1
|
Echeveste Sanchez M, Zhu M, Magee S, Grady S, Guerry H, Guhr-Lee TN, Esther CR, Herman MA. Electronic Vaporization of Nicotine Salt or Freebase produces differential effects on metabolism, neuronal activity and behavior in male and female C57BL/6J mice. ADDICTION NEUROSCIENCE 2023; 6:100082. [PMID: 37292173 PMCID: PMC10249512 DOI: 10.1016/j.addicn.2023.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of Electronic Nicotine Delivery Systems (ENDS) is increasing in prevalence and popularity. ENDS are a rapidly evolving technology as devices and e-liquid formulations adapt to policy restrictions and market demand To identify the impacts of nicotine formulation and concentration, we exposed female and male C57BL/6J mice to passive electronic vaporization of different nicotine formulations (freebase or salt) and concentrations (1% or 3%) and measured serum nicotine metabolite levels, brain activity by cFos expression, and anxiety-like and motivated behavior using the novelty suppressed feeding test. We found that the 3% freebase nicotine vapor group displayed significantly higher serum nicotine levels than either 1% or 3% nicotine salt formulations, and female mice displayed higher serum nicotine and cotinine levels compared to males. Central amygdala (CeA) activity was significantly elevated in male mice following nicotine vapor exposure, but the increase was not significantly different between nicotine vapor groups. CeA activity in female mice was unaffected. In contrast increased activity in the ventral tegmental area (VTA) was only observed in female mice exposed to 3% nicotine freebase and specifically in the dopaminergic population. Anxiety-like behavior in female mice was relatively unaffected by nicotine vapor exposure, however male mice displayed increased anxiety-like behavior and reduced motivation to feed after vapor exposure, specifically in the 3% freebase group. These results identify important sex differences in the impact of nicotine formulation and concentration on nicotine metabolism, brain region-specific activity and anxiety-like behavior, which may have significant relevance for different consequences of vaping in men and women.
Collapse
Affiliation(s)
- Maria Echeveste Sanchez
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - ManHua Zhu
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Neuroscience Curriculum, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Sarah Magee
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Neuroscience Curriculum, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Shyenne Grady
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Hayley Guerry
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Tara N. Guhr-Lee
- Division of Pediatric Pulmonology, Department of Pediatrics, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Marsico Lung Institute, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Charles R. Esther
- Division of Pediatric Pulmonology, Department of Pediatrics, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Marsico Lung Institute, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Melissa A Herman
- Department of Pharmacology, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Bowles Center for Alcohol Studies, Cystic Fibrosis Research Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
2
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
3
|
Miladinovic T, Manwell LA, Raaphorst E, Malecki SL, Rana SA, Mallet PE. Effects of chronic nicotine exposure on Δ 9-tetrahydrocannabinol-induced locomotor activity and neural activation in male and female adolescent and adult rats. Pharmacol Biochem Behav 2020; 194:172931. [PMID: 32353393 DOI: 10.1016/j.pbb.2020.172931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE High rates of comorbid tobacco and cannabis use in adolescents and young adults may be related to functional interactions between the nicotinic cholinergic and cannabinoid systems in the brain during development. This study examined the effects of chronic exposure to nicotine (the psychoactive component in tobacco) on acute exposure to delta-9-tetrahydrocannabinol (THC) (the psychoactive component of cannabis). METHODS Male and female adolescent and adult Sprague-Dawley rats (N = 112) were injected daily with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14-day drug-free period. On test day, rats were injected with THC (5 mg/kg, i.p.) or vehicle, locomotor activity was recorded for 2 h, and brains harvested for c-Fos immunoreactivity (IR). RESULTS Locomotor activity and c-Fos IR changes induced by THC challenge were altered by nicotine pre-exposure and modified by age and sex. THC-induced suppression of locomotor activity was attenuated by nicotine pre-exposure in adult but not adolescent males. THC-induced suppression of locomotor activity was potentiated by nicotine pre-exposure in female adolescents, with no effects of THC or nicotine observed in female adults. THC increased c-Fos IR in the caudate, nucleus accumbens, stria terminalis, septum, amygdala, hypothalamus, and thalamus. Nicotine pre-exposure potentiated this effect in all regions. Several brain regions showed age and sex differences in c-Fos IR such that expression was greater in adults than adolescents and in females than males. CONCLUSIONS Chronic nicotine pre-exposure produces lasting effects on cannabinoid-mediated signalling in the brain and on behaviour that are mediated by age and sex. FUNDING SUPPORT NSERC.
Collapse
Affiliation(s)
- T Miladinovic
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - L A Manwell
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada.
| | - E Raaphorst
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S L Malecki
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S A Rana
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - P E Mallet
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| |
Collapse
|
4
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
5
|
Sharma AK, Gupta S, Patel RK, Wardhan N. Haloperidol-induced parkinsonism is attenuated by varenicline in mice. J Basic Clin Physiol Pharmacol 2018; 29:395-401. [PMID: 29634484 DOI: 10.1515/jbcpp-2017-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/22/2018] [Indexed: 05/28/2023]
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder of the central nervous system (CNS). However, there is no known drug to stop/slow down this neurodegeneration. Varenicline is an anti-smoking drug and has the potential to prevent neurodegeneration. Thus, the present study was designed to evaluate the effect of varenicline in animal models of PD. Methods Levodopa and haloperidol were administered in doses of 30 and 1 mg/kg, intraperitoneally (i.p.), respectively. Group 1 was administered haloperidol; groups 2, 3 and 4 were administered haloperidol along with varenicline in doses of 0.5, 1.5 and 2.5 mg/kg, i.p., respectively and group 5 was administered levodopa along with haloperidol. Varenicline was administered daily, 30 min prior to the administration of haloperidol. Varenicline was administered for the first 8 days, and then from the 9th day until the 15th day. Behavioral assessment (rotarod and catalepsy tests) was performed on days 9 and 15. Assessment of striatal dopamine levels and histopathology were also performed. Results In the haloperidol-treated groups, significant decrease in latency to fall off (on rotarod) and increase in catalepsy duration (in catalepsy test) were observed as compared to the control group. In the levodopa-treated group, significant increase in latency to fall off the rotarod and significant decrease in catalepsy duration were observed as compared to the haloperidol-treated groups. Further, on day 9, varenicline (2.5 mg/kg) significantly increased the latency to fall off the rotarod, while varenicline (0.5 and 1.5 mg/kg) did not cause any significant change in latency to fall off the rotarod as compared to the haloperidol-treated group. On day 15, significant increase in latency to fall off the rotarod was observed in varenicline (at all doses) as compared to the haloperidol-treated group. In the catalepsy test, the varenicline-treated (at all doses) groups showed significant decrease in duration of catalepsy on day 9 and day 15 as compared to the haloperidol-treated group. Significant decrease in striatal dopamine levels was observed among the haloperidol-treated groups as compared to the control group. Further, varenicline-treated (at all doses) and levodopa-treated groups showed significant increase in striatal dopamine levels when compared with the haloperidol-treated group. In histology, varenicline (0.5 mg/kg) showed moderate decrease in neurons, while varenicline (1.5 and 2.5 mg/kg) showed mild decrease in neurons. However, the levodopa-treated group did not show any significant decrease in neurons. Thus, varenicline has shown promising results and has provided novel strategy for the treatment of PD.
Collapse
Affiliation(s)
- Amit K Sharma
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Sparsh Gupta
- Department of Pharmacology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi 110029, India
| | - Ranjan K Patel
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi 110095, India
| | - Neeta Wardhan
- Department of Pharmacology, University College of Medical Sciences and G. T. B. Hospital, New Delhi 110095, India
| |
Collapse
|
6
|
Halawa AA, Damborsky JC, Slaton GS, Winzer-Serhan UH. Activation of immediate early genes by nicotine after chronic neonatal nicotine exposure in brain areas involved in stress and anxiety responses. Brain Res 2018; 1687:32-40. [DOI: 10.1016/j.brainres.2018.02.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/29/2022]
|
7
|
Bastle RM, Peartree NA, Goenaga J, Hatch KN, Henricks A, Scott S, Hood LE, Neisewander JL. Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behav Brain Res 2016; 313:244-254. [PMID: 27435419 DOI: 10.1016/j.bbr.2016.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 01/27/2023]
Abstract
Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US). Adolescent, male rats were assigned to the following CPP US conditions: (1) Saline+Isolated, (2) Nicotine+Isolated, (3) Saline+Social, or (4) Nicotine+Social. For Experiment 1, brain tissue was collected 90min following the CPP expression test and processed for Fos immunohistochemistry. We found that rats conditioned with nicotine with or without a social partner exhibited CPP; however, we found no group differences in Fos expression in any brain region analyzed, with the exception of the nucleus accumbens core that exhibited a social-induced attenuation in Fos expression. For Experiment 2, brain tissue was collected 90min following US exposure during the last conditioning session. We found social reward-induced increases in IEG expression in striatal and amydalar subregions. In contrast, nicotine reduced IEG expression in prefrontal and striatal subregions. Reward interactions were also found in the dorsolateral striatum, basolateral amygdala, and ventral tegmental area where nicotine alone attenuated IEG expression and social reward reversed this effect. These results suggest that in general social rewards enhance, whereas nicotine attenuates, activation of mesocorticolimbic regions; however, the rewards given together interact to enhance activation in some regions. The findings contribute to knowledge of how a social environment influences nicotine effects.
