j.bpsgos.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 10/27/2023] Open
Abstract
Background Glutamatergic projection neurons of the lateral habenula (LHb) drive behavioral state modulation by regulating the activity of midbrain monoaminergic neurons. Identifying circuit mechanisms that modulate LHb output is of interest for understanding control of motivated behaviors. Methods A small population of neurons within the medial subnucleus of the mouse LHb express the GABAergic (gamma-aminobutyric acidergic)-synthesizing enzyme GAD2, and they can inhibit nearby LHb projection neurons; however, these neurons lack markers of classic inhibitory interneurons, and they coexpress the vesicular glutamate transporter VGLUT2. To determine the molecular phenotype of these neurons, we genetically tagged the nuclei of GAD2-positive cells and used fluorescence-activated nuclear sorting to isolate and enrich these nuclei for single-nucleus RNA sequencing. Results Our data confirm that GAD2+/VGLUT2+ neurons intrinsic to the LHb coexpress markers of both glutamatergic and GABAergic transmission and that they are transcriptionally distinct from either GABAergic interneurons or habenular glutamatergic neurons. We identify gene expression programs within these cells that show sex-specific differences in expression and that are implicated in major depressive disorder, which has been linked to LHb hyperactivity. Finally, we identify the Ntng2 gene encoding the cell adhesion protein netrin-G2 as a marker of LHb GAD2+/VGLUT2+ neurons and a gene product that may contribute to their target projections. Conclusions These data show the value of using genetic enrichment of rare cell types for transcriptome studies, and they advance understanding of the molecular composition of a functionally important class of GAD2+ neurons in the LHb.
Collapse
Affiliation(s)
- Matthew V. Green
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | | | | - Luke C. Bartelt
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Arthy Narayanan
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Anne E. West
- Department of Neurobiology, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
10
|
Hale WD, Südhof TC, Huganir RL. Engineered adhesion molecules drive synapse organization. Proc Natl Acad Sci U S A 2023; 120:e2215905120. [PMID: 36638214 PMCID: PMC9934208 DOI: 10.1073/pnas.2215905120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/04/2022] [Indexed: 01/15/2023] Open
Abstract
In multicellular organisms, cell-adhesion molecules connect cells into tissues and mediate intercellular signaling between these cells. In vertebrate brains, synaptic cell-adhesion molecules (SAMs) guide the formation, specification, and plasticity of synapses. Some SAMs, when overexpressed in cultured neurons or in heterologous cells co-cultured with neurons, drive formation of synaptic specializations onto the overexpressing cells. However, genetic deletion of the same SAMs from neurons often has no effect on synapse numbers, but frequently severely impairs synaptic transmission, suggesting that most SAMs control the function and plasticity of synapses (i.e., organize synapses) instead of driving their initial establishment (i.e., make synapses). Since few SAMs were identified that mediate initial synapse formation, it is difficult to develop methods that enable experimental control of synaptic connections by targeted expression of these SAMs. To overcome this difficulty, we engineered novel SAMs from bacterial proteins with no eukaryotic homologues that drive synapse formation. We named these engineered adhesion proteins "Barnoligin" and "Starexin" because they were assembled from parts of Barnase and Neuroligin-1 or of Barstar and Neurexin3β, respectively. Barnoligin and Starexin robustly induce the formation of synaptic specializations in a specific and directional manner in cultured neurons. Synapse formation by Barnoligin and Starexin requires both their extracellular Barnase- and Barstar-derived interaction domains and their Neuroligin- and Neurexin-derived intracellular signaling domains. Our findings support a model of synapse formation whereby trans-synaptic interactions by SAMs drive synapse organization via adhesive interactions that activate signaling cascades.
Collapse
Affiliation(s)
- W. Dylan Hale
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
11
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
12
|
A role for axon-glial interactions and Netrin-G1 signaling in the formation of low-threshold mechanoreceptor end organs. Proc Natl Acad Sci U S A 2022; 119:e2210421119. [PMID: 36252008 PMCID: PMC9618144 DOI: 10.1073/pnas.2210421119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-threshold mechanoreceptors (LTMRs) and their cutaneous end organs convert light mechanical forces acting on the skin into electrical signals that propagate to the central nervous system. In mouse hairy skin, hair follicle-associated longitudinal lanceolate complexes, which are end organs comprising LTMR axonal endings that intimately associate with terminal Schwann cell (TSC) processes, mediate LTMR responses to hair deflection and skin indentation. Here, we characterized developmental steps leading to the formation of Aβ rapidly adapting (RA)-LTMR and Aδ-LTMR lanceolate complexes. During early postnatal development, Aβ RA-LTMRs and Aδ-LTMRs extend and prune cutaneous axonal branches in close association with nascent TSC processes. Netrin-G1 is expressed in these developing Aβ RA-LTMR and Aδ-LTMR lanceolate endings, and Ntng1 ablation experiments indicate that Netrin-G1 functions in sensory neurons to promote lanceolate ending elaboration around hair follicles. The Netrin-G ligand (NGL-1), encoded by Lrrc4c, is expressed in TSCs, and ablation of Lrrc4c partially phenocopied the lanceolate complex deficits observed in Ntng1 mutants. Moreover, NGL-1-Netrin-G1 signaling is a general mediator of LTMR end organ formation across diverse tissue types demonstrated by the fact that Aβ RA-LTMR endings associated with Meissner corpuscles and Pacinian corpuscles are also compromised in the Ntng1 and Lrrc4c mutant mice. Thus, axon-glia interactions, mediated in part by NGL-1-Netrin-G1 signaling, promote LTMR end organ formation.
Collapse
|
13
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
14
|
Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Rep 2021; 31:107580. [PMID: 32348754 DOI: 10.1016/j.celrep.2020.107580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, accumulate along subcerebral projection axons and support neuronal survival during the early postnatal period. It remains unknown how microglia follow an axon-specific distribution pattern to maintain neural circuits. Here, we investigated the mechanisms of microglial accumulation along subcerebral projection axons that were necessary for microglial accumulation in the internal capsule. Screening of molecules involved in this accumulation of microglia to axons of layer V cortical neurons identified netrin-G1, a member of the netrin family of axon guidance molecules with a glycosyl-phosphatidylinositol anchor. Deletion or knockdown of the netrin-G1 gene Ntng1 reduced microglial accumulation and caused loss of cortical neurons. Netrin-G1 ligand-Ngl1 knockout-mice-derived microglia showed reduced accumulation along the axons compared with wild-type microglia. Thus, microglia accumulate around the subcerebral projection axons via NGL1-netrin-G1 signaling and support neuronal survival. Our observations unveil bidirectional neurotrophic interactions between neurons and microglia.
