1
|
Tian H, Yao J, Ba Q, Meng Y, Cui Y, Quan L, Gong W, Wang Y, Yang Y, Yang M, Gao C. Cerebral biomimetic nano-drug delivery systems: A frontier strategy for immunotherapy. J Control Release 2024; 376:1039-1067. [PMID: 39505218 DOI: 10.1016/j.jconrel.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Brain diseases are a significant threat to human health, especially in the elderly, and this problem is growing as the aging population increases. Efficient brain-targeted drug delivery has been the greatest challenge in treating brain disorders due to the unique immune environment of the brain, including the blood-brain barrier (BBB). Recently, cerebral biomimetic nano-drug delivery systems (CBNDSs) have provided a promising strategy for brain targeting by mimicking natural biological materials. Herein, this review explores the latest understanding of the immune microenvironment of the brain, emphasizing the immune mechanisms of the occurrence and progression of brain disease. Several brain targeting systems are summarized, including cell-based, exosome-based, protein-based, and microbe-based CBNDSs, and their immunological mechanisms are highlighted. Moreover, given the rise of immunotherapy, the latest applications of CBNDSs in immunotherapy are also discussed. This review provides a comprehensive understanding of CBNDSs and serves as a guideline for immunotherapy in treating brain diseases. In addition, it provides inspiration for the future of CBNDSs.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qi Ba
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
2
|
Eren A, Giray S. Value of the red blood cell distribution width (RDW) and neutrophil lymphocyte ratio (NLR) in the prediction of functional recovery and 3-month mortality following endovascular treatment for acute anterior circulation ischemic stroke. Heliyon 2024; 10:e38030. [PMID: 39328526 PMCID: PMC11425159 DOI: 10.1016/j.heliyon.2024.e38030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Objectives The red blood cell distribution width (RDW) and neutrophil to lymphocyte ratio (NLR) have been linked to poor prognosis in patients with ischaemic stroke. However, no study has yet evaluated the prognostic role of RDW and NLR, or their combined effect on reperfusion in patients with endovascularly-treated acute ischaemic stroke. This study therefore aimed to analyse the impact of RDW and NLR on poor functional outcomes and failed reperfusion following endovascular treatment in patients with acute anterior circulation ischaemic stroke. Methods A total of 275 patients with acute anterior circulation ischaemic stroke treated endovascularly between 2015 and 2018 were enrolled in this study. The relationships between RDW, NLR, and poor outcomes were analysed using univariate and multivariate logistic regression models and receiver operating characteristic (ROC) curve analysis. The Youden Index was applied to determine the cut-off value. Results Multivariate logistic regression analysis identified RDW (p = 0.015) and NLR (p = 0.015) as independent predictors of mortality at the 3rd month. ROC curve analysis of RDW revealed a cutoff value of 14.25 (p = 0.009) for poor clinical outcomes (modified Rankin scale [mRS] 3-6). Similarly, a cutoff value of 14.25 was found for mortality prediction (p = 0.003). The cutoff value for poor clinical outcome (mRS 3-6) in the NLR was determined as 5.93 (p = 0.003), whereas the cutoff value for mortality was set at 5.17 (p = 0.028). RDW also predicted failed reperfusion, with a cutoff value of 17.75 (p = 0.048). Conclusions High RDW and NLR upon admission were identified as independent indicators of mortality in endovascularly treated acute anterior circulation ischemic stroke patients. Furthermore, the RDW could potentially predict failed reperfusion.
Collapse
Affiliation(s)
- Alper Eren
- Atatürk Üniversitesi Araştırma Hastanesi, 25240, Yakutiye, Erzurum, Turkey
| | - Semih Giray
- Gaziantep Üniversitesi Şahinbey Araştırma ve Uygulama Hastanesi, Üniversite Blv., 27310, Şehitkamil, Gaziantep, Turkey
| |
Collapse
|
3
|
Naseri Alavi SA, Habibi MA, Naseri Alavi SH, Zamani M, Kobets AJ. The Neutrophil-to-Lymphocyte Ratio in Patients with Spinal Cord Injury: A Narrative Review Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1567. [PMID: 39459357 PMCID: PMC11509609 DOI: 10.3390/medicina60101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Traumatic spinal cord injury (SCI) is a devastating condition that occurs in two phases: primary and secondary injury. These phases contribute to changes in blood vessels and the influx of inflammatory cells such as neutrophils and lymphocytes. The biomarker known as the neutrophil-to-lymphocyte ratio (NLR) has been suggested as being highly valuable in predicting outcomes for patients with traumatic brain injury, acute ischemic stroke, and traumatic spinal cord injury. Therefore, this review study aims to investigate the prognostic value of the NLR in predicting outcomes for patients with SCI. Materials and Methods: A thorough review of relevant articles was conducted using Mesh keywords in Medline via Embase, PubMed, Google Scholar, and Scopus from 2000 to 2023. The search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. After reviewing the articles and applying inclusion and exclusion criteria, only relevant articles were included in the study. Results: In the initial search, 41 papers were identified. After applying exclusion criteria, only three clinical studies remained for review. It is still debatable whether the NLR can serve as a cost-effective, readily available, and independent predictive factor for both mortality and recovery outcomes in patients with traumatic spinal cord injuries. Conclusions: Our study demonstrates that NLR, a readily available and inexpensive marker, can serve as an independent predictor of both mortality and recovery outcomes in patients with traumatic spinal cord injury. To reach a conclusive decision, additional data are required.
Collapse
Affiliation(s)
- Seyed Ahmad Naseri Alavi
- Department of Neurological Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Sciences, Tehran 1441987566, Iran;
| | - Seyed Hamed Naseri Alavi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Mahsa Zamani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Andrew J. Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
4
|
Ming J, Liao Y, Song W, Wang Z, Cui J, He L, Chen G, Xu K. Role of intracranial bone marrow mesenchymal stem cells in stroke recovery: A focus on post-stroke inflammation and mitochondrial transfer. Brain Res 2024; 1837:148964. [PMID: 38677450 DOI: 10.1016/j.brainres.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.
Collapse
Affiliation(s)
- Jiang Ming
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yidong Liao
- Department of Cardio-Thoracic Surgery, The First Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Wenxue Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Longcai He
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Hyperbaric Oxygen, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
5
|
Li X, Xu B, Long L, Li Y, Xiao X, Qiu S, Xu J, Tian LW, Wang H. Phelligridimer A enhances the expression of mitofusin 2 and protects against cerebral ischemia/reperfusion injury. Chem Biol Interact 2024; 398:111090. [PMID: 38825057 DOI: 10.1016/j.cbi.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 μM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.
