1
|
Duittoz AH, Tillet Y, Geller S. The great migration: how glial cells could regulate GnRH neuron development and shape adult reproductive life. J Chem Neuroanat 2022; 125:102149. [PMID: 36058434 DOI: 10.1016/j.jchemneu.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/31/2022]
Abstract
In mammals, reproductive function is under the control of hypothalamic neurons named Gonadotropin-Releasing Hormone (GnRH) neurons. These neurons migrate from the olfactory placode to the brain, during embryonic development. For the past 40 years, these neurons have been considered an example of tangential migration, i.e., dependent on the olfactory/vomeronasal/terminal nerves. Numerous studies have highlighted the factors involved in the migration of these neurons but thus far overlooked the cellular microenvironment that produces them. Many of these factors are dysregulated in hypogonadotropic hypogonadism, resulting in subfertility/infertility. Nevertheless, over the past ten years, several papers have reported the influence of glial cells (named olfactory ensheathing cells [OECs]) in the migration and differentiation of GnRH neurons. This review will describe the atypical origins, migration, and differentiation of these neurons, focusing on the latest discoveries. There will be a more specific discussion on the involvement of OECs in the development of GnRH neurons, during embryonic and perinatal life; as well as on their potential implication in the development of congenital or idiopathic hypogonadotropic hypogonadism (such as Kallmann syndrome).
Collapse
Affiliation(s)
- Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
3
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
4
|
Golan M, Boulanger-Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye DS, Hollander-Cohen L, Fiordelisio-Coll T, Martin AO, Mollard P. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. SCIENCE ADVANCES 2021; 7:eabc8475. [PMID: 33608269 PMCID: PMC7895442 DOI: 10.1126/sciadv.abc8475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Migration of gonadotropin-releasing hormone (GnRH) neurons from their birthplace in the nasal placode to their hypothalamic destination is critical for vertebrate reproduction and species persistence. While their migration mode as individual GnRH neurons has been extensively studied, the role of GnRH-GnRH cell communication during migration remains largely unexplored. Here, we show in awake zebrafish larvae that migrating GnRH neurons pause at the nasal-forebrain junction and form clusters that act as interhemisphere neuronal ensembles. Within the ensembles, GnRH neurons create an isolated, spontaneously active circuit that is internally wired through monosynaptic glutamatergic synapses into which newborn GnRH neurons integrate before entering the brain. This initial phase of integration drives a phenotypic switch, which is essential for GnRH neurons to properly migrate toward their hypothalamic destination. Together, these experiments reveal a critical step for reproduction, which depends on synaptic communication between migrating GnRH neurons.
Collapse
Affiliation(s)
- M Golan
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - J Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - A Pinot
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - P Fontanaud
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - A Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - D S Gajbhiye
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - L Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - T Fiordelisio-Coll
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - A O Martin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - P Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| |
Collapse
|
5
|
Naulé L, Maione L, Kaiser UB. Puberty, A Sensitive Window of Hypothalamic Development and Plasticity. Endocrinology 2021; 162:bqaa209. [PMID: 33175140 PMCID: PMC7733306 DOI: 10.1210/endocr/bqaa209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Puberty is a developmental period characterized by a broad range of physiologic changes necessary for the acquisition of adult sexual and reproductive maturity. These changes mirror complex modifications within the central nervous system, including within the hypothalamus. These modifications result in the maturation of a fully active hypothalamic-pituitary-gonadal (HPG) axis, the neuroendocrine cascade ensuring gonadal activation, sex steroid secretion, and gametogenesis. A complex and finely regulated neural network overseeing the HPG axis, particularly the pubertal reactivation of gonadotropin-releasing hormone (GnRH) secretion, has been progressively unveiled in the last 3 decades. This network includes kisspeptin, neurokinin B, GABAergic, and glutamatergic neurons as well as glial cells. In addition to substantial modifications in the expression of key targets, several changes in neuronal morphology, neural connections, and synapse organization occur to establish mature and coordinated neurohormonal secretion, leading to puberty initiation. The aim of this review is to outline the current knowledge of the major changes that neurons secreting GnRH and their neuronal and glial partners undergo before and after puberty. Emerging mediators upstream of GnRH, uncovered in recent years, are also addressed herein. In addition, the effects of sex steroids, particularly estradiol, on changes in hypothalamic neurodevelopment and plasticity are discussed.
Collapse
Affiliation(s)
- Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Luigi Maione
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Paris Saclay University, Assistance Publique-Hôpitaux de Paris, Department Endocrinology and Reproductive Diseases, Bicêtre Hospital, Paris, France
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Spilker C, Nullmeier S, Grochowska KM, Schumacher A, Butnaru I, Macharadze T, Gomes GM, Yuanxiang P, Bayraktar G, Rodenstein C, Geiseler C, Kolodziej A, Lopez-Rojas J, Montag D, Angenstein F, Bär J, D’Hanis W, Roskoden T, Mikhaylova M, Budinger E, Ohl FW, Stork O, Zenclussen AC, Karpova A, Schwegler H, Kreutz MR. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genet 2016; 12:e1005907. [PMID: 26977770 PMCID: PMC4792503 DOI: 10.1371/journal.pgen.1005907] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR)-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB). Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS), a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH) associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH) positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP) at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF) activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko) mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.
Collapse
Affiliation(s)
- Christina Spilker
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sven Nullmeier
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Anne Schumacher
- Department of Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ioana Butnaru
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tamar Macharadze
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Guilherme M. Gomes
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - PingAn Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gonca Bayraktar
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Carolin Rodenstein
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Carolin Geiseler
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Angela Kolodziej
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dirk Montag
- Special Laboratory Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), and Special Laboratory for Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia Bär
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Emmy-Noether Group 'Neuronal Protein Transport', Hamburg, Germany
| | - Wolfgang D’Hanis
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Roskoden
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Marina Mikhaylova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Emmy-Noether Group 'Neuronal Protein Transport', Hamburg, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank W. Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Oliver Stork
- Institute of Biology, Otto von Guericke University, Magdeburg, Germany
| | - Ana C. Zenclussen
- Department of Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Herbert Schwegler
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Leibniz Group 'Dendritic Organelles and Synaptic Function', Hamburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Lutgen V, Resch J, Qualmann K, Raddatz NJ, Panhans C, Olander EM, Kong L, Choi S, Mantsch JR, Baker DA. Behavioral assessment of acute inhibition of system xc (-) in rats. Psychopharmacology (Berl) 2014; 231:4637-47. [PMID: 24828877 PMCID: PMC4474164 DOI: 10.1007/s00213-014-3612-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Gaps in our understanding of glutamatergic signaling may be key obstacles in accurately modeling complex CNS diseases. System xc (-) is an example of a poorly understood component of glutamate homeostasis that has the potential to contribute to CNS diseases. OBJECTIVES This study aims to determine whether system xc (-) contributes to behaviors used to model features of CNS disease states. METHODS In situ hybridization was used to map mRNA expression of xCT throughout the brain. Microdialysis in the prefrontal cortex was used to sample extracellular glutamate levels; HPLC was used to measure extracellular glutamate and tissue glutathione concentrations. Acute administration of sulfasalazine (8-16 mg/kg, IP) was used to decrease system xc (-) activity. Behavior was measured using attentional set shifting, elevated plus maze, open-field maze, Porsolt swim test, and social interaction paradigm. RESULTS The expression of xCT mRNA was detected throughout the brain, with high expression in several structures including the basolateral amygdala and prefrontal cortex. Doses of sulfasalazine that produced a reduction in extracellular glutamate levels were identified and subsequently used in the behavioral experiments. Sulfasalazine impaired performance in attentional set shifting and reduced the amount of time spent in an open arm of an elevated plus maze and the center of an open-field maze without altering behavior in a Porsolt swim test, total distance moved in an open-field maze, or social interaction. CONCLUSIONS The widespread distribution of system xc (-) and involvement in a growing list of behaviors suggests that this form of nonvesicular glutamate release is a key component of excitatory signaling.