Collapse
Affiliation(s)
- Ryan M Bastle
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Natalie A Peartree
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Julianna Goenaga
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Kayla N Hatch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Angela Henricks
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Samantha Scott
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Janet L Neisewander
- Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, United States; School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| |
Collapse
|
8
|
Varani AP, Moutinho Machado L, Balerio GN. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice. Synapse 2014; 68:508-17. [DOI: 10.1002/syn.21763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés P. Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Graciela N. Balerio
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 956 5° Piso, (C1113AAD) Buenos Aires Argentina
| |
Collapse
|
9
|
Lynagh T, Pless SA. Principles of agonist recognition in Cys-loop receptors. Front Physiol 2014; 5:160. [PMID: 24795655 PMCID: PMC4006026 DOI: 10.3389/fphys.2014.00160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.
Collapse
Affiliation(s)
| | - Stephan A. Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
10
|
Muñoz-Castañeda R, Díaz D, Avila-Zarza CA, Alonso JR, Weruaga E. Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses. Psychopharmacology (Berl) 2014; 231:695-706. [PMID: 24081550 DOI: 10.1007/s00213-013-3284-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Nitric oxide (NO) is a messenger synthesized in both the neuronal and glial populations by nitric oxide synthase type 1 (NOS1). Nicotine regulates NO production in a sex-dependent manner, both molecules being involved in motor function. OBJECTIVE The present study evaluates sex differences in motor coordination, general movement, and anxiety-related responses resulting from both constant and continuous nicotine treatment and the genetic depletion of NOS1 activity. METHODS Male and female mice were analyzed with the open-field and the rotarod tests. To understand the role of NO, knockout mice for NOS1 (NOS1-/-) were analyzed. Nicotine was administered continuously at a dose of 24 mg/kg/day via osmotic mini-pumps over 14 days because the behavioral effects elicited are similar to those observed with discontinuous administration. RESULTS Data analyses revealed noteworthy sex differences derived from NOS1 depletion. Control NOS1-/- males exhibited an exacerbated anxiety-related response in relation to control NOS1-/- females and control wild-type (WT) males; these differences disappeared in the nicotine-administered NOS1-/- males. Additionally, nicotine administration differentially affected the horizontal movements of NOS1-/- females with respect to WT animals. NO depletion affected male but not female motor coordination improvement along the test days. However, the drug affected female motor coordination only at the end of the administration period. CONCLUSIONS We show for the first time that NO affects motor and anxiety behaviors in a sex-dependent manner. Moreover, the behavioral effects of constant nicotine administration are dimorphic and dependent on NO production.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castilla y León (INCyL), Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
11
|
Zarrindast MR, Eslahi N, Rezayof A, Rostami P, Zahmatkesh M. Modulation of ventral tegmental area dopamine receptors inhibit nicotine-induced anxiogenic-like behavior in the central amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2013. [PMID: 23178824 DOI: 10.1016/j.pnpbp.2012.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nicotine, the major addictive substance in tobacco, increases the activity of the central amygdala (CeA). Amygdala is directly implicated in anxiety modulation and sends projections to the vicinity of the midbrain dopamine neurons, including the ventral tegmental area (VTA) which is a key area that controls nicotine dependence processes. In this study, the role of dopamine D(1) and D(2)/(3) receptors of the VTA on anxiogenic-like behavior induced with intra-CeA injection of nicotine has been investigated. Male Wistar rats with cannula aimed to the left CeA and the left VTA were submitted to the elevated plus-maze (EPM). The nicotine injection (1 μg/rat) into the CeA decreased the percentage of open arm time and open arm entries, but not locomotor activity, indicating an anxiogenic-like response. Intra-VTA injection of a dopamine D1 receptor antagonist, SCH23390 (0.25 μg/rat), and a dopamine D2/3 receptor antagonist, sulpiride (0.7 μg/rat), inhibited the anxiogenic-like response caused by intra-CeA injection of nicotine. These results suggest that the relationship between the VTA and the CeA may be involved in nicotine-induced anxiogenic-like behavior via dopamine D(1) and D(2)/(3) receptors. An understanding of these cellular processes will be crucial for the development of new intervention to combat nicotine effect.
Collapse
Affiliation(s)
- Mohammad Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
12
|
Varani AP, Moutinho LM, Bettler B, Balerio GN. Acute behavioural responses to nicotine and nicotine withdrawal syndrome are modified in GABA(B1) knockout mice. Neuropharmacology 2012; 63:863-72. [PMID: 22727822 DOI: 10.1016/j.neuropharm.2012.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 06/05/2012] [Indexed: 02/01/2023]
Abstract
Nicotine is the main active component of tobacco, and has both acute and chronic pharmacological effects that can contribute to its abuse potential in humans. The aim of the present study was to evaluate a possible role of GABA(B) receptors in acute and chronic responses to nicotine administration, by comparing GABA(B1) knockout mice and their wild-type littermates. In wild-type mice, acute nicotine administration (0.5, 1, 3 and 6 mg/kg, sc) dose-dependently decreased locomotor activity, and induced antinociceptive responses in the tail-immersion and hot-plate tests. In GABA(B1) knockout mice, the hypolocomotive effect was observed only with the highest dose of nicotine, and the antinociceptive responses in both tests were significantly reduced in GABA(B1) knockout mice compared to their wild-type littermate. Additionally, nicotine elicited anxiolytic- (0.05 mg/kg) and anxiogenic-like (0.8 mg/kg) responses in the elevated plus-maze test in wild-type mice, while selectively the anxiolytic-like effect was abolished in GABA(B1) knockout mice. We further investigated nicotine withdrawal in mice chronically treated with nicotine (25 mg/kg/day, sc). Mecamylamine (1 mg/kg, sc) precipitated several somatic signs of nicotine withdrawal in wild-type mice. However, signs of nicotine withdrawal were missing in GABA(B1) knockout mice. Finally, there was a decreased immunoreactivity of Fos-positive nuclei in the bed nucleus of the stria terminalis, basolateral amygdaloid nucleus and hippocampal dentate gyrus in abstinent wild-type but not in GABA(B1) knockout mice. These results reveal an interaction between the GABA(B) system and the neurochemical systems through which nicotine exerts its acute and long-term effects.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas-CONICET, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | | | | | | |
Collapse
|
13
|
Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:175-82. [PMID: 22476004 PMCID: PMC3389158 DOI: 10.1016/j.pnpbp.2012.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/20/2022]
Abstract
Clinical observations suggest that antipsychotic effect starts early and increases progressively over time. This time course of antipsychotic effect can be captured in a rat phencyclidine (PCP)-induced hyperlocomotion model, as repeated antipsychotic treatment progressively increases its inhibition of the repeated PCP-induced hyperlocomotion. Although the neural basis of acute antipsychotic action has been studied extensively, the system that mediates the potentiated effect of repeated antipsychotic treatment has not been elucidated. In the present study, we investigated the neuroanatomical basis of the potentiated action of haloperidol (HAL) and clozapine (CLZ) treatment in the repeated PCP-induced hyperlocomotion. Once daily for five consecutive days, adult Sprague-Dawley male rats were first injected with HAL (0.05 mg/kg, sc), CLZ (10.0 mg/kg, sc) or saline, followed by an injection of PCP (3.2 mg/kg, sc) or saline 30 min later, and motor activity was measured for 90 min after the PCP injection. C-Fos immunoreactivity was assessed either after the acute (day 1) or repeated (day 5) drug tests. Behaviorally, repeated HAL or CLZ treatment progressively increased the inhibition of PCP-induced hyperlocomotion throughout the five days of drug testing. Neuroanatomically, both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the nucleus accumbens shell (NAs) and the ventral tegmental area (VTA), but reduced it in the central amygdaloid nucleus (CeA). Acute and repeated CLZ treatment significantly increased PCP-induced c-Fos expression in the ventral part of lateral septal nucleus (LSv) and VTA, but reduced it in the medial prefrontal cortex (mPFC). More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5. These findings suggest that repeated HAL achieves its potentiated inhibition of the PCP-induced hyperlocomotion by acting on the NAs, CeA and VTA, while CLZ does so by acting on the mPFC, LSv and VTA.
