1
|
Stee W, Legouhy A, Guerreri M, Foti MC, Lina JM, Zhang H, Peigneux P. Shaping the structural dynamics of motor learning through cueing during sleep. Sleep 2025; 48:zsaf006. [PMID: 39798081 DOI: 10.1093/sleep/zsaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted memory reactivation (TMR), involving cueing learned material during posttraining sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and posttraining sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during posttraining sleep affects performance gains and delayed microstructural remodeling, using both standard diffusion tensor imaging and advanced neurite orientation dispersion and density imaging. Sixty healthy young adults participated in a 5 days protocol, undergoing five diffusion-weighted imaging sessions, pre- and post-two motor sequence training sessions, and after a posttraining night of either regular sleep (RS) or TMR. Results demonstrated rapid skill acquisition on day 1, followed by performance stabilization on day 2, and improvement on day 5, in both RS and TMR groups. (Re)training induced widespread microstructural changes in motor-related areas, initially involving the hippocampus, followed by a delayed engagement of the caudate nucleus. Mean Diffusivity changes were accompanied by increased neurite density index in the putamen, suggesting increased neurite density, while free water fraction reduction indicated glial reorganization. TMR-related structural differences emerged in the dorsolateral prefrontal cortex on day 2 and the right cuneus on day 5, suggesting unique sleep TMR-related neural reorganization patterns. Persistence of practice-related structural changes, although moderated over time, suggests a lasting neural network reorganization, partially mediated by sleep TMR.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| | - Antoine Legouhy
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Michele Guerreri
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | | | - Jean-Marc Lina
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Centre De Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
2
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Murray DM, Boylan GB. Infant sleep EEG features at 4 months as biomarkers of neurodevelopment at 18 months. Pediatr Res 2025:10.1038/s41390-025-03893-6. [PMID: 39979586 DOI: 10.1038/s41390-025-03893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Sleep parameters evolve in parallel with neurodevelopment. Sleep participates in synaptic homeostasis and memory consolidation and infant sleep parameters correlate with later aspects of early childhood cognition. METHODS Typically developing, term-born infants had a diurnal sleep-EEG at 4 months and Griffiths III developmental assessment at 18 months. EEG analysis included sleep macrostructure (i.e. durations of total sleep and sleep stages, and latencies to sleep and REM), sleep spindle features, and quantitative EEG features (qEEG): interhemispheric connectivity and spectral power. We assessed the correlations between these EEG features and Griffiths III quotients. RESULTS Sleep recordings from 92 infants were analyzed. Sleep latency was positively associated with the Griffiths III Foundations of Learning subscale and N3 sleep duration was positively correlated with the Personal-Social-Emotional subscale. Sleep spindle synchrony was negatively associated with Eye and Hand Coordination, Personal-Social-Emotional, Gross Motor, and General Development quotients. Sleep spindle duration was negatively associated with the Personal-Social-Emotional and Gross Motor subscales. In some sleep states, delta 1 and 2 EEG spectral power and interhemispheric coherence measures were correlated with subscale quotients. CONCLUSION Certain sleep features in the EEG of 4-month-old infants are associated with neurodevelopment at 18 months and may be useful early biomarkers of neurodevelopment. IMPACT This study shows that the EEG during infant sleep may provide insights into later neurodevelopmental outcomes. We have examined novel EEG sleep spindle features and shown that spindle duration and synchrony may help predict neurodevelopmental outcomes. Sleep macrostructure elements such as latency to sleep, N3 duration, and qEEG features such as interhemispheric coherence and spectral power measures at 4 months may be useful for the assessment of future neurodevelopmental outcomes. Due to exceptional neuroplasticity in infancy, EEG biomarkers of neurodevelopment may support early and targeted intervention to optimize outcomes.
Collapse
Affiliation(s)
- Soraia Ventura
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Sean R Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - John M O'Toole
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland.
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Pereira M, Chen X, Paltarzhytskaya A, Pacheсo Y, Muller N, Bovy L, Lei X, Chen W, Ren H, Song C, Lewis LD, Dang-Vu TT, Czisch M, Picchioni D, Duyn J, Peigneux P, Tagliazucchi E, Dresler M. Sleep neuroimaging: Review and future directions. J Sleep Res 2025:e14462. [PMID: 39940102 DOI: 10.1111/jsr.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 02/14/2025]
Abstract
Sleep research has evolved considerably since the first sleep electroencephalography recordings in the 1930s and the discovery of well-distinguishable sleep stages in the 1950s. While electrophysiological recordings have been used to describe the sleeping brain in much detail, since the 1990s neuroimaging techniques have been applied to uncover the brain organization and functional connectivity of human sleep with greater spatial resolution. The combination of electroencephalography with different neuroimaging modalities such as positron emission tomography, structural magnetic resonance imaging and functional magnetic resonance imaging imposes several challenges for sleep studies, for instance, the need to combine polysomnographic recordings to assess sleep stages accurately, difficulties maintaining and consolidating sleep in an unfamiliar and restricted environment, scanner-induced distortions with physiological artefacts that may contaminate polysomnography recordings, and the necessity to account for all physiological changes throughout the sleep cycles to ensure better data interpretability. Here, we review the field of sleep neuroimaging in healthy non-sleep-deprived populations, from early findings to more recent developments. Additionally, we discuss the challenges of applying concurrent electroencephalography and imaging techniques to sleep, which consequently have impacted the sample size and generalizability of studies, and possible future directions for the field.
Collapse
Affiliation(s)
- Mariana Pereira
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | | | - Yibran Pacheсo
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Muller
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leonore Bovy
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Chen
- School of Information Science and Technology & Human Phenome Institute, Fudan University, Shanghai, China
| | - Haoran Ren
- School of Health and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thien Thanh Dang-Vu
- Department of Health, Kinesiology and Applied Physiology, Concordia University & Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | | | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Martin Dresler
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Afolabi-Brown O, Moore ME, Tapia IE. Sleep Deficiency in Adolescents: The School Start Time Debate. Sleep Med Clin 2024; 19:559-567. [PMID: 39455177 DOI: 10.1016/j.jsmc.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Adolescence is commonly accepted as a challenging time for sleep, with multiple factors contributing to sleep deficiency in adolescents. These include physiologic changes with shifts in their circadian rhythm; medical sleep disorders; and social, cultural, and environmental factors. Early school start times negatively affect sleep in adolescents as well, with poorer outcomes in their overall health, wellbeing, and performance. This article highlights the different contributing factors for sleep deficiency in adolescents and the consequences of sleep deficiency. In addition, the authors discuss the impact of delayed school start times in improving adolescents' sleep and overall function.
Collapse
Affiliation(s)
- Olufunke Afolabi-Brown
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Melisa E Moore
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Children and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ignacio E Tapia
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Lupi E, Di Antonio G, Angiolelli M, Sacha M, Kayabas MA, Alboré N, Leone R, El Kanbi K, Destexhe A, Fousek J. A Whole-Brain Model of the Aging Brain During Slow Wave Sleep. eNeuro 2024; 11:ENEURO.0180-24.2024. [PMID: 39406483 PMCID: PMC11540593 DOI: 10.1523/eneuro.0180-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.
Collapse
Affiliation(s)
- Eleonora Lupi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Gabriele Di Antonio
- Research Center "Enrico Fermi", Rome 00184, Italy
- "Roma Tre" University of Rome, Rome 00146, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Marianna Angiolelli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Maria Sacha
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | | | - Nicola Alboré
- Research Center "Enrico Fermi", Rome 00184, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
- "Tor Vergata" University of Rome, Rome 00133, Italy
| | - Riccardo Leone
- Faculty of Medicine, University of Bonn, Bonn 53115, Germany
- Computational Neurology Group, Ruhr University Bochum, Bochum 44801, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | | | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | - Jan Fousek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
6
|
Song J, Jeronimus BF, Fisher AJ. Sleep, event appraisal, and affect: An ecological momentary assessment study. J Affect Disord 2024; 361:376-382. [PMID: 38885846 DOI: 10.1016/j.jad.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Appraisal theory posits that emotions result from cognitive appraisals of events and situations. Experimental work suggests that sleep influences cognitive processes and event appraisal, which the present study examines in real life. Poor sleep influences brain regions involved in the appraisal-to-emotion process, and tired participants showed more conservative appraisal and reported less positive and more negative affect. In the present study, we tested whether sleep duration and/or quality predicted more pleasant event appraisal and whether sleep moderated the association between event appraisal and affect. METHODS Participants (N = 892) from the general Dutch population reported thrice daily on event appraisal and various emotions for 30 days and once daily on sleep duration and quality. We constructed multilevel models to account for the nested structure of our data (observations within participants). RESULTS Multilevel regression analyses showed that on days when participants reported having slept longer and better than their average, their event appraisal was more positive. Subjective sleep duration and quality did not influence the relationship between event appraisal and affect. Hence, poor sleep predicted changes in cognitive functioning, as people appraised situations as more unpleasant. LIMITATIONS We measured subjective sleep duration and quality with two single items and focused on only pleasantness dimension of event appraisal. CONCLUSIONS Results match perspectives on emotions as multicomponent systems involving appraisal processes. Understanding the elements of event appraisal may help unravel the detrimental effects of poor sleep on mental health and well-being.
Collapse
Affiliation(s)
- Jiyoung Song
- Department of Psychology, University of California, Berkeley, United States of America.
| | - Bertus F Jeronimus
- Department of Developmental Psychology, University of Groningen, Groningen, Netherlands
| | - Aaron J Fisher
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
7
|
Crawford J, McFarlane C, Datta AN. Original Research: Clinical Significance of a Unique Pediatric EEG Configuration: Bi-Frontal Spikes With Simultaneous Bi-Occipital Positivity. Clin EEG Neurosci 2024; 55:591-600. [PMID: 38613366 PMCID: PMC11340239 DOI: 10.1177/15500594241246505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Introduction: Frontal-predominant epileptiform discharges (EDs) include generalized spike-wave (GSW) and frontal spikes (FS). However, negative bi-frontal ED with simultaneous occipital positivity (BFOD) are rare, leading to questions regarding physiological generators. Methods: To determine the clinical significance of BFOD, electroclinical features of children with BFOD (n = 40) were compared to control patients with GSW (n = 102) and FS (n = 100). Results: Results are presented in the following order: BFOD, GSW, and FS. Epilepsy was prevalent among the groups: 95.0%, 90.2%, and 77.0%, respectively. The median age of seizure-onset did not significantly differ between groups: 3.00, 4.00, and 2.25 years, respectively. Regarding EEG background features, the BFOD group had more disorganized sleep architecture than other groups, P < .005. There was a significant difference in the proportion of developmental delay (DD) between the groups (P < .005). BFOD had much higher odds of DD compared to GSW and FS groups: odds ratio (OR) (confidence interval [CI]) 19.44 [5.64, 64.05] and 3.98 [1.16, 13.34]. Furthermore, BFOD had much higher odds of severe DD compared to GSW and FS groups: 9.60 [2.75, 33.45] and 2.73 [1.03, 7.27]. A Gross Motor Function Classification System (GMFCS) score of ≥ 4 was more prevalent in BFOD (22.5%), than GSW (0%) and FS groups (9%). On neuroimaging, BFOD had more structural (P < .005) and multilobar structural (P < .05) abnormalities than control groups. Conclusion: Children with BFOD had particularly severe significant DD, considerable motor deficit (GMFCS ≥ 4), and brain structural abnormalities, often multilobar. This suggests BFOD is a marker of severe underlying brain dysfunction and not benign when encountered on routine EEG review.
