1
|
Nash AN, Shakeshaft M, Bouaichi CG, Odegaard KE, Needham T, Bauer M, Bertram R, Vincis R. Cortical Coding of Gustatory and Thermal Signals in Active Licking Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591293. [PMID: 39185224 PMCID: PMC11343142 DOI: 10.1101/2024.04.27.591293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Eating behaviors are influenced by the integration of gustatory, olfactory, and somatosensory signals, which all contribute to the perception of flavor. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study, we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and, although less effectively, more subtle temperature differences. Finally, a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that while the somatosensory cortex showed higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC's dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.
Collapse
Affiliation(s)
| | - Morgan Shakeshaft
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Cecilia G. Bouaichi
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Katherine E. Odegaard
- Florida State University, Department of Biological Science and Program in Neuroscience
| | - Tom Needham
- Florida State University, Department of Mathematics
| | - Martin Bauer
- Florida State University, Department of Mathematics
| | - Richard Bertram
- Florida State University, Department of Mathematics and Programs in Neuroscience and Molecular Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science, Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
2
|
Pilato SA, O’Connell FP, Victor JD, Di Lorenzo PM. Electrophysiological responses to appetitive and consummatory behavior in the rostral nucleus tractus solitarius in awake, unrestrained rats. Front Integr Neurosci 2024; 18:1430950. [PMID: 39082054 PMCID: PMC11286463 DOI: 10.3389/fnint.2024.1430950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction As the intermediate nucleus in the brainstem receiving information from the tongue and transmitting information upstream, the rostral portion of the nucleus tractus solitarius (rNTS) is most often described as a "taste relay". Although recent evidence implicates the caudal NTS in a broad neural circuit involved in regulating ingestion, there is little information about how cells in the rNTS respond when an animal is eating solid food. Methods Single cells in the rNTS were recorded in awake, unrestrained rats as they explored and ate solid foods (Eating paradigm) chosen to correspond to the basic taste qualities: milk chocolate for sweet, salted peanuts for salty, Granny Smith apples for sour and broccoli for bitter. A subset of cells was also recorded as the animal licked exemplars of the five basic taste qualities: sucrose, NaCl, citric acid, quinine and MSG (Lick paradigm). Results Most cells were excited by exploration of a food-filled well, sometimes responding prior to contact with the food. In contrast, cells that were excited by food well exploration became significantly less active while the animal was eating the food. Most cells were broadly tuned across foods, and those cells that were recorded in both the Lick and Eating paradigms showed little correspondence in their tuning across paradigms. Discussion The preponderance of robust responses to the appetitive versus the consummatory phase of ingestion suggests that multimodal convergence onto cells in the rNTS may be used in decision making about ingestion.
Collapse
Affiliation(s)
- Stephen A. Pilato
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Flynn P. O’Connell
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Jonathan D. Victor
- Weill Cornell Medical College, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | | |
Collapse
|
3
|
Stocke S, Samuelsen CL. Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. J Neurosci 2024; 44:e0071242024. [PMID: 38548337 PMCID: PMC11097261 DOI: 10.1523/jneurosci.0071-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.
Collapse
Affiliation(s)
- Sanaya Stocke
- Departments of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
4
|
Pilato SA, O’Connell FP, Victor JD, Di Lorenzo PM. Electrophysiological responses to appetitive and consummatory behavior in the rostral nucleus tractus solitarius in awake, unrestrained rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591929. [PMID: 38746447 PMCID: PMC11092612 DOI: 10.1101/2024.04.30.591929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
As the intermediate nucleus in the brainstem receiving information from the tongue and transmitting information upstream, the rostral portion of the nucleus tractus solitarius (rNTS) is most often described as a "taste relay". Although recent evidence implicates the NTS in a broad neural circuit involved in regulating ingestion, there is little information about how cells in this structure respond when an animal is eating solid food. Here, single cells in the rNTS were recorded in awake, unrestrained rats as they explored and ate solid foods (Eating paradigm) chosen to correspond to the basic taste qualities: milk chocolate for sweet, salted peanuts for salty, Granny Smith apples for sour and broccoli for bitter. A subset of cells was also recorded as the animal licked exemplars of the five basic taste qualities: sucrose, NaCl, citric acid, quinine and MSG (Lick paradigm). Results showed that most cells were excited by exploration of a food-filled well, sometimes responding prior to contact with the food. In contrast, cells that were excited by food well exploration became significantly less active while the animal was eating the food. Most cells were broadly tuned across foods, and those cells that were recorded in both the Lick and Eating paradigms showed little correspondence in their tuning across paradigms. The preponderance of robust responses to the appetitive versus the consummatory phase of ingestion suggests that multimodal convergence onto cells in the rNTS may be used in decision making about ingestion.
Collapse
Affiliation(s)
- Stephen A. Pilato
- Dept. of Psychology, Box 6000, Binghamton University, Binghamton, NY 13902-6000
| | - Flynn P. O’Connell
- Dept. of Psychology, Box 6000, Binghamton University, Binghamton, NY 13902-6000
- Current address: Elizabeth R. Miller Brain Observatory, The Rockefeller University, NY, NY
| | - Jonathan D. Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, NY, NY 10065
| | | |
Collapse
|
5
|
Hua A, Dong TV, Maier JX. The effect of multisensory context and experience on flavor preference decisions in rats. Physiol Behav 2024; 276:114480. [PMID: 38307360 PMCID: PMC10922607 DOI: 10.1016/j.physbeh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Flavor is perceived through multiple senses, including gustation and olfaction. Previous studies have shown that different sensory qualities that make up flavor are integrated to inform perceptual judgements. Psychophysical work in humans further suggests a prominent role for congruency (i.e., the learnt correspondence between taste and odor components of flavor through eating experience) in shaping multisensory interactions underlying perceptual judgments of flavor. However, eating experience cannot be controlled in humans, and depending on the type of judgement, these studies yielded mixed findings. Here, we used rats to test how experimentally-controlled experience with specific flavor mixtures (OdorA+TasteA and OdorB +TasteB) from weaning to adulthood affects subsequent flavor preference judgements in a series of two-bottle preference tests. In unisensory conditions, animals made odor or taste preference decisions (i.e., OdorA versus OdorB and TasteA versus TasteB, respectively). In multisensory conditions, animals made identical decisions, but the addition of the other modality rendered one solution congruent; the other one incongruent (e.g., OdorA+TasteA versus OdorB+TasteA). The results show that animals effectively learned congruency associations between the taste and smell components of experienced flavor mixtures. Comparing unisensory and multisensory conditions revealed no systematic effect of congruency on the magnitude of flavor preference, but preferences were less variable in multisensory compared to unisensory conditions. Results from a second group of naïve animals further demonstrate that increased reliability of preference judgements in multisensory conditions was independent of experience.
Collapse
Affiliation(s)
- Alex Hua
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy V Dong
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Gartner KE, Samuelsen CL. The role of the mediodorsal thalamus in chemosensory preference and consummatory behavior in rats. Chem Senses 2024; 49:bjae027. [PMID: 38985657 PMCID: PMC11259855 DOI: 10.1093/chemse/bjae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 07/12/2024] Open
Abstract
Experience plays a pivotal role in determining our food preferences. Consuming food generates odor-taste associations that shape our perceptual judgements of chemosensory stimuli, such as their intensity, familiarity, and pleasantness. The process of making consummatory choices relies on a network of brain regions to integrate and process chemosensory information. The mediodorsal thalamus is a higher-order thalamic nucleus involved in many experience-dependent chemosensory behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Recent research has shown that neurons in the mediodorsal thalamus represent the sensory and affective properties of experienced odors, tastes, and odor-taste mixtures. However, its role in guiding consummatory choices remains unclear. To investigate the influence of the mediodorsal thalamus in the consummatory choice for experienced odors, tastes, and odor-taste mixtures, we pharmacologically inactivated the mediodorsal thalamus during 2-bottle brief-access tasks. We found that inactivation altered the preference for specific odor-taste mixtures, significantly reduced consumption of the preferred taste and increased within-trial sampling of both chemosensory stimulus options. Our results show that the mediodorsal thalamus plays a crucial role in consummatory decisions related to chemosensory preference and attention.