Collapse
|
15
|
Kandasamy LC, Tsukamoto M, Banov V, Tsetsegee S, Nagasawa Y, Kato M, Matsumoto N, Takeda J, Itohara S, Ogawa S, Young LJ, Zhang Q. Limb-clasping, cognitive deficit and increased vulnerability to kainic acid-induced seizures in neuronal glycosylphosphatidylinositol deficiency mouse models. Hum Mol Genet 2021; 30:758-770. [PMID: 33607654 PMCID: PMC8161520 DOI: 10.1093/hmg/ddab052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022] Open
Abstract
Posttranslational modification of a protein with glycosylphosphatidylinositol (GPI) is a conserved mechanism exists in all eukaryotes. Thus far, >150 human GPI-anchored proteins have been discovered and ~30 enzymes have been reported to be involved in the biosynthesis and maturation of mammalian GPI. Phosphatidylinositol glycan biosynthesis class A protein (PIGA) catalyzes the very first step of GPI anchor biosynthesis. Patients carrying a mutation of the PIGA gene usually suffer from inherited glycosylphosphatidylinositol deficiency (IGD) with intractable epilepsy and intellectual developmental disorder. We generated three mouse models with PIGA deficits specifically in telencephalon excitatory neurons (Ex-M-cko), inhibitory neurons (In-M-cko) or thalamic neurons (Th-H-cko), respectively. Both Ex-M-cko and In-M-cko mice showed impaired long-term fear memory and were more susceptible to kainic acid-induced seizures. In addition, In-M-cko demonstrated a severe limb-clasping phenotype. Hippocampal synapse changes were observed in Ex-M-cko mice. Our Piga conditional knockout mouse models provide powerful tools to understand the cell-type specific mechanisms underlying inherited GPI deficiency and to test different therapeutic modalities.
Collapse
Affiliation(s)
- Lenin C Kandasamy
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mina Tsukamoto
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Vitaliy Banov
- Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Institute of Neuroinformatics, University of Zürich, ETH Zürich, Zürich 8057, Switzerland
| | - Sambuu Tsetsegee
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Junji Takeda
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Larry J Young
- Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Qi Zhang
- Laboratory of Social Neural Networks, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan.,Laboratory for Behavioral Genetics, CBS, RIKEN, Wako 351-0198, Japan.,Faculty of Human Sciences, Center for Social Neural Networks, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
16
|
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Curr Top Dev Biol 2021; 142:319-370. [PMID: 33706921 DOI: 10.1016/bs.ctdb.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptic connectivity patterns underlie brain functions. How recognition molecules control where and when neurons form synapses with each other, therefore, is a fundamental question of cellular neuroscience. This chapter delineates adhesion and signaling complexes as well as secreted factors that contribute to synaptic partner recognition in the vertebrate brain. The sections follow a developmental perspective and discuss how recognition molecules (1) guide initial synaptic wiring, (2) provide for the rejection of incorrect partner choices, (3) contribute to synapse specification, and (4) support the removal of inappropriate synapses once formed. These processes involve a rich repertoire of molecular players and key protein families are described, notably the Cadherin and immunoglobulin superfamilies, Semaphorins/Plexins, Leucine-rich repeat containing proteins, and Neurexins and their binding partners. Molecular themes that diversify these recognition systems are defined and highlighted throughout the text, including the neuron-type specific expression and combinatorial action of recognition factors, alternative splicing, and post-translational modifications. Methodological innovations advancing the field such as proteomic approaches and single cell expression studies are additionally described. Further, the chapter highlights the importance of choosing an appropriate brain region to analyze synaptic recognition factors and the advantages offered by laminated structures like the hippocampus or retina. In a concluding section, the profound disease relevance of aberrant synaptic recognition for neurodevelopmental and psychiatric disorders is discussed. Based on the current progress, an outlook is presented on research goals that can further advance insights into how recognition molecules provide for the astounding precision and diversity of synaptic connections.
Collapse
Affiliation(s)
| | - Katherine Watters
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States; Neuroscience Graduate Program, Tufts University School of Medicine, Boston, MA, United States
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
18
|
Objective detection of microtremors in netrin-G2 knockout mice. J Neurosci Methods 2021; 351:109074. [PMID: 33450333 DOI: 10.1016/j.jneumeth.2021.109074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Essential tremor is the most prevalent movement disorder and is thought to be caused by abnormalities in the cerebellar system; however, its underlying neural mechanism is poorly understood. In this study, we found that mice lacking netrin-G2, a cell adhesion molecule which is expressed in neural circuits related to the cerebellar system, exhibited a microtremor resembling an essential tremor. However, it was difficult to quantify microtremors in netrin-G2 KO mice. NEW METHOD We developed a new tremor detector which can quantify the intensity and frequency of a tremor. RESULTS Using this system, we were able to characterize both the microtremors in netrin-G2 KO mice and low-dose harmaline-induced tremors which, to date, had been difficult to detect. Alcohol and anti-tremor drugs, which are effective in decreasing the symptoms of essential tremor in patients, were examined in netrin-G2 KO mice. We found that some drugs lowered the tremor frequency, but had little effect on tremor intensity. Forced swim as a stress stimulus in netrin-G2 KO mice dramatically enhanced tremor symptoms. COMPARISON WITH EXISTING METHODS The detection performance even for tremors induced by low-dose harmaline was similar to that in previous studies or more sensitive than the others. CONCLUSIONS Microtremors in netrin-G2 KO mice are reliably and quantitatively detected by our new tremor detection system. We found different effects of medicines and factors between human essential tremors and microtremors in netrin-G2 KO mice, suggesting that the causations, mechanisms, and symptoms of tremors vary and are heterogeneous, and the objective analyses are required.