Collapse
Affiliation(s)
- Victoria Lutgen
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Jon Resch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Krista Qualmann
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Nicholas J. Raddatz
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Cristina Panhans
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Ellen M. Olander
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Linghai Kong
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| |
Collapse
|
9
|
Jansson LC, Louhivuori L, Wigren HK, Nordström T, Louhivuori V, Castrén ML, Åkerman KE. Effect of glutamate receptor antagonists on migrating neural progenitor cells. Eur J Neurosci 2013; 37:1369-82. [PMID: 23383979 DOI: 10.1111/ejn.12152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 02/03/2023]
Abstract
Neurotransmitters such as glutamate are potential regulators of neurogenesis. Interference with defined glutamate receptor subtypes affects proliferation, migration and differentiation of neural progenitor cells. The cellular targets for the actions of different glutamate receptor ligands are less well known. In this study we have combined calcium imaging, measurement of membrane potential, time-lapse imaging and immunocytochemistry to obtain a spatial overview of migrating mouse embryonic neural progenitor cell-derived cells responding to glutamate receptor agonists and antagonists. Responses via metabotropic glutamate receptor 5 correlated with radial glial cells and dominated in the inner migration zones close to the neurosphere. Block of metabotropic glutamate receptor 5 resulted in shorter radial glial processes, a transient increase in neuron-like cells emerging from the neurosphere and increased motility of neuron-like cells. α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors are present on the majority of migrating neuronal cells, which with time accumulate at the outer edge of the migration zone. Blocking these receptors leads to an enhanced extension of radial glial processes and a reduced motility of neuron-like cells. Our results indicate that functional glutamate receptors have profound effects on the motility of neural progenitor cells. The main target for metabotropic glutamate receptor 5 appears to be radial glial cells while AMPA/kainate receptors are mainly expressed in newborn neuronal cells and regulate the migratory progress of these cells. The results suggest that both metabotropic glutamate receptor 5 and AMPA/kainate receptors are of importance for the guidance of migrating embryonic progenitor cells.
Collapse
Affiliation(s)
- Linda C Jansson
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
10
|
Hirata T, Kumada T, Kawasaki T, Furukawa T, Aiba A, Conquet F, Saga Y, Fukuda A. Guidepost neurons for the lateral olfactory tract: expression of metabotropic glutamate receptor 1 and innervation by glutamatergic olfactory bulb axons. Dev Neurobiol 2012; 72:1559-76. [PMID: 22539416 DOI: 10.1002/dneu.22030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/22/2012] [Indexed: 12/31/2022]
Abstract
The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest-generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype-1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets.
Collapse
Affiliation(s)
- Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bridges R, Lutgen V, Lobner D, Baker DA. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 2012; 64:780-802. [PMID: 22759795 PMCID: PMC3400835 DOI: 10.1124/pr.110.003889] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richard Bridges
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | |
Collapse
|
12
|
Sharova VS, Izvol’skaya MS, Voronova SN, Zakharova LA. Effect of bacterial endotoxin on migration of gonadotropin-releasing hormone-producing neurons in rat embryogenesis. Russ J Dev Biol 2011. [DOI: 10.1134/s106236041106004x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ohmomo H, Ehara A, Yoshida S, Shutoh F, Ueda SI, Hisano S. Temporally distinct expression of vesicular glutamate transporters 1 and 2 during embryonic development of the rat olfactory system. Neurosci Res 2011; 70:376-82. [PMID: 21609737 DOI: 10.1016/j.neures.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
To study the development of glutamatergic neurons during the main olfactory bulb morphogenesis in rats, we examined the expression of vesicular glutamate transporters 1 (VGLUT1) and 2 (VGLUT2). On VGLUT1, expressions of mRNA and immunoreactivity were first detected in the mitral cell layer on embryonic day (E) 17.5 and E18.5, respectively, and persisted in the E20.5 olfactory bulb. Much earlier (on E12.5) than VGLUT1, expressions of VGLUT2 mRNA and/or immunoreactivity were found in the olfactory epithelium, migratory cells and telencephalon. On E14.5, the mRNA expression was also observed in the prospective bulbar region and vomeronasal organ, while immunoreactivity existed in migratory cells and growing fibers. Some fibers were observed in the deep telencephalic wall. From E16.5 onward, mRNA expression became gradually detectable in cells of the mitral cell layer with development. On E17.5, immunoreactivity was first found in fibers of the developing olfactory bulb and in some immature mitral cells from E18.5 to E20.5. The present study clarifies the expression of VGLUT2 precedent to VGLUT1 during olfactory bulb morphogenesis, suggesting differential contribution of the two VGLUT subtypes to glutamate-mediated embryonic events.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Franceschini I, Desroziers E, Caraty A, Duittoz A. The intimate relationship of gonadotropin-releasing hormone neurons with the polysialylated neural cell adhesion molecule revisited across development and adult plasticity. Eur J Neurosci 2010; 32:2031-41. [DOI: 10.1111/j.1460-9568.2010.07517.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Iremonger KJ, Constantin S, Liu X, Herbison AE. Glutamate regulation of GnRH neuron excitability. Brain Res 2010; 1364:35-43. [PMID: 20807514 DOI: 10.1016/j.brainres.2010.08.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 11/28/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neuronal network is the master controller of the reproductive axis. It is widely accepted that the amino acid transmitters GABA and glutamate play important roles in controlling GnRH neuron excitability. However, remarkably few studies have examined the functional role of direct glutamate regulation of GnRH neurons. Dual-labeling investigations have shown that GnRH neurons express receptor subunits required for AMPA, NMDA and kainate signaling in a heterogeneous manner. Electrophysiological and calcium imaging studies have confirmed this heterogeneity and shown that while the majority of adult GnRH neurons express AMPA/kainate receptors, only small sub-populations have functional NMDA or metabotropic glutamate receptors. Accumulating evidence suggests that one important role of direct glutamate signaling at GnRH neurons is for their activation at the time of puberty. Whereas in vivo studies have indicated the importance of NMDA signaling within the whole of the GnRH neuronal network, including afferent neurons and glia, investigations at the level of the GnRH neuron suggest that peripubertal changes in AMPA receptor expression may be dominant in the mouse. The sources of glutamatergic inputs to the GnRH neurons are only just beginning to be examined and include the anteroventral periventricular nucleus as well as the possibility that GnRH neurons may use glutamate as a neurotransmitter in recurrent collateral innervation. It is expected that a full understanding of the glutamatergic regulation of GnRH neurons will provide significant insight into the mechanisms underlying their control of reproductive function.
Collapse
Affiliation(s)
- Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
16
|
Abstract
Oscillations in intracellular calcium levels have been described in GnRH-1 neurons in both prenatal and adult cells. However, differences have been reported in the mechanisms underlying these [Ca(2+)](i) oscillations, dependent on the model used. The goal of this study was to address whether these changes depend on the maturation status of GnRH-1 neurons by assaying prenatal GnRH-1 cells maintained in explants, at two different developmental stages. This report documents an increase in the frequency of [Ca(2+)](i) oscillations between 1 and 3 wk of in vitro maturation. During the early stage, [Ca(2+)](i) oscillations are blocked by tetrodotoxin and are mainly triggered by excitatory neurotransmitters, gamma-aminobutyric acid (GABA), and glutamate. In contrast, in the later stage, some cells exhibit residual tetrodotoxin-insensitive [Ca(2+)](i) oscillations, which are sustained by action potential-independent GABA and glutamate release. The strength of these two excitatory inputs remained relatively constant during the maturation process, and the increase in frequency of [Ca(2+)](i) oscillations observed at the later stage is due to a novel excitatory input carried by cholecystokinin. Together, these data indicate developmentally regulated release and interactions of neurotransmitters (known regulators of GnRH-1 cells in adults) and point to extrinsic factors regulating GnRH-1 cellular physiology.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland 20892-3703, USA
| | | | | |
Collapse
|
17
|
Izvol’skaya MS, Sharova VS, Zakharova LA. Mechanisms of hypothalamic-pituitary and immune system regulation: The role of gonadotropin-releasing hormone and immune mediators. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010040084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Inhibition of N-methyl-D-aspartate receptor activity resulted in aberrant neuronal migration caused by delayed morphological development in the mouse neocortex. Neuroscience 2010; 169:609-18. [PMID: 20497907 DOI: 10.1016/j.neuroscience.2010.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 11/24/2022]
Abstract
Embryonic and neonatal neocortical neurons already express functional N-methyl-D-aspartate (NMDA) receptors before they form synapses. To elucidate the role of NMDA receptors in neuronal migration in the developing neocortex, we visualized radially migrating neurons by transferring the enhanced green fluorescent protein (EGFP) gene into the ventricular zone (VZ) of the mouse neocortex using in utero electroporation at E15.5. Two days later, we prepared neocortical slices and examined the EGFP-positive cells using time-lapse imaging in the presence of the NMDA receptor antagonist Cerestat. The EGFP-positive cells generated in the VZ in the control slices exhibited a multipolar morphology, but within several hours they became bipolar (with a leading process and an axon-like process) and migrated toward the pial surface. By contrast, many of the multipolar cells in the Cerestat-treated slices failed to extend either process and become bipolar, and frequently changed direction, although they ultimately reached their destination even after Cerestat-treatment. To identify the molecules responding for mediating NMDA signaling during neuronal migration and the changes in morphology observed above, we here focused on Src family kinases (SFKs), which mediate a variety of neuronal functions including migration and neurite extension. We discovered that the activity of Src and Fyn was reduced by Cerestat. These findings suggest that NMDA receptors are involved in neuronal migration and morphological changes into a bipolar shape, and in the activation of Src and Fyn in the developing neocortex.