Collapse
Affiliation(s)
- Jacqueline Crawford
- Department of Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, Canada
| | - Cassie McFarlane
- Department of Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, Canada
| | - Anita N Datta
- Department of Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, Canada
- Department of Pediatrics, Division of Neurology, BC Children's Hospital, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Kalantari N, Daneault V, Blais H, André C, Sanchez E, Lina JM, Arbour C, Gilbert D, Carrier J, Gosselin N. Cerebral Gray Matter May Not Explain Sleep Slow-Wave Characteristics after Severe Brain Injury. J Neurosci 2024; 44:e1306232024. [PMID: 38844342 PMCID: PMC11308330 DOI: 10.1523/jneurosci.1306-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/09/2024] Open
Abstract
Sleep slow waves are the hallmark of deeper non-rapid eye movement sleep. It is generally assumed that gray matter properties predict slow-wave density, morphology, and spectral power in healthy adults. Here, we tested the association between gray matter volume (GMV) and slow-wave characteristics in 27 patients with moderate-to-severe traumatic brain injury (TBI, 32.0 ± 12.2 years old, eight women) and compared that with 32 healthy controls (29.2 ± 11.5 years old, nine women). Participants underwent overnight polysomnography and cerebral MRI with a 3 Tesla scanner. A whole-brain voxel-wise analysis was performed to compare GMV between groups. Slow-wave density, morphology, and spectral power (0.4-6 Hz) were computed, and GMV was extracted from the thalamus, cingulate, insula, precuneus, and orbitofrontal cortex to test the relationship between slow waves and gray matter in regions implicated in the generation and/or propagation of slow waves. Compared with controls, TBI patients had significantly lower frontal and temporal GMV and exhibited a subtle decrease in slow-wave frequency. Moreover, higher GMV in the orbitofrontal cortex, insula, cingulate cortex, and precuneus was associated with higher slow-wave frequency and slope, but only in healthy controls. Higher orbitofrontal GMV was also associated with higher slow-wave density in healthy participants. While we observed the expected associations between GMV and slow-wave characteristics in healthy controls, no such associations were observed in the TBI group despite lower GMV. This finding challenges the presumed role of GMV in slow-wave generation and morphology.
Collapse
Affiliation(s)
- Narges Kalantari
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec H3C 1K3, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec H3T 1A8, Canada
| | - Danielle Gilbert
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec H3T 1A4, Canada
- Department of Radiology, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| |
Collapse
|
9
|
Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Sleep spindles are reduced in children with Down syndrome and sleep-disordered breathing. Pediatr Res 2024; 96:457-470. [PMID: 37845520 PMCID: PMC11343711 DOI: 10.1038/s41390-023-02854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB). We investigated sleep spindle activity, as a marker of sleep quality, and its relationship with daytime functioning in children with DS compared to typically developing (TD) children. METHODS Children with DS and SDB (n = 44) and TD children matched for age, sex and SDB severity underwent overnight polysomnography. Fast or Slow sleep spindles were identified manually during N2/N3 sleep. Spindle activity was characterized as spindle number, density (number of spindles/h) and intensity (density × average duration) on central (C) and frontal (F) electrodes. Parents completed the Child Behavior Check List and OSA-18 questionnaires. RESULTS In children with DS, spindle activity was lower compared to TD children for F Slow and F Slow&Fast spindles combined (p < 0.001 for all). Furthermore, there were no correlations between spindle activity and CBCL subscales; however, spindle activity for C Fast and C Slow&Fast was negatively correlated with OSA-18 emotional symptoms and caregiver concerns and C Fast activity was also negatively correlated with daytime function and total problems. CONCLUSIONS Reduced spindle activity in children with DS may underpin the increased sleep disruption and negative effects of SDB on quality of life and behavior. IMPACT Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with sleep disruption affecting daytime functioning. Sleep spindles are a sensitive marker of sleep quality. We identified for the first time that children with DS had reduced sleep spindle activity compared to typically developing children matched for SDB severity. The reduced spindle activity likely underpins the more disrupted sleep and may be associated with reduced daytime functioning and quality of life and may also be an early biomarker for an increased risk of developing dementia later in life in children with DS.
Collapse
Affiliation(s)
- Marisha Shetty
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Marsh B, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, Gonzalez OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. PLoS Comput Biol 2024; 20:e1012245. [PMID: 39028760 PMCID: PMC11290683 DOI: 10.1371/journal.pcbi.1012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/31/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024] Open
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SOs, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the mechanisms by which global and local SOs arise from micro-scale neuronal dynamics and network connectivity remain poorly understood. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and SWS, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. An increase in the overall synaptic strength led to synchronized global SO, while a decrease in synaptic connectivity produced only local slow-waves that would not propagate beyond local areas. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna Marsh
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - M. Gabriela Navas-Zuloaga
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Yury Sokolov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean Erik Delanois
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Oscar C. Gonzalez
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Radiology and Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Cumming D, Kozhemiako N, Thurm AE, Farmer CA, Purcell S, Buckley AW. Spindle chirp and other sleep oscillatory features in young children with autism. Sleep Med 2024; 119:320-328. [PMID: 38733760 PMCID: PMC11348284 DOI: 10.1016/j.sleep.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVES To determine whether spindle chirp and other sleep oscillatory features differ in young children with and without autism. METHODS Automated processing software was used to re-assess an extant set of polysomnograms representing 121 children (91 with autism [ASD], 30 typically-developing [TD]), with an age range of 1.35-8.23 years. Spindle metrics, including chirp, and slow oscillation (SO) characteristics were compared between groups. SO and fast and slow spindle (FS, SS) interactions were also investigated. Secondary analyses were performed assessing behavioural data associations, as well as exploratory cohort comparisons to children with non-autism developmental delay (DD). RESULTS Posterior FS and SS chirp was significantly more negative in ASD than TD. Both groups had comparable intra-spindle frequency range and variance. Frontal and central SO amplitude were decreased in ASD. In contrast to previous manual findings, no differences were detected in other spindle or SO metrics. The ASD group displayed a higher parietal coupling angle. No differences were observed in phase-frequency coupling. The DD group demonstrated lower FS chirp and higher coupling angle than TD. Parietal SS chirp was positively associated with full developmental quotient. CONCLUSIONS For the first time spindle chirp was investigated in autism and was found to be significantly more negative than in TD in this large cohort of young children. This finding strengthens previous reports of spindle and SO abnormalities in ASD. Further investigation of spindle chirp in healthy and clinical populations across development will help elucidate the significance of this difference and better understand this novel metric.
Collapse
Affiliation(s)
- Drew Cumming
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - Audrey E Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - Shaun Purcell
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Crouse JJ, Park SH, Hermens DF, Lagopoulos J, Park M, Shin M, Carpenter JS, Scott EM, Hickie IB. Chronotype and subjective sleep quality predict white matter integrity in young people with emerging mental disorders. Eur J Neurosci 2024; 59:3322-3336. [PMID: 38650167 DOI: 10.1111/ejn.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Protecting brain health is a goal of early intervention. We explored whether sleep quality or chronotype could predict white matter (WM) integrity in emerging mental disorders. Young people (N = 364) accessing early-intervention clinics underwent assessments for chronotype, subjective sleep quality, and diffusion tensor imaging. Using machine learning, we examined whether chronotype or sleep quality (alongside diagnostic and demographic factors) could predict four measures of WM integrity: fractional anisotropy (FA), and radial, axial, and mean diffusivities (RD, AD and MD). We prioritised tracts that showed a univariate association with sleep quality or chronotype and considered predictors identified by ≥80% of machine learning (ML) models as 'important'. The most important predictors of WM integrity were demographics (age, sex and education) and diagnosis (depressive and bipolar disorders). Subjective sleep quality only predicted FA in the perihippocampal cingulum tract, whereas chronotype had limited predictive importance for WM integrity. To further examine links with mood disorders, we conducted a subgroup analysis. In youth with depressive and bipolar disorders, chronotype emerged as an important (often top-ranking) feature, predicting FA in the cingulum (cingulate gyrus), AD in the anterior corona radiata and genu of the corpus callosum, and RD in the corona radiata, anterior corona radiata, and genu of corpus callosum. Subjective quality was not important in this subgroup analysis. In summary, chronotype predicted altered WM integrity in the corona radiata and corpus callosum, whereas subjective sleep quality had a less significant role, suggesting that circadian factors may play a more prominent role in WM integrity in emerging mood disorders.
Collapse
Affiliation(s)
- Jacob J Crouse
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shin Ho Park
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Minji Park
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Mirim Shin
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Joanne S Carpenter
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth M Scott
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Halonen R, Kuula L, Selin M, Suutari A, Antila M, Pesonen AK. REM Sleep Preserves Affective Response to Social Stress-Experimental Study. eNeuro 2024; 11:ENEURO.0453-23.2024. [PMID: 38802242 DOI: 10.1523/eneuro.0453-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Sleep's contribution to affective regulation is insufficiently understood. Previous human research has focused on memorizing or rating affective pictures and less on physiological affective responsivity. This may result in overlapping definitions of affective and declarative memories and inconsistent deductions for how rapid eye movement sleep (REMS) and slow-wave sleep (SWS) are involved. Literature associates REMS theta (4-8 Hz) activity with emotional memory processing, but its contribution to social stress habituation is unknown. Applying selective sleep stage suppression and oscillatory analyses, we investigated how sleep modulated affective adaptation toward social stress and retention of neutral declarative memories. Native Finnish participants (N = 29; age, M = 25.8 years) were allocated to REMS or SWS suppression conditions. We measured physiological (skin conductance response, SCR) and subjective stress response and declarative memory retrieval thrice: before laboratory night, the next morning, and after 3 d. Linear mixed models were applied to test the effects of condition and sleep parameters on emotional responsivity and memory retrieval. Greater overnight increase in SCR toward the stressor emerged after suppressed SWS (intact REMS) relative to suppressed REMS (20.1% vs 6.1%; p = 0.016). The overnight SCR increase was positively associated with accumulated REMS theta energy irrespective of the condition (r = 0.601; p = 0.002). Subjectively rated affective response and declarative memory recall were comparable between the conditions. The contributions of REMS and SWS to habituation of social stress are distinct. REMS theta activity proposedly facilitates the consolidation of autonomic affective responses. Declarative memory consolidation may not have greater dependence on intact SWS relative to intact REMS.