Collapse
|
19
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
20
|
Chen S, Wang J, Cicek E, Roeder K, Yu H, Devlin B. De novo missense variants disrupting protein-protein interactions affect risk for autism through gene co-expression and protein networks in neuronal cell types. Mol Autism 2020; 11:76. [PMID: 33032641 PMCID: PMC7545940 DOI: 10.1186/s13229-020-00386-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Whole-exome sequencing studies have been useful for identifying genes that, when mutated, affect risk for autism spectrum disorder (ASD). Nonetheless, the association signal primarily arises from de novo protein-truncating variants, as opposed to the more common missense variants. Despite their commonness in humans, determining which missense variants affect phenotypes and how remains a challenge. We investigate the functional relevance of de novo missense variants, specifically whether they are likely to disrupt protein interactions, and nominate novel genes in risk for ASD through integrated genomic, transcriptomic, and proteomic analyses. METHODS Utilizing our previous interactome perturbation predictor, we identify a set of missense variants that are likely disruptive to protein-protein interactions. For genes encoding the disrupted interactions, we evaluate their expression patterns across developing brains and within specific cell types, using both bulk and inferred cell-type-specific brain transcriptomes. Connecting all disrupted pairs of proteins, we construct an "ASD disrupted network." Finally, we integrate protein interactions and cell-type-specific co-expression networks together with published association data to implicate novel genes in ASD risk in a cell-type-specific manner. RESULTS Extending earlier work, we show that de novo missense variants that disrupt protein interactions are enriched in individuals with ASD, often affecting hub proteins and disrupting hub interactions. Genes encoding disrupted complementary interactors tend to be risk genes, and an interaction network built from these proteins is enriched for ASD proteins. Consistent with other studies, genes identified by disrupted protein interactions are expressed early in development and in excitatory and inhibitory neuronal lineages. Using inferred gene co-expression for three neuronal cell types-excitatory, inhibitory, and neural progenitor-we implicate several hundred genes in risk (FDR [Formula: see text]0.05), ~ 60% novel, with characteristics of genuine ASD genes. Across cell types, these genes affect neuronal morphogenesis and neuronal communication, while neural progenitor cells show strong enrichment for development of the limbic system. LIMITATIONS Some analyses use the imperfect guilt-by-association principle; results are statistical, not functional. CONCLUSIONS Disrupted protein interactions identify gene sets involved in risk for ASD. Their gene expression during brain development and within cell types highlights how they relate to ASD.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15213, USA
| | - Ercument Cicek
- Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kathryn Roeder
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
22
|
Regulation of Synaptic Development by Astrocyte Signaling Factors and Their Emerging Roles in Substance Abuse. Cells 2020; 9:cells9020297. [PMID: 31991879 PMCID: PMC7072591 DOI: 10.3390/cells9020297] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes have critical functions throughout the central nervous system (CNS) and have emerged as regulators of synaptic development and function. With their highly complex morphologies, they are able to interact with thousands of synapses via peripheral astrocytic processes (PAPs), ensheathing neuronal axons and dendrites to form the tripartite synapse. In this way, astrocytes engage in crosstalk with neurons to mediate a variety of CNS processes including the regulation of extracellular matrix protein signaling, formation and maintenance of the blood-brain barrier (BBB), axon growth and guidance, homeostasis of the synaptic microenvironment, synaptogenesis, and the promotion of synaptic diversity. In this review, we discuss several key astrocyte signaling factors (thrombospondins, netrins, apolipoproteins, neuregulins, bone morphogenetic proteins, and neuroligins) in the maintenance and regulation of synapse formation. We also explore how these astrocyte signaling factors are impacted by and contribute to substance abuse, particularly alcohol and cocaine use.
Collapse
|
23
|
Dias CM, Punetha J, Zheng C, Mazaheri N, Rad A, Efthymiou S, Petersen A, Dehghani M, Pehlivan D, Partlow JN, Posey JE, Salpietro V, Gezdirici A, Malamiri RA, Al Menabawy NM, Selim LA, Vahidi Mehrjardi MY, Banu S, Polla DL, Yang E, Rezazadeh Varaghchi J, Mitani T, van Beusekom E, Najafi M, Sedaghat A, Keller-Ramey J, Durham L, Coban-Akdemir Z, Karaca E, Orlova V, Schaeken LLM, Sherafat A, Jhangiani SN, Stanley V, Shariati G, Galehdari H, Gleeson JG, Walsh CA, Lupski JR, Seiradake E, Houlden H, van Bokhoven H, Maroofian R. Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. Am J Hum Genet 2019; 105:1048-1056. [PMID: 31668703 PMCID: PMC6849109 DOI: 10.1016/j.ajhg.2019.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.