Collapse
|
19
|
Constantin S, Jasoni CL, Wadas B, Herbison AE. Gamma-aminobutyric acid and glutamate differentially regulate intracellular calcium concentrations in mouse gonadotropin-releasing hormone neurons. Endocrinology 2010; 151:262-70. [PMID: 19864483 DOI: 10.1210/en.2009-0817] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple factors regulate the activity of the GnRH neurons responsible for controlling fertility. Foremost among neuronal inputs to GnRH neurons are those using the amino acids glutamate and gamma-aminobutyric acid (GABA). The present study used a GnRH-Pericam transgenic mouse line, enabling live cell imaging of intracellular calcium concentrations ([Ca(2+)](i)) to evaluate the effects of glutamate and GABA signaling on [Ca(2+)](i) in peripubertal and adult mouse GnRH neurons. Activation of GABA(A), N-methyl-d-aspartate, or alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate acid (AMPA) receptors was found to evoke an increase in [Ca(2+)](i), in subpopulations of GnRH neurons. Approximately 70% of GnRH neurons responded to GABA, regardless of postnatal age or sex. Many fewer (approximately 20%) GnRH neurons responded to N-methyl-d-aspartate, and this was not influenced by postnatal age or sex. In contrast, about 65% of adult male and female GnRH neurons responded to AMPA compared with about 14% of male and female peripubertal mice (P < 0.05). The mechanisms underlying the ability of GABA and AMPA to increase [Ca(2+)](i) in adult GnRH neurons were evaluated pharmacologically. Both GABA and AMPA were found to evoke [Ca(2+)](i) increases through a calcium-induced calcium release mechanism involving internal calcium stores and inositol-1,4,5-trisphosphate receptors. For GABA, the initial increase in [Ca(2+)](i) originated from GABA(A) receptor-mediated activation of L-type voltage-gated calcium channels, whereas for AMPA this appeared to involve direct calcium entry through the AMPA receptor. These observations show that all of the principal amino acid receptors are able to control [Ca(2+)](i) in GnRH neurons but that they do so in a postnatal age- and intracellular pathway-specific manner.
Collapse
Affiliation(s)
- Stephanie Constantin
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
20
|
Sergeeva A, Jansen HT. Neuroanatomical plasticity in the gonadotropin-releasing hormone system of the ewe: seasonal variation in glutamatergic and gamma-aminobutyric acidergic afferents. J Comp Neurol 2009; 515:615-28. [PMID: 19496167 DOI: 10.1002/cne.22087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Temperate zone animals time the onset of reproductive events to coincide with specific portions of the sidereal year. Although the neural mechanisms involved remain poorly understood, a marked annual variation in the brain's sensitivity to estradiol negative feedback is thought to mediate many of the changes in neuroendocrine hormone secretion, especially that of the gonadotropin-releasing hormone (GnRH) neurons, via neural afferents. The aim of the present study was to determine whether glutamatergic inputs to GnRH neurons in sheep vary seasonally and to expand our previous observations of seasonal changes in gamma-aminobutyric acid (GABA)-ergic inputs. Brains from adult sheep were collected during the breeding season (N = 8) or the nonbreeding season (anestrus; N = 7). Confocal microscopy and optical sectioning were used to quantify the density of labeled VGLUT2 and VGAT immunoreactivity onto GnRH neurons. The results reveal a significantly greater number of VGLUT2-ir inputs to GnRH dendrites during the breeding season vs. the nonbreeding season but no seasonal changes on GnRH cell somas. The number of VGAT-ir terminals onto GnRH dendrites was reduced in the breeding season compared with the nonbreeding season. GnRH neurons were also found to receive dual-phenotype (VGLUT + VGAT) inputs; these varied with season in a manner similar to VGAT inputs. Morphologically, the numbers of branches of proximal dendrites increased significantly in a subset of GnRH neurons located near the midline. Together these results reveal a dynamic seasonal reorganization of identified inputs onto GnRH neurons and lend additional support to the overall hypothesis that seasonal modulation of GnRH neurons involves glutamatergic and GABAergic neural plasticity.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | |
Collapse
|
21
|
Clarkson J, Boon WC, Simpson ER, Herbison AE. Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 2009; 150:3214-20. [PMID: 19299459 PMCID: PMC2703539 DOI: 10.1210/en.2008-1733] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The regulation of GnRH neurons by kisspeptin is critical for normal puberty onset in mammals. In the rodent the kisspeptin neurons innervating GnRH neurons are thought to reside in the rostral periventricular area of the third ventricle (RP3V). Using kisspeptin immunocytochemistry we show that kisspeptin peptide expression in the RP3V of female mice begins around postnatal d 15 (P15) and rapidly increases to achieve adult-like levels by P30, the time of puberty onset. Ovariectomy of female pups at P15 resulted in a 70-90% reduction (P < 0.01) in kisspeptin peptide expression within the RP3V of P30 or P60 mice. Replacement of 17-beta-estradiol (E2) in P15-ovariectomized mice from P15-30 or P22-30 resulted in a complete restoration of kisspeptin peptide expression in the RP3V (P < 0.01). Kisspeptin-immunoreactive fibers throughout the hypothalamus, including the arcuate nucleus, followed the same pattern of estrogen-dependent expression. To test the absolute necessity of estrogen for kisspeptin expression in the RP3V, aromatase knockout mice were examined. Kisspeptin-immunoreactive cells were detected in the arcuate nucleus, but there was a complete absence of kisspeptin peptide in RP3V neurons of aromatase knockout adult females. These results demonstrate that E2 is essential for the prepubertal development of kisspeptin peptide within RP3V neurons and suggest that an E2-kisspeptin positive feedback mechanism exists before puberty. This implies that RP3V kisspeptin neurons are E2-dependent amplifiers of GnRH neuron activity in the prepubertal period.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
22
|
Jasoni CL, Porteous RW, Herbison AE. Anatomical location of mature GnRH neurons corresponds with their birthdate in the developing mouse. Dev Dyn 2009; 238:524-31. [DOI: 10.1002/dvdy.21869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
The influence of catecholamine on the migration of gonadotropin-releasing hormone-producing neurons in the rat foetuses. Brain Struct Funct 2008; 213:289-300. [PMID: 18841392 DOI: 10.1007/s00429-008-0197-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Catecholamines (CA) play an important role in the regulation of GnRH neurons in adults, and it is probable that they control GnRH-neuron development. Migration of GnRH neurons was evaluated in male and female rats at the 17th embryonic day (E17) and E21, following the daily treatment of their pregnant mothers from the 11th to the 16th and 20th day of gestation with alpha-methyl-para-tyrosine (alphaMPT), an inhibitor of catecholamine synthesis. High-performance liquid chromatography with electrochemical detection (HPLC-ED) was used to specify the alphaMPT-induced CA depletion. There was a 50-70% decrease in dopamine and noradrenaline content in the nose and in the brain of alphaMPT-treated foetuses, proving the efficacy of this pharmacological model. Immunohistochemistry was used to evaluate the percentage (%) of GnRH neurons along their migration pathway from the vomeronasal organ (VNO) in the nose to the septo-preoptic area in the forebrain which is considered as an index of neuron migration. Special attention was paid to the topographic relationships of GnRH neurons with catecholaminergic fibres. These were observed in apposition with GnRH neurons in the entrance to the forebrain. In CA-deficient foetuses, the percentage of GnRH neurons located in the rostral regions extending from the VNO to the septum was greater than in controls. However, no statistically significant difference was found in the forebrain which extended from the septum to the retrochiasmatic area. In conclusion, these data suggest that endogenous catecholamines stimulate the GnRH neuron migration in ontogenesis.