Collapse
Affiliation(s)
- Risto Halonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Liisa Kuula
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Maikki Selin
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Alma Suutari
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Minea Antila
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
14
|
Marsh BM, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, González OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562408. [PMID: 38617301 PMCID: PMC11014475 DOI: 10.1101/2023.10.15.562408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SO, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the understanding of how global and local SO emerges from micro-scale neuron dynamics and network connectivity remains unclear. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and slow-wave sleep, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. Increase of the overall synaptic strength led to synchronized global SO, while decrease of synaptic connectivity produced only local slow-waves that would not propagate beyond local area. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna M Marsh
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| | | | - Burke Q Rosen
- Neuroscience Graduate Program, University of California, San Diego
| | - Yury Sokolov
- Department of Medicine, University of California, San Diego
| | - Jean Erik Delanois
- Department of Medicine, University of California, San Diego
- Department of Computer Science and Engineering, University of California, San Diego
| | | | | | - Eric Halgren
- Neuroscience Graduate Program, University of California, San Diego
- Department of Radiology and Neuroscience, University of California, San Diego
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| |
Collapse
|
15
|
Castelnovo A, Casetta C, Cavallotti S, Marcatili M, Del Fabro L, Canevini MP, Sarasso S, D'Agostino A. Proof-of-concept evidence for high-density EEG investigation of sleep slow wave traveling in First-Episode Psychosis. Sci Rep 2024; 14:6826. [PMID: 38514761 PMCID: PMC10958040 DOI: 10.1038/s41598-024-57476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Schizophrenia is thought to reflect aberrant connectivity within cortico-cortical and reentrant thalamo-cortical loops, which physiologically integrate and coordinate the function of multiple cortical and subcortical structures. Despite extensive research, reliable biomarkers of such "dys-connectivity" remain to be identified at the onset of psychosis, and before exposure to antipsychotic drugs. Because slow waves travel across the brain during sleep, they represent an ideal paradigm to study pathological conditions affecting brain connectivity. Here, we provide proof-of-concept evidence for a novel approach to investigate slow wave traveling properties in First-Episode Psychosis (FEP) with high-density electroencephalography (EEG). Whole-night sleep recordings of 5 drug-naïve FEP and 5 age- and gender-matched healthy control subjects were obtained with a 256-channel EEG system. One patient was re-recorded after 6 months and 3 years of continuous clozapine treatment. Slow wave detection and traveling properties were obtained with an open-source toolbox. Slow wave density and slow wave traveled distance (measured as the line of longest displacement) were significantly lower in patients (p < 0.05). In the patient who was tested longitudinally during effective clozapine treatment, slow wave density normalized, while traveling distance only partially recovered. These preliminary findings suggest that slow wave traveling could be employed in larger samples to detect cortical "dys-connectivity" at psychosis onset.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Italian Switzerland, Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland.
- Faculty of Biomedical Sciences, University of Italian Switzerland, Lugano, Switzerland.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Cecilia Casetta
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simone Cavallotti
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Matteo Marcatili
- Psychiatric Department, ASST Monza, San Gerardo Hospital, Monza, Italy
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maria Paola Canevini
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Armando D'Agostino
- Department of Mental Health and Addiction, ASST Santi Paolo e Carlo, Via A. Di Rudinì 8, 20142, Milan, Italy.
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Vitali H, Campus C, Signorini S, De Giorgis V, Morelli F, Varesio C, Pasca L, Sammartano A, Gori M. Blindness affects the developmental trajectory of the sleeping brain. Neuroimage 2024; 286:120508. [PMID: 38181867 DOI: 10.1016/j.neuroimage.2024.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Sleep plays a crucial role in brain development, sensory information processing, and consolidation. Sleep spindles are markers of these mechanisms as they mirror the activity of the thalamocortical circuits. Spindles can be subdivided into two groups, slow (10-13 Hz) and fast (13-16 Hz), which are each associated with different functions. Specifically, fast spindles oscillate in the high-sigma band and are associated with sensorimotor processing, which is affected by visual deprivation. However, how blindness influences spindle development has not yet been investigated. We recorded nap video-EEG of 50 blind/severely visually impaired (BSI) and 64 sighted children aged 5 months to 6 years old. We considered aspects of both macro- and micro-structural spindles. The BSI children lacked the evolution of developmental spindles within the central area. Specifically, young BSI children presented low central high-sigma and high-beta (25-30 Hz) event-related spectral perturbation and showed no signs of maturational decrease. High-sigma and high-beta activity in the BSI group correlated with clinical indices predicting perceptual and motor disorders. Our findings suggest that fast spindles are pivotal biomarkers for identifying an early developmental deviation in BSI children. These findings are critical for initial therapeutic intervention.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy; DIBRIS, University of Genova, Genoa 16145, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy
| | - Sabrina Signorini
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Federica Morelli
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Alessia Sammartano
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy.
| |
Collapse
|
17
|
Elia C, de Girolamo L, Clarisse B, Galin M, Rehel S, Clochon P, Doidy F, Segobin S, Viader F, Naveau M, Delcroix N, Segura-Djezzar C, Grellard JM, Lequesne J, Etard O, Martin T, Quarck G, Eustache F, Joly F, Giffard B, Perrier J. Effects of sleep disturbances and circadian rhythms modifications on cognition in breast cancer women before and after adjuvant chemotherapy: the ICANSLEEP-1 protocol. BMC Cancer 2023; 23:1178. [PMID: 38041077 PMCID: PMC10693085 DOI: 10.1186/s12885-023-11664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Many patients treated for breast cancer (BC) complain about cognitive difficulties affecting their daily lives. Recently, sleep disturbances and circadian rhythm disruptions have been brought to the fore as potential contributors to cognitive difficulties in patients with BC. Yet, studies on these factors as well as their neural correlates are scarce. The purpose of the ICANSLEEP-1 (Impact of SLEEP disturbances in CANcer) study is to characterize sleep using polysomnography and its relationship with the evolution of cognitive functioning at both the behavioral and the neuroanatomical levels across treatment in BC patients treated or not with adjuvant chemotherapy. METHODS ICANSLEEP-1 is a longitudinal study including BC patients treated with adjuvant chemotherapy (n = 25) or not treated with adjuvant chemotherapy (n = 25) and healthy controls with no history of BC (n = 25) matched for age (45-65 years old) and education level. The evaluations will take place within 6 weeks after inclusion, before the initiation of chemotherapy (for BC patients who are candidates for chemotherapy) or before the first fraction of radiotherapy (for BC patients with no indication for chemotherapy) and 6 months later (corresponding to 2 weeks after the end of chemotherapy). Episodic memory, executive functions, psychological factors, and quality of life will be assessed with validated neuropsychological tests and self-questionnaires. Sleep quantity and quality will be assessed with polysomnography and circadian rhythms with both actigraphy and saliva cortisol. Grey and white matter volumes, as well as white matter microstructural integrity, will be compared across time between patients and controls and will serve to further investigate the relationship between sleep disturbances and cognitive decline. DISCUSSION Our results will help patients and clinicians to better understand sleep disturbances in BC and their relationship with cognitive functioning across treatment. This will aid the identification of more appropriate sleep therapeutic approaches adapted to BC patients. Improving sleep in BC would eventually help limit cognitive deficits and thus improve quality of life during and after treatments. TRIAL REGISTRATION NCT05414357, registered June 10, 2022. PROTOCOL VERSION Version 1.2 dated March 23, 2022.
Collapse
Affiliation(s)
- Clara Elia
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Laura de Girolamo
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Bénédicte Clarisse
- Clinical Research Department, Centre François Baclesse, Caen, 14076, France
| | - Melvin Galin
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
- Normandie Université, UNICAEN, INSERM, COMETE U1075, CYCERON, CHU Caen, Caen, 14000, France
| | - Stéphane Rehel
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Patrice Clochon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Franck Doidy
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Shailendra Segobin
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Fausto Viader
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
- Neurology Department, CHU de Caen, Caen, 14000, France
| | - Mikaël Naveau
- Normandie Université, UNICAEN, CNRS UAR 3408, INSERM US-50, GIP Cyceron, Caen, France
| | - Nicolas Delcroix
- Normandie Université, UNICAEN, CNRS UAR 3408, INSERM US-50, GIP Cyceron, Caen, France
| | | | | | - Justine Lequesne
- Clinical Research Department, Centre François Baclesse, Caen, 14076, France
| | - Olivier Etard
- Normandie Université, UNICAEN, INSERM, COMETE U1075, CYCERON, CHU Caen, Caen, 14000, France
| | - Tristan Martin
- Faculty of Sciences and Technologies, Le Mans University, Avenue Olivier Messiaen, Movement, Interactions, Performance, Le Mans, 4334, 72000, MIP, EA, France
| | - Gaëlle Quarck
- Normandie Université, UNICAEN, INSERM, COMETE U1075, CYCERON, CHU Caen, Caen, 14000, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
| | - Florence Joly
- Clinical Research Department, Centre François Baclesse, Caen, 14076, France
- Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, Caen, 14076, France
- ANTICIPE (Interdisciplinary Research Unit for the Prevention and Treatment of Cancer), INSERM Unit 1086, Caen, France
| | - Bénédicte Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France
- Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, Caen, 14076, France
- Pôle des Formations et de Recherche en Santé, 2 rue des Rochambelles, Caen Cedex, CS-14032, France
| | - Joy Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, 14000, France.
| |
Collapse
|
18
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
19
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
20
|
Cumming D, Kozhemiako N, Thurm AE, Farmer CA, Purcell SW, Buckley AW. Spindle Chirp and other Sleep Oscillatory Features in Young Children with Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545095. [PMID: 37398218 PMCID: PMC10312722 DOI: 10.1101/2023.06.15.545095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Objectives To determine whether spindle chirp and other sleep oscillatory features differ in young children with and without autism. Methods Automated processing software was used to re-assess an extant set of polysomnograms representing 121 children (91 with autism [ASD], 30 typically-developing [TD]), with an age range of 1.35-8.23 years. Spindle metrics, including chirp, and slow oscillation (SO) characteristics were compared between groups. SO and fast and slow spindle (FS, SS) interactions were also investigated. Secondary analyses were performed assessing behavioural data associations, as well as exploratory cohort comparisons to children with non-autism developmental delay (DD). Results Posterior FS and SS chirp was significantly more negative in ASD than TD. Both groups had comparable intra-spindle frequency range and variance. Frontal and central SO amplitude were decreased in ASD. In contrast to previous manual findings, no differences were detected in other spindle or SO metrics. The ASD group displayed a higher parietal coupling angle. No differences were observed in phase-frequency coupling. The DD group demonstrated lower FS chirp and higher coupling angle than TD. Parietal SS chirp was positively associated with full developmental quotient. Conclusions For the first time spindle chirp was investigated in autism and was found to be significantly more negative than in TD in this large cohort of young children. This finding strengthens previous reports of spindle and SO abnormalities in ASD. Further investigation of spindle chirp in healthy and clinical populations across development will help elucidate the significance of this difference and better understand this novel metric.