Collapse
Affiliation(s)
- Kelly E Gartner
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
7
|
Haley MS, Fontanini A, Maffei A. Inhibitory Gating of Thalamocortical Inputs onto Rat Gustatory Insular Cortex. J Neurosci 2023; 43:7294-7306. [PMID: 37704374 PMCID: PMC10621769 DOI: 10.1523/jneurosci.2255-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
In primary gustatory cortex (GC), a subregion of the insular cortex, neurons show anticipatory activity, encode taste identity and palatability, and their activity is related to decision-making. Inactivation of the gustatory thalamus, the parvicellular region of the ventral posteromedial thalamic nucleus (VPMpc), dramatically reduces GC taste responses, consistent with the hypothesis that VPMpc-GC projections carry taste information. Recordings in awake rodents reported that taste-responsive neurons can be found across GC, without segregated spatial mapping, raising the possibility that projections from the taste thalamus may activate GC broadly. In addition, we have shown that cortical inhibition modulates the integration of thalamic and limbic inputs, revealing a potential role for GABA transmission in gating sensory information to GC. Despite this wealth of information at the system level, the synaptic organization of the VPMpc-GC circuit has not been investigated. Here, we used optogenetic activation of VPMpc afferents to GC in acute slice preparations from rats of both sexes to investigate the synaptic properties and organization of VPMpc afferents in GC and their modulation by cortical inhibition. We hypothesized that VPMpc-GC synapses are distributed across GC, but show laminar- and cell-specific properties, conferring computationally flexibility to how taste information is processed. We also found that VPMpc-GC synaptic responses are strongly modulated by the activity regimen of VPMpc afferents, as well as by cortical inhibition activating GABAA and GABAB receptors onto VPMpc terminals. These results provide a novel insight into the complex features of thalamocortical circuits for taste processing.SIGNIFICANCE STATEMENT We report that the input from the primary taste thalamus to the primary gustatory cortex (GC) shows distinct properties compared with primary thalamocortical synapses onto other sensory areas. Ventral posteromedial thalamic nucleus afferents in GC make synapses with excitatory neurons distributed across all cortical layers and display frequency-dependent short-term plasticity to repetitive stimulation; thus, they do not fit the classic distinction between drivers and modulators typical of other sensory thalamocortical circuits. Thalamocortical activation of GC is gated by cortical inhibition, providing local corticothalamic feedback via presynaptic ionotropic and metabotropic GABA receptors. The connectivity and inhibitory control of thalamocortical synapses in GC highlight unique features of the thalamocortical circuit for taste.
Collapse
Affiliation(s)
- Melissa S Haley
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York 11794
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York 11794
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
8
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Intraoral thermal processing in the gustatory cortex of awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.526681. [PMID: 36798208 PMCID: PMC9934522 DOI: 10.1101/2023.02.06.526681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally-sourced thermal inputs are represented in the gustatory cortex (GC) we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally-sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian intraoral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Katherine E Odegaard
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Camden Neese
- Florida State University, Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics
| | - Roberto Vincis
- Florida State University, Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology
| |
Collapse
|
9
|
López M, Dwyer DM, Gasalla P, Begega A, Jove C. Odor-taste pairings lead to the acquisition of negative hedonic qualities by the odor in aversion learning. Physiol Behav 2023; 269:114269. [PMID: 37328020 DOI: 10.1016/j.physbeh.2023.114269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Three experiments examined the affective responses conditioned to an odorous stimulus in the taste-mediated odor aversion learning paradigm. Experiment 1 analyzed the microstructure of licking behavior during voluntary consumption. Before conditioning, water-deprived rats had access to a bottle containing either a tasteless odor (0.01% amyl acetate) diluted in water or mixed with 0.05% saccharin. Next, the rats were injected with either LiCl or saline immediately after drinking saccharin. At test, they received the odor and taste solutions on separate days. Lick cluster size was used as a direct measure of the hedonic response to the odor cue. Rats receiving odor-taste pairings prior to the saccharin devaluation showed both lower consumption and lick cluster size, reflecting a reduced hedonic evaluation of the odor. Experiments 2a and 2b used the orofacial reactivity method. After pretraining in the drinking boxes with the odor alone or mixed with saccharin, the rats were intraorally infused with saccharin before injection with LiCl or saline. At test, they were infused in separate sessions with the odor and taste and their orofacial reactions video recorded. There were increased aversive orofacial responses to the odor in rats that had prior odor-taste experience, a result indicating a negative hedonic evaluation of the odor. These results provide evidence of conditioned changes in affective value of odor cues through taste-mediated learning and are consistent with the idea that odor-taste pairings lead to the acquisition of taste qualities by the odor.
Collapse
Affiliation(s)
- Matías López
- Department of Psychology, University of Oviedo, Oviedo, Spain.
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - P Gasalla
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Azucena Begega
- Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Claudia Jove
- Department of Psychology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Lee TS, Dietsch AM, Damra RH, Mulheren RW. The Effect of Genetic Taste Status on Swallowing: A Literature Review. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023:1-12. [PMID: 37257285 DOI: 10.1044/2023_ajslp-22-00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE Swallowing and taste share innervation pathways and are crucial to nutritive intake. Individuals vary in their perception of taste due to factors such as genetics; however, it is unclear to what extent genetic taste status influences swallowing physiology and function. The purpose of this review article is to provide background on genetic taste status, review the evidence on the association between genetic taste status and swallowing, and discuss research and clinical implications. METHOD A comprehensive literature review was conducted using search terms related to swallowing and genetic taste status. Studies were included if they investigated the main effect of genetic taste status on swallowing or the interaction of genetic taste status with other variables. Studies were grouped by participant population (healthy participants or persons with a swallowing disorder), swallowing-related outcome measure, and method of genetic taste status measurement. RESULTS The results were mixed, with five of 10 reviewed studies reporting a statistically significant main or interaction effect on swallowing. Most studies included healthy participants, with only one study investigating participants with dysphagia. Additionally, swallowing-related outcome measures and methods of determining genetic taste status varied greatly between studies conducted on separate cohorts. CONCLUSIONS Few studies have incorporated genetic taste status as a variable in swallowing research, and results are mixed. Future research on sensation and swallowing should consider the potential effect of genetic taste status and follow standardized procedures for its determination. Despite the limited evidence, clinicians may consider how individual differences in perception shape swallowing outcomes.
Collapse
Affiliation(s)
- Theresa S Lee
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln
| | - Rana H Damra
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Rachel W Mulheren
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
11
|
Schiff HC, Kogan JF, Isaac M, Czarnecki LA, Fontanini A, Maffei A. Experience-dependent plasticity of gustatory insular cortex circuits and taste preferences. SCIENCE ADVANCES 2023; 9:eade6561. [PMID: 36630501 PMCID: PMC9833665 DOI: 10.1126/sciadv.ade6561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/07/2022] [Indexed: 05/10/2023]
Abstract
Early experience with food influences taste preference in adulthood. How gustatory experience influences development of taste preferences and refinement of cortical circuits has not been investigated. Here, we exposed weanling mice to an array of taste solutions and determined the effects on the preference for sweet in adulthood. We demonstrate an experience-dependent shift in sucrose preference persisting several weeks following the termination of exposure. A shift in sucrose palatability, altered neural responsiveness to sucrose, and inhibitory synaptic plasticity in the gustatory portion of the insular cortex (GC) were also induced. The modulation of sweet preference occurred within a restricted developmental window, but restoration of the capacity for inhibitory plasticity in adult GC reactivated the sensitivity of sucrose preference to taste experience. Our results establish a fundamental link between gustatory experience, sweet preference, inhibitory plasticity, and cortical circuit function and highlight the importance of early life nutrition in setting taste preferences.