Collapse
Affiliation(s)
- Xing Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China
| | - Li-Wen Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Ma L, Li H, Xu H, Liu D. The potential roles of PKM2 in cerebrovascular diseases. Int Immunopharmacol 2024; 139:112675. [PMID: 39024754 DOI: 10.1016/j.intimp.2024.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis,plays an important role in regulating cell metabolism and growth under different physiological conditions. PKM2 has been intensively investigated in multiple cancer diseases. Recent years, many studies have found its pivotal role in cerebrovascular diseases (CeVDs), the disturbances in intracranial blood circulation. CeVDs has been confirmed to be closely associated with oxidative stress (OS), mitochondrial dynamics, systemic inflammation, and local neuroinflammation in the brain. It has further been revealed that PKM2 exerts various biological functions in the regulation of energy supply, OS, inflammatory responses, and mitochondrial dysfunction. The roles of PKM2 are closely related to its different isoforms, expression levels in subcellular localization, and post-translational modifications. Therefore, summarizing the roles of PKM2 in CeVDs will help further understanding the molecular mechanisms of CeVDs. In this review, we illustrate the characteristics of PKM2, the regulated PKM2 expression, and the biological roles of PKM2 in CeVDs.
Collapse
Affiliation(s)
- Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Huatao Li
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hu Xu
- Department of Stroke Center, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Dianwei Liu
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Department of Neurosurgery, XuanWu Hospital Capital Medical University Jinan Branch, Jinan, Shandong 250100, China.
| |
Collapse
|
7
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
8
|
Komatsu T, Ohta H, Takakura N, Hata J, Kitagawa T, Kurashina Y, Onoe H, Okano HJ, Iguchi Y. A Novel Rat Model of Embolic Cerebral Ischemia Using a Cell-Implantable Radiopaque Hydrogel Microfiber. Transl Stroke Res 2024; 15:636-646. [PMID: 36867349 DOI: 10.1007/s12975-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The failure of neuroprotective treatment-related clinical trials, including stem cell therapies, may be partially due to a lack of suitable animal models. We have developed a stem cell-implantable radiopaque hydrogel microfiber that can survive for a long time in vivo. The microfiber is made of barium alginate hydrogel containing zirconium dioxide, fabricated in a dual coaxial laminar flow microfluidic device. We aimed to develop a novel focal stroke model using this microfiber. Using male Sprague-Dawley rats (n=14), a catheter (inner diameter, 0.42 mm; outer diameter, 0.55 mm) was navigated from the caudal ventral artery to the left internal carotid artery using digital subtraction angiography. A radiopaque hydrogel microfiber (diameter, 0.4 mm; length, 1 mm) was advanced through the catheter by slow injection of heparinized physiological saline to establish local occlusion. Both 9.4-T magnetic resonance imaging at 3 and 6 h and 2% 2,3,5-triphenyl tetrazolium chloride staining at 24 h after stroke model creation were performed. Neurological deficit score and body temperature were measured. The anterior cerebral artery-middle cerebral artery bifurcation was selectively embolized in all rats. Median operating time was 4 min (interquartile range [IQR], 3-8 min). Mean infarct volume was 388 mm3 (IQR, 354-420 mm3) at 24 h after occlusion. No infarction of the thalamus or hypothalamus was seen. Body temperature did not change significantly over time (P = 0.204). However, neurological deficit scores before and at 3, 6, and 24 h after model creation differed significantly (P < 0.001). We present a novel rat model of focal infarct restricted to the middle cerebral artery territory using a radiopaque hydrogel microfiber positioned under fluoroscopic guidance. By comparing the use of stem cell-containing versus non-containing fibers in this stroke model, it would be possible to determine the efficacy of "pure" cell transplantation in treating stroke.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takakura
- School of integrated DESIGN Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Junichi Hata
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| |
Collapse
|
9
|
Tuz AA, Ghosh S, Karsch L, Ttoouli D, Sata SP, Ulusoy Ö, Kraus A, Hoerenbaum N, Wolf JN, Lohmann S, Zwirnlein F, Kaygusuz V, Lakovic V, Tummes HL, Beer A, Gallert M, Thiebes S, Qefalia A, Cibir Z, Antler M, Korste S, Haj Yehia E, Michel L, Rassaf T, Kaltwasser B, Abdelrahman H, Mohamud Yusuf A, Wang C, Yin D, Haeusler L, Lueong S, Richter M, Engel DR, Stenzel M, Soehnlein O, Frank B, Solo-Nomenjanahary M, Ho-Tin-Noé B, Siveke JT, Totzeck M, Hoffmann D, Grüneboom A, Hagemann N, Hasenberg A, Desilles JP, Mazighi M, Sickmann A, Chen J, Hermann DM, Gunzer M, Singh V. Stroke and myocardial infarction induce neutrophil extracellular trap release disrupting lymphoid organ structure and immunoglobulin secretion. NATURE CARDIOVASCULAR RESEARCH 2024; 3:525-540. [PMID: 39195931 PMCID: PMC11358010 DOI: 10.1038/s44161-024-00462-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 08/29/2024]
Abstract
Post-injury dysfunction of humoral immunity accounts for infections and poor outcomes in cardiovascular diseases. Among immunoglobulins (Ig), IgA, the most abundant mucosal antibody, is produced by plasma B cells in intestinal Peyer's patches (PP) and lamina propria. Here we show that patients with stroke and myocardial ischemia (MI) had strongly reduced IgA blood levels. This was phenocopied in experimental mouse models where decreased plasma and fecal IgA were accompanied by rapid loss of IgA-producing plasma cells in PP and lamina propria. Reduced plasma IgG was detectable in patients and experimental mice 3-10 d after injury. Stroke/MI triggered the release of neutrophil extracellular traps (NETs). Depletion of neutrophils, NET degradation or blockade of NET release inhibited the loss of IgA+ cells and circulating IgA in experimental stroke and MI and in patients with stroke. Our results unveil how tissue-injury-triggered systemic NET release disrupts physiological Ig secretion and how this can be inhibited in patients.
Collapse
Affiliation(s)
- Ali A Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Laura Karsch
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dimitris Ttoouli
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sai P Sata
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Özgür Ulusoy
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nils Hoerenbaum
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jan-Niklas Wolf
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Lohmann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Franziska Zwirnlein
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Viola Kaygusuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Vivian Lakovic
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hannah-Lea Tummes
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Markus Gallert
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Thiebes
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Altea Qefalia
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Medina Antler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elias Haj Yehia
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hossam Abdelrahman
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Haeusler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathis Richter
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Benedikt Frank
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mialitiana Solo-Nomenjanahary
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Benoît Ho-Tin-Noé
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jean-Philippe Desilles
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Mikael Mazighi
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany.