Collapse
Affiliation(s)
- Caroline M Dias
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Céline Zheng
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran; Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, 009851, Iran; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Andrea Petersen
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Mohammadreza Dehghani
- Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, 34303, Turkey
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6163764648, Iran
| | - Nihal M Al Menabawy
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | - Laila A Selim
- Pediatric Neurology and Metabolic Division, Cairo University Children Hospital, Egypt
| | | | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Daniel L Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands; CAPES Foundation, Ministry of Education of Brazil, 549 Brasília, Brazil
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ellen van Beusekom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Leslie Durham
- Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Valeria Orlova
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lieke L M Schaeken
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Amir Sherafat
- Department of Neurology, Faculty of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, 6155689467, Iran; Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6135783151, Iran
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
24
|
Choi Y, Park H, Kang S, Jung H, Kweon H, Kim S, Choi I, Lee SY, Choi YE, Lee SH, Kim E. NGL-1/LRRC4C-Mutant Mice Display Hyperactivity and Anxiolytic-Like Behavior Associated With Widespread Suppression of Neuronal Activity. Front Mol Neurosci 2019; 12:250. [PMID: 31680855 PMCID: PMC6798069 DOI: 10.3389/fnmol.2019.00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c–/–) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Suwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ilsong Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Ye-Eun Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| |
Collapse
|
25
|
Reduced gene expression of netrin family members in skin and sural nerve specimens of patients with painful peripheral neuropathies. J Neurol 2019; 266:2812-2820. [PMID: 31392393 DOI: 10.1007/s00415-019-09496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the expression of axon guidance cues in skin and sural nerve biopsies of patients with polyneuropathies (PNP) as potential markers of nerve de- and regeneration and inflammation. METHODS We prospectively recruited 88 patients with PNP and compared data between patient subgroups and healthy controls. All patients underwent skin punch and/or sural nerve biopsy at the lower leg and proximal thigh. We characterized gene expression profiles of netrin family members as target genes involved in neuronal de- and regeneration [netrin 1, deleted in colorectal cancer (DCC), uncoordinated5H2, neogenin 1 (NEO1), netrin G1, netrin G2] using quantitative real-time PCR. RESULTS Gene expression of netrin 1 (p < 0.05 in proximal skin), DCC (p < 0.001 in distal skin), NEO1 (p < 0.05 in distal skin), netrin G1 (p < 0.05 in proximal and p < 0.01 in distal skin), and netrin G2 (p < 0.001 in distal skin) was lower in skin biopsies of patients with neuropathy compared to healthy controls. Gene expression of NEO1 (p < 0.05 in distal skin), netrin G2 (p < 0.05 in distal skin), and DCC (p < 0.05 in sural nerve) was lower in samples of patients with painful compared to painless PNP and also correlated positively with intraepidermal nerve fiber density. Skin and sural nerve gene expression of the investigated target genes did not differ between neuropathies of different etiologies. CONCLUSION We show reduced cutaneous and neural axon guide expression, which may contribute to a dysregulation of nerve fiber de- and regeneration.
Collapse
|
26
|
Homozygous frameshift variant in NTNG2, encoding a synaptic cell adhesion molecule, in individuals with developmental delay, hypotonia, and autistic features. Neurogenetics 2019; 20:209-213. [DOI: 10.1007/s10048-019-00583-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/24/2022]
|
27
|
Lee H, Shin W, Kim K, Lee S, Lee EJ, Kim J, Kweon H, Lee E, Park H, Kang M, Yang E, Kim H, Kim E. NGL-3 in the regulation of brain development, Akt/GSK3b signaling, long-term depression, and locomotive and cognitive behaviors. PLoS Biol 2019; 17:e2005326. [PMID: 31166939 PMCID: PMC6550391 DOI: 10.1371/journal.pbio.2005326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3−/− mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3−/− mice, and the Akt/glycogen synthase kinase 3β (GSK3β) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3−/− mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3−/− mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3β signaling, LTD, and locomotive and cognitive behaviors.
Collapse
Affiliation(s)
- Hyejin Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
- * E-mail:
| |
Collapse
|
28
|
Choi Y, Park H, Jung H, Kweon H, Kim S, Lee SY, Han H, Cho Y, Kim S, Sim WS, Kim J, Bae Y, Kim E. NGL-1/LRRC4C Deletion Moderately Suppresses Hippocampal Excitatory Synapse Development and Function in an Input-Independent Manner. Front Mol Neurosci 2019; 12:119. [PMID: 31156385 PMCID: PMC6528442 DOI: 10.3389/fnmol.2019.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Netrin-G ligand-1 (NGL-1), also known as LRRC4C, is a postsynaptic densities (PSDs)-95-interacting postsynaptic adhesion molecule that interacts trans-synaptically with presynaptic netrin-G1. NGL-1 and its family member protein NGL-2 are thought to promote excitatory synapse development through largely non-overlapping neuronal pathways. While NGL-2 is critical for excitatory synapse development in specific dendritic segments of neurons in an input-specific manner, whether NGL-1 has similar functions is unclear. Here, we show that Lrrc4c deletion in male mice moderately suppresses excitatory synapse development and function, but surprisingly, does so in an input-independent manner. While NGL-1 is mainly detected in the stratum lacunosum moleculare (SLM) layer of the hippocampus relative to the stratum radiatum (SR) layer, NGL-1 deletion leads to decreases in the number of PSDs in both SLM and SR layers in the ventral hippocampus. In addition, both SLM and SR excitatory synapses display suppressed short-term synaptic plasticity in the ventral hippocampus. These morphological and functional changes are either absent or modest in the dorsal hippocampus. The input-independent synaptic changes induced by Lrrc4c deletion involve abnormal translocation of NGL-2 from the SR to SLM layer. These results suggest that Lrrc4c deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyemin Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Seyeon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Woong Seob Sim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jeongmin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Yongchul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
29
|
Ranaivoson FM, Turk LS, Ozgul S, Kakehi S, von Daake S, Lopez N, Trobiani L, De Jaco A, Denissova N, Demeler B, Özkan E, Montelione GT, Comoletti D. A Proteomic Screen of Neuronal Cell-Surface Molecules Reveals IgLONs as Structurally Conserved Interaction Modules at the Synapse. Structure 2019; 27:893-906.e9. [PMID: 30956130 DOI: 10.1016/j.str.2019.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
In the developing brain, cell-surface proteins play crucial roles, but their protein-protein interaction network remains largely unknown. A proteomic screen identified 200 interactions, 89 of which were not previously published. Among these interactions, we find that the IgLONs, a family of five cell-surface neuronal proteins implicated in various human disorders, interact as homo- and heterodimers. We reveal their interaction patterns and report the dimeric crystal structures of Neurotrimin (NTRI), IgLON5, and the neuronal growth regulator 1 (NEGR1)/IgLON5 complex. We show that IgLONs maintain an extended conformation and that their dimerization occurs through the first Ig domain of each monomer and is Ca2+ independent. Cell aggregation shows that NTRI and NEGR1 homo- and heterodimerize in trans. Taken together, we report 89 unpublished cell-surface ligand-receptor pairs and describe structural models of trans interactions of IgLONs, showing that their structures are compatible with a model of interaction across the synaptic cleft.