Collapse
Affiliation(s)
- Hillary C. Schiff
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
- Medical Scientist Training Program, SUNY Stony Brook, Stony Brook, NY, USA
| | - Maria Isaac
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| | | | - Alfredo Fontanini
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, NY, USA
- Graduate Program in Neuroscience, SUNY Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
12
|
Idris A, Christensen BA, Walker EM, Maier JX. Multisensory integration of orally-sourced gustatory and olfactory inputs to the posterior piriform cortex in awake rats. J Physiol 2023; 601:151-169. [PMID: 36385245 PMCID: PMC9869978 DOI: 10.1113/jp283873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Flavour refers to the sensory experience of food, which is a combination of sensory inputs sourced from multiple modalities during consumption, including taste and odour. Previous work has demonstrated that orally-sourced taste and odour cues interact to determine perceptual judgements of flavour stimuli, although the underlying cellular- and circuit-level neural mechanisms remain unknown. We recently identified a region of the piriform olfactory cortex in rats that responds to both taste and odour stimuli. Here, we investigated how converging taste and odour inputs to this area interact to affect single neuron responsiveness ensemble coding of flavour identity. To accomplish this, we recorded spiking activity from ensembles of single neurons in the posterior piriform cortex (pPC) in awake, tasting rats while delivering taste solutions, odour solutions and taste + odour mixtures directly into the oral cavity. Our results show that taste and odour inputs evoke highly selective, temporally-overlapping responses in multisensory pPC neurons. Comparing responses to mixtures and their unisensory components revealed that taste and odour inputs interact in a non-linear manner to produce unique response patterns. Taste input enhances trial-by-trial decoding of odour identity from small ensembles of simultaneously recorded neurons. Together, these results demonstrate that taste and odour inputs to pPC interact in complex, non-linear ways to form amodal flavour representations that enhance identity coding. KEY POINTS: Experience of food involves taste and smell, although how information from these different senses is combined by the brain to create our sense of flavour remains unknown. We recorded from small groups of neurons in the olfactory cortex of awake rats while they consumed taste solutions, odour solutions and taste + odour mixtures. Taste and smell solutions evoke highly selective responses. When presented in a mixture, taste and smell inputs interacted to alter responses, resulting in activation of unique sets of neurons that could not be predicted by the component responses. Synergistic interactions increase discriminability of odour representations. The olfactory cortex uses taste and smell to create new information representing multisensory flavour identity.
Collapse
Affiliation(s)
- Ammar Idris
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Brooke A. Christensen
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Ellen M. Walker
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Joost X. Maier
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
13
|
Bouaichi CG, Odegaard KE, Neese C, Vincis R. Oral thermal processing in the gustatory cortex of awake mice. Chem Senses 2023; 48:bjad042. [PMID: 37850853 PMCID: PMC10630187 DOI: 10.1093/chemse/bjad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/19/2023] Open
Abstract
Oral temperature is a sensory cue relevant to food preference and nutrition. To understand how orally sourced thermal inputs are represented in the gustatory cortex (GC), we recorded neural responses from the GC of male and female mice presented with deionized water at different innocuous temperatures (14 °C, 25 °C, and 36 °C) and taste stimuli (room temperature). Our results demonstrate that GC neurons encode orally sourced thermal information in the absence of classical taste qualities at the single neuron and population levels, as confirmed through additional experiments comparing GC neuron responses to water and artificial saliva. Analysis of thermal-evoked responses showed broadly tuned neurons that responded to temperature in a mostly monotonic manner. Spatial location may play a minor role regarding thermosensory activity; aside from the most ventral GC, neurons reliably responded to and encoded thermal information across the dorso-ventral and antero-postero cortical axes. Additional analysis revealed that more than half of the GC neurons that encoded chemosensory taste stimuli also accurately discriminated thermal information, providing additional evidence of the GC's involvement in processing thermosensory information important for ingestive behaviors. In terms of convergence, we found that GC neurons encoding information about both taste and temperature were broadly tuned and carried more information than taste-selective-only neurons; both groups encoded similar information about the palatability of stimuli. Altogether, our data reveal new details of the cortical code for the mammalian oral thermosensory system in behaving mice and pave the way for future investigations on GC functions and operational principles with respect to thermogustation.
Collapse
Affiliation(s)
- Cecilia G Bouaichi
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Katherine E Odegaard
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Camden Neese
- Department of Biological Science and Programs in Neuroscience, Cell and Molecular Biology, and Biophysics, Florida State University, Tallahassee, FL, United States
| | - Roberto Vincis
- Department of Biological Science and Programs in Neuroscience, Molecular Biophysics and Cell and Molecular Biology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
14
|
Fredericksen KE, Samuelsen CL. Neural Representation of Intraoral Olfactory and Gustatory Signals by the Mediodorsal Thalamus in Alert Rats. J Neurosci 2022; 42:8136-8153. [PMID: 36171086 PMCID: PMC9636993 DOI: 10.1523/jneurosci.0674-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
The mediodorsal thalamus is a multimodal region involved in a variety of cognitive behaviors, including olfactory attention, odor discrimination, and the hedonic perception of flavors. Although the mediodorsal thalamus forms connections with principal regions of the olfactory and gustatory networks, its role in processing olfactory and gustatory signals originating from the mouth remains unclear. Here, we recorded single-unit activity in the mediodorsal thalamus of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results are the first to demonstrate that neurons in the mediodorsal thalamus dynamically encode chemosensory signals originating from the mouth. This chemoselective population is broadly tuned, exhibits excited and suppressed responses, and responds to odor-taste mixtures differently than an odor or taste alone. Furthermore, a subset of chemoselective neurons encodes the palatability-related features of tastes and may represent associations between previously experienced odor-taste pairs. Our results further demonstrate the multidimensionality of the mediodorsal thalamus and provide additional evidence of its involvement in processing chemosensory information important for ingestive behaviors.SIGNIFICANCE STATEMENT The perception of food relies on the concurrent processing of olfactory and gustatory signals originating from the mouth. The mediodorsal thalamus is a higher-order thalamic nucleus involved in a variety of chemosensory-dependent behaviors and connects the olfactory and gustatory cortices with the prefrontal cortex. However, it is unknown how neurons in the mediodorsal thalamus process intraoral chemosensory signals. Using tetrode recordings in alert rats, our results are the first to show that neurons in the mediodorsal thalamus dynamically represent olfactory and gustatory signals from the mouth. Our findings are consistent with the mediodorsal thalamus being a key node between sensory and prefrontal cortical areas for processing chemosensory information underlying ingestive behavior.