Collapse
|
14
|
Involvement of rat dopaminergic system of nucleus accumbens in nicotine-induced anxiogenic-like behaviors. Brain Res 2012; 1460:25-32. [DOI: 10.1016/j.brainres.2012.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/18/2012] [Accepted: 04/19/2012] [Indexed: 02/05/2023]
|
15
|
McCarthy MJ, Duchemin AM, Neff NH, Hadjiconstantinou M. CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology (Berl) 2012; 221:143-53. [PMID: 22086359 DOI: 10.1007/s00213-011-2559-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/20/2011] [Indexed: 12/26/2022]
Abstract
RATIONALE The transcription factor cAMP response element binding (CREB) protein plays a pivotal role in drug-dependent neuronal plasticity. CREB phosphorylation at Ser133 is enhanced by drugs of abuse, including nicotine. Dynorphin (Dyn) contributes to the addictive process and its precursor gene prodynorphin (PD) is regulated by CREB. PD mRNA and Dyn synthesis were enhanced in the striatum following acute nicotine, suggesting genomic regulation. OBJECTIVE These studies investigated PD transcription in mice acutely treated with nicotine, determined the role of CREB, and characterized the receptors involved. RESULTS Acute nicotine increased adenylyl cyclase activity, cAMP, and pCREB Ser133 levels in striatum and enhanced CREB binding to CRE elements (DynCREs) of the PD promoter, preferentially DynCRE3. DynCRE3 binding was dose dependent with 1 mg of nicotine giving a maximal response. Additionally, DynCRE binding was time dependent, rising by 15 min, reaching a maximum at 1 h, and returning to control by 3 h, a temporal pattern similar to that of cAMP and pCREB. Supershift experiments showed that CREB and pCREB Ser133 were the major contributors to DynCRE3 binding complex. The nAChR antagonist mecamylamine and the dopamine D1-like receptor antagonist SCH 23390 prevented the nicotine-induced increase of pCREB and nuclear protein binding to DynCRE3. CONCLUSIONS Our findings suggest that nicotine regulates PD expression in striatum at the transcriptional level and CREB is involved. Dopamine D1 receptor stimulation by nAChR-released dopamine appears to be an underlying mechanism. Altered Dyn synthesis might be relevant for the behavioral actions of nicotine and especially its aversive properties.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
16
|
McCallum SE, Cowe MA, Lewis SW, Glick SD. α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 2012; 63:434-40. [PMID: 22561751 DOI: 10.1016/j.neuropharm.2012.04.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Habenulo-interpeduncular nicotinic receptors, particularly those containing α3, β4 and α5 subunits, have recently been implicated in the reinforcing effects of nicotine. Our laboratory has shown that injection of α3β4 nicotinic receptor antagonists into the medial habenula (MHb) decreases self-administration of multiple abused drugs, including nicotine (Glick et al., 2006, 2008; 2011). However, it is unclear whether blockade of MHb nicotinic receptors has a direct effect on mesolimbic dopamine. Here, we performed in vivo microdialysis in female rats. Microdialysis probes were implanted into the nucleus accumbens (NAcc) and α3β4 nicotinic receptor antagonists (18-methoxycoronaridine; 18-MC or α-conotoxin AuIB; AuIB), were injected into the ipsilateral MHb, just prior to systemic nicotine (0.4 mg/kg, s.c.). Dialysate samples were collected before and after drug administration and levels of extracellular dopamine and its metabolites were measured using HPLC. Acute nicotine administration increased levels of extracellular dopamine and its metabolites in the NAcc. Pre-treatment with intra-habenular AuIB or 18-MC prevented nicotine-induced increases in accumbal dopamine. Neither drug had an effect on nicotine-induced increases in dopamine metabolites, suggesting that α3β4 receptors do not play a role in dopamine metabolism. The effect of intra-habenular blockade of α3β4 receptors on NAcc dopamine was selective for acute nicotine: neither AuIB nor 18-MC prevented increases in NAcc dopamine stimulated by acute d-amphetamine or morphine. These results suggest the mesolimbic response to acute nicotine, but not to acute administration of other drugs of abuse, is directly modulated by α3β4 nicotinic receptors in the MHb, and emphasize a critical role for habenular nicotinic receptors in nicotine's reinforcing effects.
Collapse
Affiliation(s)
- Sarah E McCallum
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
17
|
Jacobsen J, Hansen HH, Kiss A, Mikkelsen JD. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain. Neurosci Lett 2012; 515:7-11. [PMID: 22414858 DOI: 10.1016/j.neulet.2012.02.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We used the novel and selective α4β2 receptor agonist ispronicline (10 and 30 mg/kg s.c.) to localise the activated neurons in the rat forebrain using c-Fos-immunoreactivity as a marker of immediate neuronal activity. In the hypothalamic paraventricular nucleus, a large increase of c-Fos-positive cells was found only within its medial part. In addition, an increased number of c-Fos-immunoreactive cells were observed in the central nucleus of the amygdala, and the dorsolateral part of the bed nucleus of the stria terminalis. The restricted distribution of c-Fos to these areas, all of which are directly or indirectly involved in acute stress regulation after a single dose of ispronicline, supports earlier studies that the α4β2 receptors are strongly involved in nicotine-dependent activation of the hypothalamo-pituitary adrenocortical axis.
Collapse
Affiliation(s)
- Julie Jacobsen
- Neurobiology Research Unit, Copenhagen University Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Charntikov S, Tracy ME, Zhao C, Li M, Bevins RA. Conditioned response evoked by nicotine conditioned stimulus preferentially induces c-Fos expression in medial regions of caudate-putamen. Neuropsychopharmacology 2012; 37:876-84. [PMID: 22048468 PMCID: PMC3280645 DOI: 10.1038/npp.2011.263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/12/2011] [Accepted: 09/26/2011] [Indexed: 01/12/2023]
Abstract
Nicotine has both unconditioned and conditioned stimulus properties. Conditioned stimulus properties of nicotine may contribute to the tenacity of nicotine addiction. The purpose of this experiment was to use neurohistochemical analysis of rapidly developing c-Fos protein to elucidate neurobiological loci involved in the processing of nicotine as an interoceptive conditioned stimulus (CS). Rats were injected (SC) in an intermixed fashion with saline or nicotine (16 sessions of each) and placed in conditioning chambers where they were given one of the three conditions depending on group assignment: (a) nicotine paired 100% of the time with intermittent access to sucrose (nicotine-CS condition), (b) nicotine and saline each paired 50% of the time with sucrose (chamber-CS condition), or (c) no sucrose US control (CS-alone condition). Rats in the nicotine-CS condition acquired the discrimination as evidenced by goal-tracking (ie, increased dipper entries before initial sucrose delivery) only on nicotine sessions. The chamber-CS condition showed goal-tracking on all sessions; no goal-tracking was seen in the CS-alone condition. On the test day, rats in each condition were challenged with saline or nicotine and later assessed for c-Fos immunoreactivity. In concordance with previous reports, nicotine induced c-Fos expression in the majority of areas tested; however, learning-dependent expression was specific to dorsomedial and ventromedial regions of caudate-putamen (dmCPu, vmCPu). Only rats in the nicotine-CS condition, when challenged with nicotine, had higher c-Fos expression in the dmCPu and vmCPu. These results suggest that medial areas of CPu involved in excitatory conditioning with an appetitive nicotine CS.