Collapse
|
24
|
Toba Y, Tiong JD, Ma Q, Wray S. CXCR4/SDF-1 system modulates development of GnRH-1 neurons and the olfactory system. Dev Neurobiol 2008; 68:487-503. [PMID: 18188864 DOI: 10.1002/dneu.20594] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 influence neuronal migration and have been identified in nasal regions. Gonadotropin releasing hormone-1 (GnRH-1) neurons migrate from nasal regions into the developing forebrain, where postnatally they control reproduction. This study examined the role of SDF-1/CXCR4 in development of the GnRH-1/olfactory systems. Migrating GnRH-1 neurons were CXCR4 immunopositive as were the fibers along which they migrate. SDF-1 transcripts were detected in olfactory epithelium and vomeronasal organ, while SDF-1 immunoreactivity highlighted the GnRH-1 migratory pathway. CXCR4-deficient mice showed a decrease in GnRH-1 cells at the nasal forebrain junction and in brain, but the overall migratory pathway remained intact, no ectopic GnRH-1 cells were detected and olfactory axons reached the olfactory bulb. To further characterize the influence of SDF-1/CXCR4 in the GnRH-1 system, nasal explants were used. CXCR4 expression in vitro was similar to that in vivo. SDF-1 was detected in a dorsal midline cell cluster as well as in migrating GnRH-1 cells. Treatment of explants with bicyclam AMD3100, a CXCR4 antagonist, attenuated GnRH-1 neuronal migration and sensory axon outgrowth. Moreover, the number of GnRH-1 neurons in the explant periphery was reduced. The effects were blocked by coincubation with SDF-1. Removal of midline SDF-1 cells did not alter directional outgrowth of olfactory axons. These results indicate that SDF-1/CXCR4 signaling in not necessary for olfactory axon guidance but rather influences sensory axon extension and GnRH-1 neuronal migration, and maintains GnRH-1 neuronal expression as the cells move away from nasal pit regions.
Collapse
Affiliation(s)
- Yoko Toba
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
25
|
Lee JM, Tiong J, Maddox DM, Condie BG, Wray S. Temporal migration of gonadotrophin-releasing hormone-1 neurones is modified in GAD67 knockout mice. J Neuroendocrinol 2008; 20:93-103. [PMID: 18081557 DOI: 10.1111/j.1365-2826.2007.01623.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH-1) neurones reside in the forebrain and regulate gonadal function via the hypothalamic-pituitary-gonadal axis. Disruption of this axis results in reproductive dysfunction. During embryonic development, GnRH-1 neurones migrate from the nasal pit through the nasal/forebrain junction (NFJ) into the developing brain. Prenatally gamma-aminobutyric acid (GABA) is excitatory and has been shown to play a role in nervous system development. Both in vivo and in vitro experiments suggest that GABA inhibits migration of GnRH-1 neurones. The present study examines the migration of GnRH-1 neurones in GAD67 knockout (KO) mice to further elucidate the role of GABA on GnRH-1 neuronal development. Three stages were examined, embryonic day (E)12.5, E14.5 and E17.5. GnRH-1 cell number and location were analysed by immunocytochemistry and in situ hybridisation histochemistry. The total number of GnRH-1 immunopositive cells was similar between wild-type (WT) and KO mice. However, significant differences were found in the overall distribution of GnRH-1 immunopositive cells in GAD67 KO compared to WT mice at all stages. Subsequent analysis by area revealed differences occurred at the NFJ with an increase in GnRH-1 cells in GAD67 KO at E14.5 and a decrease in GnRH-1 cells in GAD67 KO at E17.5. Comparable counts for cells expressing GnRH-1 transcript and protein were obtained. These data indicate that attenuated levels of GABA accelerate GnRH-1 cell migration in nasal areas as well as movement of GnRH-1 cells into the central nervous system at the NFJ.
Collapse
Affiliation(s)
- J M Lee
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
26
|
Cariboni A, Maggi R, Parnavelas JG. From nose to fertility: the long migratory journey of gonadotropin-releasing hormone neurons. Trends Neurosci 2007; 30:638-44. [PMID: 17981344 DOI: 10.1016/j.tins.2007.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 12/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells dispersed in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These neurons originate in the nasal placode and migrate, first in the nasal compartment, then through the cribriform plate and finally through the basal forebrain, before they attain their positions in the hypothalamus. Their movement through changing molecular environments suggests that numerous factors are involved in different phases of their migration. In humans, failure of GnRH neurons to migrate normally results in delayed or absent pubertal maturation and infertility. Advances in genetic and molecular biologic techniques in this decade have allowed us to gain insights into several molecules that affect the migration of GnRH neurons and, consequently, play a role in the establishment and maintenance of reproductive function.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Endocrinology, Centre of Excellence on Neurodegenerative Diseases, University of Milan, Milan 20133, Italy
| | | | | |
Collapse
|
27
|
Campbell RE. Defining the gonadotrophin-releasing hormone neuronal network: transgenic approaches to understanding neurocircuitry. J Neuroendocrinol 2007; 19:561-73. [PMID: 17532792 DOI: 10.1111/j.1365-2826.2007.01561.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gonadotrophin-releasing hormone (GnRH) neurones are the final downstream effector neurones driving the central regulation of reproductive function and fertility in all mammalian species. Although it is abundantly clear that successful fertility relies upon the communication of a variety signals regarding internal and external cues to the GnRH neuronal population, how this is achieved remains poorly understood. A range of technical limitations has posed significant hurdles to defining, with any certainty, the complexities of the synaptic neuronal network regulating GnRH neurones. However, recent advances in transgenic technology have opened up new avenues to reconsider questions aimed at understanding this critical network. This article addresses some of the latest advances that use transgenic mouse models as tools to understand the neuronal circuitry underpinning the regulation of the GnRH neurones. By incorporating standard morphological and viral tract tracing techniques with innovative transgenic tools, recent studies have uncovered previously unappreciated qualities of the GnRH neurone, including extensive dendritic lengths, numerous somal and dendritic spines and plasticity over pubertal development, along with beginning to define the primary and higher-order afferents that make up the GnRH neuronal network.