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
11
|
Wu S, Tabassum S, Payne CT, Hu H, Gusdon AM, Choi HA, Ren XS. Updates of the role of B-cells in ischemic stroke. Front Cell Neurosci 2024; 18:1340756. [PMID: 38550918 PMCID: PMC10972894 DOI: 10.3389/fncel.2024.1340756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/27/2024] [Indexed: 10/11/2024] Open
Abstract
Ischemic stroke is a major disease causing death and disability in the elderly and is one of the major diseases that seriously threaten human health and cause a great economic burden. In the early stage of ischemic stroke, neuronal structure is destroyed, resulting in death or damage, and the release of a variety of damage-associated pattern molecules induces an increase in neuroglial activation, peripheral immune response, and secretion of inflammatory mediators, which further exacerbates the damage to the blood-brain barrier, exacerbates cerebral edema, and microcirculatory impairment, triggering secondary brain injuries. After the acute phase of stroke, various immune cells initiate a protective effect, which is released step by step and contributes to the repair of neuronal cells through phenotypic changes. In addition, ischemic stroke induces Central Nervous System (CNS) immunosuppression, and the interaction between the two influences the outcome of stroke. Therefore, modulating the immune response of the CNS to reduce the inflammatory response and immune damage during stroke is important for the protection of brain function and long-term recovery after stroke, and modulating the immune function of the CNS is expected to be a novel therapeutic strategy. However, there are fewer studies on B-cells in brain function protection, which may play a dual role in the stroke process, and the understanding of this cell is still incomplete. We review the existing studies on the mechanisms of the role of B-cells, inflammatory response, and immune response in the development of ischemic stroke and provide a reference for the development of adjuvant therapeutic drugs for ischemic stroke targeting inflammatory injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuefang S. Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
12
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Zuo L, Dong Y, Liao X, Hu Y, Pan Y, Yan H, Wang X, Zhao X, Wang Y, Seet RCS, Wang Y, Li Z. Low HALP (Hemoglobin, Albumin, Lymphocyte, and Platelet) Score Increases the Risk of Post-Stroke Cognitive Impairment: A Multicenter Cohort Study. Clin Interv Aging 2024; 19:81-92. [PMID: 38223135 PMCID: PMC10788070 DOI: 10.2147/cia.s432885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Objective The HALP (hemoglobin, albumin, lymphocyte, and platelet) score is a novel indicator that measures systemic inflammation and nutritional status that has not been correlated with the risk of post-stroke cognitive impairment in patients with acute ischemic stroke or transient ischemic attack (TIA). Methods Study participants were recruited from 40 stroke centers in China. The HALP score was derived using a weighted sum of hemoglobin, albumin, lymphocytes and platelets, and study participants were categorized into 4 groups of equal sizes based on quartiles cutoffs of the HALP score. The Montreal Cognitive Assessment (MoCA)-Beijing Cognitive Assessment Scale (MoCA-Beijing) was performed at 2 weeks and 12 months following stroke onset. Post-stroke cognitive impairment was considered in patients with MoCA-Beijing≤22. Multiple logistic regression methods were employed to evaluate the relationship between the HALP score and the subsequent risk of developing post-stroke cognitive impairment. Results The study population comprised 1022 patients (mean age 61.6±11.0 years, 73% men). The proportion of individuals with MoCA-Beijing≤22 at 2 weeks was 49.2% and 32.4% at one year. Patients in the lowest quartile of HALP score (<36.56) were observed to harbor the highest risk of post-stroke cognitive impairment at 12 months post-stroke/TIA compared to those in the highest quartile (odds ratio=1.59, 95% CI=1.07-2.37, p=0.022), and lower domain scores for executive function, naming, and attention. There were no statistically significant differences between patients in the different quartiles of HALP score and HALP score at 2 weeks post-stroke/TIA. Conclusion The HALP score is a simple score that could stratify the risk of post-stroke cognitive impairment in stroke/TIA patients to facilitate early diagnosis and interventions.
Collapse
Affiliation(s)
- Lijun Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Clinical Research Centre, Singapore
| | - Xiaoling Liao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yang Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongyi Yan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Raymond C S Seet
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Neurology, Department of Medicine, National University Hospital, Singapore
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Tiantan Hospital, Capital Medical University, and the Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing, People’s Republic of China
- Chinese Institute for Brain Research, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Yadav I, Kumar R, Fatima Z, Rema V. Ocimum sanctum [Tulsi] as a Potential Immunomodulator for the Treatment of Ischemic Injury in the Brain. Curr Mol Med 2024; 24:60-73. [PMID: 36515030 DOI: 10.2174/1566524023666221212155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Stroke causes brain damage and is one of the main reasons for death. Most survivors of stroke face long-term physical disabilities and cognitive dysfunctions. In addition, they also have persistent emotional and behavioral changes. The two main treatments that are effective are reperfusion with recombinant tissue plasminogen activator and recanalization of penumbra using mechanical thrombectomy. However, these treatments are suitable only for a few patients due to limitations such as susceptibility to hemorrhage and the requirement for administering tissue plasminogen activators within the short therapeutic window during the early hours following a stroke. The paucity of interventions and treatments could be because of the multiple pathological mechanisms induced in the brain by stroke. The ongoing immune response following stroke has been attributed to the worsening brain injury. Hence, novel compounds with immunomodulatory properties that could improve the outcome of stroke patients are required. Natural compounds and medicinal herbs with anti-inflammatory activities and having minimal or no adverse systemic effect could be beneficial in treating stroke. Ocimum sanctum is a medicinal herb that can be considered an effective therapeutic option for ischemic brain injury. Ocimum sanctum, commonly known as holy basil or "Tulsi," is mentioned as the "Elixir of Life" for its healing powers. Since antiquity, Tulsi has been used in the Ayurvedic and Siddha medical systems to treat several diseases. It possesses immuno-modulatory activity, which can alter cellular and humoral immune responses. Tulsi can be considered a potential option as an immuno-modulator for treating various diseases, including brain stroke. In this review, we will focus on the immunomodulatory properties of Tulsi, specifically its effect on both innate and adaptive immunity, as well as its antioxidant and antiinflammatory properties, which could potentially be effective in treating ongoing immune reactions following ischemic brain injury.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Ravi Kumar
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechno logy, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Velayudhan Rema
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| |
Collapse
|
16
|