Collapse
Affiliation(s)
- D Cumming
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - N Kozhemiako
- Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - AE Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - CA Farmer
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - SW Purcell
- Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - AW Buckley
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
21
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
22
|
Matorina N, Tseng J, Ladyka-Wojcik N, Olsen R, Mabbott DJ, Barense MD. Sleep Differentially and Profoundly Impairs Recall Memory in a Patient with Fornix Damage. J Cogn Neurosci 2023; 35:1635-1655. [PMID: 37584584 DOI: 10.1162/jocn_a_02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In March 2020, C.T., a kind, bright, and friendly young woman underwent surgery for a midline tumor involving her septum pellucidum and extending down into her fornices bilaterally. Following tumor diagnosis and surgery, C.T. experienced significant memory deficits: C.T.'s family reported that she could remember things throughout the day, but when she woke up in the morning or following a nap, she would expect to be in the hospital, forgetting all the information that she had learned before sleep. The current study aimed to empirically validate C.T.'s pattern of memory loss and explore its neurological underpinnings. On two successive days, C.T. and age-matched controls watched an episode of a TV show and took a nap or stayed awake before completing a memory test. Although C.T. performed numerically worse than controls in both conditions, sleep profoundly exacerbated her memory impairment, such that she could not recall any details following a nap. This effect was replicated in a second testing session. High-resolution MRI scans showed evidence of the trans-callosal surgical approach's impact on the mid-anterior corpus callosum, indicated that C.T. had perturbed white matter particularly in the right fornix column, and demonstrated that C.T.'s hippocampal volumes did not differ from controls. These findings suggest that the fornix is important for processing episodic memories during sleep. As a key output pathway of the hippocampus, the fornix may ensure that specific memories are replayed during sleep, maintain the balance of sleep stages, or allow for the retrieval of memories following sleep.
Collapse
Affiliation(s)
| | - Julie Tseng
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Donald J Mabbott
- University of Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Morgan D Barense
- University of Toronto, Ontario, Canada
- Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Memon AA, Catiul C, Irwin Z, Pilkington J, Memon RA, Joop A, Wood KH, Cutter G, Miocinovic S, Amara AW. Quantitative sleep electroencephalogram and cognitive performance in Parkinson's disease with and without rapid eye movement sleep behavior disorder. Front Neurol 2023; 14:1223974. [PMID: 37745647 PMCID: PMC10512724 DOI: 10.3389/fneur.2023.1223974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Parkinson's disease (PD) patients with REM sleep behavior disorder (RBD) are at greater risk for cognitive decline and RBD has been associated with alterations in sleep-related EEG oscillations. This study evaluates differences in sleep quantitative EEG (qEEG) and cognition in PD participants with (PD-RBD) and without RBD (PD-no-RBD). Methods In this cross-sectional study, polysomnography (PSG)-derived qEEG and a comprehensive level II neuropsychological assessment were compared between PD-RBD (n = 21) and PD-no-RBD (n = 31). Following artifact rejection, qEEG analysis was performed in the frontal and central leads. Measures included Scalp-slow wave (SW) density, spindle density, morphological properties of SW and sleep spindles, SW-spindle phase-amplitude coupling, and spectral power analysis in NREM and REM. The neurocognitive battery had at least two tests per domain, covering five cognitive domains as recommended by the Movement Disorders Society Task Force for PD-MCI diagnosis. Differences in qEEG features and cognitive performance were compared between the two groups. Stepwise linear regression was performed to evaluate predictors of cognitive performance. Multiple comparisons were corrected using the Benjamini-Hochberg method. Results Spindle density and SW-spindle co-occurrence percent were lower in participants with PD-RBD compared to PD-no-RBD. The PD-RBD group also demonstrated higher theta spectral power during REM. Sleep spindles and years of education, but not RBD, were predictors of cognitive performance. Conclusion PD participants with RBD have alterations in sleep-related qEEG compared to PD participants without RBD. Although PD-RBD participants had worse cognitive performance compared to PD-no-RBD, regression models suggest that lower sleep spindle density, rather than presence of RBD, predicts worse comprehensive cognitive score. Future studies should include longitudinal evaluation to determine whether sleep-related qEEG alterations are associated with more rapid cognitive decline in PD-RBD.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurology, West Virginia University, Morgantown, WV, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raima A. Memon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kimberly H. Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Psychology, Samford University, Birmingham, AL, United States
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
24
|
Kishi A, Van Dongen HPA. Phenotypic Interindividual Differences in the Dynamic Structure of Sleep in Healthy Young Adults. Nat Sci Sleep 2023; 15:465-476. [PMID: 37388963 PMCID: PMC10305769 DOI: 10.2147/nss.s392038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Evaluating the dynamic structure of sleep may yield new insights into the mechanisms underlying human sleep physiology. Methods We analyzed data from a 12-day, 11-night, strictly controlled laboratory study with an adaptation night, 3 iterations of a baseline night followed by a recovery night after 36 h of total sleep deprivation, and a final recovery night. All sleep opportunities were 12 h in duration (22:00-10:00) and recorded with polysomnography (PSG). The PSG records were scored for the sleep stages: rapid eye movement (REM) sleep; non-REM (NREM) stage 1 sleep (S1), stage 2 sleep (S2), and slow wave sleep (SWS); and wake (W). Phenotypic interindividual differences were assessed using indices of dynamic sleep structure - specifically sleep stage transitions and sleep cycle characteristics - and intraclass correlation coefficients across nights. Results NREM/REM sleep cycles and sleep stage transitions exhibited substantial and stable interindividual differences that were robust across baseline and recovery nights, suggesting that mechanisms underlying the dynamic structure of sleep are phenotypic. In addition, the dynamics of sleep stage transitions were found to be associated with sleep cycle characteristics, with a significant relationship between the length of sleep cycles and the degree to which S2-to-W/S1 and S2-to-SWS transitions were in equilibrium. Discussion Our findings are consistent with a model for the underlying mechanisms that involves three subsystems - characterized by S2-to-W/S1, S2-to-SWS, and S2-to-REM transitions - with S2 playing a hub-like role. Furthermore, the balance between the two subsystems within NREM sleep (S2-to-W/S1 and S2-to-SWS) may serve as a basis for the dynamic regulation of sleep structure and may represent a novel target for interventions aiming to improve sleep.
Collapse
Affiliation(s)
- Akifumi Kishi
- Graduate School of Education, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, Japan
| | - Hans P A Van Dongen
- Sleep and Performance Research Center, Washington State University, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Washington State University, Spokane, WA, USA
| |
Collapse
|
25
|
Zhang H, Sun H, Li J, Fan Y, Jülich ST, Lei X. Subtypes of insomnia revealed by the heterogeneity of neuroanatomical patterns: a structural MRI study. Biol Psychol 2023; 180:108591. [PMID: 37230291 DOI: 10.1016/j.biopsycho.2023.108591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The current conflicting neuroimaging findings of insomnia disorder (ID) may be attributed to heterogeneity in ID. The present study aims to clarify the high heterogeneity in ID and examine the objective neurobiological subtypes of ID by using a novel machine learning method based on gray matter volumes (GMVs). We recruited 56 patients with ID and 73 healthy controls (HCs). The T1-weighted anatomical images were obtained for each participant. We investigated whether the ID has higher interindividual heterogeneity in GMVs. Then, we used a heterogeneous machine learning algorithm by discriminative analysis (HYDRA) to identify subtypes of ID with features of brain regional GMVs. We found that patients with ID have higher interindividual variability than HCs. HYDRA identified two distinct and reliable neuroanatomical subtypes of ID. Two subtypes showed significantly different aberrance in GMVs compared with HCs. Specifically, subtype 1 exhibited widespread decreased GMVs in some brain regions, including the right inferior temporal gyrus, left superior temporal gyrus, left precuneus, right middle cingulate, and right supplementary motor area. Subtype 2 only demonstrated increased GMVs in the right superior temporal gyrus. Additionally, the GMVs of altered brain regions in subtype 1 were significantly correlated with daytime functioning, but in subtype 2, they were significantly correlated with sleep disturbance. These results explain conflicting neuroimaging findings and propose a potential objective neurobiological classification contributing to ID's precise clinical diagnosis and treatment. DATA AND CODE AVAILABILITY: The source and means of obtaining the data used in the study have been described fully in the Methods and Materials section. The codes and data in this study are available upon a reasonable request to the corresponding author.
Collapse
Affiliation(s)
- Haobo Zhang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Haonan Sun
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Jiaqi Li
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yuhan Fan
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Simon Theodor Jülich
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
26
|
Deantoni M, Baillet M, Hammad G, Berthomier C, Reyt M, Jaspar M, Meyer C, Van Egroo M, Talwar P, Lambot E, Chellappa SL, Degueldre C, Luxen A, Salmon E, Balteau E, Phillips C, Dijk DJ, Vandewalle G, Collette F, Maquet P, Muto V, Schmidt C. Association between sleep slow-wave activity and in-vivo estimates of myelin in healthy young men. Neuroimage 2023; 272:120045. [PMID: 36997136 PMCID: PMC10112274 DOI: 10.1016/j.neuroimage.2023.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Sleep has been suggested to contribute to myelinogenesis and associated structural changes in the brain. As a principal hallmark of sleep, slow-wave activity (SWA) is homeostatically regulated but also differs between individuals. Besides its homeostatic function, SWA topography is suggested to reflect processes of brain maturation. Here, we assessed whether interindividual differences in sleep SWA and its homeostatic response to sleep manipulations are associated with in-vivo myelin estimates in a sample of healthy young men. Two hundred twenty-six participants (18-31 y.) underwent an in-lab protocol in which SWA was assessed at baseline (BAS), after sleep deprivation (high homeostatic sleep pressure, HSP) and after sleep saturation (low homeostatic sleep pressure, LSP). Early-night frontal SWA, the frontal-occipital SWA ratio, as well as the overnight exponential SWA decay were computed over sleep conditions. Semi-quantitative magnetization transfer saturation maps (MTsat), providing markers for myelin content, were acquired during a separate laboratory visit. Early-night frontal SWA was negatively associated with regional myelin estimates in the temporal portion of the inferior longitudinal fasciculus. By contrast, neither the responsiveness of SWA to sleep saturation or deprivation, its overnight dynamics, nor the frontal/occipital SWA ratio were associated with brain structural indices. Our results indicate that frontal SWA generation tracks inter-individual differences in continued structural brain re-organization during early adulthood. This stage of life is not only characterized by ongoing region-specific changes in myelin content, but also by a sharp decrease and a shift towards frontal predominance in SWA generation.