Collapse
Affiliation(s)
- R E Campbell
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| |
Collapse
|
28
|
Lin WH, Wu CH, Chen YC, Chow WY. Embryonic expression of zebrafish AMPA receptor genes: Zygotic gria2α expression initiates at the midblastula transition. Brain Res 2006; 1110:46-54. [PMID: 16887104 DOI: 10.1016/j.brainres.2006.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022]
Abstract
The AMPA-preferring receptors (AMPARs) mediate rapid excitatory synaptic transmission in the central nervous system of vertebrates. Expression profiles of 8 AMPAR genes were studied by RT-PCR analyses to elucidate the properties of AMPARs during early zebrafish development. Transcripts of all AMPAR genes are detected at the time of fertilization, suggesting maternal transcriptions of zebrafish AMPAR genes. The amounts of gria1 and gria2 transcripts are several-fold higher than that of gria3 and gria4 between 10 and 72 hpf (hour postfertilization). The edited gria2alpha transcript decreases during gastrulation period, suggesting that zygotic expression of gria2alpha begins around the time of midblastula transition. Relative to the amount of beta-actin, the amounts of AMPAR transcripts increase significantly after the completion of neurulation. The amounts of gria2 transcripts exceed the total amounts of the remaining AMPAR transcripts after 36 hpf, suggesting increases in the representation of low Ca2+ permeable AMPARs during neuronal maturation. Many but not all of the known mammalian protein-protein interaction motifs are preserved in the C-terminal domains (CTD) of zebrafish AMPARs. Before 16 hpf, the embryos express predominantly the alternative splice forms encoding longer CTD. Representations of the short CTD splice forms of gria2 and gria4alpha increase after 24 hpf, when neurulation is nearly completed.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | |
Collapse
|
29
|
Karunadasa DK, Chapman C, Bicknell RJ. Expression of pheromone receptor gene families during olfactory development in the mouse: expression of a V1 receptor in the main olfactory epithelium. Eur J Neurosci 2006; 23:2563-72. [PMID: 16817859 DOI: 10.1111/j.1460-9568.2006.04795.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the mouse, two large gene families, V1R and V2R, encoding putative pheromone receptors have been described. Studies have suggested a homotypic recognition role for V1Rs and V2Rs during development in the targeting of vomeronasal axons to specific sets of glomeruli in the accessory olfactory bulb (AOB). Analysis of the onset of expression of the V1R and V2R gene families in developing vomeronasal neurons using polymerase chain reaction and in situ hybridization now suggests that a role for these receptors in the organization of axon projections is only likely at the final stages of targeting within the AOB. Surprisingly, our studies reveal expression of a V1Rd receptor in scattered cells within the main olfactory epithelium, suggesting that limited pheromone detection may also take place in this structure. The pheromone sensory neurons of the vomeronasal system and the neuroendocrine gonadotrophin-releasing hormone (GnRH) neurons that regulate fertility both arise from progenitor cells of the nasal placode. The development of these two cell types is intimately linked, and the GnRH neuron population migrates into the forebrain during embryogenesis in close association with a subset of vomeronasal sensory axons; how GnRH neurons recognize this axon subset is unknown. We report selective expression of a V1Ra gene in the clonal NLT GnRH cell line, raising the possibility of a similar role for V1Rs or V2Rs in the directed migration of GnRH neurons. However, no expression of this gene or of other V1Rs and V2Rs is detectable at the cellular level in migrating GnRH neurons in the mouse.
Collapse
Affiliation(s)
- Delicia K Karunadasa
- Laboratory of Neuronal Development & Survival, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
30
|
Cottrell EC, Campbell RE, Han SK, Herbison AE. Postnatal remodeling of dendritic structure and spine density in gonadotropin-releasing hormone neurons. Endocrinology 2006; 147:3652-61. [PMID: 16644918 DOI: 10.1210/en.2006-0296] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GnRH neurons represent the output cells of the neuronal network controlling gonadal function. Their activation initiates the onset of puberty, but the underlying mechanisms remain unclear. Using a GnRH-green fluorescent protein mouse model, we have been able to fill individual GnRH neurons with biocytin in the acute brain slice preparation to examine their morphological characteristics across puberty. GnRH neurons in prepubertal male mice [postnatal d 10-15 (PND10-15)] exhibited half as many dendritic and somal spines as adult male mice (>PND60; P < 0.05) but, surprisingly, a much more complex dendritic tree with 5-fold greater branch points (P < 0.05). Experiments examining somal and proximal dendritic spine numbers in vivo, in perfusion-fixed tissue from GnRH-green fluorescent protein mice, revealed the same pattern of approximately twice as many spines on adult GnRH neurons compared with PND10 male mice (P < 0.01). In contrast to the spine density alterations, reflecting changing excitatory input, confocal immunofluorescence studies revealed no differences in the numbers of vesicular gamma-aminobutyric acid transporter-immunoreactive elements adjacent to GnRH soma or proximal dendrites in prepubertal and adult male mice. Experiments evaluating dendritic tree structure in vivo (PND3, -10, and -35 and adult) revealed that GnRH neurons located in the rostral preoptic area, but not the medial septum, exhibited a more complex branching pattern at PND10, but that this was adult-like by PND35. These studies demonstrate unexpected dendritic tree remodeling in the GnRH neurons and provide evidence for an increase in direct excitatory inputs to GnRH neurons across the time of puberty.
Collapse
Affiliation(s)
- Elizabeth C Cottrell
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin 9001, New Zealand
| | | | | | | |
Collapse
|
31
|
Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K. From the Cover: Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 2006; 103:12161-6. [PMID: 16880397 PMCID: PMC1524927 DOI: 10.1073/pnas.0509144103] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous in vitro studies have shown that the neurotransmitter glutamate is important in brain development. Paradoxically, loss-of-function mouse models of glutamatergic signaling that are generated by genetic deletion of glutamate receptors or glutamate release show normal brain assembly. We examined the direct consequences on brain development of extracellular glutamate buildup due to the depletion of the glutamate transporters GLAST and GLT1. GLAST/GLT1 double knockout mice show multiple brain defects, including cortical, hippocampal, and olfactory bulb disorganization with perinatal mortality. Here, we report abnormal formation of the neocortex in GLAST/GLT1 mutants. Several essential aspects of neuronal development, such as stem cell proliferation, radial migration, neuronal differentiation, and survival of SP neurons, were impaired. These results provide direct in vivo evidence that GLAST and GLT1 are necessary for brain development through regulation of extracellular glutamate concentration and show that an important mechanism is likely to be maintenance of glutamate-mediated synaptic transmission.
Collapse
Affiliation(s)
- Toshiko R. Matsugami
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Laboratory for Neural Architecture
| | | | - Michihiro Mieda
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Keiko Yamada
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | | | | | - Kunihiko Obata
- **Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; and
| | - Tsutomu Hashikawa
- Laboratory for Neural Architecture
- To whom correspondence may be addressed. E-mail:
or
| | - Kohichi Tanaka
- *Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Corporation, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
32
|
Clarkson J, Herbison AE. Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Mol Cell Endocrinol 2006; 254-255:32-8. [PMID: 16781054 DOI: 10.1016/j.mce.2006.04.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neurons represent the critical cell type activated to induce puberty in mammals. However, the mechanisms underlying their activation remain unclear. As the principal amino acid neurotransmitters in the brain, GABA and glutamate are known to have critical roles in the development of neuronal networks. This review provides an update on what is known about GABA and glutamate signaling at the GnRH neuron across development. An examination of morphological, receptor subunit expression, and electrophysiological data suggest that GABAA receptor signaling develops in advance of glutamatergic signaling. However, compared with other networks, the switch from GABAA receptor depolarization to hyperpolarization of GnRH neurons is delayed until the time of puberty. These observations suggest that developing GnRH neurons exhibit a sequence of GABA-->glutamate signaling similar to that of other neuronal networks but that it is significantly elongated so as to only be complete by the time of puberty onset.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | |
Collapse
|
33
|
Abstract
Neurons that synthesize GnRH are critical brain regulators of the reproductive axis, yet they originate outside the brain and must migrate over long distances and varied environments to get to their appropriate positions during development. Many studies, past and present, are providing clues for the types of molecules encountered and movements expected along the migratory route. Recent studies provide real-time views of the behavior of GnRH neurons in the context of in vitro preparations that model those in vivo. Live images provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more alterations in direction after they enter the brain. The heterogeneity of molecular phenotypes for GnRH neurons likely ensures that multiple external factors will be found that regulate the migration of different portions of the GnRH neuronal population at different steps along the route. Molecules distributed in gradients both in the peripheral olfactory system and basal forebrain may be particularly influential in directing the appropriate movement of GnRH neurons along their arduous migration. Molecules that mediate the adhesion of GnRH neurons to changing surfaces may also play critical roles. It is likely that the multiple external factors converge on selective signal transduction pathways to engage the mechanical mechanisms needed to modulate GnRH neuronal movement and ultimately migration.