Deng X, Hu Z, Zhou S, Wu Y, Fu M, Zhou C, Sun J, Gao X, Huang Y. Perspective from single-cell sequencing: Is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci Ther 2024; 30:e14510. [PMID: 37905592 PMCID: PMC10805403 DOI: 10.1111/cns.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a common cerebrovascular event associated with high incidence, disability, and poor prognosis. Studies have shown that various cell types, including microglia, astrocytes, oligodendrocytes, neurons, and neutrophils, play complex roles in the early stages of AIS and significantly affect its prognosis. Thus, a comprehensive understanding of the mechanisms of action of these cells will be beneficial for improving stroke prognosis. With the rapid development of single-cell sequencing technology, researchers have explored the pathophysiological mechanisms underlying AIS at the single-cell level. METHOD We systematically summarize the latest research on single-cell sequencing in AIS. RESULT In this review, we summarize the phenotypes and functions of microglia, astrocytes, oligodendrocytes, neurons, neutrophils, monocytes, and lymphocytes, as well as their respective subtypes, at different time points following AIS. In particular, we focused on the crosstalk between microglia and astrocytes, oligodendrocytes, and neurons. Our findings reveal diverse and sometimes opposing roles within the same cell type, with the possibility of interconversion between different subclusters. CONCLUSION This review offers a pioneering exploration of the functions of various glial cells and cell subclusters after AIS, shedding light on their regulatory mechanisms that facilitate the transformation of detrimental cell subclusters towards those that are beneficial for improving the prognosis of AIS. This approach has the potential to advance the discovery of new specific targets and the development of drugs, thus representing a significant breakthrough in addressing the challenges in AIS treatment.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ziliang Hu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shengjun Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yiwen Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Menglin Fu
- School of Economics and ManagementChina University of GeosciencesWuhanChina
| | - Chenhui Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jie Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xiang Gao
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Yi Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
17
|
Zhang Y, Jiang Y, Zou Y, Fan Y, Feng P, Fu X, Li K, Zhang J, Dong Y, Yan S, Zhang Y. Peripheral blood CD19 positive B lymphocytes increase after ischemic stroke and correlate with carotid atherosclerosis. Front Neurol 2023; 14:1308041. [PMID: 38221996 PMCID: PMC10784375 DOI: 10.3389/fneur.2023.1308041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Atherosclerosis is the primary pathological basis of ischemic stroke, and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients exhibit imbalances in lymphocyte subpopulations, yet the correlation between these dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as well as carotid atherosclerosis in stroke patients remains poorly understood. Methods We retrospectively analyzed the demographic data, risk factors of cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid indexes, etc.), clinical features and c;/]-sity from December 2017 to September 2019 and non-stroke patients with dizziness/vertigo during the same period. Results The results showed that peripheral B lymphocyte proportions are elevated in acute ischemic stroke patients compared with those of the control group (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006). Higher B lymphocyte proportions are associated with concurrent dyslipidemia, increased levels of vascular risk factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), as well as decreased levels of the protective factor high-density lipoprotein cholesterol (HDL-C). Elevated B lymphocyte proportions are independently correlated with carotid atherosclerosis in stroke patients. Discussion We found CD19 positive B Lymphocytes increase after ischemic stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations should be highlighted in stroke patients.
Collapse
Affiliation(s)
- Yuhua Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yutian Zou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Afflliated Changshu Hospital of Nantong University, Changshu, China
| | - Yinyin Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Keru Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunlei Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuying Yan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanlin Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Wang R, Li H, Ling C, Zhang X, Lu J, Luan W, Zhang J, Shi L. A novel phenotype of B cells associated with enhanced phagocytic capability and chemotactic function after ischemic stroke. Neural Regen Res 2023; 18:2413-2423. [PMID: 37282471 DOI: 10.4103/1673-5374.371365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration. However, the role of B cells in ischemic stroke remains unclear. In this study, we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45. Macrophage-like B cells characterized by co-expression of B-cell and macrophage markers, showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes. Gene Ontology analysis found that the expression of genes associated with phagocytosis, including phagosome- and lysosome-related genes, was upregulated in macrophage-like B cells. The phagocytic activity of macrophage-like B cells was verified by immunostaining and three-dimensional reconstruction, in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia. Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways. Single-cell RNA sequencing showed that the transdifferentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP family to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage. Furthermore, this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury, Alzheimer's disease, and glioblastoma. Overall, these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain. These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chenhan Ling
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weimin Luan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Brain Research Institute, Zhejiang University; Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Fan PL, Wang SS, Chu SF, Chen NH. Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int 2023; 169:105584. [PMID: 37454817 DOI: 10.1016/j.neuint.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Ping-Long Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Gao Y, Fang C, Wang J, Ye Y, Li Y, Xu Q, Kang X, Gu L. Neuroinflammatory Biomarkers in the Brain, Cerebrospinal Fluid, and Blood After Ischemic Stroke. Mol Neurobiol 2023; 60:5117-5136. [PMID: 37258724 DOI: 10.1007/s12035-023-03399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.
Collapse
Affiliation(s)
- Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congcong Fang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianhui Kang
- Department of Anesthesia, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310006, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
22
|
Nguyen JN, Chauhan A. Bystanders or not? Microglia and lymphocytes in aging and stroke. Neural Regen Res 2023; 18:1397-1403. [PMID: 36571333 PMCID: PMC10075112 DOI: 10.4103/1673-5374.360345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
As the average age of the world population increases, more people will face debilitating aging-associated conditions, including dementia and stroke. Not only does the incidence of these conditions increase with age, but the recovery afterward is often worse in older patients. Researchers and health professionals must unveil and understand the factors behind age-associated diseases to develop a therapy for older patients. Aging causes profound changes in the immune system including the activation of microglia in the brain. Activated microglia promote T lymphocyte transmigration leading to an increase in neuroinflammation, white matter damage, and cognitive impairment in both older humans and rodents. The presence of T and B lymphocytes is observed in the aged brain and correlates with worse stroke outcomes. Preclinical strategies in stroke target either microglia or the lymphocytes or the communications between them to promote functional recovery in aged subjects. In this review, we examine the role of the microglia and T and B lymphocytes in aging and how they contribute to cognitive impairment. Additionally, we provide an important update on the contribution of these cells and their interactions in preclinical aged stroke.
Collapse
Affiliation(s)
- Justin N. Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
25
|
Tariq MB, Lee J, McCullough LD. Sex differences in the inflammatory response to stroke. Semin Immunopathol 2023; 45:295-313. [PMID: 36355204 PMCID: PMC10924671 DOI: 10.1007/s00281-022-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects women, in part due to their higher longevity. Older women have poorer outcomes after stroke with high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, which activate microglia and other glial cells within the central nervous system, promoting the release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive immune responses also have dual functions after stroke as they can enhance inflammation acutely, but also contribute to suppression of the inflammatory cascade and later repair. In this review, we provide an overview of the current literature on sex-specific inflammatory responses to ischemic stroke. Understanding these differences is critical to identifying therapeutic options for both men and women.