Collapse
Affiliation(s)
| | - Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sinem Ozgul
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sumie Kakehi
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Nicole Lopez
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Laura Trobiani
- Department of Biology and Biotechnology "Charles Darwin" and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology "Charles Darwin" and Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Natalia Denissova
- Department of Molecular Biology and Biochemistry and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Gaetano T Montelione
- Department of Molecular Biology and Biochemistry and Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Departments of Neuroscience and Cell Biology Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
30
|
Hui KK, Takashima N, Watanabe A, Chater TE, Matsukawa H, Nekooki-Machida Y, Nilsson P, Endo R, Goda Y, Saido TC, Yoshikawa T, Tanaka M. GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA A receptor trafficking and social behavior. SCIENCE ADVANCES 2019; 5:eaau8237. [PMID: 30989111 PMCID: PMC6457945 DOI: 10.1126/sciadv.aau8237] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/20/2019] [Indexed: 05/02/2023]
Abstract
Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) to differentially form high-molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Noriko Takashima
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroshi Matsukawa
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yoko Nekooki-Machida
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge 141 57, Sweden
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Corresponding author.
| |
Collapse
|
31
|
Connor SA, Ammendrup-Johnsen I, Kishimoto Y, Karimi Tari P, Cvetkovska V, Harada T, Ojima D, Yamamoto T, Wang YT, Craig AM. Loss of Synapse Repressor MDGA1 Enhances Perisomatic Inhibition, Confers Resistance to Network Excitation, and Impairs Cognitive Function. Cell Rep 2019; 21:3637-3645. [PMID: 29281813 DOI: 10.1016/j.celrep.2017.11.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/10/2017] [Accepted: 11/29/2017] [Indexed: 01/27/2023] Open
Abstract
Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1-/- hippocampal networks demonstrate muted responses to neural excitation, and Mdga1-/- mice are resistant to induced seizures. Mdga1-/- mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.
Collapse
Affiliation(s)
- Steven A Connor
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ina Ammendrup-Johnsen
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yasushi Kishimoto
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2101, Japan
| | - Parisa Karimi Tari
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Vedrana Cvetkovska
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Takashi Harada
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2101, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
32
|
Long Y, Zhuang K, Ji Z, Han Y, Fei Y, Zheng W, Song Z, Yang H. 2-Deoxy-D-Glucose Exhibits Anti-seizure Effects by Mediating the Netrin-G1-KATP Signaling Pathway in Epilepsy. Neurochem Res 2019; 44:994-1004. [PMID: 30805800 DOI: 10.1007/s11064-019-02734-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/22/2023]
Abstract
Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures. The glycolytic inhibitor 2-deoxy-D-glucose (2-DG) has been reported to exert antiepileptic effects by upregulating KATP subunits (kir6.1 and kir6.2). We evaluated whether 2-DG exhibits anti-seizure effect by mediating the netrin-G1-KATP signaling pathway in epilepsy. In a mouse epilepsy model induced by lithium chloride-pilocarpine, 2-DG intervention increased the mRNA and protein expression levels of kir6.1 and kir6.2, and these increases were significantly reversed after knocking down netrin-G1 expression. Similarly, in cultured neurons with a magnesium-free medium, we found that the frequency of spontaneous postsynaptic potentials (SP) was increased, and in the meanwhile, expression levels of kir6.1 and kir6.2 were increased after pretreatment with 2DG. These effects were remarkably reversed after knocking down netrin-G1. Thus, our findings show that 2DG exhibits anti-seizure effects through the netrin-G1-KATP signaling pathway.
Collapse
Affiliation(s)
- Yuming Long
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zhonghai Ji
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yaru Han
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yanqing Fei
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Heng Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Netrin Family: Role for Protein Isoforms in Cancer. J Nucleic Acids 2019; 2019:3947123. [PMID: 30923634 PMCID: PMC6408995 DOI: 10.1155/2019/3947123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 12/27/2022] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins. Netrins are involved in processes for axonal guidance, morphogenesis, and angiogenesis by regulating cell migration and survival. These processes are of special interest in tumor biology. From the netrin genes various isoforms are translated and regulated by alternative splicing. We review here the diversity of isoforms of the netrin family members and their known and potential roles in cancer.
Collapse
|
34
|
Kim P, Scott MR, Meador-Woodruff JH. Abnormal ER quality control of neural GPI-anchored proteins via dysfunction in ER export processing in the frontal cortex of elderly subjects with schizophrenia. Transl Psychiatry 2019; 9:6. [PMID: 30664618 PMCID: PMC6341114 DOI: 10.1038/s41398-018-0359-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/09/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023] Open
Abstract
Abnormalities of posttranslational protein modifications (PTMs) have recently been implicated in the pathophysiology of schizophrenia. Glycosylphosphatidylinositols (GPIs) are a class of complex glycolipids, which anchor surface proteins and glycoproteins to the cell membrane. GPI attachment to proteins represents one of the most common PTMs and GPI-associated proteins (GPI-APs) facilitate many cell surface processes, including synapse development and maintenance. Mutations in the GPI processing pathway are associated with intellectual disability, emphasizing the potential role of GPI-APs in cognition and schizophrenia-associated cognitive dysfunction. As initial endoplasmic reticulum (ER)-associated protein processing is essential for GPI-AP function, we measured protein expression of molecules involved in attachment (GPAA1), modification (PGAP1), and ER export (Tmp21) of GPI-APs, in homogenates and in an ER enriched fraction derived from dorsolateral prefrontal cortex (DLPFC) of 15 matched pairs of schizophrenia and comparison subjects. In total homogenate we found a significant decrease in transmembrane protein 21 (Tmp21) and in the ER-enriched fraction we found reduced expression of post-GPI attachment protein (PGAP1). PGAP1 modifies GPI-anchors through inositol deacylation, allowing it to be recognized by Tmp21. Tmp21 is a component of the p24 complex that recognizes GPI-anchored proteins, senses the status of the GPI-anchor, and regulates incorporation into COPII vesicles for export to the Golgi apparatus. Together, these proteins are the molecular mechanisms underlying GPI-AP quality control and ER export. To investigate the potential consequences of a deficit in export and/or quality control, we measured cell membrane-associated expression of known GPI-APs that have been previously implicated in schizophrenia, including GPC1, NCAM, MDGA2, and EPHA1, using Triton X-114 phase separation. Additionally, we tested the sensitivity of those candidate proteins to phosphatidylinositol-specific phospholipase C (PI-PLC), an enzyme that cleaves GPI from GPI-APs. While we did not observe a difference in the amount of these GPI-APs in Triton X-114 phase separated membrane fractions, we found decreased NCAM and GPC1 within the PI-PLC sensitive fraction. These findings suggest dysregulation of ER-associated GPI-AP protein processing, with impacts on post-translational modifications of proteins previously implicated in schizophrenia such as NCAM and GPC1. These findings provide evidence for a deficit in ER protein processing pathways in this illness.