Collapse
Affiliation(s)
| | | | | | | | - Mathilde Reyt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Mathieu Jaspar
- ARCH, Faculty of Psychology, Logopedics and Educational Sciences, University of Liège, Belgium
| | | | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands
| | - Puneet Talwar
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Lambot
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | | | - André Luxen
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Salmon
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | | | | | - Derk-Jan Dijk
- Sleep Research Centre, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and the University of Surrey, Guildford, UK
| | | | - Fabienne Collette
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Pierre Maquet
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Department of Neurology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium.
| | - Christina Schmidt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium.
| |
Collapse
|
27
|
Jaramillo V, Schoch SF, Markovic A, Kohler M, Huber R, Lustenberger C, Kurth S. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy. Neuroimage 2023; 269:119924. [PMID: 36739104 DOI: 10.1016/j.neuroimage.2023.119924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Infancy represents a critical period during which thalamocortical brain connections develop and mature. Deviations in the maturation of thalamocortical connectivity are linked to neurodevelopmental disorders. There is a lack of early biomarkers to detect and localize neuromaturational deviations, which can be overcome with mapping through high-density electroencephalography (hdEEG) assessed in sleep. Specifically, slow waves and spindles in non-rapid eye movement (NREM) sleep are generated by the thalamocortical system, and their characteristics, slow wave slope and spindle density, are closely related to neuroplasticity and learning. Spindles are often subdivided into slow (11.0-13.0 Hz) and fast (13.5-16.0 Hz) frequencies, for which not only different functions have been proposed, but for which also distinctive developmental trajectories have been reported across the first years of life. Recent studies further suggest that information processing during sleep underlying sleep-dependent learning is promoted by the temporal coupling of slow waves and spindles, yet slow wave-spindle coupling remains unexplored in infancy. Thus, we evaluated three potential biomarkers: 1) slow wave slope, 2) spindle density, and 3) the temporal coupling of slow waves with spindles. We use hdEEG to first examine the occurrence and spatial distribution of these three EEG features in healthy infants and second to evaluate a predictive relationship with later behavioral outcomes. We report four key findings: First, infants' EEG features appear locally: slow wave slope is maximal in occipital and frontal areas, whereas slow and fast spindle density is most pronounced frontocentrally. Second, slow waves and spindles are temporally coupled in infancy, with maximal coupling strength in the occipital areas of the brain. Third, slow wave slope, fast spindle density, and slow wave-spindle coupling are not associated with concurrent behavioral status (6 months). Fourth, fast spindle density in central and frontocentral regions at age 6 months predicts overall developmental status at age 12 months, and motor skills at age 12 and 24 months. Neither slow wave slope nor slow wave-spindle coupling predict later behavioral development. We further identified spindle frequency as a determinant of slow and fast spindle density, which accordingly, also predicts motor skills at 24 months. Our results propose fast spindle density, or alternatively spindle frequency, as early EEG biomarker for identifying thalamocortical maturation, which can potentially be used for early diagnosis of neurodevelopmental disorders in infants. These findings are in support of a role of sleep spindles in sensorimotor microcircuitry development. A crucial next step will be to evaluate whether early therapeutic interventions may be effective to reverse deviations in identified individuals at risk.
Collapse
Affiliation(s)
- Valeria Jaramillo
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, NL
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Department of Psychology, University of Fribourg, Fribourg, CH
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, CH; Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zürich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, CH
| | - Caroline Lustenberger
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zurich, Zurich, CH; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, CH; Department of Psychology, University of Fribourg, Fribourg, CH.
| |
Collapse
|
28
|
The Feature of Sleep Spindle Deficits in Patients With Schizophrenia With and Without Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:331-342. [PMID: 34380082 DOI: 10.1016/j.bpsc.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous sleep electroencephalography studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors such as the various medication therapies and symptom heterogeneity. This study aimed to regard auditory verbal hallucinations (AVHs) as a pointcut to downscale the heterogeneity of SCZ and explore whether some sleep architecture and spindle parameters were more severely impaired in SCZ patients with AVHs compared with those without AVHs. METHODS A total of 90 SCZ patients with AVHs, 92 SCZ patients without AVHs, and 91 healthy control subjects were recruited, and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators was analyzed. RESULTS Deficits of sleep spindle activities at prefrontal electrodes and intrahemispheric spindle coherence were observed in both AVH and non-AVH groups, several of which were more serious in the AVH group. In addition, deficits of spindle activities at central and occipital electrodes and interhemispheric spindle coherence mainly manifested accompanying AVH symptoms, most of which were retained in the medication-naive first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS Our results suggest that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.
Collapse
|
29
|
Zhang W, Xin M, Song G, Liang J. Childhood absence epilepsy patients with cognitive impairment have decreased sleep spindle density. Sleep Med 2023; 103:89-97. [PMID: 36773472 DOI: 10.1016/j.sleep.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To explore the differences in sleep spindle (SS) characteristics during stage N2 sleep between children with childhood absence epilepsy and healthy controls, and between children with childhood absence epilepsy with or without cognitive impairment. METHODS We recruited 29 children (14 females, 15 males, mean age: 8 (2.5) years) with childhood absence epilepsy who did not undergone antiseizure treatments previously and 30 age-matched controls (14 females, 16 males, mean age: 9 (3.0) years). For all patients, data on medical history were collected. Each child was monitored overnight by long-term video electroencephalography and was evaluated by the Wechsler Intelligence Scale for Children-Fourth Edition. Next, we compared anterior SS characteristics, including density, frequency, cycle length, duration, amplitude, and percentage of sleep stages. RESULTS The childhood absence epilepsy group exhibited lower spindle density and duration in the first 37.5 min of stage N2 sleep than the control group (P < 0.01). A decrease in spindle density could be observed in the childhood absence epilepsy group with aggravated cognition impairment. The spindle density was substantially lower in the cognitively impaired group than in the cognitively unimpaired group (P < 0.01). No significant differences were observed in SS amplitude, SS frequency, SS cycle length, and the distribution of sleep stages. CONCLUSIONS Reduction in spindle density and duration is associated with the mechanisms underlying childhood absence epilepsy. The deficit in SS density is related with impaired cognition. This deficiency in SSs may be a useful predictive indicator of cognitive impairment in children with absence epilepsy, indicating that SSs may become a useful biomarker and potential adjuvant anti-seizure target for cognitive impairment caused by childhood absence epilepsy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Meiying Xin
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| | - Ge Song
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China.
| |
Collapse
|
30
|
The effects of sleep disordered breathing on sleep spindle activity in children and the relationship with sleep, behavior and neurocognition. Sleep Med 2023; 101:468-477. [PMID: 36521367 DOI: 10.1016/j.sleep.2022.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep disordered breathing (SDB), has adverse neurocognitive and behavioral sequelae in children, despite conventional measures of sleep disruption being unaffected. There is growing evidence that sleep spindles may serve as a more sensitive marker of sleep quality. We investigated the relationship between sleep spindles and sleep fragmentation and neurocognition across the spectrum of SDB severity in children. METHODS Children 3-12 years old referred for clinical assessment of SDB and age matched control children from the community were recruited and underwent polysomnography. Sleep spindles were identified manually during N2 and N3 sleep. Spindle activity was characterised as spindle number, density (number of spindles/h) and intensity (spindle density x average spindle duration). Children completed a battery of tests assessing global intellectual ability, language, attention, visuospatial ability, sensorimotor skills, adaptive behaviors and skills and problem behaviors and emotional difficulties. RESULTS Children were grouped into control, Primary Snoring, Mild OSA and Moderate/severe OSA, N = 10/group. All measures of spindle activity were lower in the SDB groups compared to the Control children and this reached statistical significance for Mild OSA (p < 0.05 for all). Higher spindle indices were associated with better performance on executive function and visual ability assessments but poorer performance on auditory attention and communication skills. Higher spindle indices were associated with better behavior. CONCLUSION The reduced spindle activity observed in the children with SDB, particularly Mild OSA, indicates that sleep micro-architecture is disrupted and that this disruption may underpin the negative effects of SDB on attention, learning and memory.
Collapse
|
31
|
Rasmussen JØ, Nordholm D, Glenthøj LB, Jensen MA, Garde AH, Ragahava JM, Jennum PJ, Glenthøj BY, Nordentoft M, Baandrup L, Ebdrup BH, Kristensen TD. White matter microstructure and sleep-wake disturbances in individuals at ultra-high risk of psychosis. Front Hum Neurosci 2022; 16:1029149. [PMID: 36393990 PMCID: PMC9649829 DOI: 10.3389/fnhum.2022.1029149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Aim White matter changes in individuals at ultra-high risk for psychosis (UHR) may be involved in the transition to psychosis. Sleep-wake disturbances commonly precede the first psychotic episode and predict development of psychosis. We examined associations between white matter microstructure and sleep-wake disturbances in UHR individuals compared to healthy controls (HC), as well as explored the confounding effect of medication, substance use, and level of psychopathology. Methods Sixty-four UHR individuals and 35 HC underwent clinical interviews and diffusion weighted imaging. Group differences on global and callosal mean fractional anisotropy (FA) was tested using general linear modeling. Sleep-wake disturbances were evaluated using the subjective measures disturbed sleep index (DSI) and disturbed awakening index (AWI) from the Karolinska Sleep Questionnaire, supported by objective sleep measures from one-night actigraphy. The primary analyses comprised partial correlation analyses between global FA/callosal FA and sleep-wake measures. Secondary analyses investigated multivariate patterns of covariance between measures of sleep-wake disturbances and FA in 48 white matter regions of interest using partial least square correlations. Results Ultra-high risk for psychosis individuals displayed lower global FA (F = 14.56, p < 0.001) and lower callosal FA (F = 11.34, p = 0.001) compared to HC. Subjective sleep-wake disturbances were significantly higher among the UHR individuals (DSI: F = 27.59, p < 0.001, AWI: F = 36.42, p < 0.001). Lower callosal FA was correlated with increased wake after sleep onset (r = -0.34, p = 0.011) and increased sleep fragmentation index (r = -0.31, p = 0.019) in UHR individuals. Multivariate analyses identified a pattern of covariance in regional FA which were associated with DSI and AWI in UHR individuals (p = 0.028), but not in HC. Substance use, sleep medication and antipsychotic medication did not significantly confound these associations. The association with objective sleep-wake measures was sustained when controlling for level of depressive and UHR symptoms, but symptom level confounded the covariation between FA and subjective sleep-wake measures in the multivariate analyses. Conclusion Compromised callosal microstructure in UHR individuals was related to objectively observed disruptions in sleep-wake functioning. Lower FA in ventrally located regions was associated with subjectively measured sleep-wake disturbances and was partly explained by psychopathology. These findings call for further investigation of sleep disturbances as a potential treatment target.
Collapse
Affiliation(s)
- Jesper Ø. Rasmussen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Dorte Nordholm
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Louise B. Glenthøj
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie A. Jensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne H. Garde
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M. Ragahava
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Poul J. Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y. Glenthøj
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Baandrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| | - Bjørn H. Ebdrup
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina D. Kristensen
- Centre for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital – Mental Health Services CPH, Copenhagen, Denmark
| |
Collapse
|
32
|
Onuki Y, Lakbila-Kamal O, Scheffer B, Van Someren EJW, Van der Werf YD. Selective Enhancement of Post-Sleep Visual Motion Perception by Repetitive Tactile Stimulation during Sleep. J Neurosci 2022; 42:7400-7411. [PMID: 35995563 PMCID: PMC9525164 DOI: 10.1523/jneurosci.1512-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Tactile sensations can bias visual perception in the awake state while visual sensitivity is known to be facilitated by sleep. It remains unknown, however, whether the tactile sensation during sleep can bias the visual improvement after sleep. Here, we performed nap experiments in human participants (n = 56, 18 males, 38 females) to demonstrate that repetitive tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion detection. The visual improvement was associated with slow wave activity. The high activation at the high beta frequency was found in the occipital electrodes after the tactile motion stimulation during sleep, indicating a visual-tactile cross-modal interaction during sleep. Furthermore, a second experiment (n = 14, 14 females) to examine whether a hand- or head-centered coordination is dominant for the interpretation of tactile motion direction showed that the biasing effect on visual improvement occurs according to the hand-centered coordination. These results suggest that tactile information can be interpreted during sleep, and can induce the selective improvement of post-sleep visual motion detection.SIGNIFICANCE STATEMENT Tactile sensations can bias our visual perception as a form of cross-modal interaction. However, it was reported only in the awake state. Here we show that repetitive directional tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion perception. Moreover, the visual improvement was positively associated with sleep slow wave activity. The tactile motion stimulation during slow wave activity increased the activation at the high beta frequency over the occipital electrodes. The visual improvement occurred in agreement with a hand-centered reference frame. These results suggest that our sleeping brain can interpret tactile information based on a hand-centered reference frame, which can cause the sleep-dependent improvement of visual motion detection.