Collapse
Affiliation(s)
- Sergios Charntikov
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew E Tracy
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Changjiu Zhao
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
19
|
Perit KE, Gmaz JM, Caleb Browne J, Matthews BA, Dunn MBF, Yang L, Raaphorst T, Mallet PE, McKay BE. Distribution of c-Fos immunoreactivity in the rat brain following abuse-like toluene vapor inhalation. Neurotoxicol Teratol 2012; 34:37-46. [DOI: 10.1016/j.ntt.2011.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
|
20
|
Ishida S, Kawasaki Y, Araki H, Asanuma M, Matsunaga H, Sendo T, Kawasaki H, Gomita Y, Kitamura Y. α7 Nicotinic acetylcholine receptors in the central amygdaloid nucleus alter naloxone-induced withdrawal following a single exposure to morphine. Psychopharmacology (Berl) 2011; 214:923-31. [PMID: 21125398 DOI: 10.1007/s00213-010-2101-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/11/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE Negative motivational withdrawal from acute opiate dependence was induced by an opioid antagonist, and the withdrawal signs prevented by pretreatment with nicotine. OBJECTIVES The present study was undertaken to examine the mechanism of nicotine-induced attenuation of withdrawal precipitated by naloxone in rats administered a single dose of morphine. METHODS Conditioned place aversion (CPA) was precipitated by naloxone in rats exposed once to morphine. Nicotinic acetylcholine receptor (nAChR) agonists were microinjected into the central amygdaloid nucleus (CeA) before naloxone was administered. Additionally, c-Fos expression in the amygdala was measured in rats exposed to α7 nAChR ligands. RESULTS The microinjection of nicotine (0.3 and 1.0 μg/μl) into the CeA dose-dependently inhibited naloxone-induced CPA. This inhibition of CPA was reversed by methyllycaconitine (MLA), an α7 nAChR antagonist. CPA was also significantly attenuated by the microinjection of tropisetron (3.0 μg/μl), an α7 nAChR agonist and 5-hydroxytriptamine 3 (5-HT(3)) receptor antagonist, but not by ondansetron (1.0 and 3.0 μg/μl), a 5-HT(3) receptor antagonist. The microinjection of PNU-282987 (3.0 μg/μl), a selective α7 nAChR agonist, into the CeA also inhibited CPA. Furthermore, nicotine increased c-Fos expression in the CeA, but not the medial or basolateral amygdaloid nucleus. The increase of c-Fos in the CeA was significantly inhibited by MLA. CONCLUSION Nicotine-induced attenuation of CPA precipitated by naloxone is mediated by the α7 nAChR subtype, and the CeA is one of the regions of the brain involved in the effect of nicotine on acutely opiate-dependent subjects.
Collapse
Affiliation(s)
- Shigeru Ishida
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pascual MM, Pastor V, Bernabeu RO. Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology (Berl) 2009; 207:57-71. [PMID: 19711055 DOI: 10.1007/s00213-009-1630-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/21/2009] [Indexed: 12/26/2022]
Abstract
RATIONALE Experimental evidence indicates that nicotine causes long-lasting changes in the brain associated with behavior. Although much has been learned about factors participating in this process, less is known concerning the mechanisms and brain areas involved in nicotine preference. OBJECTIVES The objective of this study is to examine the participation of brain structures during the development of nicotine-conditioned place preference (CPP). METHODS To identify brain regions activated in CPP, we have measured the levels of phosphorylated cyclic AMP response element binding protein (pCREB) and Fos protein using a behavioral CPP and conditioned place aversion (CPA) paradigms. RESULTS Rats developed reliable and robust CPP and also CPA. During nicotine preference and reinstatement behaviors, a significant increase of both pCREB and Fos protein expression occurs in the nucleus accumbens (NAc) and ventral tegmental area (VTA) and also in the prefrontal cortex (PFC), dorsal striatum (DStr), amygdala, and hippocampus. These increases were abolished by the administration of mecamylamine or by a CPA protocol, showing a specific activation of pCREB in drug preference animals, mediated by nicotinic receptors. Specifically in the VTA, nicotine-induced preference and reinstatement of the preference caused the activation of dopaminergic and GABAergic cells in different proportions. CONCLUSION The results indicate that the phosphorylation of CREB and expression of Fos protein, as indicators of neural activity, accompany the acquisition and maintenance of nicotine-induced CPP but not CPA in mesolimbic areas (NAc, VTA, PFC, and DStr) as well as in memory consolidation structures (hippocampus and amygdala) and nicotinic receptor are involved in this process. Taken together, these studies identify the brain regions where pCREB activity is essential for nicotine preference.
Collapse
Affiliation(s)
- Mariano M Pascual
- Department of Physiology and Institute of Cell Biology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
Livingstone PD, Wonnacott S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 2009; 78:744-55. [DOI: 10.1016/j.bcp.2009.06.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/28/2022]
|
23
|
Corrigall WA. Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 2009; 206:23-37. [PMID: 19529922 DOI: 10.1007/s00213-009-1588-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/01/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND The hypocretin/orexin system has been implicated in arousal mechanisms, sleep, and sleep disorders, including narcolepsy, and more recently in drug addiction. Theoretically, hypocretin (hcrt) mechanisms appear to be potential substrates for nicotine addiction: arousal and attentional mechanisms influence use and withdrawal symptoms, and hcrt systems overlap anatomically with a number of brain regions associated with nicotine addiction. OBJECTIVE This review summarizes the studies that have examined hcrt mechanisms in the effects of nicotine and describes hcrt innervation of, and effects in, several brain regions implicated in nicotine addiction. The review speculates on the possible mechanisms by which hcrt may contribute to nicotine addiction in these regions, with the objective of encouraging research in this area. RESULTS In a small literature, both experimenter-administered and self-administered nicotine have been shown to elicit or depend on hcrt signaling. However, although untested in experimental designs, there is compelling evidence that hcrt mechanisms in the ventral tegmental area, the pontine region, thalamocortical circuits, the prefrontal cortex, and the amygdala could have a broad influence on nicotine addiction. CONCLUSIONS Evidence reviewed leads to the conclusion that hcrt mechanisms could mediate several dimensions of nicotine addiction, including a multi-faceted regulation of mesocorticolimbic dopaminergic function, but beyond dopaminergic mechanisms, hcrt could influence nicotine use and relapse during abstinence through broadly based arousal/attentional effects. These speculative ideas need to be examined experimentally; the potential gains are a more thorough understanding of the pathophysiology of nicotine addiction, and the discovery of novel targets for the development of pharmacotherapeutics.
Collapse
|
24
|
Zhao-Shea R, Cohen BN, Just H, McClure-Begley T, Whiteaker P, Grady SR, Salminen O, Gardner PD, Lester HA, Tapper AR. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive {alpha}4 nicotinic receptors via a cholinergic-dependent mechanism. FASEB J 2009; 24:49-57. [PMID: 19720621 DOI: 10.1096/fj.09-137034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing alpha4 and beta2 subunits (alpha4beta2*) functionally interact with G-protein-coupled dopamine (DA) D(2) receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering alpha4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D(2)-receptor agonist. When challenged with the D(2)R agonist, quinpirole (0.5-10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson's disease, and the data suggest that a D(2)R-alpha4*-nAChR functional interaction regulates cholinergic interneuron activity.
Collapse
Affiliation(s)
- Rubing Zhao-Shea
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, 303 Belmont Street, Worcester, MA 01604, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol Sin 2009; 30:673-80. [PMID: 19448647 DOI: 10.1038/aps.2009.64] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both alpha and beta subunits) or homomeric (comprising only alpha subunits) receptors. The nAChRs are known to be differentially permeable to calcium ions, with the alpha7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the alpha-bungarotoxin-sensitive alpha7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP(3)Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understanding the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.
Collapse
|
26
|
Abstract
Simple, rapid and inexpensive rodent models of nicotine physical dependence and withdrawal syndrome have proved useful for preliminary screening of smoking cessation treatments. They have led to an exponential increase of knowledge regarding the underlying neurobiological mechanisms of dependence and withdrawal syndrome. The human nicotine withdrawal syndrome in smoking cessation is variable and multidimensional, involving irritability, anxiety, depression, cognitive and attentional impairments, weight gain, sleep disturbances, and craving for nicotine. Aside from sleep disturbances, analogous phenomena have been seen in rodent models using different measures of withdrawal intensity. It appears likely that different withdrawal phenomena may involve some partially divergent mechanisms. For example, depression-like phenomena may involve alterations in mechanisms such as the mesolimbic dopamine pathway from the ventral tegmental area to the nucleus accumbens. Irritability and anxiety may involve alterations in endogenous opioid systems and other regions, such as the amygdala. This chapter reviews many additional anatomical, neurochemical, and developmental elements that impact nicotine physical dependence.