Collapse
Affiliation(s)
- Stuart A Tobet
- Colorado State University, Department of Biomedical Sciences, 1617 Campus Delivery, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
34
|
Toba Y, Pakiam JG, Wray S. Voltage-gated calcium channels in developing GnRH-1 neuronal system in the mouse. Eur J Neurosci 2005; 22:79-92. [PMID: 16029198 DOI: 10.1111/j.1460-9568.2005.04194.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Migration of gonadotropin-releasing hormone-1 (GnRH-1) neurons from the nasal placode into the central nervous system occurs in all vertebrates. This study characterizes the expression of L- and N-type voltage-gated calcium channels (VGCCs) in migrating GnRH-1 neurons in mice. Class C (L-type) and class B (N-type) VGCGs were detected in GnRH-1 cells and cells in the olfactory and vomeronasal epithelium during prenatal development. This expression pattern was mimicked in a nasal explant model known to retain many characteristics of GnRH-1 development in vivo. Using this in vitro system, perturbation studies were performed to elucidate the role of VGCCs in GnRH-1 neuronal development. This report shows that olfactory axon outgrowth and GnRH-1 neuronal migration are attenuated when nasal explants are grown in calcium-free media, and that this effect is temporally restricted to an early developmental period. Blockade of either the L- or the N-type channel did not alter GnRH-1 cell number or overall olfactory axon outgrowth. However, blockade of N-type channels altered the distribution of GnRH-1 neurons in the periphery of the nasal explants. In these explants, more GnRH-1 neurons were located proximal to, and fewer GnRH-1 neurons distal to, the main tissue mass, suggesting a general decrease in the rate of GnRH-1 neuronal migration. These results indicate that extracellular calcium is required for initiating GnRH-1 neuronal migration and that these events are partially dependent on N-type VGCC signals.
Collapse
Affiliation(s)
- Yoko Toba
- Cellular and Developmental Neurobiology Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Bless EP, Walker HJ, Yu KW, Knoll JG, Moenter SM, Schwarting GA, Tobet SA. Live view of gonadotropin-releasing hormone containing neuron migration. Endocrinology 2005; 146:463-8. [PMID: 15486219 DOI: 10.1210/en.2004-0838] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurons that synthesize GnRH control the reproductive axis and migrate over long distances and through different environments during development. Prior studies provided strong clues for the types of molecules encountered and movements expected along the migratory route. However, our studies provide the first real-time views of the behavior of GnRH neurons in the context of an in vitro preparation that maintains conditions comparable to those in vivo. The live views provide direct evidence of the changing behavior of GnRH neurons in their different environments, showing that GnRH neurons move with greater frequency and with more changes in direction after they enter the brain. Perturbations of guiding fibers distal to moving GnRH neurons in the nasal compartment influenced movement without detectable changes in the fibers in the immediate vicinity of moving GnRH neurons. This suggests that the use of fibers by GnRH neurons for guidance may entail selective signaling in addition to mechanical guidance. These studies establish a model to evaluate the influences of specific molecules that are important for their migration.
Collapse
Affiliation(s)
- Elizabeth P Bless
- The Shriver Center at the University of Massachusetts Medical School, Waltham, Massachusetts 02254, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Honma S, Kawano M, Hayashi S, Kawano H, Hisano S. Expression and immunohistochemical localization of vesicular glutamate transporter 2 in the migratory pathway from the rat olfactory placode. Eur J Neurosci 2004; 20:923-36. [PMID: 15305861 DOI: 10.1111/j.1460-9568.2004.03544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The localization of vesicular glutamate transporter 2 (VGLUT2) was examined by immunohistochemistry and in situ hybridization histochemistry in the developing rat olfactory region with special relation to the spatiotemporal location of NCAM, a neural cell adhesion molecule expressed in differentiated neurons, and the calcium-binding protein calbindin D-28k, a marker of neurons migrating from the vomeronasal organ anlage (Y. Toba et al. (2001) J. Neuroendocrinol., 13, 683-694). Both VGLUT2 and NCAM immunoreactivities were first detected at embryonic day 11.5 (E11.5) in the neuronal cell mass beneath the telencephalic vesicle. After E12.5, VGLUT2-immunoreactive cells were detected in the migratory pathways from both medial and lateral olfactory pits, anlagen of the vomeronasal organ and olfactory epithelium. Between E15.5 and E19.5, moderate to intense VGLUT2 immunoreactivity was observed in cell clusters situated along NCAM-bearing vomeronasal nerves, and frequently colocalized with calbindin D-28k immunoreactivity. Using in situ hybridization histochemistry, VGLUT2 mRNA signals were detected in the clustered cells as well as in cells of the vomeronasal and olfactory epithelium. After E20.5, migrating cells gradually decreased in number and VGLUT2 immunoreactivity attenuated in the clustered cells, although calbindin D-28k immunoreactivity in these residual cells was still intense. The presence of intense VGLUT2 immunoreactivity in neurons actively migrating from the olfactory placode suggests that this transporter is involved in the migratory process of these neurons.
Collapse
Affiliation(s)
- Shizuka Honma
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
37
|
Moya F, Valdeolmillos M. Polarized Increase of Calcium and Nucleokinesis in Tangentially Migrating Neurons. Cereb Cortex 2004; 14:610-8. [PMID: 15054076 DOI: 10.1093/cercor/bhh022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cortical interneurons originate from the ganglionic eminences and reach their final position in the cortex via tangential migratory routes. The mechanisms of this migration are poorly understood. Here we have performed confocal time-lapse analysis of cell movement in the intermediate zone of embryonic mouse cortical slices in order to directly visualize their mode of migration. Tangentially migrating neurons moved by nucleokinesis, characterized by active phases of discontinuous advances of the nucleus followed by periods of quiescence. Dissociated cells from the ganglionic eminences also showed nucleokinesis associated with an increase of intracellular calcium, [Ca(2+)](i) Calcium elevation was greatest in the proximal region of the leading process, a zone with a wide distribution of gamma-tubulin. General increases in [Ca(2+)](i) elicited by microperfussion with neurotransmitters did not elicit nucleokinesis. These results show that tangential migration uses nucleokinesis, a cell-intrinsic process in which calcium signalling is local, directional and highly regulated.
Collapse
Affiliation(s)
- Fernando Moya
- Instituto de Neurociencias-CSIC, Universidad Miguel Hernández, Campus de San Juan, Apartado 18, 03550 San Juan de Alicante, Spain
| | | |
Collapse
|
38
|
Kiss J, Kocsis K, Csáki A, Halász B. Evidence for vesicular glutamate transporter synapses onto gonadotropin-releasing hormone and other neurons in the rat medial preoptic area. Eur J Neurosci 2003; 18:3267-78. [PMID: 14686900 DOI: 10.1111/j.1460-9568.2003.03085.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The medial preoptic area is a key structure in the control of reproduction. Several data suggest that excitatory amino acids are involved in the regulation of this function and the major site of this action is the medial preoptic region. Data concerning the neuromorphology of the glutamatergic innervation of the medial preoptic area are fragmentary. The present investigations were focused on: (i) the morphology of the vesicular glutamate transporter 1 (VGluT1)- and vesicular glutamate transporter 2 (VGluT2)-immunoreactive nerve terminals, which are considered to be specific to presumed glutamatergic neuronal elements, in the medial preoptic area of rat; and (ii) the relationship between these glutamate transporter-positive endings and the gonadotropin-releasing hormone (GnRH) neurons in the region. Single- and double-label immunocytochemistry was used at the light and electron microscopic level. There was a weak to moderate density of VGluT1- and a moderate to intense density of VGluT2-immunoreactive elements in the medial preoptic area. Electron microscopy revealed that both VGluT1- and VGluT2-immunoreactive boutons made asymmetric type synaptic contacts with unlabelled neurons. VGluT2-labelled, but not VGluT1-labelled, axon terminals established asymmetric synaptic contacts on GnRH-immunostained neurons, mainly on their dendrites. The present findings are the first electron microscopic examinations on the glutamatergic innervation of the rat medial preoptic area. They provide direct neuromorphological evidence for the existence of direct glutamatergic innervation of GnRH and other neurons in the rat medial preoptic area.