Collapse
Affiliation(s)
- Muhammad Bilal Tariq
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Louise D McCullough
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA.
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Monsour M, Borlongan CV. The central role of peripheral inflammation in ischemic stroke. J Cereb Blood Flow Metab 2023; 43:622-641. [PMID: 36601776 PMCID: PMC10108194 DOI: 10.1177/0271678x221149509] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 01/06/2023]
Abstract
Stroke pathology and its treatments conventionally focus on the brain. Probing inflammation, a critical secondary cell death mechanism in stroke, has been largely relegated to the brain. To this end, peripheral inflammation has emerged as an equally potent contributor to the onset and progression of stroke secondary cell death. Here, we review novel concepts on peripheral organs displaying robust inflammatory response to stroke. These inflammation-plagued organs include the spleen, cervical lymph nodes, thymus, bone marrow, gastrointestinal system, and adrenal glands, likely converging their inflammatory effects through B and T-cells. Recognizing the significant impact of this systemic inflammation, we also discuss innovative stroke therapeutics directed at sequestration of peripheral inflammation. This review paper challenges the paradigm of a brain-centered disease pathology and treatment and offers a peripheral approach to our stroke understanding.
Collapse
Affiliation(s)
- Molly Monsour
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair,
Department of Neurosurgery and Brain Repair, University of South Florida Morsani
College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Zhao N, Li J, Zhang QX, Yang L, Zhang LJ. Elevated neutrophil-related immune-inflammatory biomarkers in acute anterior choroidal artery territory infarction with early progression. Clin Neurol Neurosurg 2023; 229:107720. [PMID: 37084652 DOI: 10.1016/j.clineuro.2023.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE The anterior choroidal artery territory (AChA) infarction has a high rate of progression and poor functional prognosis. The aim of the study is to search for fast and convenient biomarkers to forecast the early progression of acute AChA infarction. METHODS We respectively collected 51 acute AChA infarction patients, and compared the laboratorial index between early progressive and non-progressive acute AChA infarction patients. The receiver-operating characteristics curve (ROC) analysis was used to determine the discriminant efficacy of indicators that had statistical significance. RESULTS The white blood cell, neutrophil, monocyte, white blood cell to high-density lipoprotein cholesterol ratio, neutrophil to high-density lipoprotein cholesterol ratio (NHR), monocyte to high-density lipoprotein cholesterol ratio, monocyte to lymphocyte ratio, neutrophil to lymphocyte ratio (NLR), and hypersensitive C-reaction protein in acute AChA infarction are significantly higher than healthy controls (P < 0.05). The NHR (P = 0.020) and NLR (P = 0.006) are remarkably higher in acute AChA infarction patients with early progression than non-progression. The area under the ROC curve of NHR, NLR, the combine of NHR and NLR are 0.689 (P = 0.011), 0.723 (P = 0.003), 0.751 (P < 0.001), respectively. But there are no significant differences in efficiency between NHR and NLR and their combined marker in predicting progression (P > 0.05). CONCLUSION NHR and NLR may be significant predictors of early progressive patients with acute AChA infarction, and the combination of NHR and NLR could be a preferable prognostic marker for AChA infarction with early progressive course in acute stage.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
29
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
30
|
Han W, Song Y, Rocha M, Shi Y. Ischemic brain edema: Emerging cellular mechanisms and therapeutic approaches. Neurobiol Dis 2023; 178:106029. [PMID: 36736599 DOI: 10.1016/j.nbd.2023.106029] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Brain edema is one of the most devastating consequences of ischemic stroke. Malignant cerebral edema is the main reason accounting for the high mortality rate of large hemispheric strokes. Despite decades of tremendous efforts to elucidate mechanisms underlying the formation of ischemic brain edema and search for therapeutic targets, current treatments for ischemic brain edema remain largely symptom-relieving rather than aiming to stop the formation and progression of edema. Recent preclinical research reveals novel cellular mechanisms underlying edema formation after brain ischemia and reperfusion. Advancement in neuroimaging techniques also offers opportunities for early diagnosis and prediction of malignant brain edema in stroke patients to rapidly adopt life-saving surgical interventions. As reperfusion therapies become increasingly used in clinical practice, understanding how therapeutic reperfusion influences the formation of cerebral edema after ischemic stroke is critical for decision-making and post-reperfusion management. In this review, we summarize these research advances in the past decade on the cellular mechanisms, and evaluation, prediction, and intervention of ischemic brain edema in clinical settings, aiming to provide insight into future preclinical and clinical research on the diagnosis and treatment of brain edema after stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yang Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Marcelo Rocha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
31
|
Farooqui M, Ortega‐Gutierrez S, Hernandez K, Torres VO, Dajles A, Zevallos CB, Quispe‐Orozco D, Mendez‐Ruiz A, Manzel K, Ten Eyck P, Tranel D, Karandikar NJ, Ortega SB. Hyperacute immune responses associate with immediate neuropathology and motor dysfunction in large vessel occlusions. Ann Clin Transl Neurol 2023; 10:276-291. [PMID: 36579400 PMCID: PMC9930422 DOI: 10.1002/acn3.51719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Despite successful endovascular therapy, a proportion of stroke patients exhibit long-term functional decline, regardless of the cortical reperfusion. Our objective was to evaluate the early activation of the adaptive immune response and its impact on neurological recovery in patients with large vessel occlusion (LVO). METHODS Nineteen (13 females, 6 males) patients with acute LVO were enrolled in a single-arm prospective cohort study. During endovascular therapy (EVT), blood samples were collected from pre and post-occlusion, distal femoral artery, and median cubital vein (controls). Cytokines, chemokines, cellular and functional profiles were evaluated with immediate and follow-up clinical and radiographic parameters, including cognitive performance and functional recovery. RESULTS In the hyperacute phase (within hours), adaptive immune activation was observed in the post-occlusion intra-arterial environment (post). Ischemic vascular tissue had a significant increase in T-cell-related cytokines, including IFN-γ and MMP-9, while GM-CSF, IL-17, TNF-α, IL-6, MIP-1a, and MIP-1b were decreased. Cellularity analysis revealed an increase in inflammatory IL-17+ and GM-CSF+ helper T-cells, while natural killer (NK), monocytes and B-cells were decreased. A correlation was observed between hypoperfused tissue, infarct volume, inflammatory helper, and cytotoxic T-cells. Moreover, helper and cytotoxic T-cells were also significantly increased in patients with improved motor function at 3 months. INTERPRETATION We provide evidence of the activation of the inflammatory adaptive immune response during the hyperacute phase and the association of pro-inflammatory cytokines with greater ischemic tissue and worsening recovery after successful reperfusion. Further characterization of these immune pathways is warranted to test selective immunomodulators during the early stages of stroke rehabilitation.