Collapse
Affiliation(s)
- Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
15
|
Colbert SE, Triplett CS, Maier JX. The role of viscosity in flavor preference: plasticity and interactions with taste. Chem Senses 2022; 47:bjac018. [PMID: 35972847 PMCID: PMC9380780 DOI: 10.1093/chemse/bjac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brain combines gustatory, olfactory, and somatosensory information to create our perception of flavor. Within the somatosensory modality, texture attributes such as viscosity appear to play an important role in flavor preference. However, research into the role of texture in flavor perception is relatively sparse, and the contribution of texture cues to hedonic evaluation of flavor remains largely unknown. Here, we used a rat model to investigate whether viscosity preferences can be manipulated through association with nutrient value, and how viscosity interacts with taste to inform preferences for taste + viscosity mixtures. To address these questions, we measured preferences for moderately viscous solutions prepared with xanthan gum using 2-bottle consumption tests. By experimentally exposing animals to viscous solutions with and without nutrient value, we demonstrate that viscosity preferences are susceptible to appetitive conditioning. By independently varying viscosity and taste content of solutions, we further show that taste and viscosity cues both contribute to preferences for taste + viscosity mixtures. How these 2 modalities are combined depended on relative palatability, with mixture preferences falling in between component preferences, suggesting that hedonic aspects of taste and texture inputs are centrally integrated. Together, these findings provide new insight into how texture aspects of flavor inform hedonic perception and impact food choice behavior.
Collapse
Affiliation(s)
- Sarah E Colbert
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cody S Triplett
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Deng H, Xiao X, Yang T, Ritola K, Hantman A, Li Y, Huang ZJ, Li B. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 2021; 184:6344-6360.e18. [PMID: 34890577 PMCID: PMC9103523 DOI: 10.1016/j.cell.2021.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
The anterior insular cortex (aIC) plays a critical role in cognitive and motivational control of behavior, but the underlying neural mechanism remains elusive. Here, we show that aIC neurons expressing Fezf2 (aICFezf2), which are the pyramidal tract neurons, signal motivational vigor and invigorate need-seeking behavior through projections to the brainstem nucleus tractus solitarii (NTS). aICFezf2 neurons and their postsynaptic NTS neurons acquire anticipatory activity through learning, which encodes the perceived value and the vigor of actions to pursue homeostatic needs. Correspondingly, aIC → NTS circuit activity controls vigor, effort, and striatal dopamine release but only if the action is learned and the outcome is needed. Notably, aICFezf2 neurons do not represent taste or valence. Moreover, aIC → NTS activity neither drives reinforcement nor influences total consumption. These results pinpoint specific functions of aIC → NTS circuit for selectively controlling motivational vigor and suggest that motivation is subserved, in part, by aIC's top-down regulation of dopamine signaling.
Collapse
Affiliation(s)
- Hanfei Deng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Adam Hantman
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Z Josh Huang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
17
|
Samuelsen CL, Vincis R. Cortical Hub for Flavor Sensation in Rodents. Front Syst Neurosci 2021; 15:772286. [PMID: 34867223 PMCID: PMC8636119 DOI: 10.3389/fnsys.2021.772286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.
Collapse
Affiliation(s)
- Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
18
|
Giacomini JL, Geiduschek E, Selleck RA, Sadeghian K, Baldo BA. Dissociable control of μ-opioid-driven hyperphagia vs. food impulsivity across subregions of medial prefrontal, orbitofrontal, and insular cortex. Neuropsychopharmacology 2021; 46:1981-1989. [PMID: 34226656 PMCID: PMC8429588 DOI: 10.1038/s41386-021-01068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
This study explored potentially dissociable functions of mu-opioid receptor (µ-OR) signaling across different cortical territories in the control of anticipatory activity directed toward palatable food, consumption, and impulsive food-seeking behavior in male rats. The µ-OR agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), was infused into infralimbic cortex (ILC), prelimbic cortex (PrL), medial and lateral ventral orbitofrontal cortices (VMO, VLO), and agranular/dysgranular insular (AI/DI) cortex of rats. Intra-ILC DAMGO markedly enhanced contact with a see-through screen behind which sucrose pellets were sequestered; in addition, rats having received intra-ILC and intra-VMO DAMGO exhibited locomotor hyperactivity while the screen was in place. Upon screen removal, intra-ILC and -VMO-treated rats emitted numerous, brief sucrose-intake bouts (yielding increased overall intake) interspersed with significant hyperactivity. In contrast, intra-AI/DI-treated rats consumed large amounts of sucrose in long, uninterrupted bouts with no anticipatory hyperactivity pre-screen removal. Intra-PrL and intra-VLO DAMGO altered neither pre-screen behavior nor sucrose intake. Finally, all rats were tested in a sucrose-reinforced differential reinforcement of low rates (DRL) task, which assesses the ability to advantageously withhold premature responses. DAMGO affected (impaired) DRL performance when infused into ILC only. These site-based dissociations reveal differential control of µ-OR-modulated appetitive/approach vs. consummatory behaviors by ventromedial/orbitofrontal and insular networks, respectively, and suggest a unique role of ILC µ-ORs in modulating inhibitory control.
Collapse
Affiliation(s)
- Juliana L. Giacomini
- grid.14003.360000 0001 2167 3675Graduate Program in Cellular and Molecular Biology, Physiology Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Emma Geiduschek
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ryan A. Selleck
- grid.252000.50000 0001 0728 549XDepartment of Psychological Science, Albion College, Albion, MI USA
| | - Ken Sadeghian
- grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brian A. Baldo
- grid.14003.360000 0001 2167 3675Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
19
|
Molecular and Neural Mechanism of Dysphagia Due to Cancer. Int J Mol Sci 2021; 22:ijms22137033. [PMID: 34210012 PMCID: PMC8269194 DOI: 10.3390/ijms22137033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. Along with the advances in diagnostic technology achieved through industry–academia partnerships, the survival rate of cancer patients has improved dramatically through treatments that include surgery, radiation therapy, and pharmacotherapy. This has increased the population of cancer “survivors” and made cancer survivorship an important part of life for patients. The senses of taste and smell during swallowing and cachexia play important roles in dysphagia associated with nutritional disorders in cancer patients. Cancerous lesions in the brain can cause dysphagia. Taste and smell disorders that contribute to swallowing can worsen or develop because of pharmacotherapy or radiation therapy; metabolic or central nervous system damage due to cachexia, sarcopenia, or inflammation can also cause dysphagia. As the causes of eating disorders in cancer patients are complex and involve multiple factors, cancer patients require a multifaceted and long-term approach by the medical care team.
Collapse
|
20
|
Boughter JD, Fletcher M. Rethinking the role of taste processing in insular cortex and forebrain circuits. CURRENT OPINION IN PHYSIOLOGY 2021; 20:52-56. [PMID: 33681544 PMCID: PMC7932132 DOI: 10.1016/j.cophys.2020.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the years, many approaches towards studying the taste-responsive area of insular cortex have focused on how basic taste information is represented, and how lesions or silencing of this area impact taste-focused behaviors. Here, we review and highlight recent studies that imply that insular cortex does not contain a "primary" taste cortex in the traditional sense. Rather, taste is employed in concert with other internal and external sensory modalities by highly interconnected regions of insular cortex to guide ingestive decision-making, especially in context of estimating risk and reward. In rodent models, this may best be seen in context of foraging behaviors, which require flexibility and are dependent on learning and memory processes.
Collapse
Affiliation(s)
- John D. Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| | - Max Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave., Memphis TN 38163 USA
| |
Collapse
|
21
|
|
22
|
Lorenzo PMD. Neural Coding of Food Is a Multisensory, Sensorimotor Function. Nutrients 2021; 13:nu13020398. [PMID: 33513918 PMCID: PMC7911409 DOI: 10.3390/nu13020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
This review is a curated discussion of the relationship between the gustatory system and the perception of food beginning at the earliest stage of neural processing. A brief description of the idea of taste qualities and mammalian anatomy of the taste system is presented first, followed by an overview of theories of taste coding. The case is made that food is encoded by the several senses that it stimulates beginning in the brainstem and extending throughout the entire gustatory neuraxis. In addition, the feedback from food-related movements is seamlessly melded with sensory input to create the representation of food objects in the brain.