Collapse
Affiliation(s)
- J Kiss
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Semmelweis University, H-1094 Budapest, Tüzoltó u. 58., Hungary
| | | | | | | |
Collapse
|
39
|
Pimpinelli F, Redaelli E, Restano-Cassulini R, Curia G, Giacobini P, Cariboni A, Wanke E, Bondiolotti GP, Piva F, Maggi R. Depolarization differentially affects the secretory and migratory properties of two cell lines of immortalized luteinizing hormone-releasing hormone (LHRH) neurons. Eur J Neurosci 2003; 18:1410-8. [PMID: 14511321 DOI: 10.1046/j.1460-9568.2003.02866.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this report we studied and compared the biochemical and the electrophysiological characteristics of two cell lines (GT1-7 and GN11) of immortalized mouse LHRH-expressing neurons and the correlation with their maturational stage and migratory activity. In fact, previous results indicated that GN11, but not GT1-7, cells exhibit an elevated motility in vitro. The results show that the two cell lines differ in terms of immunoreactivity for tyrosine hydroxylase and nestin as well as of production and release of 3,4-dihydroxyphenylalanine (DOPA) and of intracellular distribution and release of the LHRH. Patch-clamp recordings in GN11 cells, reveal the presence of a single inward rectifier K+ current indicative of an immature neuronal phenotype (neither firing nor electrical activity). In contrast, as known from previous studies, GT1-7 cells show the characteristics of mature LHRH neurons with a high electrical activity characterized by spontaneous firing and excitatory postsynaptic potentials. K+-induced depolarization induces in GT1-7 cells, but not in GN11 cells, a strong increase in the release of LHRH in the culture medium. However, depolarization of GN11 cells significantly decreases their chemomigratory response. In conclusion, these results indicate that GT1-7 and GN11 cells show different biochemical and electrophysiological characteristics and are representative of mature and immature LHRH neurons, respectively. The early stage of maturation of GN11 cells, as well as the low electrical activity detected in these cells, appears to correlate with their migratory activity in vitro.
Collapse
Affiliation(s)
- Federica Pimpinelli
- Laboratory of Developmental Neuroendocrinology, Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milano, Via G. Balzaretti, 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Choe Y, Jung H, Khang I, Kim K. Selective roles of protein kinase C isoforms on cell motility of GT1 immortalized hypothalamic neurones. J Neuroendocrinol 2003; 15:508-15. [PMID: 12694376 DOI: 10.1046/j.1365-2826.2003.01023.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we demonstrated that activation of the protein kinase C (PKC) signalling pathway promoted morphological differentiation of GT1 hypothalamic neurones via an increase in beta-catenin, a cell-cell adhesion molecule, indicating a possible involvement of PKC in cellular motility. In this study, we explored the differential roles of PKC isoforms in GT1 cell migration. First, we transiently transfected GT1 cells with enhanced green fluorescence protein (EGFP)-tagged actin to monitor the dynamic rearrangement of filamentous-actin (F-actin) in living cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC activator, markedly promoted lamellipodia formation, while safingol (a PKC alpha-selective inhibitor) blocked the TPA-induced lamellipodial actin structure. Both wound-healing and Boyden migration assays showed that TPA treatment promoted neuronal migration of GT1 cells; however, cotreatment of TPA with safingol or rottlerin (a PKC delta-selective inhibitor) clearly blocked this TPA effect, indicating that both PKC alpha and PKC delta may be positive regulators of neuronal migration. By contrast, PKC gamma-EGFP-expressing GT1 cells exhibited decreased cellular motility and weak staining for actin stress fibres, suggesting that PKC gamma may act as a negative mediator of cell migration in these neurones. Among the PKC downstream signal molecules, p130Cas, a mediator of cell migration, and its kinase, focal adhesion kinase (FAK), increased following TPA treatment; phosphorylation of p130Cas was induced in a PKC alpha-dependent manner. Together, these results demonstrate that PKC alpha promotes GT1 neuronal migration by activating focal adhesion complex proteins such as p130Cas and FAK.
Collapse
Affiliation(s)
- Y Choe
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
41
|
Chakraborty TR, Ng L, Gore AC. Colocalization and hormone regulation of estrogen receptor alpha and N-methyl-D-aspartate receptor in the hypothalamus of female rats. Endocrinology 2003; 144:299-305. [PMID: 12488358 DOI: 10.1210/en.2002-220749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effects of N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation on neuroendocrine function can be modulated by the steroid hormone milieu. For example, the hypothalamic GnRH neurons, the primary cells regulating reproductive function, are stimulated by NMDAR agonists, and this is greatly potentiated by estrogen. We hypothesized that the actions of glutamate and estrogen may converge at target cells in the brain in which the NMDA and estrogen receptors (ERs) are coexpressed. To this end, we used quantitative stereological techniques to determine the colocalization of the obligatory NMDAR subunit, NR1, and the ERalpha, in the anteroventral periventricular nucleus and the medial preoptic nucleus, two critical regions for reproductive physiology and behavior. We observed extensive colocalization of ERalpha and NR1 in these brain regions (approximately 80%). In the anteroventral periventricular nucleus, treatment of ovariectomized rats with estrogen up-regulated the coexpression, whereas in the medial preoptic nucleus, estrogen had no effect, demonstrating a regional specificity to the estrogen sensitivity. The number of ERalpha cells that did not express NR1 was not altered by estrogen treatment in either brain region. Thus, we speculate that the extensive colocalization of ERalpha and the NMDAR provides an anatomical level at which estrogen and glutamate can act at target cells, and potentially synergize, to influence neuroendocrine and autonomic functions.
Collapse
Affiliation(s)
- Tandra R Chakraborty
- Kastor Neurobiology of Aging Labs, Fishberg Research Center for Neurobiology, New York, New York 10029, USA
| | | | | |
Collapse
|
42
|
Lax P, Limatola C, Fucile S, Trettel F, Di Bartolomeo S, Renzi M, Ragozzino D, Eusebi F. Chemokine receptor CXCR2 regulates the functional properties of AMPA-type glutamate receptor GluR1 in HEK cells. J Neuroimmunol 2002; 129:66-73. [PMID: 12161022 DOI: 10.1016/s0165-5728(02)00178-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Experiments were conducted in both HEK cells and cerebellar neurons to investigate whether CXC chemokine receptor 2 (CXCR2) is functionally coupled to GluR1. The co-expression of CXCR2 with GluR1 in HEK cells increased (i) the GluR1 "apparent" affinity for the transmitter; (ii) the GluR1 channel open probability; and (iii) GluR1 binding site cooperativity upon CXCR2 stimulation with CXC chemokine ligand 2 (CXCL2). The affinity of C-terminal-deleted GluR1 for glutamate (Glu) remained stable instead. Furthermore, CXCL2 increased the binding site cooperativity of AMPA receptors in rat cerebellar granule cells; and the amplitude of spontaneous excitatory postsynaptic current (sEPSCs) in Purkinje neurons (PNs). Our findings indicate that the coupling of CXCR2 with GluR1 may modulate glutamatergic synaptic transmission.
Collapse
MESH Headings
- Animals
- Binding Sites/drug effects
- Binding Sites/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Cerebellar Cortex/drug effects
- Cerebellar Cortex/immunology
- Cerebellar Cortex/metabolism
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- DNA, Complementary/genetics
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Humans
- Ion Channels/genetics
- Ion Channels/immunology
- Neurons/drug effects
- Neurons/immunology
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, AMPA/genetics
- Receptors, AMPA/immunology
- Receptors, AMPA/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Receptors, Interleukin-8B/metabolism
- Synapses/immunology
- Synapses/metabolism
- Synaptic Transmission/immunology
Collapse
Affiliation(s)
- P Lax
- Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma, Piazzale Aldo Moro 5, I00185, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The development of the neuroendocrine hypothalamus has been studied using a variety of neuroanatomical and molecular techniques. Here, the major findings that mold our understanding of hypothalamic development are reviewed. The rat hypothalamus is generated predominantly from the third ventricular neuroepithelium in a "lateral early to medial late" pattern dictated perhaps by the medially receding third ventricle. Neuroendocrine neurons seem to exhibit a delayed migrational strategy, showing relatively early birthdates, although they are located in the latest-generated, periventricular nuclei. Several homeobox genes seem to play a role in hypothalamic development, and gene knockout experiments implicate a number of genes of importance in the generation of the neuroendocrine cell type.