Collapse
Affiliation(s)
- Yoshiyuki Onuki
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Oti Lakbila-Kamal
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Bo Scheffer
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081HV, The Netherlands
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, 1081HV, The Netherlands
| | - Ysbrand D Van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, location VU, University Medical Center, Amsterdam, 1081HZ, The Netherlands
| |
Collapse
|
33
|
Darchia N, Campbell IG, Basishvili T, Eliozishvili M, Tchintcharauli T, Oniani N, Sakhelashvili I, Feinberg I. Sleep electroencephalogram evidence of delayed brain maturation in attention deficit hyperactivity disorder: a longitudinal study. Sleep 2022; 45:6648473. [DOI: 10.1093/sleep/zsac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Study Objectives
This study investigates whether longitudinally measured changes in adolescent brain electrophysiology corroborate the maturational lag associated with attention deficit hyperactivity disorder (ADHD) reported in magnetic resonance imaging (MRI) studies and cross-sectional sleep electroencephalogram (EEG) data.
Methods
Semiannually nine adolescents diagnosed with ADHD (combined presentation, DSM-V criteria, mean age 12.39 ± 0.61 years at first time-point, two females) and nine typically developing controls (12.08 ± 0.35 years, four females) underwent all-night laboratory polysomnography, yielding four recordings.
Results
Sleep macrostructure was similar between groups. A quadratic model of the age change in non-rapid eye movement (NREM) delta (1.07–4 Hz) power, with sex effects accounted for, found that delta power peaked 0.92 ± 0.37 years later in the ADHD group. A Gompertz function fit to the same data showed that the age of most rapid delta power decline occurred 0.93 ± 0.41 years later in the ADHD group (p = 0.037), but this group difference was not significant (p = 0.38) with sex effects accounted for. For very low frequency (0.29–1.07 Hz) EEG, the ADHD lag (1.07 ± 0.42 years later, p = 0.019) was significant for a Gompertz model with sex effects accounted for (p = 0.044). Theta (4–7.91 Hz) showed a trend (p = 0.064) toward higher power in the ADHD group. Analysis of the EEG decline across the night found that standardized delta and theta power in NREMP1 were significantly (p < 0.05 for both) lower in adolescents with ADHD.
Conclusions
This is the first longitudinal study to reveal electrophysiological evidence of a maturational lag associated with ADHD. In addition, our findings revealed basically unaltered sleep macrostructure but altered sleep homeostasis associated with ADHD.
Collapse
Affiliation(s)
- Nato Darchia
- Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University , Tbilisi , Georgia
| | - Ian G Campbell
- Department of Psychiatry and Behavioral Sciences, University of California Davis , Davis, CA , USA
| | - Tamar Basishvili
- Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University , Tbilisi , Georgia
| | - Marine Eliozishvili
- Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University , Tbilisi , Georgia
| | | | - Nikoloz Oniani
- Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University , Tbilisi , Georgia
| | - Irine Sakhelashvili
- Tengiz Oniani Laboratory of Sleep-Wakefulness Cycle Study, Ilia State University , Tbilisi , Georgia
| | - Irwin Feinberg
- Department of Psychiatry and Behavioral Sciences, University of California Davis , Davis, CA , USA
| |
Collapse
|
34
|
Gudberg C, Stevelink R, Douaud G, Wulff K, Lazari A, Fleming MK, Johansen-Berg H. Individual differences in slow wave sleep architecture relate to variation in white matter microstructure across adulthood. Front Aging Neurosci 2022; 14:745014. [PMID: 36092806 PMCID: PMC9453235 DOI: 10.3389/fnagi.2022.745014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep plays a key role in supporting brain function and resilience to brain decline. It is well known that sleep changes substantially with aging and that aging is associated with deterioration of brain structure. In this study, we sought to characterize the relationship between slow wave slope (SWslope)—a key marker of sleep architecture and an indirect proxy of sleep quality—and microstructure of white matter pathways in healthy adults with no sleep complaints. Participants were 12 young (24–27 years) and 12 older (50–79 years) adults. Sleep was assessed with nocturnal electroencephalography (EEG) and the Pittsburgh Sleep Quality Index (PSQI). White matter integrity was assessed using tract-based spatial statistics (TBSS) on tensor-based metrics such as Fractional Anisotropy (FA) and Mean Diffusivity (MD). Global PSQI score did not differ between younger (n = 11) and older (n = 11) adults (U = 50, p = 0.505), but EEG revealed that younger adults had a steeper SWslope at both frontal electrode sites (F3: U = 2, p < 0.001, F4: U = 4, p < 0.001, n = 12 younger, 10 older). There were widespread correlations between various diffusion tensor-based metrics of white matter integrity and sleep SWslope, over and above effects of age (n = 11 younger, 9 older). This was particularly evident for the corpus callosum, corona radiata, superior longitudinal fasciculus, internal and external capsule. This indicates that reduced sleep slow waves may be associated with widespread white matter deterioration. Future studies should investigate whether interventions targeted at improving sleep architecture also impact on decline in white matter microstructure in older adults.
Collapse
Affiliation(s)
- Christel Gudberg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Remi Stevelink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katharina Wulff
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Radiation Sciences and Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Melanie K. Fleming
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Melanie K. Fleming,
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Afolabi-Brown O, Moore ME, Tapia IE. Sleep Deficiency in Adolescents: The School Start Time Debate. Clin Chest Med 2022; 43:239-247. [PMID: 35659022 DOI: 10.1016/j.ccm.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adolescence is commonly accepted as a challenging time for sleep, with multiple factors contributing to sleep deficiency in adolescents. These include physiologic changes with shifts in their circadian rhythm; medical sleep disorders; and social, cultural, and environmental factors. Early school start times negatively affect sleep in adolescents as well, with poorer outcomes in their overall health, wellbeing, and performance. This article highlights the different contributing factors for sleep deficiency in adolescents and the consequences of sleep deficiency. In addition, the authors discuss the impact of delayed school start times in improving adolescents' sleep and overall function.
Collapse
Affiliation(s)
- Olufunke Afolabi-Brown
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Melisa E Moore
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Children and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ignacio E Tapia
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Milinski L, Nodal FR, Vyazovskiy VV, Bajo VM. Tinnitus: at a crossroad between phantom perception and sleep. Brain Commun 2022; 4:fcac089. [PMID: 35620170 PMCID: PMC9128384 DOI: 10.1093/braincomms/fcac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/31/2021] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Sensory disconnection from the environment is a hallmark of sleep and is crucial
for sleep maintenance. It remains unclear, however, whether internally generated
percepts—phantom percepts—may overcome such disconnection and, in
turn, how sleep and its effect on sensory processing and brain plasticity may
affect the function of the specific neural networks underlying such phenomena. A
major hurdle in addressing this relationship is the methodological difficulty to
study sensory phantoms, due to their subjective nature and lack of control over
the parameters or neural activity underlying that percept. Here, we explore the
most prevalent phantom percept, subjective tinnitus—or tinnitus for
short—as a model to investigate this. Tinnitus is the permanent
perception of a sound with no identifiable corresponding acoustic source. This
review offers a novel perspective on the functional interaction between brain
activity across the sleep–wake cycle and tinnitus. We discuss
characteristic features of brain activity during tinnitus in the awake and the
sleeping brain and explore its effect on sleep functions and homeostasis. We ask
whether local changes in cortical activity in tinnitus may overcome sensory
disconnection and prevent the occurrence of global restorative sleep and, in
turn, how accumulating sleep pressure may temporarily alleviate the persistence
of a phantom sound. Beyond an acute interaction between sleep and neural
activity, we discuss how the effects of sleep on brain plasticity may contribute
to aberrant neural circuit activity and promote tinnitus consolidation. Tinnitus
represents a unique window into understanding the role of sleep in sensory
processing. Clarification of the underlying relationship may offer novel
insights into therapeutic interventions in tinnitus management.
Collapse
Affiliation(s)
- Linus Milinski
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Fernando R. Nodal
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Vladyslav V. Vyazovskiy
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Victoria M. Bajo
- University of Oxford, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
37
|
Kokošová V, Filip P, Kec D, Baláž M. Bidirectional Association Between Sleep and Brain Atrophy in Aging. Front Aging Neurosci 2021; 13:726662. [PMID: 34955805 PMCID: PMC8693777 DOI: 10.3389/fnagi.2021.726662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.
Collapse
Affiliation(s)
- Viktória Kokošová
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Pavel Filip
- Department of Neurology, First Faculty of Medicine, General University Hospital Prague and Charles University, Prague, Czechia.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - David Kec
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czechia
| |
Collapse
|
38
|
LaGoy AD, Cashmere JD, Beckner ME, Eagle SR, Sinnott AM, Conkright WR, Miller E, Derrow C, Dretsch MN, Flanagan SD, Nindl BC, Connaboy C, Germain A, Ferrarelli F. A trait of mind: stability and robustness of sleep across sleep opportunity manipulations during simulated military operational stress. Sleep 2021; 45:6357670. [PMID: 34432067 DOI: 10.1093/sleep/zsab219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Within-subject stability of certain sleep features across multiple nights is thought to reflect the trait-like behavior of sleep. However, to be considered a trait, a parameter must be both stable and robust. Here, we examined the stability (i.e., across the same sleep opportunity periods) and robustness (i.e., across sleep opportunity periods that varied in duration and timing) of different sleep parameters. METHODS Sixty-eight military personnel (14 W) spent 5 nights in the sleep laboratory during a simulated military operational stress protocol. After an adaptation night, participants had an 8-hour sleep opportunity (23:00-07:00) followed by 2 consecutive nights of sleep restriction and disruption which included two 2-hour sleep opportunities (01:00-03:00; 05:00-07:00) and, lastly, another 8-hour sleep opportunity (23:00-07:00). Intra-class correlation coefficients were calculated to examine differences in stability and robustness across different sleep parameters. RESULTS Sleep architecture parameters were less stable and robust than absolute and relative spectral activity parameters. Further, relative spectral activity parameters were less robust than absolute spectral activity. Absolute alpha and sigma activity demonstrated the highest levels of stability that were also robust across sleep opportunities of varying duration and timing. CONCLUSIONS Stability and robustness varied across different sleep parameters, but absolute NREM alpha and sigma activity demonstrated robust trait-like behavior across variable sleep opportunities. Reduced stability of other sleep architecture and spectral parameters during shorter sleep episodes as well as across different sleep opportunities has important implications for study design and interpretation.