Collapse
Affiliation(s)
- Pitna Kim
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Madeline R Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
35
|
Um SM, Ha S, Lee H, Kim J, Kim K, Shin W, Cho YS, Roh JD, Kang J, Yoo T, Noh YW, Choi Y, Bae YC, Kim E. NGL-2 Deletion Leads to Autistic-like Behaviors Responsive to NMDAR Modulation. Cell Rep 2018; 23:3839-3851. [DOI: 10.1016/j.celrep.2018.05.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
|
36
|
Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity. Exp Mol Med 2018; 50:1-9. [PMID: 29628503 PMCID: PMC5938020 DOI: 10.1038/s12276-017-0023-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits. Further analysis of synaptic proteins will provide insights into the functioning of neural circuits and associated brain disorders. The brain houses numerous highly specialized neuron types, which transfer and process information via a complex network of synaptic connections. Every neuron develops its own distinctive synapses with specific functions, but exactly how this is achieved is not clear. Joris de Wit and Anna Schroeder at the VIB Center for Brain and Disease Research in Leuven, Belgium, reviewed recent research into the leucine-rich repeat-containing (LRR) proteins, which are thought to be major organizers of synaptic connectivity and key regulators of healthy neural circuit development. Further investigations into the functionality of LRR proteins in the brain will not only improve understanding of neural circuitry but also provide insights into synaptic impairments in brain disorders like schizophrenia.
Collapse
|
37
|
Kelaï S, Ramoz N, Moalic JM, Noble F, Mechawar N, Imbeaud S, Turecki G, Simonneau M, Gorwood P, Maussion G. Netrin G1: its downregulation in the nucleus accumbens of cocaine-conditioned mice and genetic association in human cocaine dependence. Addict Biol 2018; 23:448-460. [PMID: 28074533 DOI: 10.1111/adb.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Netrin G1 is a presynaptic ligand involved in axonal projection. Although molecular mechanisms underlying cocaine addiction are still poorly understood, Netrin G1 might have a role as a regulator of anxiety, fear and spatial memory, behavioural traits impaired in the context of cocaine exposure. In this study, the Netrin G1 (Ntng1) expression was investigated in the nucleus accumbens of mice primarily conditioned to cocaine using a place preference paradigm. A genetic association study was then conducted on 146 multiplex families of the Collaborative study on Genetics of Alcoholism, in which seven single nucleotide polymorphisms located in the NTNG1 gene were genotyped. NTNG1 expression levels were also quantified in BA10, BA46 and the cerebellum of healthy controls (with no Axis 1 psychopathology). Decreased Ntng1 expression was initially observed in the nucleus accumbens of mice conditioned to cocaine. Significant genetic family-based associations were detected between NTNG1 polymorphisms and cocaine dependence. NTNG1 expression in BA10, BA46 and the cerebellum, however, were not significantly associated with any allele or haplotype of this gene. These results confirm that Ntng1 expression is disturbed in the nucleus accumbens of mice, after cocaine conditioning. A haplotype of NTNG1 was found to constitute a vulnerability factor for cocaine use disorder in patients, although none of its single nucleotide polymorphisms were associated with a differential expression pattern in healthy controls. The data suggest that change in the Ntng1 expression is a consequence of cocaine exposure, and that some of its genetic markers are associated with a greater risk for cocaine use disorder.
Collapse
Affiliation(s)
- Sabah Kelaï
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Nicolas Ramoz
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Jean-Marie Moalic
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Florence Noble
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche; France
- Institut national de la santé et de la recherche médicale; Paris France
- Université Paris Descartes, Laboratoire de Neuropsychopharmacologie des Addictions; France
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Sandrine Imbeaud
- Centre de Génétique Moléculaire, FRE 3144, CNRS and Gif/Orsay DNA Microarray Platform (GODMAP); France
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| | - Michel Simonneau
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
| | - Philip Gorwood
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- Hôpital Sainte-Anne (CMME); University Paris Descartes; France
| | - Gilles Maussion
- INSERM U894, Centre de Psychiatrie & Neurosciences; University Paris Descartes; Paris France
- McGill Group for Suicide Studies, Douglas Mental Health University Institute; McGill University; Canada
| |
Collapse
|
38
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
40
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
41
|
Maussion G, Cruceanu C, Rosenfeld JA, Bell SC, Jollant F, Szatkiewicz J, Collins RL, Hanscom C, Kolobova I, de Champfleur NM, Blumenthal I, Chiang C, Ota V, Hultman C, O'Dushlaine C, McCarroll S, Alda M, Jacquemont S, Ordulu Z, Marshall CR, Carter MT, Shaffer LG, Sklar P, Girirajan S, Morton CC, Gusella JF, Turecki G, Stavropoulos DJ, Sullivan PF, Scherer SW, Talkowski ME, Ernst C. Implication of LRRC4C and DPP6 in neurodevelopmental disorders. Am J Med Genet A 2016; 173:395-406. [PMID: 27759917 DOI: 10.1002/ajmg.a.38021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
Abstract
We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband's autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gilles Maussion
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Cristiana Cruceanu
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| | - Jill A Rosenfeld
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington
| | - Scott C Bell
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Fabrice Jollant
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Nîmes Academic Hospital (CHU), Nîmes, France
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan L Collins
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Carrie Hanscom
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Ilaria Kolobova
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | | | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Colby Chiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Vanessa Ota
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | - Steve McCarroll
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Martin Alda
- Department of Psychiatry Halifax, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sebastien Jacquemont
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, Canada
| | - Zehra Ordulu
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Christian R Marshall
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Melissa T Carter
- Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, Washington
| | - Pamela Sklar
- Departments of Neuroscience, Psychiatry and Genetics and Genome Sciences, Mount Sinai Hospital, New York, New York
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Cynthia C Morton
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Departments of Obstetrics, Gynecology, and Reproductive Biology and of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.,Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen W Scherer
- The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Canada
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, and Douglas Mental Health University Institute, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
42
|
Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits. Sci Rep 2016; 6:28750. [PMID: 27345935 PMCID: PMC4921862 DOI: 10.1038/srep28750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.