Collapse
Affiliation(s)
- Patricia M Di Lorenzo
- Department of Psychology, Binghamton University, Box 6000, Binghamton, NY 13902-6000, USA
| |
Collapse
|
23
|
Maier JX, Elliott VE. Adaptive weighting of taste and odor cues during flavor choice. J Neurophysiol 2020; 124:1942-1947. [PMID: 33026958 DOI: 10.1152/jn.00506.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Colloquially referred to as "taste," flavor is in reality a thoroughly multisensory experience. Yet, a mechanistic understanding of the multisensory computations underlying flavor perception and food choice is lacking. Here, we used a multisensory flavor choice task in rats to test specific predictions of the statistically optimal integration framework, which has previously yielded much insight into cue integration in other multisensory systems. Our results confirm three key predictions of this framework in the unique context of flavor choice behavior, providing novel mechanistic insight into multisensory flavor processing.NEW & NOTEWORTHY The authors demonstrate that rats make choices about which flavor solution (i.e., taste-odor mixture) to consume by weighting the individual taste and odor components according to the reliability of the information they provide about which solution is the preferred one. A similar weighting operation underlies multisensory cue combination in other domains and offers novel insight into the computations underlying multisensory flavor perception and food choice behavior.
Collapse
Affiliation(s)
- Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Victoria E Elliott
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
24
|
Chen K, Kogan JF, Fontanini A. Spatially Distributed Representation of Taste Quality in the Gustatory Insular Cortex of Behaving Mice. Curr Biol 2020; 31:247-256.e4. [PMID: 33186554 PMCID: PMC7855361 DOI: 10.1016/j.cub.2020.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Visual, auditory, and somatosensory cortices are topographically organized, with neurons responding to similar sensory features clustering in adjacent portions of the cortex. Such topography has not been observed in the piriform cortex, whose responses to odorants are sparsely distributed across the cortex. The spatial organization of taste responses in the gustatory insular cortex (GC) is currently debated, with conflicting evidence from anesthetized rodents pointing to alternative and mutually exclusive models. Here, we rely on calcium imaging to determine how taste and task-related variables are represented in the superficial layers of GC of alert, licking mice. Our data show that the various stimuli evoke sparse responses from a combination of broadly and narrowly tuned neurons. Analysis of the distribution of responses over multiple spatial scales demonstrates that taste representations are distributed across the cortex, with no sign of spatial clustering or topography. Altogether, data presented here support the idea that the representation of taste qualities in GC of alert mice is sparse and distributed, analogous to the representation of odorants in piriform cortex.
Collapse
Affiliation(s)
- Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Joshua F Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
25
|
Bales MB, Spector AC. Chemospecific deficits in taste sensitivity following bilateral or right hemispheric gustatory cortex lesions in rats. J Comp Neurol 2020; 528:2729-2747. [PMID: 32671857 PMCID: PMC8008699 DOI: 10.1002/cne.24928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Our prior studies showed bilateral gustatory cortex (GC) lesions significantly impair taste sensitivity to salts (NaCl and KCl) and quinine ("bitter") but not to sucrose ("sweet"). The range of qualitative tastants tested here has been extended in a theoretically relevant way to include the maltodextrin, Maltrin, a preferred stimulus by rats thought to represent a unique taste quality, and the "sour" stimulus citric acid; NaCl was also included as a positive control. Male rats (Sprague-Dawley) with histologically confirmed neurotoxin-induced bilateral (BGCX, n = 13), or right (RGCX, n = 13) or left (LGCX, n = 9) unilateral GC lesions and sham-operated controls (SHAM, n = 16) were trained to discriminate a tastant from water in an operant two-response detection task. A mapping system was used to determine placement, size, and symmetry (when bilateral) of the lesion. BGCX significantly impaired taste sensitivity to NaCl, as expected, but not to Maltrin or citric acid, emulating our prior results with sucrose. However, in the case of citric acid, there was some disruption in performance at higher concentrations. Interestingly, RGCX, but not LGCX, also significantly impaired taste sensitivity, but only to NaCl, suggesting some degree of lateralized function. Taken together with our prior findings, extensive bilateral lesions in GC do not disrupt basic taste signal detection to all taste stimuli uniformly. Moreover, GC lesions do not preclude the ability of rats to learn and perform the task, clearly demonstrating that, in its absence, other brain regions are able to maintain sensory-discriminative taste processing, albeit with attenuated sensitivity for select stimuli.
Collapse
Affiliation(s)
- Michelle B Bales
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
26
|
A drivable optrode for use in chronic electrophysiology and optogenetic experiments. J Neurosci Methods 2020; 348:108979. [PMID: 33096153 PMCID: PMC10174211 DOI: 10.1016/j.jneumeth.2020.108979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combining optogenetic tools with behaving electrophysiology is a powerful approach for investigating the neural mechanisms underlying behavior. A traditional approach to ensure viable recordings during chronic long-term electrophysiological experiments is the use of drivable electrodes. However, few options exist for drivable optrodes. NEW METHOD Here, we describe the design and construction of an economical drivable optrode for chronic experiments in behaving rodents, which allows for the simultaneous photo-stimulation and recording of distinct neuronal populations. RESULTS We demonstrate the utility of the drivable optrode by recording light-evoked modulation in awake behaving rats over multiple recording sessions and across different depths. Using a virus to drive expression of channelrhodopsin-2 (ChR2) in the anterior piriform cortex, the drivable optrode was used to record consistent light-evoked modulation of neural activity in the gustatory cortex during photo-activation of the axonal projections from anterior piriform cortex in behaving rats. COMPARISON WITH EXISTING METHODS Although sophisticated optrodes have been developed, many are expensive, unmodifiable, require advanced engineering techniques, and/or lack drivability. The drivable optrode uses relatively inexpensive materials, requires no machined parts, and can be fabricated with tools available in most labs. In addition, it can be easily modified to accommodate different experimental parameters. CONCLUSION In summary, we believe that the cost-effective and relatively simple-to-prepare design makes this drivable optrode a practical option for researchers using optogenetic and electrophysiological tools to investigate network and circuit function.
Collapse
|
27
|
McQueen KA, Fredericksen KE, Samuelsen CL. Experience Informs Consummatory Choices for Congruent and Incongruent Odor-Taste Mixtures in Rats. Chem Senses 2020; 45:371-382. [PMID: 32239150 DOI: 10.1093/chemse/bjaa025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experience is an essential factor informing food choice. Eating food generates enduring odor-taste associations that link an odor with a taste's quality and hedonic value (pleasantness/unpleasantness) and creates the perception of a congruent odor-taste combination. Previous human psychophysical experiments demonstrate that experience with odor-taste mixtures shapes perceptual judgments related to the intensity, familiarity, and pleasantness of chemosensory stimuli. However, how these perceptual judgments inform consummatory choice is less clear. Using rats as a model system and a 2-bottle brief-access task, we investigated how experience with palatable and unpalatable odor-taste mixtures influences consummatory choice related to odor-taste congruence and stimulus familiarity. We found that the association between an odor and a taste, not the odor's identity or its congruence with a taste, informs consummatory choice for odor-taste mixtures. Furthermore, we showed that the association between an odor and a taste, not odor neophobia, informs consummatory choice for odors dissolved in water. Our results provide further evidence that the association between an odor and a taste, after odor-taste mixture experience, is a fundamental feature guiding consummatory choice.