Collapse
Affiliation(s)
- Alice D LaGoy
- University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | - Eric Miller
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carson Derrow
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael N Dretsch
- US Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, WA, USA
| | | | | | | | - Anne Germain
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabio Ferrarelli
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Ong JL, Jamaluddin SA, Tandi J, Chee NIYN, Leong RLF, Huber R, Lo JCY, Chee MWL. Cortical Thinning and Sleep Slow Wave Activity Reductions Mediate Age-Related Improvements in Cognition During Mid-Late Adolescence. Sleep 2021; 45:6348270. [PMID: 34379782 PMCID: PMC8754498 DOI: 10.1093/sleep/zsab206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Indexed: 12/03/2022] Open
Abstract
Study Objectives Gains in cognitive test performance that occur during adolescence are associated with brain maturation. Cortical thinning and reduced sleep slow wave activity (SWA) are markers of such developmental changes. Here we investigate whether they mediate age-related improvements in cognition. Methods 109 adolescents aged 15–19 years (49 males) underwent magnetic resonance imaging, polysomnography (PSG), and a battery of cognitive tasks within a 2-month time window. Cognitive tasks assessed nonverbal intelligence, sustained attention, speed of processing and working memory and executive function. To minimize the effect of sleep history on SWA and cognitive performance, PSG and test batteries were administered only after at least 8 nights of 9-h time-in-bed (TIB) sleep opportunity. Results Age-related improvements in speed of processing (r = 0.33, p = 0.001) and nonverbal intelligence (r = 0.24, p = 0.01) domains were observed. These cognitive changes were associated with reduced cortical thickness, particularly in bilateral temporoparietal regions (rs = −0.21 to −0.45, ps < 0.05), as well as SWA (r = −0.35, p < 0.001). Serial mediation models found that ROIs in the middle/superior temporal cortices, together with SWA mediated the age-related improvement observed on cognition. Conclusions During adolescence, age-related improvements in cognition are mediated by reductions in cortical thickness and sleep SWA.
Collapse
Affiliation(s)
- Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - S Azrin Jamaluddin
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Jesisca Tandi
- Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Nicholas I Y N Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Ruth L F Leong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Switzerland & Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| | - June C Y Lo
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore
| |
Collapse
|
40
|
Benbir Şenel G, Aydın Ö, Tanrıöver Aydın E, Bayar MR, Karadeniz D. Changes in sleep structure and sleep spindles are associated with the neuropsychiatric profile in paradoxical insomnia. Int J Psychophysiol 2021; 168:27-32. [PMID: 34331959 DOI: 10.1016/j.ijpsycho.2021.07.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
AIM Sleep spindles have an important role in the pathophysiology and perception of sleep. We aimed to investigate the link between sleep spindles and microstructural architecture of sleep in regard to psychiatric characteristics in paradoxical insomnia. METHOD A total of 40 participants (20 with paradoxical insomnia, 20 healthy controls) were included in the study. All participants were evaluated by somnologists and undergone a full-night polysomnography at sleep laboratory. In addition, psychiatric interview was made by the same psychiatrist, and questionnaires were performed to assess the dimensions of the personality such as the neuroticism or extroversion (Eysenck Personality Questionnaire, EPQR-A); to evaluate the tendency to exaggerate somatic perceptions (Somatosensory Amplification Scale, SSAS), somatic parts of dissociation (Somatoform Dissociation Questionnaire, SDQ-20), and somatization (Somatization Scale, SS); to measure participants' feelings about their health and disease anxiety (Health Anxiety Inventory, HAI-18), and the level of uncontrollable and persistent anxiety (Penn State Worry Questionnaire, PSWQ); to investigate the tendency to ruminative thinking (Ruminative Thought Style Questionnaire, RTSQ), alexithymia (Toronto Alexithymia Scale, TAS-20); and to define the presence and the severity of depressive symptoms (Beck Depression Inventory, BDI). RESULTS The duration and frequency of the sleep spindles were similar between two groups, while the density was significantly decreased in paradoxical insomnia. The duration of sleep spindles, on the other hand, showed positive correlations with the extroversion dimension scores of EPQR-A and PSWQ scores. DISCUSSION Sleep protective mechanisms are disturbed in paradoxical insomnia as shown by the lower density of sleep spindles. In addition, fast spindle activity is associated with the personality traits, characterized by an increase in the expression of feelings and the level of anxiety.
Collapse
Affiliation(s)
- Gülçin Benbir Şenel
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Sleep and Disorders Unit, Istanbul 34098, Turkey
| | - Ömer Aydın
- Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Department of Psychiatry, Istanbul 34147, Turkey.
| | - Ezgi Tanrıöver Aydın
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Psychiatry, Istanbul 34098, Turkey
| | - Mahmut Reha Bayar
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Psychiatry, Istanbul 34098, Turkey
| | - Derya Karadeniz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Sleep and Disorders Unit, Istanbul 34098, Turkey
| |
Collapse
|
41
|
Sex and Pubertal Differences in the Maturational Trajectories of Sleep Spindles in the Transition from Childhood to Adolescence: A Population-Based Study. eNeuro 2021; 8:ENEURO.0257-21.2021. [PMID: 34168053 PMCID: PMC8281264 DOI: 10.1523/eneuro.0257-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles, bursts of electroencephalogram (EEG) activity in the σ-frequency (11–16 Hz) range, may be biomarkers of cortical development. Studies capturing the transition to adolescence are needed to delineate age-related, sex-related, and pubertal-related changes in sleep spindles at the population-level. We analyzed the sleep EEG of 572 subjects 6–21 years (48% female) and 332 subjects 5–12 years (46% female) followed-up at 12–22 years. From 6 to 21 years, spindle density (p quadratic = 0.019) and fast (12–16 Hz) spindle percent (p quadratic = 0.016) showed inverted U-shaped trajectories, with plateaus after 15 and 19 years, respectively. Spindle frequency increased (p linear < 0.001), while spindle power decreased (p linear < 0.001) from 6 to 21 years. The trajectories of spindle density, frequency, and fast spindle percent diverged between females and males, in whom density plateaued by 14 years, fast spindle percent by 16 years, and frequency by 18 years, while fast spindle percent and spindle frequency continued to increase until 21 years in females. Males experienced a longitudinal increase in spindle density 31% greater than females by 12–14 years (p = 0.006). Females experienced an increase in spindle frequency and fast spindle percent 2% and 41% greater, respectively, than males by 18–22 years (both p = 0.004), while males experienced a 14% greater decline in spindle power by 18–22 years (p = 0.018). Less mature adolescents (86% male) experienced a longitudinal increase in spindle density 36% greater than mature adolescents by 12–14 years (p = 0.002). Overall, males experience greater maturational changes in spindle density in the transition to adolescence, driven by later pubertal development, and sex differences become prominent in early adulthood when females have greater spindle power, frequency, and fast spindle percent.
Collapse
|
42
|
McMahon M, Malneedi Y, Worthy DA, Schnyer DM. Rest-activity rhythms and white matter microstructure across the lifespan. Sleep 2021; 44:6017487. [PMID: 33269397 DOI: 10.1093/sleep/zsaa266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/09/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES The purpose of this study was to examine how rest-activity (RA) rhythm stability may be associated with white matter microstructure across the lifespan in healthy adults free of significant cardiovascular risk. METHODS We analyzed multi-shell diffusion tensor images from 103 healthy young and older adults using tract-based spatial statistics (TBSS) to examine relationships between white matter microstructure and RA rhythm stability. RA measures were computed using both cosinor and non-parametric methods derived from 7 days of actigraphy data. Fractional anisotropy (FA) and mean diffusivity (MD) were examined in this analysis. Because prior studies have suggested that the corpus callosum (CC) is sensitive to sleep physiology and RA rhythms, we also conducted a focused region of interest analysis on the CC. RESULTS Greater rest-activity rhythm stability was associated with greater FA across both young and older adults, primarily in the CC and anterior corona radiata. This effect was not moderated by age group. While RA measures were associated with sleep metrics, RA rhythm measures uniquely accounted for the variance in white matter integrity. CONCLUSIONS This study strengthens existing evidence for a relationship between brain white matter structure and RA rhythm stability in the absence of health risk factors. While there are differences in RA stability between age groups, the relationship with brain white matter was present across both young and older adults. RA rhythms may be a useful biomarker of brain health across both periods of adult development.
Collapse
Affiliation(s)
- Megan McMahon
- Department of Psychology, University of Texas at Austin, Austin, TX
| | - Yoshita Malneedi
- Department of Psychology, University of Texas at Austin, Austin, TX
| | - Darrell A Worthy
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
| | - David M Schnyer
- Department of Psychology, University of Texas at Austin, Austin, TX
| |
Collapse
|
43
|
Bernardi G, Avvenuti G, Cataldi J, Lattanzi S, Ricciardi E, Polonara G, Silvestrini M, Siclari F, Fabri M, Bellesi M. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves. Brain Commun 2021; 3:fcab108. [PMID: 34164621 PMCID: PMC8215432 DOI: 10.1093/braincomms/fcab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep spindles of non-REM sleep are transient, waxing-and-waning 10–16 Hz EEG oscillations, whose cortical synchronization depends on the engagement of thalamo-cortical loops. However, previous studies in animal models lacking the corpus callosum due to agenesis or total callosotomy and in humans with agenesis of the corpus callosum suggested that cortico-cortical connections may also have a relevant role in cortical (inter-hemispheric) spindle synchronization. Yet, most of these works did not provide direct quantitative analyses to support their observations. By studying a rare sample of callosotomized, split-brain patients, we recently demonstrated that the total resection of the corpus callosum is associated with a significant reduction in the inter-hemispheric propagation of non-REM slow waves. Interestingly, sleep spindles are often temporally and spatially grouped around slow waves (0.5–4 Hz), and this coordination is thought to have an important role in sleep-dependent learning and memory consolidation. Given these premises, here we set out to investigate whether total callosotomy may affect the generation and spreading of sleep spindles, as well as their coupling with sleep slow waves. To this aim, we analysed overnight high-density EEG recordings (256 electrodes) collected in five patients who underwent total callosotomy due to drug-resistant epilepsy (age 40–53, two females), three non-callosotomized neurological patients (age 44–66, two females), and in a sample of 24 healthy adult control subjects (age 20–47, 13 females). Individual sleep spindles were automatically detected using a validated algorithm and their properties and topographic distributions were computed. All analyses were performed with and without a regression-based adjustment accounting for inter-subject age differences. The comparison between callosotomized patients and healthy subjects did not reveal systematic variations in spindle density, amplitude or frequency. However, callosotomized patients were characterized by a reduced spindle duration, which could represent the result of a faster desynchronization of spindle activity across cortical areas of the two hemispheres. In contrast with our previous findings regarding sleep slow waves, we failed to detect in callosotomized patients any clear, systematic change in the inter-hemispheric synchronization of sleep spindles. In line with this, callosotomized patients were characterized by a reduced extension of the spatial association between temporally coupled spindles and slow waves. Our findings are consistent with a dependence of spindles on thalamo-cortical rather than cortico-cortical connections in humans, but also revealed that, despite their temporal association, slow waves and spindles are independently regulated in terms of topographic expression.