Collapse
|
43
|
Watakabe A. In situ hybridization analyses of claustrum-enriched genes in marmosets. J Comp Neurol 2016; 525:1442-1458. [PMID: 27098836 DOI: 10.1002/cne.24021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
The claustrum/endopiriform nucleus is a unique structure that sits between the striatum and the cerebral cortex. Recent genome-wide mapping of gene expression in mice identified various genes concentrated in this structure, suggesting a requirement for a special set of genes for its function. In situ hybridization histochemistry was performed for such "claustrum-enriched" genes in the marmoset brain. In marmosets, nurr1 and netrinG2 genes exhibited highly concentrated expression in the claustrum and endopiriform nucleus, as well as in a subpopulation of layer 6 neurons across the entire cortex, consistent with their expression patterns as described in macaques. Cux2 showed enriched expression in the upper layers (layers 2-4) and the claustrum/endopiriform nucleus. GNG2 was expressed strongly in the claustrum/endopiriform nucleus, but was abundant across cortical areas in a ventral high-dorsal low gradient. Latexin was detected in the claustrum and dorsal endopiriform nucleus, but not in cortical regions. GNB4 and Tmem163 genes were both concentrated in the claustrum/endopiriform nucleus, as reported in mice, but their cortical expression in the marmoset differed from the mouse pattern. Thus, the gene set required for the claustrum appears to be broadly conserved across species, despite various differences that suggest species-specific differentiation of brain architecture. J. Comp. Neurol. 525:1442-1458, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
44
|
Byun H, Kwon S, Ahn HJ, Liu H, Forrest D, Demb JB, Kim IJ. Molecular features distinguish ten neuronal types in the mouse superficial superior colliculus. J Comp Neurol 2016; 524:2300-21. [PMID: 26713509 DOI: 10.1002/cne.23952] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 01/24/2023]
Abstract
The superior colliculus (SC) is a midbrain center involved in controlling head and eye movements in response to inputs from multiple sensory modalities. Visual inputs arise from both the retina and visual cortex and converge onto the superficial layer of the SC (sSC). Neurons in the sSC send information to deeper layers of the SC and to thalamic nuclei that modulate visually guided behaviors. Presently, our understanding of sSC neurons is impeded by a lack of molecular markers that define specific cell types. To better understand the identity and organization of sSC neurons, we took a systematic approach to investigate gene expression within four molecular families: transcription factors, cell adhesion molecules, neuropeptides, and calcium binding proteins. Our analysis revealed 12 molecules with distinct expression patterns in mouse sSC: cadherin 7, contactin 3, netrin G2, cadherin 6, protocadherin 20, retinoid-related orphan receptor β, brain-specific homeobox/POU domain protein 3b, Ets variant gene 1, substance P, somatostatin, vasoactive intestinal polypeptide, and parvalbumin. Double labeling experiments, by either in situ hybridization or immunostaining, demonstrated that the 12 molecular markers collectively define 10 different sSC neuronal types. The characteristic positions of these cell types divide the sSC into four distinct layers. The 12 markers identified here will serve as valuable tools to examine molecular mechanisms that regulate development of sSC neuronal types. These markers could also be used to examine the connections between specific cell types that form retinocollicular, corticocollicular, or colliculothalamic pathways. J. Comp. Neurol. 524:2300-2321, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haewon Byun
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Soohyun Kwon
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Hee-Jeong Ahn
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, 06511
| | - In-Jung Kim
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, 06511.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06511
| |
Collapse
|
45
|
Developmental RacGAP α2-Chimaerin Signaling Is a Determinant of the Morphological Features of Dendritic Spines in Adulthood. J Neurosci 2016; 35:13728-44. [PMID: 26446225 DOI: 10.1523/jneurosci.0419-15.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Morphological characteristics of dendritic spines form the basis of cognitive ability. However, molecular mechanisms involved in fine-tuning of spine morphology during development are not fully understood. Moreover, it is unclear whether, and to what extent, these developmental mechanisms determine the normal adult spine morphological features. Here, we provide evidence that α2-isoform of Rac-specific GTPase-activating protein α-chimaerin (α2-chimaerin) is involved in spine morphological refinement during late postnatal period, and furthermore show that this developmental α2-chimaerin function affects adult spine morphologies. We used a series of mice with global and conditional knock-out of α-chimaerin isoforms (α1-chimaerin and α2-chimaerin). α2-Chimaerin disruption, but not α1-chimaerin disruption, in the mouse results in an increased size (and density) of spines in the hippocampus. In contrast, overexpression of α2-chimaerin in developing hippocampal neurons induces a decrease of spine size. Disruption of α2-chimaerin suppressed EphA-mediated spine morphogenesis in cultured developing hippocampal neurons. α2-Chimaerin disruption that begins during the juvenile stage results in an increased size of spines in the hippocampus. Meanwhile, spine morphologies are unaltered when α2-chimaerin is deleted only in adulthood. Consistent with these spine morphological results, disruption of α2-chimaerin beginning in the juvenile stage led to an increase in contextual fear learning in adulthood; whereas contextual learning was recently shown to be unaffected when α2-chimaerin was deleted only in adulthood. Together, these results suggest that α2-chimaerin signaling in developmental stages contributes to determination of the morphological features of adult spines and establishment of normal cognitive ability. SIGNIFICANCE STATEMENT Recent studies of neurodevelopmental disorders in humans and their animal models have led to an attractive hypothesis that spine morphogenesis during development forms the basis of adult cognition. In particular, the roles of Rac and its regulators, such as Rac-specific GTPase-activating proteins (RacGAPs) and Rac guanine nucleotide exchange factors, are a topic of focus in spine morphogenesis and cognitive ability. Using a series of mice with global and conditional knock-out (KO) of RacGAP α-chimaerin isoforms (α1-chimaerin and α2-chimaerin), we provide compelling evidence demonstrating that α2-chimaerin is involved in spine morphological refinement during late postnatal development and that this developmental α2-chimaerin function affects adult spine morphologies. Furthermore, our results clearly showed that α2-chimaerin signaling during late postnatal development contributes to normal cognitive ability in adult mice.