Collapse
Affiliation(s)
| | - Santiago Ortega‐Gutierrez
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Department of Neurosurgery, and RadiologyUniversity of IowaIowa CityIowaUSA
| | - Katherine Hernandez
- Department of Microbiology, Immunology, and GeneticsUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Vanessa O. Torres
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Andres Dajles
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | | | | | - Kenneth Manzel
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | - Patrick Ten Eyck
- Institute for Clinical and Translational ScienceUniversity of IowaIowa CityIowaUSA
| | - Daniel Tranel
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
| | | | - Sterling B. Ortega
- Department of Microbiology, Immunology, and GeneticsUniversity of North Texas Health Science CenterFort WorthTexasUSA
- Department of PathologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
32
|
Laichinger K, Bombach P, Dünschede J, Ruschil C, Stefanou MI, Dubois E, Poli S, Feil K, Ziemann U, Kowarik M, Mengel A. No evidence of oligoclonal bands, intrathecal immunoglobulin synthesis and B cell recruitment in acute ischemic stroke. PLoS One 2023; 18:e0283476. [PMID: 37000850 PMCID: PMC10065233 DOI: 10.1371/journal.pone.0283476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Within the past 10 years, immune mechanisms associated with acute ischemic stroke (AIS) have been brought into focus, but data on B cell activation and intrathecal Ig production is still scarce. In this study, we determined the prevalence of an elevated IgG index, positive oligoclonal bands (OCBs) and chemokine C-X-C motif ligand 13 (CXCL13) levels in the cerebrospinal fluid (CSF) as markers of intrathecal IgG synthesis and B cell activation in patients with AIS. METHODS In a retrospective study we analyzed the cerebrospinal fluid (CSF) from 212 patients with AIS from December 2013 to May 2018 assessing intrathecal Ig synthesis, OCBs and CXCL13 concentrations. RESULTS Overall, 5.7% (12/212) of AIS patients showed an intrathecal IgG synthesis, 0.5% (1/212) with isolated elevated IgG index, 5.2% (7/136) isolated positive OCBs and 2.9% (4/136) both elevated IgG index and positive OCBs. CXCL13 levels were elevated in 3.6% (3/83) of the patients. Approximately one third of these patients had simultaneously chronic inflammatory CNS disease (multiple sclerosis, neuromyelitis optica spectrum disorder, neurosarcoidosis). There was no significant association between CSF findings and stroke characteristics including vascular territory, localization, volume, etiology, acute treatment, or blood-brain barrier dysfunction. Intrathecal IgG synthesis was more common in patients with prior stroke. Longitudinal CSF analysis did not reveal any newly-occurring, but instead mostly persistent or even disappearing intrathecal IgG synthesis after AIS. CONCLUSIONS We found no evidence of a relevant B cell recruitment and intrathecal IgG synthesis in patients with AIS. In fact, the occurrence of intrathecal IgG synthesis was associated with concurrent chronic inflammatory CNS disease or previous stroke. Consequently, in patients with first-ever AIS and intrathecal IgG synthesis, physicians should search for concomitant inflammatory CNS disease.
Collapse
Affiliation(s)
- Kornelia Laichinger
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Paula Bombach
- Interdisciplinary Division of Neuro-Oncology, Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Jutta Dünschede
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Christoph Ruschil
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Maria-Ioanna Stefanou
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Evelyn Dubois
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Poli
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Katharina Feil
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Markus Kowarik
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Annerose Mengel
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
33
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
34
|
Liu Y, Li G, Jia J, Liu X, Guo J, Zhao X. Clinical significance of neutrophil to lymphocyte ratio in ischemic stroke and transient ischemic attack in young adults. BMC Neurol 2022; 22:481. [DOI: 10.1186/s12883-022-03011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Objective
Few studies evaluated the association between neutrophil to lymphocyte ratio (NLR) and clinical outcomes in ischemic stroke or transient ischemia attack (TIA) in young adults. We aimed to investigate the relationship of NLR with 90-day functional independence in ischemic stroke or TIA in young adults.
Methods
We retrospectively included patients aged 18–45 and diagnosed with ischemic stroke or TIA. Information including demographics, clinical and imaging characteristics, and the 90-day clinical outcome was collected. The primary outcome was excellent clinical outcome at 90 days, defined as mRS 0–1. Logistic regression analyses and a receiver operator characteristic (ROC) curve were used to investigate the association between NLR and 90-day clinical outcome.
Results
A total of 691 young patients with ischemic stroke or TIA were included in the final study. A higher level of NLR indicated poorer clinical outcome at 90 days (p for trend <0.001). The multivariable logistics regression suggested that NLR was an independent predictor of mRS 0–1 at 90 days (crude OR: 0.88, 95% CI 0.83–0.94, p < 0.001; adjusted OR of model 2: 0.87, 95% CI 0.84–0.94, p < 0.001; adjusted OR of model 3: 0.92, 95% CI 0.84–0.99, p = 0.04).
Conclusion
In our study, a higher level of NLR was correlated with poorer functional outcomes at 90 days in ischemic stroke or TIA in young adults.
Collapse
|
35
|
The immunopathology of B lymphocytes during stroke-induced injury and repair. Semin Immunopathol 2022:10.1007/s00281-022-00971-3. [PMID: 36446955 PMCID: PMC9708141 DOI: 10.1007/s00281-022-00971-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022]
Abstract
B cells, also known as B lymphocytes or lymphoid lineage cells, are a historically understudied cell population with regard to brain-related injuries and diseases. However, an increasing number of publications have begun to elucidate the different phenotypes and roles B cells can undertake during central nervous system (CNS) pathology, including following ischemic and hemorrhagic stroke. B cell phenotype is intrinsically linked to function following stroke, as they may be beneficial or detrimental depending on the subset, timing, and microenvironment. Factors such as age, sex, and presence of co-morbidity also influence the behavior of post-stroke B cells. The following review will briefly describe B cells from origination to senescence, explore B cell function by integrating decades of stroke research, differentiate between the known B cell subtypes and their respective activity, discuss some of the physiological influences on B cells as well as the influence of B cells on certain physiological functions, and highlight the differences between B cells in healthy and disease states with particular emphasis in the context of ischemic stroke.