Collapse
Affiliation(s)
- Giulio Bernardi
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulia Avvenuti
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Emiliano Ricciardi
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Gabriele Polonara
- Department of Odontostomatologic and Specialized Clinical Sciences, Marche Polytechnic University, Ancona 60126, Italy
| | - Mauro Silvestrini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Mara Fabri
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona 60126, Italy
| | - Michele Bellesi
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| |
Collapse
|
44
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Spontaneous slow oscillation - slow spindle features predict induced overnight memory retention. Sleep 2021; 44:6277833. [PMID: 34003291 PMCID: PMC8503833 DOI: 10.1093/sleep/zsab127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Synchronization of neural activity within local networks and between brain regions is a major contributor to rhythmic field potentials such as the EEG. On the other hand, dynamic changes in microstructure and activity are reflected in the EEG, for instance slow oscillation (SO) slope can reflect synaptic strength. SO-spindle coupling is a measure for neural communication. It was previously associated with memory consolidation, but also shown to reveal strong interindividual differences. In studies, weak electric current stimulation has modulated brain rhythms and memory retention. Here, we investigate whether SO-spindle coupling and SO slope during baseline sleep are associated with (predictive of) stimulation efficacy on retention performance. Methods Twenty-five healthy subjects participated in three experimental sessions. Sleep-associated memory consolidation was measured in two sessions, in one anodal transcranial direct current stimulation oscillating at subjects individual SO frequency (so-tDCS) was applied during nocturnal sleep. The third session was without a learning task (baseline sleep). The dependence on SO-spindle coupling and SO-slope during baseline sleep of so-tDCS efficacy on retention performance were investigated. Results Stimulation efficacy on overnight retention of declarative memories was associated with nesting of slow spindles to SO trough in deep nonrapid eye movement baseline sleep. Steepness and direction of SO slope in baseline sleep were features indicative for stimulation efficacy. Conclusions Findings underscore a functional relevance of activity during the SO up-to-down state transition for memory consolidation and provide support for distinct consolidation mechanisms for types of declarative memories.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.,Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck
| |
Collapse
|
45
|
Zhang ZY, Campbell IG, Dhayagude P, Espino HC, Feinberg I. Longitudinal Analysis of Sleep Spindle Maturation from Childhood through Late Adolescence. J Neurosci 2021; 41:4253-4261. [PMID: 33785642 PMCID: PMC8143202 DOI: 10.1523/jneurosci.2370-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles are intermittent bursts of 11-15 Hz EEG waves that occur during non-rapid eye movement sleep. Spindles are believed to help maintain sleep and to play a role in sleep-dependent memory consolidation. Here we applied an automated sleep spindle detection program to our large longitudinal sleep EEG dataset (98 human subjects, 6-18 years old, >2000 uninterrupted nights) to evaluate maturational trends in spindle wave frequency, density, amplitude, and duration. This large dataset enabled us to apply nonlinear as well as linear age models, thereby extending the findings of prior cross-sectional studies that used linear models. We found that spindle wave frequency increased with remarkable linearity across the age range. Central spindle density increased nonlinearly to a peak at age 15.1 years. Central spindle wave amplitude declined in a sigmoidal pattern with the age of fastest decline at 13.5 years. Spindle duration decreased linearly with age. Of the four measures, only spindle amplitude showed a sex difference in dynamics such that the age of most rapid decline in females preceded that in males by 1.4 years. This amplitude pattern, including the sex difference in timing, paralleled the maturational pattern for δ (1-4 Hz) wave power. We interpret these age-related changes in spindle characteristics as indicators of maturation of thalamocortical circuits and changes in sleep depth. These robust age-effects could facilitate the search for cognitive-behavioral correlates of spindle waveforms and might also help guide basic research on EEG mechanisms and postnatal brain maturation.SIGNIFICANCE STATEMENT The brain reorganization of adolescence produces massive changes in sleep EEG. These changes include the morphology and abundance of sleep spindles, an EEG marker of non-rapid eye movement sleep believed to reflect offline memory processes and/or protection of the sleep state. We analyzed >2000 nights of longitudinal sleep EEG from 98 subjects (age 6-18 years old) to investigate maturational changes in spindle amplitude, frequency, density, and duration. The large dataset enabled us to detect nonlinear as well as linear age changes. All measures showed robust age effects that we hypothesize reflect the maturation of thalamocortical circuits and decreasing sleep depth. These findings could guide further research into the cognitive-behavioral correlates of sleep spindles and their underlying brain mechanisms.
Collapse
Affiliation(s)
- Zoey Y Zhang
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Ian G Campbell
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Pari Dhayagude
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| | - Harrison C Espino
- Department of Computer Science, University of California Davis, Davis, California 95616
| | - Irwin Feinberg
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, California 95817
| |
Collapse
|
46
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
47
|
Betta M, Handjaras G, Leo A, Federici A, Farinelli V, Ricciardi E, Siclari F, Meletti S, Ballotta D, Benuzzi F, Bernardi G. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep. Neuroimage 2021; 236:118117. [PMID: 33940148 DOI: 10.1016/j.neuroimage.2021.118117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.
Collapse
Affiliation(s)
- Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Andrea Leo
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Alessandra Federici
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Valentina Farinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Neurology Dept., Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca 55100, Italy.
| |
Collapse
|
48
|
Sunwoo JS, Cha KS, Byun JI, Jun JS, Kim TJ, Shin JW, Lee ST, Jung KH, Park KI, Chu K, Kim M, Lee SK, Kim HJ, Schenck CH, Jung KY. Nonrapid eye movement sleep electroencephalographic oscillations in idiopathic rapid eye movement sleep behavior disorder: a study of sleep spindles and slow oscillations. Sleep 2021; 44:5896006. [PMID: 32827438 DOI: 10.1093/sleep/zsaa160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES We investigated electroencephalographic (EEG) slow oscillations (SOs), sleep spindles (SSs), and their temporal coordination during nonrapid eye movement (NREM) sleep in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). METHODS We analyzed 16 patients with video-polysomnography-confirmed iRBD (age, 65.4 ± 6.6 years; male, 87.5%) and 10 controls (age, 62.3 ± 7.5 years; male, 70%). SSs and SOs were automatically detected during stage N2 and N3. We analyzed their characteristics, including density, frequency, duration, and amplitude. We additionally identified SO-locked spindles and examined their phase distribution and phase locking with the corresponding SO. For inter-group comparisons, we used the independent samples t-test or Wilcoxon rank-sum test, as appropriate. RESULTS The SOs of iRBD patients had significantly lower amplitude, longer duration (p = 0.005 for both), and shallower slope (p < 0.001) than those of controls. The SS power of iRBD patients was significantly lower than that of controls (p = 0.002), although spindle density did not differ significantly. Furthermore, SO-locked spindles of iRBD patients prematurely occurred during the down-to-up-state transition of SOs, whereas those of controls occurred at the up-state peak of SOs (p = 0.009). The phase of SO-locked spindles showed a positive correlation with delayed recall subscores (p = 0.005) but not with tonic or phasic electromyography activity during REM sleep. CONCLUSIONS In this study, we found abnormal EEG oscillations during NREM sleep in patients with iRBD. The impaired temporal coupling between SOs and SSs may reflect early neurodegenerative changes in iRBD.
Collapse
Affiliation(s)
- Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Protein Metabolism and Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center and Department of Psychiatry, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, MN
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Bresser T, Foster-Dingley JC, Wassing R, Leerssen J, Ramautar JR, Stoffers D, Lakbila-Kamal O, van den Heuvel M, van Someren EJW. Consistent altered internal capsule white matter microstructure in insomnia disorder. Sleep 2021; 43:5775301. [PMID: 32123914 PMCID: PMC7447859 DOI: 10.1093/sleep/zsaa031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
STUDY OBJECTIVES Suggested neural correlates of insomnia disorder have been hard to replicate. Even the most consistent finding, altered white matter microstructure in the anterior limb of the internal capsule, is based on handful studies. The urge for replicable targets to understand the underlying mechanisms of insomnia made us study white matter fractional anisotropy (FA) across three samples of cases and controls. METHODS 3-Tesla MRI diffusion tensor imaging data of three independent samples were combined for analysis, resulting in n = 137 participants, of whom 73 were diagnosed with insomnia disorder and 64 were matched controls without sleep complaints. Insomnia severity was measured with the Insomnia Severity Index (ISI). White matter microstructure was assessed with FA. White matter tracts were skeletonized and analyzed using tract-based spatial statistics. We performed a region-of-interest analysis using linear mixed-effect models to evaluate case-control differences in internal capsule FA as well as associations between internal capsule FA and insomnia severity. RESULTS FA in the right limb of the anterior internal capsule was lower in insomnia disorder than in controls (β = -9.76e-3; SE = 4.17e-3, p = .034). In the entire sample, a higher ISI score was associated with a lower FA value of the right internal capsule (β = -8.05e- 4 FA/ISI point, SE = 2.60e- 4, p = .008). Ancillary whole brain voxel-wise analyses showed no significant group difference or association with insomnia severity after correction for multiple comparisons. CONCLUSIONS The internal capsule shows small but consistent insomnia-related alterations. The findings support a circuit-based approach to underlying mechanisms since this tract connects many brain areas previously implicated in insomnia.
Collapse
Affiliation(s)
- Tom Bresser
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jessica C Foster-Dingley
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Rick Wassing
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jennifer R Ramautar
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Diederick Stoffers
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Oti Lakbila-Kamal
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martijn van den Heuvel
- Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Eus J W van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Kathrin B, Michael A H, Ines W, Kerstin H. The relation between sigma power and internalizing problems across development. J Psychiatr Res 2021; 135:302-310. [PMID: 33524677 DOI: 10.1016/j.jpsychires.2021.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Internalizing problems are characterized by deficits in emotion processing and regulation. They are among the most common problems in children and adolescents and mark an increased risk for depressive and anxiety disorders in later life. First evidence suggests that sleep alterations are related to the development and/or persistence of mood and anxiety disorders in children, adolescents, and adults. Most recently, data from clinical samples showed that brain activity in the sigma frequency band (9-16 Hz, i.e. sleep spindle frequency) is associated with internalizing problems in children and adolescents. However, less is known about the association between sigma power and internalizing problems in healthy participants within this age group. Here, we re-analyzed longitudinal data (25 healthy subjects (18 females) at two time points (T1: childhood mean age: 9.52 ± 0.77; T2: adolescence mean age: 16.08 ± 0.91) by correlating sigma power with measures for internalizing problems. Moreover, we calculated sigma power ratios (frontal/central, frontal/parietal, frontal/occipital) to examine whether these measures would reflect developmental changes more accurately. We found that higher values of internalizing problems at T1 were related to a lower decrease in sigma power from T1 to T2 at frontal and central derivations. Furthermore, higher values of internalizing problems at T1 as well as at T2 were related to higher sigma power ratios at T2. We suggest that sigma power may reflect maturational processes (e.g. network efficiency, integrity) related to the development of internalizing problems. In particular, a stronger decrease in frontal sigma power from childhood to adolescence may indicate a healthier development. Thus, our results emphasize the role of sigma power as a useful marker for internalizing problems during adolescence.
Collapse
Affiliation(s)
- Bothe Kathrin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Hahn Michael A
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Wilhelm Ines
- Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany.
| | - Hoedlmoser Kerstin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|