Collapse
|
46
|
Zhang Q, Goto H, Akiyoshi-Nishimura S, Prosselkov P, Sano C, Matsukawa H, Yaguchi K, Nakashiba T, Itohara S. Diversification of behavior and postsynaptic properties by netrin-G presynaptic adhesion family proteins. Mol Brain 2016; 9:6. [PMID: 26746425 PMCID: PMC4706652 DOI: 10.1186/s13041-016-0187-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate-specific neuronal genes are expected to play a critical role in the diversification and evolution of higher brain functions. Among them, the glycosylphosphatidylinositol (GPI)-anchored netrin-G subfamily members in the UNC6/netrin family are unique in their differential expression patterns in many neuronal circuits, and differential binding ability to their cognate homologous post-synaptic receptors. RESULTS To gain insight into the roles of these genes in higher brain functions, we performed comprehensive behavioral batteries using netrin-G knockout mice. We found that two netrin-G paralogs that recently diverged in evolution, netrin-G1 and netrin-G2 (gene symbols: Ntng1 and Ntng2, respectively), were responsible for complementary behavioral functions. Netrin-G2, but not netrin-G1, encoded demanding sensorimotor functions. Both paralogs were responsible for complex vertebrate-specific cognitive functions and fine-scale regulation of basic adaptive behaviors conserved between invertebrates and vertebrates, such as spatial reference and working memory, attention, impulsivity and anxiety etc. Remarkably, netrin-G1 and netrin-G2 encoded a genetic "division of labor" in behavioral regulation, selectively mediating different tasks or even different details of the same task. At the cellular level, netrin-G1 and netrin-G2 differentially regulated the sub-synaptic localization of their cognate receptors and differentiated the properties of postsynaptic scaffold proteins in complementary neural pathways. CONCLUSIONS Pre-synaptic netrin-G1 and netrin-G2 diversify the complexity of vertebrate behaviors and differentially regulate post-synaptic properties. Our findings constitute the first genetic analysis of the behavioral and synaptic diversification roles of a vertebrate GPI protein and presynaptic adhesion molecule family.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hiromichi Goto
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Sachiko Akiyoshi-Nishimura
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Pavel Prosselkov
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Chie Sano
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hiroshi Matsukawa
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kunio Yaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Toshiaki Nakashiba
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
47
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
48
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
49
|
Lee K, Kobayashi Y, Seo H, Kwak JH, Masuda A, Lim CS, Lee HR, Kang SJ, Park P, Sim SE, Kogo N, Kawasaki H, Kaang BK, Itohara S. Involvement of cAMP-guanine nucleotide exchange factor II in hippocampal long-term depression and behavioral flexibility. Mol Brain 2015; 8:38. [PMID: 26104314 PMCID: PMC4477293 DOI: 10.1186/s13041-015-0130-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) activate small GTPases that are involved in several cellular functions. cAMP-guanine nucleotide exchange factor II (cAMP-GEF II) acts as a target for cAMP independently of protein kinase A (PKA) and functions as a GEF for Rap1 and Rap2. Although cAMP-GEF II is expressed abundantly in several brain areas including the cortex, striatum, and hippocampus, its specific function and possible role in hippocampal synaptic plasticity and cognitive processes remain elusive. Here, we investigated how cAMP-GEF II affects synaptic function and animal behavior using cAMP-GEF II knockout mice. Results We found that deletion of cAMP-GEF II induced moderate decrease in long-term potentiation, although this decrease was not statistically significant. On the other hand, it produced a significant and clear impairment in NMDA receptor-dependent long-term depression at the Schaffer collateral-CA1 synapses of hippocampus, while microscopic morphology, basal synaptic transmission, and depotentiation were normal. Behavioral testing using the Morris water maze and automated IntelliCage system showed that cAMP-GEF II deficient mice had moderately reduced behavioral flexibility in spatial learning and memory. Conclusions We concluded that cAMP-GEF II plays a key role in hippocampal functions including behavioral flexibility in reversal learning and in mechanisms underlying induction of long-term depression.
Collapse
Affiliation(s)
- Kyungmin Lee
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hyunhyo Seo
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Ji-Hye Kwak
- Behavioral Neural Circuitry and Physiology Laboratory, Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, Korea.
| | - Akira Masuda
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - Hye-Ryeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea.
| | - SukJae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Su-Eon Sim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Naomi Kogo
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Hiroaki Kawasaki
- Department of Psychiatry, Faculty of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-747, Korea. .,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 151-746, Korea.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
50
|
Mottron L, Duret P, Mueller S, Moore RD, Forgeot d'Arc B, Jacquemont S, Xiong L. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015; 6:33. [PMID: 26052415 PMCID: PMC4456778 DOI: 10.1186/s13229-015-0024-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Collapse
Affiliation(s)
- Laurent Mottron
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Pauline Duret
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, CEDEX 07 France
| | - Sophia Mueller
- Institute of Clinical Radiology, University Hospitals, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Harvard University, Center for Brain Science, Cambridge, MA 02138 USA
| | - Robert D Moore
- Department of Psychiatry, University of Montreal, Québec, Canada.,Department of Health Sciences, University of Montreal, Montreal, Canada.,College of Applied Health Sciences, University of Illinois, Urbana-Champaign, USA
| | - Baudouin Forgeot d'Arc
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Sebastien Jacquemont
- Department of Psychiatry, University of Montreal, Québec, Canada.,Centre de recherche, Centre Hospitalier Universitaire Sainte Justine, Montréal, Canada.,Service of Medical Genetics, University Hospital of Lausanne, University of Lausanne, Lausanne, 1011 Switzerland
| | - Lan Xiong
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| |
Collapse
|