Collapse
|
27
|
Abstract
Nicotine achieves its psychopharmacological effects by interacting with nicotinic acetylcholine receptors (nAChRs) in the brain. There are numerous subtypes of nAChR that differ in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitise. The nAChRs are differentially localised to different brain regions and are found on presynaptic terminals as well as in somatodendritic regions of neurones. Through their permeability to cations, these ion channel proteins can influence both neuronal excitability and cell signalling mechanisms, and these various responses can contribute to the development or maintenance of dependence. However, many questions and uncertainties remain in our understanding of these events and their relevance to tobacco addiction. In this chapter, we briefly overview the fundamental characteristics of nAChRs that are germane to nicotine's effects and then consider the cellular responses to acute and chronic nicotine, with particular emphasis on dopamine systems because they have been the most widely studied in the context of nicotine dependence. Where appropriate, methodological aspects are critically reviewed.
Collapse
Affiliation(s)
- Jacques Barik
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
28
|
Takada-Takatori Y, Kume T, Ohgi Y, Izumi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Mechanism of neuroprotection by donepezil pretreatment in rat cortical neurons chronically treated with donepezil. J Neurosci Res 2008; 86:3575-83. [DOI: 10.1002/jnr.21798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Schmitt HF, Huang LZ, Son JH, Pinzon-Guzman C, Slaton GS, Winzer-Serhan UH. Acute nicotine activates c-fos and activity-regulated cytoskeletal associated protein mRNA expression in limbic brain areas involved in the central stress-response in rat pups during a period of hypo-responsiveness to stress. Neuroscience 2008; 157:349-59. [PMID: 18848603 DOI: 10.1016/j.neuroscience.2008.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/14/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
In adult rats, acute nicotine, the major psychoactive ingredient in tobacco smoke, stimulates the hypothalamic-pituitary-adrenal axis (HPA), resulting in activation of brain areas involved in stress and anxiety-linked behavior. However, in rat pups the first two postnatal weeks are characterized by hypo-responsiveness to stress, also called the 'stress non-responsive period' (SNRP). Therefore, we wanted to address the question if acute nicotine stimulates areas involved in the stress response during SNRP. To determine neuronal activation, the expression of the immediate-early genes c-fos and activity-regulated cytoskeletal associated protein (Arc) was studied in the central nucleus of the amygdala (CeA), bed nucleus stria terminalis (BST) and paraventricular hypothalamic nucleus (PVN), which are areas involved in the neuroendocrine and central stress response. Rat pups received nicotine tartrate (2 mg/kg) or saline by i.p. injection at postnatal days (P) 5, 7 and 10 and their brains were removed after 30 min. We used semi-quantitative radioactive in situ hybridization with gene specific antisense cRNA probes in coronal sections. In control pups, c-fos expression was low in most brain regions, but robust Arc hybridization was found in several areas including cingulate cortex, hippocampus and caudate. Acute nicotine resulted in significant induction of c-fos expression in the PVN and CeA at P5, P7 and P10, and in the BST at P7 and P10. Acute nicotine significantly induced expression of Arc in CeA at P5, P7 and P10, and in the BST at P10. In conclusion, acute nicotine age dependently activated different brain areas of the HPA axis during the SNRP. After P7, the response was more pronounced and included the BST, suggesting differential maturation of the HPA axis in response to nicotine.
Collapse
Affiliation(s)
- H F Schmitt
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, TX A&M University System, 203 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ferrari MFR, Raizada MK, Fior-Chadi DR. Differential regulation of the renin-angiotensin system by nicotine in WKY and SHR glia. J Mol Neurosci 2008; 35:151-60. [PMID: 18369742 DOI: 10.1007/s12031-007-9025-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| | | | | |
Collapse
|
31
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
32
|
Nicotine modulates the renin-angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of Wistar Kyoto and spontaneously hypertensive rats. J Mol Neurosci 2007; 33:284-93. [PMID: 17952638 DOI: 10.1007/s12031-007-9006-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Considering the importance of the renin-angiotensin system (RAS) for the central control of blood pressure and that nicotine increases the probability of development of hypertension associated to genetic predisposition, our aims are (1) to determine RAS in cultured neurons and glia from the brainstem and hypothalamus of spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats; (2) to analyze the possibility of nicotine to interact with brain RAS; and (3) to hypothesize any contribution of nicotine and RAS to the development of neurogenic hypertension. This study demonstrated physiological differences in RAS between cultured neuronal and glial cells from the brainstem and hypothalamus of SHR and WKY neonate rats. Our study also featured evidences of direct modulation of the RAS by nicotine in neurons and glia of brainstem and hypothalamus, which seems to be differential between the two rat strains. Such modulation gives us a clue about the mechanisms possibly involved in the genesis of neurogenic hypertension in vivo, for example, increase in angiotensin II type 1 receptor binding and decrease in angiotensin-converting enzyme 2. In conclusion, we demonstrated that neuronal and glial RAS from the brainstem and hypothalamus of SHR differ from WKY rats and nicotine differentially modulates the brain RAS in SHR and WKY.
Collapse
|
33
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Janhunen S, Ahtee L. Differential nicotinic regulation of the nigrostriatal and mesolimbic dopaminergic pathways: implications for drug development. Neurosci Biobehav Rev 2006; 31:287-314. [PMID: 17141870 DOI: 10.1016/j.neubiorev.2006.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 01/21/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) modulate dopaminergic function. Discovery of their multiplicity has lead to the search for subtype-selective nAChR agonists that might be therapeutically beneficial in diseases linked to brain dopaminergic pathways. The regulation and responses of the nigrostriatal and mesolimbic dopaminergic pathways are often similar, but some differences do exist. The cerebral distribution and characteristics of various nAChR subtypes differ between nigrostriatal and mesolimbic dopaminergic pathways. Comparison of nicotine and epibatidine, two nAChR agonists whose relative affinities for various nAChR subtypes differ, revealed differences in the nAChR-mediated regulation of dopaminergic activation between these dopamine systems. Nicotine preferentially stimulates the mesolimbic pathway, whereas epibatidine's stimulatory effect falls on the nigrostriatal pathway. Thus, it may be possible to stimulate the nigrostriatal pathway with selective nAChR agonists that do not significantly affect the mesolimbic pathway, and thus lack addictive properties. Furthermore, dopamine uptake inhibition revealed a novel inhibitory effect of epibatidine on accumbal dopamine release, which could form a basis for novel antipsychotics that could alleviate the elevated accumbal dopaminergic tone found in schizophrenia during the active psychotic state. Different regulation of nigrostriatal and mesolimbic dopaminergic pathways by nAChRs could be an important basis for developing novel drugs for treatment of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Sanna Janhunen
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki, FIN-00014, Finland.
| | | |
Collapse
|
35
|
Ferrari MFR, Fior-Chadi DR. Chronic nicotine administration. Analysis of the development of hypertension and glutamatergic neurotransmission. Brain Res Bull 2006; 72:215-24. [PMID: 17452284 DOI: 10.1016/j.brainresbull.2006.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/27/2022]
Abstract
Among numerous neurotransmitters involved in central cardiovascular control, glutamate is one of the most studied transmitters that are related to nicotine considering its release and its postsynaptic regulation. However, there are no conclusive studies about nicotine effects on glutamatergic system and its relevance on hypertension development, which can help to understand the role of these two systems in that pathology. In this context, the objective of the present study is to evaluate the effects of systemic chronic nicotine exposure on hypertension development as well as the interaction between nicotine and the glutamatergic system in normotensive and neurogenic hypertensive rats. By means of high performance liquid chromatograph, immunohistochemistry, in situ hybridization and binding techniques, glutamatergic system was evaluated in SHR and Wistar Kyoto (WKY) rats treated with nicotine, delivered subcutaneously through nicotine pellets, for 8 weeks. The most important findings in this study were that (1) moderate doses of nicotine accelerated the onset and increased blood pressure in SHR but not in WKY rats, (2) the nicotine dosage and time of treatment employed did not affect body weight, (3) chronic nicotine treatment differentially affected glutamatergic system in normotensive and hypertensive rats, and (4) spontaneously hypertensive rats seem to be more sensitive to peripherally administered nicotine than Wistar Kyoto rats considering blood pressure and glutamatergic neurotransmission changes. In conclusion, we have demonstrated that a moderate dose of nicotine accelerates the onset and exacerbates hypertension in the SHR and that might be, at least in part, related to the modulation of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, n.321, Cidade Universitária-São Paulo, SP 05508-090, Brazil
| | | |
Collapse
|
36
|
Loughlin SE, Islas MI, Cheng MY, Lee AG, Villegier AS, Leslie FM. Nicotine modulation of stress-related peptide neurons. J Comp Neurol 2006; 497:575-88. [PMID: 16739166 DOI: 10.1002/cne.20999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nicotine has been shown to activate stress-related brain nuclei, including the paraventricular nucleus of the hypothalamus (PVN) and the central nucleus of the amygdala (CEA), through complex mechanisms involving direct and indirect pathways. To determine the neurochemical identities of rat brain neurons which are activated by a low dose (0.175 mg/kg) of nicotine given 30 minutes before sacrifice, we have used single- and double-label in situ hybridization. Neuronal activation was quantified by localization of (35)S-labeled probe for the immediate early gene, c-fos. Corticotrophin releasing factor (CRF), enkephalin (ENK), and dynorphin (DYN) mRNAs were colocalized using a colorimetric, digoxigenin-labeled probe. Film autoradiographic studies showed that nicotine significantly increased c-fos mRNA expression in both PVN and CEA. Pretreatment with the centrally acting nicotinic antagonist, mecamylamine (1 mg/kg), blocked nicotine's effects, whereas pretreatment with the peripherally acting antagonist, hexamethonium (5 mg/kg), did not, indicating that c-fos induction was mediated by a central nicotinic receptor. Double labeling studies showed that nicotine induced c-fos expression within CRF cells in the PVN, as well as in a small population of ENK cells, but not in PVN DYN cells. In contrast, there was no significant nicotine-induced increase in c-fos expression in CEA CRF or DYN cells, whereas nicotine treatment did increase c-fos expression within CEA ENK cells.