Collapse
Affiliation(s)
- Kelsey A McQueen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
28
|
Brunert D, Rothermel M. Cortical multisensory integration-a special role of the agranular insular cortex? Pflugers Arch 2020; 472:671-672. [PMID: 32458084 PMCID: PMC7293668 DOI: 10.1007/s00424-020-02400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
29
|
Zhang-Molina C, Schmit MB, Cai H. Neural Circuit Mechanism Underlying the Feeding Controlled by Insula-Central Amygdala Pathway. iScience 2020; 23:101033. [PMID: 32311583 PMCID: PMC7168768 DOI: 10.1016/j.isci.2020.101033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
The Central nucleus of amygdala (CeA) contains distinct populations of neurons that play opposing roles in feeding. The circuit mechanism of how CeA neurons process information sent from their upstream inputs to regulate feeding is still unclear. Here we show that activation of the neural pathway projecting from insular cortex neurons to the CeA suppresses food intake. Surprisingly, we find that the inputs from insular cortex form excitatory connections with similar strength to all types of CeA neurons. To reconcile this puzzling result, and previous findings, we developed a conductance-based dynamical systems model for the CeA neuronal network. Computer simulations showed that both the intrinsic electrophysiological properties of individual CeA neurons and the overall synaptic organization of the CeA circuit play a functionally significant role in shaping CeA neural dynamics. We successfully identified a specific CeA circuit structure that reproduces the desired circuit output consistent with existing experimentally observed feeding behaviors. Activation of the insular cortex→central amygdala (CeA) pathway suppresses feeding Insular cortex neurons send similar excitatory inputs to different types of CeA neurons Model suggests a required circuit with both late firing and regular spiking cells The circuit model can explain current and previous CeA-mediated feeding behaviors
Collapse
Affiliation(s)
| | - Matthew B Schmit
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
30
|
Vincis R, Chen K, Czarnecki L, Chen J, Fontanini A. Dynamic Representation of Taste-Related Decisions in the Gustatory Insular Cortex of Mice. Curr Biol 2020; 30:1834-1844.e5. [PMID: 32243860 PMCID: PMC7239762 DOI: 10.1016/j.cub.2020.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022]
Abstract
Research over the past decade has established the gustatory insular cortex (GC) as a model for studying howprimary sensory cortices integrate sensory,affective, and cognitive signals. This integration occurs through time-varyingpatterns of neural activity. Selective silencing of GC activity during specific temporal windows provided evidence forGC’s role in mediating taste palatability and expectation. Recent results also suggest that this areamay play a role in decision making. However, existing data are limited to GC involvement in controlling the timing of stereotyped, orofacial reactions to aversive tastants during consumption. Here,we present electrophysiological, chemogenetic, and optogenetic results demonstrating the key role of GCin the executionof a taste-guided, reward-directed decision-making task. Mice were trained in a two-alternative choice task, in which they had to associate tastants sampled from a central spout with different actions (i.e., licking either a left or a right spout). Stimulus sampling and action were separated by a delay period. Electrophysiological recordings revealed chemosensory processing during the sampling period and the emergence of task-related, cognitive signals during the delay period. Chemogenetic silencing of GCimpaired task performance. Optogenetic silencing of GC allowed us to tease apart the contribution of activity during sampling and delay periods. Although silencing during the sampling period had no effect, silencing during the delay period significantly impacted behavioral performance, demonstrating the importance of the cognitive signals processed by GC in driving decision making. Altogether, our data highlight a novel role ofGCin controlling taste-guided, reward-directed choices and actions. Relying on behavioral electrophysiology and neural manipulations, Vincis, Chen, et al. demonstrate that neurons in the gustatory cortex (GC) encode perceptual and cognitive signals important for tasteguided choices. These data demonstrate a novel role of GC as a key area for sensorimotor transformations related to gustatory perceptual decision making.
Collapse
Affiliation(s)
- Roberto Vincis
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ke Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lindsey Czarnecki
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - John Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
31
|
Neural Isolation of the Olfactory Bulbs Severely Impairs Taste-Guided Behavior to Normally Preferred, But Not Avoided, Stimuli. eNeuro 2020; 7:ENEURO.0026-20.2020. [PMID: 32152061 PMCID: PMC7142272 DOI: 10.1523/eneuro.0026-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
Here we systematically tested the hypothesis that motivated behavioral responsiveness to preferred and avoided taste compounds is relatively independent of the olfactory system in mice whose olfactory bulbs (main and accessory) were surgically disconnected from the rest of the brain [bulbotomy (BULBx)]. BULBx was confirmed histologically as well as functionally with the buried food test. In brief access taste tests, animals received 10-s trials of various concentrations of a taste compound delivered quasirandomly. BULBx C57BL/6 (B6) mice displayed severely blunted concentration-dependent licking for the disaccharide sucrose, the maltodextrin Maltrin, and the fat emulsion Intralipid relative to their sham-operated controls (SHAM B6). Licking for the noncaloric sweetener saccharin was also blunted by bulbotomy, but less so. As expected, mice lacking a functional “sweet” receptor [T1R2+T1R3 knockout (KO)] displayed concentration-dependent responsiveness to Maltrin and severely attenuated licking to sucrose. Like in B6 mice, responsiveness to both stimuli was exceptionally curtailed by bulbotomy. In contrast to these deficits in taste-guided behavior for unconditionally preferred stimuli, BULBx in B6 and KO mice did not alter concentration-dependent decreases for the representative avoided stimuli quinine and citric acid. Nor did it temper the intake of and preference for high concentrations of affectively positive stimuli when presented in long-term (23-h) two-bottle tests, demonstrating that the surgery does not lead to a generalized motivational deficit. Collectively, these behavioral results demonstrate that specific aspects of taste-guided ingestive motivation are profoundly disturbed by eliminating the anatomic connections between the main/accessory olfactory bulbs and the rest of the brain.