Collapse
|
36
|
Ma X, Yang J, Wang X, Wang X, Chai S. The Clinical Value of Systemic Inflammatory Response Index and Inflammatory Prognosis Index in Predicting 3-Month Outcome in Acute Ischemic Stroke Patients with Intravenous Thrombolysis. Int J Gen Med 2022; 15:7907-7918. [PMID: 36314038 PMCID: PMC9601565 DOI: 10.2147/ijgm.s384706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Systemic inflammatory response index (SIRI) was an independent predictor of the prognosis of many diseases. Inflammatory prognostic index (IPI) was a new inflammatory prognostic marker with certain clinical significance. We aimed to explore the association between SIRI, IPI and early stage severity of stroke as well as 3-month outcome of AIS patients. Patients and Methods A total of 63 AIS patients who treated with alteplase were selected. The patients were divided into mild group and moderate to severe group according to the National Institutes of Health Stroke Scale (NIHSS) scores. According to the modified Rankin scale (mRS) score, patients were divided into the good prognosis group and the poor prognosis group. Spearman correlation statistically analyzed the correlation between SIRI, IPI and NIHSS score. Univariate and multivariate logistic regression analyzed the risk factors of 3-month prognosis. ROC curve was adopted to predict the effect of SIRI and IPI levels on poor prognosis in AIS patients. Results Spearman analysis showed that there was positively correlated with NIHSS score and IPI in mild AIS group (r=0.541, P<0.05). Compared with the mild group, SIRI and IPI in the moderate to severe group was significantly higher (P<0.05). The SIRI and IPI in the poor prognosis group were significantly higher than those in the good prognosis group (P<0.05). Univariate and multivariate logistic regression analysis showed that SIRI and IPI were independent prognostic factors for the 3-month prognosis of AIS patients (P< 0.05). The ROC curve showed that the areas under the 3-month prognosis curve predicted by SIRI and IPI were 0.685, 0.774 respectively. Conclusion IPI is correlated with stroke severity at admission. SIRI and IPI are independent predictors of short-term prognosis in AIS patients. SIRI and IPI can be a novel the good short-term prognostic biomarker for AIS patients treated with intravenous thrombolysis.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Jie Yang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Xiaolu Wang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Xiang Wang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Shuhong Chai
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China,Correspondence: Shuhong Chai, Department of Clinical Laboratory, Urumqi Friendship Hospital, No. 558 Shengli Road, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, 830049, People’s Republic of China, Tel +86-18997994493, Email
| |
Collapse
|
37
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
38
|
Li G, Hao Y, Wang C, Wang S, Xiong Y, Zhao X. Association Between Neutrophil-to-Lymphocyte Ratio/Lymphocyte-to-Monocyte Ratio and In-Hospital Clinical Outcomes in Ischemic Stroke Treated with Intravenous Thrombolysis. J Inflamm Res 2022; 15:5567-5578. [PMID: 36185640 PMCID: PMC9518842 DOI: 10.2147/jir.s382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Investigations on neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) in patients with ischemic stroke are insufficient. We aimed to investigate the relationship of NLR and LMR with in-hospital clinical outcomes at different time points in ischemic stroke patients treated with intravenous tissues plasminogen activator (IV tPA). Methods We retrospectively enrolled patients who received IV tPA therapy within 4.5 hours from symptoms onset. Demographics, clinical characteristics, imaging measures, and the in-hospital clinical outcomes including early neurological improvement (ENI, defined as NIHSS score reduction within 24 hours ≥4 points or decreased to the baseline) and favorable functional outcome (defined as modified Rankin scale 0–1) were collected. Multivariable logistic regression analyses were performed to test whether NLR or LMR was an independent predictor for the in-hospital clinical outcomes. Results One hundred and two patients treated with IV tPA were included. NLR at 24 hours proved to be an independent predictor of ENI (adjusted OR=0.85, 95% CI=0.75–0.95, P=0.04). NLR at 48 hours and LMR at 48 hours proved to be independent predictors of mRS 0–1 at discharge (NLR at 48 hours: adjusted OR=0.64, 95% CI=0.49–0.83, P=0.01; LMR at 48 hours: adjusted OR=1.50, 95% CI=1.08–2.09, P=0.02). The AUC of NLR at 48 hours to predict favorable functional outcome at discharge was 0.79 (95% CI=0.70–0.88, P<0.001) and the optimal cut-off was 5.69 (sensitivity=0.52, specificity=0.63). Conclusion In our study, NLR at 24 hours was correlated with ENI. Both NLR and LMR at 48 hours were closely associated with favorable functional outcomes at discharge.
Collapse
Affiliation(s)
- Guangshuo Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yahui Hao
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Chuanying Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yunyun Xiong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Chinese Institute of Brain Research, Beijing, People’s Republic of China
- Correspondence: Yunyun Xiong, China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China, Email
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- Xingquan Zhao, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuanxilu, Fengtai District, Beijing, 100070, People’s Republic of China, Email
| |
Collapse
|
39
|
Cai W, Shi L, Zhao J, Xu F, Dufort C, Ye Q, Yang T, Dai X, Lyu J, Jin C, Pu H, Yu F, Hassan S, Sun Z, Zhang W, Hitchens TK, Shi Y, Thomson AW, Leak RK, Hu X, Chen J. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin Invest 2022; 132:157678. [PMID: 35912857 PMCID: PMC9337834 DOI: 10.1172/jci157678] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/17/2022] [Indexed: 12/20/2022] Open
Abstract
Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor–like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingyan Zhao
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Connor Dufort
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junxuan Lyu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenghao Jin
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sulaiman Hassan
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Korf JM, Honarpisheh P, Mohan EC, Banerjee A, Blasco-Conesa MP, Honarpisheh P, Guzman GU, Khan R, Ganesh BP, Hazen AL, Lee J, Kumar A, McCullough LD, Chauhan A. CD11b high B Cells Increase after Stroke and Regulate Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:288-300. [PMID: 35732342 PMCID: PMC9446461 DOI: 10.4049/jimmunol.2100884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/22/2022] [Indexed: 06/02/2023]
Abstract
Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Eric C Mohan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anik Banerjee
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | | | - Parisa Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Gary U Guzman
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Romeesa Khan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Bhanu P Ganesh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Amy L Hazen
- University of Texas McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX
| | - Juneyoung Lee
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Aditya Kumar
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX;
| |
Collapse
|
41
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Zhang Y, Lian L, Fu R, Liu J, Shan X, Jin Y, Xu S. Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Front Cell Neurosci 2022; 16:889442. [PMID: 35518646 PMCID: PMC9062186 DOI: 10.3389/fncel.2022.889442] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Communication between microglia and other cells has recently been at the forefront of research in central nervous system (CNS) disease. In this review, we provide an overview of the neuroinflammation mediated by microglia, highlight recent studies of crosstalk between microglia and CNS resident and infiltrating cells in the context of ischemic stroke (IS), and discuss how these interactions affect the course of IS. The in-depth exploration of microglia-intercellular communication will be beneficial for therapeutic tools development and clinical translation for stroke control.