Collapse
Affiliation(s)
- Sandra E Loughlin
- Department of Pharmacology, University of California-Irvine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
37
|
Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Niidome T, Sugimoto H, Fujii T, Okabe S, Akaike A. Neuroprotective effects of galanthamine and tacrine against glutamate neurotoxicity. Eur J Pharmacol 2006; 549:19-26. [PMID: 16996497 DOI: 10.1016/j.ejphar.2006.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/26/2006] [Accepted: 08/02/2006] [Indexed: 11/21/2022]
Abstract
We examined the mechanisms of the neuroprotective effects of two central-type acetylcholinesterase inhibitors, galanthamine and tacrine, on nitric oxide-mediated glutamate neurotoxicity using primary cultures from the cerebral cortex of fetal rats. Galanthamine and tacrine showed prominent protective effects against glutamate neurotoxicity. Mecamylamine, a nicotinic acetylcholine receptor antagonist, but not scopolamine, a muscarinic acetylcholine receptor antagonist, inhibited the protective effects of these inhibitors on glutamate neurotoxicity. Furthermore, dihydro-beta-erythroidine, an alpha4-nicotinic receptor antagonist, and methyllycaconitine, an alpha7-nicotinic receptor antagonist, inhibited the neuroprotective effects of galanthamine but not tacrine. Next, we investigated the site of action where galanthamine and tacrine prevent glutamate neurotoxicity. Both these acetylcholinesterase inhibitors prevented glutamate- and ionomycin-induced neurotoxicity, but only tacrine prevented S-nitrosocysteine-induced neurotoxicity. These results suggest that galanthamine and tacrine protect cortical neurons from glutamate neurotoxicity via different mechanisms.
Collapse
Affiliation(s)
- Yuki Takada-Takatori
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hwang YY, Li MD. Proteins differentially expressed in response to nicotine in five rat brain regions: identification using a 2-DE/MS-based proteomics approach. Proteomics 2006; 6:3138-53. [PMID: 16622831 DOI: 10.1002/pmic.200500745] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To determine protein expression patterns within the central nervous system (CNS) in response to nicotine, 2-DE/MS was performed on samples from five brain regions of rats that had received nicotine bitartrate by osmotic minipump infusion at a dose of 3.15 mg/kg/day for 7 days. After spot matching and statistical analysis, 41 spots in the amygdala, 49 in the nucleus accumbens (NA), 46 in the prefrontal cortex (PFC), 36 in the striatum, and 28 in the ventral tegmental area (VTA) showed significant differences in the nicotine-treated compared with control samples. Using MALDI-TOF MS peptide fingerprinting, 14 proteins in the amygdala, 11 in the NA, 19 in the PFC, 13 in the striatum, and 19 in the VTA were identified. Several proteins (e.g. dynamin 1, laminin receptors, aldolase A, enolase 1 alpha, Hsc70-ps1, and N-ethylmaleimide-sensitive fusion protein) were differentially expressed in multiple brain regions. By gene ontology analysis, these differentially expressed proteins were grouped into biological process categories, such as energy metabolism, synaptic function, and oxidative stress metabolism. These data, in combination with microarray analysis of mRNA transcripts, have the potential to identify the CNS gene products that show coordinated changes in expression at both the RNA and protein levels in response to nicotine.
Collapse
Affiliation(s)
- Yoon Y Hwang
- Department of Psychiatric Medicine, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA
| | | |
Collapse
|
39
|
Concas A, Sogliano C, Porcu P, Marra C, Brundu A, Biggio G. Neurosteroids in nicotine and morphine dependence. Psychopharmacology (Berl) 2006; 186:281-92. [PMID: 16133140 DOI: 10.1007/s00213-005-0111-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/20/2005] [Indexed: 11/25/2022]
Abstract
RATIONALE Neurosteroids are implicated in various stages of drug dependence, including the acquisition phase, tolerance, and withdrawal. The neurosteroid allopregnanolone is also able to substitute for drugs with abuse potential and possesses reinforcing properties. OBJECTIVES The effects of acute treatment with, and discontinuation of, chronic exposure to nicotine or morphine on the concentrations of allopregnanolone and its precursors, pregnenolone and progesterone, in the cerebral cortex and plasma of rats were investigated. The role of the hypothalamic-pituitary-adrenal (HPA) axis in, and the development of tolerance to, such effects were also examined. METHODS Nicotine or morphine was administered acutely or chronically, and withdrawal syndrome was induced by spontaneous discontinuation of drug treatment or by administration of a corresponding receptor antagonist (mecamylamine and naloxone, respectively). Neurosteroids were extracted from the cerebral cortex and plasma, fractionated by high-performance liquid chromatography, and quantitated by radioimmunoassay. RESULTS Acute intraperitoneal administration of nicotine (0.3-2 mg kg-1) or morphine (5-30 mg kg-1) induced dose- and time-dependent increases in the cerebrocortical and plasma concentrations of pregnenolone, progesterone, and allopregnanolone. The effects of both drugs were abolished by adrenalectomy-orchiectomy. Spontaneous or naloxone-precipitated morphine withdrawal and mecamylamine-precipitated (but not spontaneous) nicotine withdrawal also increased neurosteroid concentrations in the brain and plasma. A challenge dose of nicotine or morphine, administered 14 or 24 h after the last drug injection in chronic ally treated rats, failed to increase cerebrocortical neurosteroid concentrations. CONCLUSIONS Changes in neurosteroid concentrations mediated by activation of the HPA axis may both contribute to the early acquisition phase of nicotine or morphine addiction and serve to counteract the anxiety-like behavior associated with nicotine or morphine withdrawal. However, the evidence that nicotine withdrawal did not increase neurosteroids, unless precipitated by mecamylamine, suggests that the role of these neurosteroids in spontaneous nicotine withdrawal may not be clear.
Collapse
Affiliation(s)
- Alessandra Concas
- Department of Experimental Biology, Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Marttila K, Raattamaa H, Ahtee L. Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology 2006; 51:44-51. [PMID: 16631212 DOI: 10.1016/j.neuropharm.2006.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 02/22/2006] [Accepted: 02/23/2006] [Indexed: 11/24/2022]
Abstract
DeltaFosB, a member of Fos family of transcription factors, is implicated in behavioural responses and synaptic plasticity induced by abused drugs. We studied the expressions of FosB/DeltaFosB and c-Fos immunohistochemically in two dopaminergic brain areas, nucleus accumbens (NAcc) and caudate-putamen (CPu). In mice neither 2- nor 7-week oral nicotine treatment induced expression of long-lived DeltaFosB isoforms although during the treatment in the NAcc FosB/DeltaFosB expression was increased as was c-Fos in the CPu. In rats given nicotine subcutaneously once daily for 5days FosB/DeltaFosB expression was elevated in the NAcc still after 24-h withdrawal suggesting accumulation of DeltaFosB but in the CPu neither FosB/DeltaFosB nor c-Fos expression was altered. Thus, in rats repeated nicotine administration seems mainly affect the NAcc paralleling with the evidence that nicotine stimulates preferentially mesolimbic dopamine system. Also, repeated nicotine induced behavioural sensitization in rats agreeing with suggested role of DeltaFosB in the development of psychomotor sensitization. However, in mice given nicotine via drinking fluid although striatal fosB and c-fos were activated by nicotine even after 7-week treatment no evidence of accumulation of long-lived DeltaFosB was found suggesting perhaps a species difference or more likely a role for the manner of administration.