Collapse
|
32
|
Staszko SM, Boughter JD, Fletcher ML. Taste coding strategies in insular cortex. Exp Biol Med (Maywood) 2020; 245:448-455. [PMID: 32106700 DOI: 10.1177/1535370220909096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the cortical representation of sensory stimuli is well described for some sensory systems, a clear understanding of the cortical representation of taste stimuli remains elusive. Recent investigations have focused on both spatial and temporal organization of taste responses in the putative taste region of insular cortex. This review highlights recent literature focused on spatiotemporal coding strategies in insular cortex. These studies are examined in the context of the organization and function of the entire insular cortex, rather than a specific gustatory region of insular cortex. In regard to a taste quality-specific map, imaging studies have reported conflicting results, whereas electrophysiology studies have described a broad distribution of taste-responsive neurons found throughout insular cortex with no spatial organization. The current collection of evidence suggests that insular cortex may be organized into a hedonic or “viscerotopic” map, rather than one ordered according to taste quality. Further, it has been proposed that cortical taste responses can be separated into temporal “epochs” representing stimulus identity and palatability. This coding strategy presents a potential framework, whereby the coordinated activity of a population of neurons allows for the same neurons to respond to multiple taste stimuli or even other sensory modalities, a well-documented phenomenon in insular cortex neurons. However, these representations may not be static, as several studies have demonstrated that both spatial representation and temporal dynamics of taste coding change with experience. Collectively, these studies suggest that cortical taste representation is not organized in a spatially discrete map, but rather is plastic and spatially dispersed, using temporal information to encode multiple types of information about ingested stimuli. Impact statement The organization of taste coding in insular cortex is widely debated. While early work has focused on whether taste quality is encoded via labeled line or ensemble mechanisms, recent work has attempted to delineate the spatial organization and temporal components of taste processing in insular cortex. Recent imaging and electrophysiology studies have reported conflicting results in regard to the spatial organization of cortical taste responses, and many studies ignore potentially important temporal dynamics when investigating taste processing. This review highlights the latest research in these areas and examines them in the context of the anatomy and physiology of the insular cortex in general to provide a more comprehensive description of taste coding in insular cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
33
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Fredericksen KE, McQueen KA, Samuelsen CL. Experience-Dependent c-Fos Expression in the Mediodorsal Thalamus Varies With Chemosensory Modality. Chem Senses 2019; 44:41-49. [PMID: 30388214 DOI: 10.1093/chemse/bjy070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mediodorsal thalamus is a higher order thalamic nucleus critical for many cognitive behaviors. Defined by its reciprocal connections with the prefrontal cortex, the mediodorsal thalamus receives strong projections from chemosensory cortical areas for taste and smell, gustatory cortex and piriform cortex. Recent studies indicate the mediodorsal thalamus is involved in experience-dependent chemosensory processes, including olfactory attention and discrimination and the hedonic perception of odor-taste mixtures. How novel and familiar chemosensory stimuli are represented within this structure remains unclear. Here, we compared the expression of c-Fos in the mediodorsal thalami of rats familiar with an odor, a taste, or an odor-taste mixture with those that sampled the stimuli for the first time. We found that familiar tastes or odor-taste mixtures induced significantly greater c-Fos expression in the mediodorsal thalamus than novel tastes or odor-taste mixtures, whereas novel odors induced greater c-Fos expression than familiar odors. These experience-dependent and modality-specific differences in c-Fos expression may relate to the behavioral relevance of the chemosensory stimulus, including odor neophobia. In a two-bottle brief-access preference task, rats preferred water to isoamyl acetate-odorized water over multiple days. However, after experience with isoamyl acetate mixed with sucrose (odor-taste mixture), the preference for water was eliminated. These findings demonstrate that experience with chemosensory stimuli modulates responses in the mediodorsal thalamus, suggesting this structure plays an integral role in communicating behaviorally relevant chemosensory information to higher order areas to guide food-related behaviors.
Collapse
Affiliation(s)
- Kelly E Fredericksen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Kelsey A McQueen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY, USA
| |
Collapse
|
35
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
36
|
Levitan D, Lin JY, Wachutka J, Mukherjee N, Nelson SB, Katz DB. Single and population coding of taste in the gustatory cortex of awake mice. J Neurophysiol 2019; 122:1342-1356. [PMID: 31339800 DOI: 10.1152/jn.00357.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological analysis has revealed much about the broad coding and neural ensemble dynamics that characterize gustatory cortical (GC) taste processing in awake rats and about how these dynamics relate to behavior. With regard to mice, however, data concerning cortical taste coding have largely been restricted to imaging, a technique that reveals average levels of neural responsiveness but that (currently) lacks the temporal sensitivity necessary for evaluation of fast response dynamics; furthermore, the few extant studies have thus far failed to provide consensus on basic features of coding. We have recorded the spiking activity of ensembles of GC neurons while presenting representatives of the basic taste modalities (sweet, salty, sour, and bitter) to awake mice. Our first central result is the identification of similarities between rat and mouse taste processing: most mouse GC neurons (~66%) responded distinctly to multiple (3-4) tastes; temporal coding analyses further reveal, for the first time, that single mouse GC neurons sequentially code taste identity and palatability, the latter responses emerging ~0.5 s after the former, with whole GC ensembles transitioning suddenly and coherently from coding taste identity to coding taste palatability. The second finding is that spatial location plays very little role in any aspect of taste responses: neither between- (anterior-posterior) nor within-mouse (dorsal-ventral) mapping revealed anatomic regions with narrow or temporally simple taste responses. These data confirm recent results showing that mouse cortical taste responses are not "gustotopic" but also go beyond these imaging results to show that mice process tastes through time.NEW & NOTEWORTHY Here, we analyzed taste-related spiking activity in awake mouse gustatory cortical (GC) neural ensembles, revealing deep similarities between mouse cortical taste processing and that repeatedly demonstrated in rat: mouse GC ensembles code multiple aspects of taste in a coarse-coded, time-varying manner that is essentially invariant across the spatial extent of GC. These data demonstrate that, contrary to some reports, cortical network processing is distributed, rather than being separated out into spatial subregion.
Collapse
Affiliation(s)
- David Levitan
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | - Jian-You Lin
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Joseph Wachutka
- Department of Psychology, Brandeis University, Waltham, Massachusetts
| | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
37
|
Mukherjee N, Wachutka J, Katz DB. Impact of precisely-timed inhibition of gustatory cortex on taste behavior depends on single-trial ensemble dynamics. eLife 2019; 8:e45968. [PMID: 31232693 PMCID: PMC6625792 DOI: 10.7554/elife.45968] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
Sensation and action are necessarily coupled during stimulus perception - while tasting, for instance, perception happens while an animal decides to expel or swallow the substance in the mouth (the former via a behavior known as 'gaping'). Taste responses in the rodent gustatory cortex (GC) span this sensorimotor divide, progressing through firing-rate epochs that culminate in the emergence of action-related firing. Population analyses reveal this emergence to be a sudden, coherent and variably-timed ensemble transition that reliably precedes gaping onset by 0.2-0.3s. Here, we tested whether this transition drives gaping, by delivering 0.5s GC perturbations in tasting trials. Perturbations significantly delayed gaping, but only when they preceded the action-related transition - thus, the same perturbation impacted behavior or not, depending on the transition latency in that particular trial. Our results suggest a distributed attractor network model of taste processing, and a dynamical role for cortex in driving motor behavior.
Collapse
Affiliation(s)
- Narendra Mukherjee
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Joseph Wachutka
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| | - Donald B Katz
- Program in NeuroscienceBrandeis UniversityWalthamUnited States
- Volen National Center for Complex SystemsBrandeis UniversityWalthamUnited States
- Department of PsychologyBrandeis UniversityWalthamUnited States
| |
Collapse
|
38
|
Schier LA, Inui-Yamamoto C, Blonde GD, Spector AC. T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R448-R462. [PMID: 30624973 PMCID: PMC6589602 DOI: 10.1152/ajpregu.00255.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
Simple sugars are thought to elicit a unitary sensation, principally via the "sweet" taste receptor type 1 taste receptor (T1R)2+T1R3, yet we previously found that rats with experience consuming two metabolically distinct sugars, glucose and fructose, subsequently licked more for glucose than fructose, even when postingestive influences were abated. The results pointed to the existence of an orosensory receptor that binds one sugar but not the other and whose signal is channeled into neural circuits that motivate ingestion. Here we sought to determine the chemosensory nature of this signal. First, we assessed whether T1R2 and/or T1R3 are necessary to acquire this behavioral discrimination, replicating our rat study in T1R2+T1R3 double-knockout (KO) mice and their wild-type counterparts as well as in two common mouse strains that vary in their sensitivity to sweeteners [C57BL/6 (B6) and 129X1/SvJ (129)]. These studies showed that extensive exposure to multiple concentrations of glucose and fructose in daily one-bottle 30-min sessions enhanced lick responses for glucose over fructose in brief-access tests. This was true even for KO mice that lacked the canonical "sweet" taste receptor. Surgical disconnection of olfactory inputs to the forebrain (bulbotomy) in B6 mice severely disrupted the ability to express this experience-dependent sugar discrimination. Importantly, these bulbotomized B6 mice exhibited severely blunted responsiveness to both sugars relative to water in brief-access lick tests, despite the fact that they have intact T1R2+T1R3 receptors. The results highlight the importance of other sources of chemosensory and postingestive inputs in shaping and maintaining "hardwired" responses to sugar.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California
| | - Chizuko Inui-Yamamoto
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry , Osaka , Japan
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Ginger D Blonde
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology, Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
39
|
Abstract
Animals can smell odors from the external environment or from their mouth via two routes: orthonasal and retronasal, respectively. Little is known about how the brain processes orthonasal and retronasal odors associated with taste, but a new study has revealed an important role for the gustatory cortex in such odor processing.