Collapse
Affiliation(s)
- Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jueling Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoqian Shan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
43
|
Abstract
In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.
Collapse
Affiliation(s)
- Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.).,UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston (A.B.)
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (A.B., L.D.M.)
| |
Collapse
|
44
|
Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ Res 2022; 130:1167-1186. [PMID: 35420915 DOI: 10.1161/circresaha.121.319994] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and immune mechanisms are crucially involved in the pathophysiology of the development, acute damage cascades, and chronic course after ischemic stroke. Atherosclerosis is an inflammatory disease, and, in addition to classical risk factors, maladaptive immune mechanisms lead to an increased risk of stroke. Accordingly, individuals with signs of inflammation or corresponding biomarkers have an increased risk of stroke. Anti-inflammatory drugs, such as IL (interleukin)-1β blockers, methotrexate, or colchicine, represent attractive treatment strategies to prevent vascular events and stroke. Lately, the COVID-19 pandemic shows a clear association between SARS-CoV2 infections and increased risk of cerebrovascular events. Furthermore, mechanisms of both innate and adaptive immune systems influence cerebral damage cascades after ischemic stroke. Neutrophils, monocytes, and microglia, as well as T and B lymphocytes each play complex interdependent roles that synergize to remove dead tissue but also can cause bystander injury to intact brain cells and generate maladaptive chronic inflammation. Chronic systemic inflammation and comorbid infections may unfavorably influence both outcome after stroke and recurrence risk for further stroke. In addition, stroke triggers specific immune depression, which in turn can promote infections. Recent research is now increasingly addressing the question of the extent to which immune mechanisms may influence long-term outcome after stroke and, in particular, cause specific complications such as poststroke dementia or even poststroke depression.
Collapse
Affiliation(s)
- Matthias Endres
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Excellence Cluster NeuroCure (M.E.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Center for Neurodegenerative Diseases, Partner Site Berlin, Germany (M.E.).,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Maria A Moro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (M.A.M.).,Departamento de Farmacología yToxicología, Unidad de Investigación Neurovascular, Universidad Complutense de Madrid, Madrid, Spain (M.A.M.).,Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain (M.A.M.).,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.A.M.)
| | - Christian H Nolte
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Claudia Dames
- Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Institute for Medical Immunology (C.D.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.).,Wu Tsai Neurosciences Institute, Stanford University, CA (M.S.B.)
| | - Andreas Meisel
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,NeuroCure Clinical Research Center (A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
45
|
De Meyer SF, Langhauser F, Haupeltshofer S, Kleinschnitz C, Casas AI. Thromboinflammation in Brain Ischemia: Recent Updates and Future Perspectives. Stroke 2022; 53:1487-1499. [PMID: 35360931 DOI: 10.1161/strokeaha.122.038733] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
Collapse
Affiliation(s)
- Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Belgium (S.F.D.M.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.)
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany (F.L., S.H., C.K., A.I.C.).,Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, the Netherlands (A.I.C.)
| |
Collapse
|
46
|
Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. J Control Release 2022; 350:60-79. [DOI: 10.1016/j.jconrel.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
47
|
Ma Y, Yang S, He Q, Zhang D, Chang J. The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown. Front Immunol 2022; 12:784098. [PMID: 34975872 PMCID: PMC8716409 DOI: 10.3389/fimmu.2021.784098] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Following a cerebral ischemic event, substantial alterations in both cellular and molecular activities occur due to ischemia-induced cerebral pathology. Mounting evidence indicates that the robust recruitment of immune cells plays a central role in the acute stage of stroke. Infiltrating peripheral immune cells and resident microglia mediate neuronal cell death and blood-brain barrier disruption by releasing inflammation-associated molecules. Nevertheless, profound immunological effects in the context of the subacute and chronic recovery phase of stroke have received little attention. Early attempts to curtail the infiltration of immune cells were effective in mitigating brain injury in experimental stroke studies but failed to exert beneficial effects in clinical trials. Neural tissue damage repair processes include angiogenesis, neurogenesis, and synaptic remodeling, etc. Post-stroke inflammatory cells can adopt divergent phenotypes that influence the aforementioned biological processes in both endothelial and neural stem cells by either alleviating acute inflammatory responses or secreting a variety of growth factors, which are substantially involved in the process of angiogenesis and neurogenesis. To better understand the multiple roles of immune cells in neural tissue repair processes post stroke, we review what is known and unknown regarding the role of immune cells in angiogenesis, neurogenesis, and neuronal remodeling. A comprehensive understanding of these inflammatory mechanisms may help identify potential targets for the development of novel immunoregulatory therapeutic strategies that ameliorate complications and improve functional rehabilitation after stroke.
Collapse
Affiliation(s)
- Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shilun Yang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qianyan He
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dianhui Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
48
|
Xu Y, Ge Y, Zhou M, Zhang Z. Clenbuterol, a Selective β2-Adrenergic Receptor Agonist, Inhibits or Limits Post-Stroke Pneumonia, but Increases Infarct Volume in MCAO Mice. J Inflamm Res 2022; 15:295-309. [PMID: 35058704 PMCID: PMC8765548 DOI: 10.2147/jir.s344521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Younian Xu
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yangyang Ge
- Anesthesiology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Miaomiao Zhou
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Correspondence: Miaomiao Zhou Anesthesiology Department, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, People’s Republic of ChinaTel/Fax +86 027-67812903 Email
| | - Zongze Zhang
- Anesthesiology Department, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
49
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
50
|
Qiu M, Zong JB, He QW, Liu YX, Wan Y, Li M, Zhou YF, Wu JH, Hu B. Cell Heterogeneity Uncovered by Single-Cell RNA Sequencing Offers Potential Therapeutic Targets for Ischemic Stroke. Aging Dis 2022; 13:1436-1454. [PMID: 36186129 PMCID: PMC9466965 DOI: 10.14336/ad.2022.0212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is a detrimental neurological disease characterized by an irreversible infarct core surrounded by an ischemic penumbra, a salvageable region of brain tissue. Unique roles of distinct brain cell subpopulations within the neurovascular unit and peripheral immune cells during ischemic stroke remain elusive due to the heterogeneity of cells in the brain. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased determination of cellular heterogeneity at high-resolution and identification of cell markers, thereby unveiling the principal brain clusters within the cell-type-specific gene expression patterns as well as cell-specific subclusters and their functions in different pathways underlying ischemic stroke. In this review, we have summarized the changes in differentiation trajectories of distinct cell types and highlighted the specific pathways and genes in brain cells that are impacted by stroke. This review is expected to inspire new research and provide directions for investigating the potential pathological mechanisms and novel treatment strategies for ischemic stroke at the level of a single cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie-hong Wu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|