Collapse
Affiliation(s)
- Kristiina Marttila
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5), Helsinki FIN-00014, Finland
| | | | | |
Collapse
|
41
|
Schochet TL, Kelley AE, Landry CF. Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain. Neuroscience 2005; 135:285-97. [PMID: 16084664 PMCID: PMC1599838 DOI: 10.1016/j.neuroscience.2005.05.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse in adolescence, compared with abundant research using adult animal models. As smoking is typically initiated in adolescence, an important question to address is whether the adolescent brain responds differently to nicotine compared with the adult. To investigate this question, we examined the expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. Baseline expression of arc and c-fos was higher in adolescent brains compared with adults. Following acute nicotine treatment (0.1, 0.4mg/kg), we found a marked induction of arc mRNA in the prefrontal cortex of nicotine-treated adolescents compared with a less pronounced increase of arc in the adult. c-fos and NGFI-B were also upregulated by nicotine, but not in an age-related manner. In contrast, nicotine induced less arc, c-fos, and NGFI-B expression in the somatosensory cortex of adolescents compared with adults. A fourth gene, quinoid dihydropteridine reductase was expressed at lower levels in white matter of the adolescent forebrain compared with the adult, but was not affected by nicotine. These results suggest that in adolescence, the activity of specific early response genes is higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may represent a neurobiologically vulnerable period with regard to nicotine exposure.
Collapse
Affiliation(s)
- T L Schochet
- Neuroscience Training Program, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | | | | |
Collapse
|
42
|
Chiamulera C. Cue reactivity in nicotine and tobacco dependence: a “multiple-action” model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli. ACTA ACUST UNITED AC 2005; 48:74-97. [PMID: 15708629 DOI: 10.1016/j.brainresrev.2004.08.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 11/23/2022]
Abstract
The present paper proposes a model for the identification and the validation of brain processes and mechanisms underlying smokers' cue reactivity. Smoking behaviour is maintained by the reinforcing properties of nicotine, but it was also proposed that nicotine enhances the conditioned value of smoking and nicotine-associated stimuli. In fact, it is widely reported that the exposure of smokers to smoking/nicotine-associated stimuli induces cue reactivity, which is a vast array of physiological, psychological and behavioural responses. Imaging studies are revealing neuroanatomical correlates of cue reactivity in brain areas involved in motivational, emotional, cognitive processes and in their integration. Behavioural studies in laboratory animal models have shown analogies between the effects of nicotine-associated stimuli and cue reactivity effects in smokers. Lesion and mapping studies with nicotine reported brain activation patterns in cortico-limbic areas similarly to those obtained with imaging studies in humans. Although only limited studies have been done with nicotine-associated stimuli in animals, the identification of molecular mechanisms underlying other drugs of abuse-associated cue effect may help to propose potential common molecular mechanisms for nicotine cues. These findings suggest that smoking/nicotine-associated stimuli are processed at two levels: (i), bottom-up, automatic processing in a parallel fashion through ascendant pathways, to activate attentional functions; (ii), top-down, in a serial fashion from cortical areas, to modulate sensory inputs and motor control. It appears that nicotine increase information processing at both levels so as to establish and to amplify the conditioned value of smoking cues.
Collapse
Affiliation(s)
- Christian Chiamulera
- Section of Pharmacology, Department of Medicine and Public Health, University of Verona, Policlinico G.B. Rossi, Largo L.A. Scuro, 10, 37134 Verona, Italy.
| |
Collapse
|
43
|
Belluardo N, Olsson PA, Mudo' G, Sommer WH, Amato G, Fuxe K. Transcription factor gene expression profiling after acute intermittent nicotine treatment in the rat cerebral cortex. Neuroscience 2005; 133:787-96. [PMID: 15890456 DOI: 10.1016/j.neuroscience.2005.01.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/22/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Several studies in different in vitro and in vivo models have demonstrated neuroprotective effects of nicotinic receptor agonists and indirect trophic actions of nicotine on brain are suggested from observations describing nicotine as a cognitive enhancer by increasing vigilance and improving learning and memory. While an increasing number of studies have given evidence of neuroprotective and neurotrophic effects of nicotine treatment, the molecular mechanism mediating the neurotrophic effects of nicotine are not fully understood. Previously in an analysis of several neurotrophic factors as possible mediators of nicotine-induced neuroprotection and/or neurotrophic effects we could reveal that an acute intermittent nicotine treatment increases fibroblast growth factor-2 mRNA and protein in several brain regions of rat brain. Even if other studies have demonstrated in different paradigms that nicotine administration modulates expression level of a variety of genes, there is still a lack of indication which candidate genes, involved in neuroprotective responses are modulated by nicotine. In the present work we have used a microarray assay to further find and characterize new genes responsive to acute intermittent nicotine treatment and linked to neuroprotection. Therefore, we used Rat Genome U34A Affymetrix GeneChip arrays containing about 8800 probe sets to characterize transcriptional responses in the rat parietal cortex after acute intermittent nicotine treatment. We focused our attention to expression of transcription factors and several of them were up- or down-regulated by nicotine, among these Nr4a1 (Nurr77), Egr-1 and Egr-2. In situ hybridization was used to corroborate the microarray data and to reveal further spatial and temporal patterns of these nicotine induced genes. Taken together the present results identified several novel candidate genes modified by acute intermittent nicotine exposure and as such potentially involved in neuroprotective-neurotrophic actions.
Collapse
Affiliation(s)
- N Belluardo
- Department of Experimental Medicine, Division of Human Physiology, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Bibevski S, Dunlap ME. Prevention of diminished parasympathetic control of the heart in experimental heart failure. Am J Physiol Heart Circ Physiol 2004; 287:H1780-5. [PMID: 15191889 DOI: 10.1152/ajpheart.00430.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decreased synaptic transmission in parasympathetic ganglia contributes to abnormal parasympathetic function in heart failure (HF). Because nicotinic ACh receptors (nAChR) mediate synaptic transmission at the ganglion and upregulate in response to chronic exposure to agonist in vitro, we tested the hypothesis that repeated exposures of ganglionic neurons to a nAChR agonist can prevent a loss of parasympathetic control in HF. Two sets of experiments were performed. In set 1, unpaced control dogs and dogs undergoing pacing-induced HF were treated with a repeated intravenous nicotinic agonist during the development of HF. Under conditions of sympathetic blockade, R-R responses to a bolus injection of 200 μg 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP; nicotinic agonist) were found to be increased five times over the untreated group after 6 wk. In experimental set 2, dogs treated with weekly DMPP injections and in HF were anesthetized and underwent electrical stimulation of the right vagus nerve, which showed sinus cycle length responses >10 times that of controls ( P < 0.05). Complete ganglionic blockade with hexamethonium abolished all responses, confirming that synaptic transmission was mediated entirely by nAChRs in both controls and HF. Despite decreased ganglionic function leading to reduced parasympathetic control of the heart in HF, repeated exposure with a nicotinic agonist during the development of HF results in not only preserved but also supranormal effects of parasympathetic stimulation on the sinus node.
Collapse
Affiliation(s)
- Steve Bibevski
- Departmrnt of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
45
|
Li S, Kim KY, Kim JH, Kim JH, Park MS, Bahk JY, Kim MO. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 2004; 363:29-32. [PMID: 15157990 DOI: 10.1016/j.neulet.2004.03.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/25/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Previous pharmacokinetics and electrophysiological results indicated an important role of nicotine in the modulation of dopamine transporter (DAT). To elucidate the expression changes of DAT on chronic nicotine and smoke administration, the effects of nicotine and passive cigarette smoke on DAT mRNA expression in the ventral tegmental area (VTA) and the substantia nigra (SN) area were examined using in situ hybridization and RNase protection assay. The results showed that chronic nicotine and smoke exposure highly unregulated DAT mRNA in the VTA and SN areas, including the dorsal part of substantia nigra pars compacta. Smoke for 30 min showed the highest increasing effect, whereas nicotine and smoke for 10 min only had slightly increasing effects. However, smoke for 1 h showed an increasing effect to a lesser extent than 30 min. These results revealed a new aspect of nicotine's modulation on the DAT, and may have important roles in neuropsychological disorders related to the midbrain abnormalities such as drugs addiction.