Collapse
Affiliation(s)
- Lindsey Czarnecki
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
40
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
41
|
Blankenship ML, Grigorova M, Katz DB, Maier JX. Retronasal Odor Perception Requires Taste Cortex, but Orthonasal Does Not. Curr Biol 2018; 29:62-69.e3. [PMID: 30581018 DOI: 10.1016/j.cub.2018.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Smells can arise from a source external to the body and stimulate the olfactory epithelium upon inhalation through the nares (orthonasal olfaction). Alternatively, smells may arise from inside the mouth during consumption, stimulating the epithelium upon exhalation (retronasal olfaction). Both ortho- and retronasal olfaction produce highly salient percepts, but the two percepts have very different behavioral implications. Here, we use optogenetic manipulation in the context of a flavor preference learning paradigm to investigate differences in the neural circuits that process information in these two submodalities of olfaction. Our findings support a view in which retronasal, but not orthonasal, odors share processing circuitry commonly associated with taste. First, our behavioral results reveal that retronasal odors induce rapid preference learning and have a potentiating effect on orthonasal preference learning. Second, we demonstrate that inactivation of the insular gustatory cortex selectively impairs expression of retronasal preferences. Thus, orally sourced (retronasal) olfactory input is processed by a brain region responsible for taste processing, whereas externally sourced (orthonasal) olfactory input is not.
Collapse
Affiliation(s)
| | - Maria Grigorova
- Department of Psychology, Brandeis University, Waltham, MA, USA
| | - Donald B Katz
- Program in Neuroscience, Brandeis University, Waltham, MA, USA; Department of Psychology, Brandeis University, Waltham, MA, USA; Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA.
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
42
|
Bamji-Stocke S, Biggs BT, Samuelsen CL. Experience-dependent c-Fos expression in the primary chemosensory cortices of the rat. Brain Res 2018; 1701:189-195. [PMID: 30244018 PMCID: PMC6289795 DOI: 10.1016/j.brainres.2018.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Eating a new food is a unique event that guides future food choices. A key element for these choices is the perception of flavor (odor-taste associations), a multisensory process dependent upon taste and smell. The two primary cortical areas for taste and smell, gustatory cortex and piriform cortex, are thought to be crucial regions for processing and responding to odor-taste mixtures. To determine how previous experience impacts the primary chemosensory cortices, we compared the expression of the immediate early gene, c-Fos, between rats presented with a taste, an odor, or an odor-taste mixture for the first-time with rats that had many days of prior experience. Compared to rats with prior experience, we found that first-time sampling of all three chemosensory stimuli led to significantly greater c-Fos expression in gustatory cortex. In piriform cortex, only the novel chemosensory stimuli containing odors showed greater c-Fos expression. These results indicate that prior experience with taste, odor, or odor-taste stimuli habituates responses in the primary chemosensory cortices and adds further evidence supporting gustatory cortex as a fundamental node for the integration of gustatory and olfactory signals.
Collapse
Affiliation(s)
- Sanaya Bamji-Stocke
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.
| | - Bradley T Biggs
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States
| | - Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.
| |
Collapse
|
43
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Clemens AM, Fernandez Delgado Y, Mehlman ML, Mishra P, Brecht M. Multisensory and Motor Representations in Rat Oral Somatosensory Cortex. Sci Rep 2018; 8:13556. [PMID: 30201995 PMCID: PMC6131144 DOI: 10.1038/s41598-018-31710-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022] Open
Abstract
In mammals, a complex array of oral sensors assess the taste, temperature and haptic properties of food. Although the representation of taste has been extensively studied in the gustatory cortex, it is unclear how the somatosensory cortex encodes information about the properties of oral stimuli. Moreover, it is poorly understood how different oral sensory modalities are integrated and how sensory responses are translated into oral motor actions. To investigate whether oral somatosensory cortex processes food-related sensations and movements, we performed in vivo whole-cell recordings and motor mapping experiments in rats. Neurons in oral somatosensory cortex showed robust post-synaptic and sparse action potential responses to air puffs. Membrane potential showed that cold water evoked larger responses than room temperature or hot water. Most neurons showed no clear tuning of responses to bitter, sweet and neutral gustatory stimuli. Finally, motor mapping experiments with histological verification revealed an initiation of movements related to food consumption behavior, such as jaw opening and tongue protrusions. We conclude that somatosensory cortex: (i) provides a representation of the temperature of oral stimuli, (ii) does not systematically encode taste information and (iii) influences orofacial movements related to food consummatory behavior.
Collapse
Affiliation(s)
- Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Yohami Fernandez Delgado
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Max L Mehlman
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Poonam Mishra
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA.
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany.
| |
Collapse
|
45
|
An Insula-Central Amygdala Circuit for Guiding Tastant-Reinforced Choice Behavior. J Neurosci 2018; 38:1418-1429. [PMID: 29305535 DOI: 10.1523/jneurosci.1773-17.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
For animals to survive, they must reliably predict during foraging which substances are suitable for consumption. Despite extensive study, the neural circuit mechanisms underlying such adaptive behavior remain poorly understood. Here, using a tastant (sucrose/quinine)-reinforced "go/no-go" task in male and female mice, we examined the anatomical and functional connectivity of the circuit linking the insular cortex (IC) to the central amygdala (CeA) and the role of this circuit in the establishment of appropriate behavioral responses. Using anatomic tracing approaches combined with optogenetics-assisted circuit mapping, we found that the gustatory region of the IC sends direct excitatory projections to the lateral division of the CeA (CeL), making monosynaptic excitatory connections with distinct populations of CeL neurons. Specific inhibition of neurotransmitter release from the CeL-projecting IC neurons prevented mice from acquiring the "no-go" response, and impaired the "go" responses in the go/no-go task. Furthermore, selective activation of the IC-CeL pathway with optogenetics drove unconditioned lick suppression in thirsty animals, induced aversive responses, and was sufficient to instruct conditioned action suppression in response to a cue predicting the optogenetic activation. These results indicate that activities in the IC-CeL circuit are critical for establishing taste-reinforced behavioral responses, including avoidance responses to an aversive tastant, and are sufficient to drive learning of anticipatory avoidance. Our findings suggest that the IC-CeL circuit plays an important role in guiding appropriate choices during foraging.SIGNIFICANCE STATEMENT An animal's ability to predict which substances are suitable for consumption and then produce an appropriate action to those substances is critical for survival. Here we found that activity in the circuit that links the insular cortex (IC) to the central amygdala (CeA) is necessary for establishing appropriate behavioral responses to taste-predicting cues. This neural circuit seems to be particularly tuned to avoid an unpleasant tastant, and is also sufficient to drive learning of such avoidance responses. These results suggest that the IC-CeA circuit is critical for generating appropriate behavioral responses during foraging when facing different choices.
Collapse
|
46
|
Lemon CH. Modulation of taste processing by temperature. Am J Physiol Regul Integr Comp Physiol 2017; 313:R305-R321. [PMID: 28794101 DOI: 10.1152/ajpregu.00089.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/02/2023]
Abstract
Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation," can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared with concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermogustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation.
Collapse
|