Collapse
Affiliation(s)
- Shupeng Li
- Division of Life Science and Applied Life Science (BK21), College of Natural Sciences, Gyeongsang National University, Gazwa-dong 900, Chinju, Gyeongnam, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 2004; 25:317-24. [PMID: 15165747 DOI: 10.1016/j.tips.2004.04.006] [Citation(s) in RCA: 438] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal nicotinic acetylcholine (nACh) receptors in the brain are more commonly associated with modulatory events than mediation of synaptic transmission. nACh receptors have a high permeability for Ca(2+), and Ca(2+) signals are pivotal in shaping nACh receptor-mediated neuromodulatory effects. In this review, we consider the mechanisms through which nACh receptors convert rapid ionic signals into sustained, wide-ranging phenomena. The complex Ca(2+) responses that are generated after activation of nACh receptors can transmit information beyond the initial domain and facilitate the interface with many intracellular processes. These mechanisms underlie the diverse repertoire of neuronal activities of nicotine in the brain, from the enhancement of learning and memory, to addiction and neuroprotection.
Collapse
|
47
|
Parain K, Hapdey C, Rousselet E, Marchand V, Dumery B, Hirsch EC. Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Res 2003; 984:224-32. [PMID: 12932857 DOI: 10.1016/s0006-8993(03)03195-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies have found a negative association between cigarette smoking and Parkinson's disease (PD). In order to analyze the putative neuroprotective effect of cigarette smoke and nicotine, one of its major constituents, we examined their effects in an animal model of PD provoked by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Two groups of mice were chronically exposed to cigarette smoke (a low exposure subgroup and a high exposure subgroup; 5 exposures per day at 2-h intervals), two other groups received nicotine treatment (two doses tested 0.2 and 2 mg/kg, 5 injections i.p. per day at 2-h intervals) and one group placebo. On day 8 after the beginning of the treatment, 4 injections of MPTP hydrochloride (15 mg/kg, i.p., at 2-h intervals) or saline were administered to these animals. Nicotine and cotinine plasmatic concentration was quantified by the HPLC method, and degeneration of the nigrostriatal system was assessed by tyrosine hydroxylase (TH) immunohistochemistry. The loss of dopaminergic neurons induced by MPTP in the substantia nigra was significantly less severe in the chronic nicotine treatment groups (at 0.2 and 2 mg/kg) and the low exposure to cigarette smoke group than in the high exposure to cigarette smoke subgroup and the placebo treated subgroup. In contrast, no preservation of TH immunostaining of nerve terminals was observed in the striatum in any group. This suggests that nicotine and low exposure to cigarette smoke may have a neuroprotective effect on the dopaminergic nigrostriatal system by an as yet unknown mechanism.
Collapse
Affiliation(s)
- Karine Parain
- INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
May-Simera H, Levin ED. NMDA systems in the amygdala and piriform cortex and nicotinic effects on memory function. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 17:475-83. [PMID: 12880917 DOI: 10.1016/s0926-6410(03)00163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both nicotinic cholinergic and NMDA glutaminergic systems are important for memory function. Nicotine has been found repeatedly to significantly improve working memory performance in the radial-arm maze. The NMDA antagonist dizocilpine has been found to impair working memory performance. There is neuropharmacological evidence that these two systems are functionally related. Nicotine is potent at releasing many transmitters including glutamate. The current study was conducted to examine the interaction of nicotinic and NMDA systems within the amygdala with regard to working and reference memory. Rats were trained on a working/reference procedure on a 16-arm radial maze. After acquisition, local infusion cannulae were implanted bilaterally into the amygdala and piriform cortex using stereotaxic techniques. Then 20 min prior to running the rats on the radial-arm maze, they were injected subcutaneously with (-) nicotine ditartrate at doses of 0 and 0.4 mg/kg. Following this, the rats received local infusions of (+) dizocilpine maleate (MK-801) at doses of 0, 2, 6 and 18 microg per side into the lateral amygdala or piriform cortex 10 min prior to running on the radial-arm maze. Each of the eight nicotine and dizocilpine combinations was administered to each rat in a counterbalanced order. After completion of the drug sessions the rats were sacrificed, and using histological methods the cannulae placements were verified. Acute amygdalar infusions of the NMDA glutamate receptor antagonist dizocilpine induced dose-related working and reference memory deficits in the radial-arm maze. Systemic nicotine was not seen to reverse these effects. Dizocilpine infusions into the adjacent piriform cortex did not impair memory function, supporting the specificity of dizocilpine effects in the amygdala. Latency effects were seen with both drugs in both areas. Latencies were decreased with both systemic nicotine and dizocilpine in both the lateral amygdala and the piriform cortex. This study demonstrated the importance of NMDA glutamate systems in the amygdala for appetitively-motivated spatial memory performance.
Collapse
Affiliation(s)
- Helen May-Simera
- Neurobehavioral Research Laboratory, Department of Psychiatry, Box #3412, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
49
|
Addy NA, Nakijama A, Levin ED. Nicotinic mechanisms of memory: effects of acute local DHbetaE and MLA infusions in the basolateral amygdala. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 16:51-7. [PMID: 12589888 DOI: 10.1016/s0926-6410(02)00209-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nicotine has been shown to improve working memory. The neural mechanisms underlying this effect are still being determined. The ventral hippocampus is critical for nicotinic effects on memory. Local ventral hippocampal infusions of either the nicotinic alpha7 nicotinic receptor antagonist methyllycaconitine (MLA) or the alpha4beta2 nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE) caused working memory impairments, but no additive effects were seen. Other areas, such as the amygdala, also likely play important roles in nicotinic effects on memory. Amygdalar lesions cause memory impairment and there is a dense concentration of nicotinic receptors in the basolateral amygdala. The current study used local basolateral amygdalar infusions of the nicotinic antagonists MLA and DHbetaE to determine the involvement of alpha7 and alpha4beta2 nicotinic receptors in spatial working and reference memory. Rats (n=8) were trained in the 16-arm radial maze and were implanted with bilateral infusion cannulae into the basolateral amygdala. Acute infusions of MLA (6.75 micro g/side, P<0.0005) or DHbetaE (3.38 micro g/side, P<0.025) caused significant working memory impairments. When given together MLA and DHbetaE did not produce an additive effect. In fact, the 6.75 micro g/kg dose of DHbetaE produced a significant (P<0.0005) attenuation of the MLA-induced working memory impairment. Significant effects were not seen with reference memory or response latency. Nicotinic systems in the basolateral amygdala, as in the ventral hippocampus, are important for spatial working memory. In both the basolateral amygdala and the ventral hippocampus, MLA and DHbetaE individually caused working memory impairments. The lowest effective dose of DHbetaE was lower in the basolateral amygdala than in the ventral hippocampus. In both the basolateral amygdala and the ventral hippocampus, combined MLA and DHbetaE treatment did not produce additive working memory deficits. Unlike in the ventral hippocampus, the addition of DHbetaE to MLA in the basolateral amygdala significantly reduced the MLA-induced working memory deficit.
Collapse
Affiliation(s)
- Nii A Addy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
50
|
Brunzell DH, Russell DS, Picciotto MR. In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 2003; 84:1431-41. [PMID: 12614343 DOI: 10.1046/j.1471-4159.2003.01640.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extracellular regulated kinase (ERK) pathway was studied to determine its role in neuronal plasticity related to the development of nicotine dependence. Levels and phosphorylation state of ERK, cAMP response element binding protein (CREB) and proline-rich/Ca2+-activated tyrosine kinase (PYK2), and levels of tyrosine hydroxylase (TH), were determined using western blotting. C57Bl/6J mice received acute or chronic nicotine (200 microg/mL) in their drinking water or were withdrawn from nicotine for 24 h following chronic exposure. CREB phosphorylation was reduced in the nucleus accumbens following chronic nicotine, consistent with previous reports that decreased accumbens CREB activity increases drug reinforcement. In contrast, CREB phosphorylation was increased in the prefrontal cortex following chronic nicotine exposure and in the ventral tegmental area during nicotine withdrawal. In addition, total and phosphorylated ERK decreased in the amygdala following chronic nicotine exposure, but ERK phosphorylation increased in the prefrontal cortex. TH levels increased in both the amygdala and prefrontal cortex, supporting the hypothesis that increased catecholaminergic tone contributes to nicotine reinforcement. Overall, these results support a role for ERK and CREB activity in neural plasticity associated with nicotine dependence.
Collapse
Affiliation(s)
- Darlene H Brunzell
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|