Collapse
Affiliation(s)
- Eleni A Markakis
- Department of Neurobiology, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06510-8001, USA.
| |
Collapse
|
44
|
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons, critical for reproduction, are derived from the nasal placode and migrate into the brain during prenatal development. Once within the brain, GnRH-1 cells become integral components of the CNS-pituitary-gonadal axis, essential for reproductive maturation and maintenance of reproductive function in adults. This review focuses on the lineage and development of the GnRH-1 neuroendocrine system. Although the migration of these cells from nose to brain has been well documented in a variety of species, many questions remain concerning the melecules and cues directing GnRH-1 cell differentiation, migration, axon targeting, and establishment and control of GnRH-1 secretion. These process most likely involve multiple and redundant cues because if these mechanisms fail, reproduction dysfunction will ensue and guarantee that this defect does not remain in the gene pool.
Collapse
Affiliation(s)
- S Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 5A-21, Bethesda, MD 20892-4156, USA.
| |
Collapse
|
45
|
Han SK, Abraham IM, Herbison AE. Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology 2002; 143:1459-66. [PMID: 11897704 DOI: 10.1210/endo.143.4.8724] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The amino acid gamma-aminobutyric acid (GABA) plays an important role in the regulation of the GnRH neurons. We examined whether GABA depolarizes or hyperpolarizes GnRH neurons over postnatal development using gramicidin, perforated-patch electrophysiology combined with GnRH-LacZ transgenic mice in whom GnRH neurons can be made to fluoresce. The basic membrane properties and GABA responsiveness of GnRH neurons were not altered by transgene expression or fluorescence. Ten of 12 immature GnRH neurons (10-17 d) were depolarized by GABA in a direct and dose-dependent manner that was blocked by a GABA(A) receptor antagonist. In peripubertal GnRH neurons (25-30 d), GABA exerted depolarizing (4/11) as well as hyperpolarizing (5/11) effects on GnRH neurons. In adult female mice, GABA was found to exert exclusively hyperpolarizing actions on GnRH neurons (9/10) that were direct and mediated by the GABA(A) receptor. GABA switched from depolarizing to hyperpolarizing actions around postnatal d 31, the time of vaginal opening. Unidentified preoptic area neurons exhibited predominantly hyperpolarizing responses to GABA at all three postnatal stages. These findings demonstrate that GnRH neurons display an unusually late postnatal switch in their response to GABA. They also provide the first direct evidence that GABA inhibits the electrical activity of postpubertal GnRH neurons.
Collapse
Affiliation(s)
- Seong-Kyu Han
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | |
Collapse
|
46
|
Gore AC, Oung T, Woller MJ. Age-related changes in hypothalamic gonadotropin-releasing hormone and N-methyl-D-aspartate receptor gene expression, and their regulation by oestrogen, in the female rat. J Neuroendocrinol 2002; 14:300-9. [PMID: 11963827 DOI: 10.1046/j.1365-2826.2002.00777.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During reproductive ageing, the oestrous cycles of female rats become irregular and eventually cease. The mechanisms for reproductive senescence in rodents are believed to involve changes in hypothalamic neurones, including gonadotropin-releasing hormone (GnRH) cells and their afferent inputs. In addition, effects of oestrogen on hypothalamic function may vary in animals of different ages. These issues were addressed using young (aged 4-5 months), middle-aged (12-14 months) and old (24-26 months) female Sprague-Dawley rats. Animals were ovariectomized and given oestrogen or vehicle replacement. They were killed and the preoptic area-anterior hypothalamus (POA-AH) and the medial basal hypothalamus-median eminence (MBH-ME) were dissected out, RNA extracted, and RNase protection assay used to quantify gene expression of several hypothalamic molecules. In the first experiment, GnRH RNA levels were measured in the POA-AH. No effects of ageing or oestrogen were observed on GnRH gene expression. This finding suggests that ageing and oestrogen may affect GnRH release from neuroterminals independently of de novo biosynthesis, and that this may involve other neurones that affect GnRH neurosecretory function. In the second experiment, we investigated changes in N-methyl-D-aspartate (NMDA) receptor subunit mRNA levels. These receptors play an important regulatory role in mediating effects of glutamate on GnRH function, and are themselves regulated by oestrogen and ageing. NMDA receptor subunit (NR) 1, 2a and 2b mRNA levels were quantified in the POA-AH and MBH-ME, the sites of GnRH perikarya and neuroterminals, respectively. In general, oestrogen had inhibitory effects on NR1 and NR2a, and differential effects on NR2b subunit mRNA levels. NMDA receptor subunit mRNA levels also changed during ageing: age-related decreases in NR1 mRNA occurred in the MBH-ME, and an age-related increase in NR2b mRNA occurred in the POA-AH. Taken together, these results demonstrate subunit- and region-specific changes in hypothalamic NMDA receptor subunit gene expression with oestrogen and ageing. These alterations could have implications for the physiological effects of glutamate on its NMDA receptor, and impact the regulation of reproductive and other neuroendocrine and autonomic functions by hypothalamic glutamatergic inputs.
Collapse
Affiliation(s)
- A C Gore
- Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, Brookdale Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
47
|
Abstract
Pulsatile secretion of the hypothalamic decapeptide gonadotrophin-releasing hormone (GnRH) regulates activity of the pituitary-gonadal reproductive axis. Defects of this neuroendocrine axis necessarily result in hypogonadotrophic hypogonadism. In many vertebrate species studied, the main population of GnRH neurones originates extracranially within the olfactory system. In humans, both olfactory and GnRH systems are affected in Kallmann's syndrome--resulting in isolated hypogonadotrophic hypogonadism (IHH) combined with anosmia (loss of sense of smell). Familial IHH is also caused by other genetic conditions, which prevent GnRH from activating luteinizing hormone/follicle-stimulating hormone release from pituitary gonadotrophs. However, many cases of IHH have no defined chromosomal abnormality and, in the absence of pedigree analysis, studying the biological mechanisms controlling migration of GnRH neurones through the olfactory system into the developing central nervous system might reveal additional genetic pathways that play a role in the pathogenesis of IHH.
Collapse
Affiliation(s)
- Gavin MacColl
- Neuroendocrine Unit, Dept Medicine, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, London, UK NW3 2PF.
| | | | | |
Collapse
|
48
|
Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci 2002; 22:2313-22. [PMID: 11896170 PMCID: PMC6758266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 12/13/2001] [Accepted: 01/03/2002] [Indexed: 02/24/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) system, considered to be the final common pathway for the control of reproduction, has been difficult to study because of a lack of distinguishing characteristics and the scattered distribution of neurons. The development of a transgenic mouse in which the GnRH promoter drives expression of enhanced green fluorescent protein (EGFP) has provided the opportunity to perform electrophysiological studies of GnRH neurons. In this study, neurons were dissociated from brain slices prepared from prepubertal female GnRH-EGFP mice. Both current- and voltage-clamp recordings were obtained from acutely dissociated GnRH neurons identified on the basis of EGFP expression. Most isolated GnRH-EGFP neurons fired spontaneous action potentials (recorded in cell-attached or whole-cell mode) that typically consisted of brief bursts (2-20 Hz) separated by 1-10 sec. At more negative resting potentials, GnRH-EGFP neurons exhibited oscillations in membrane potential, which could lead to bursting episodes lasting from seconds to minutes. These bursting episodes were often separated by minutes of inactivity. Rapid application of glutamate or NMDA increased firing activity in all neurons and usually generated small inward currents (<15 pA), although larger currents were evoked in the remaining neurons. Both AMPA and NMDA receptors mediated the glutamate-evoked inward currents. These results suggest that isolated GnRH-EGFP neurons from juvenile mice can generate episodes of repetitive burst discharges that may underlie the pulsatile secretion of GnRH, and glutamatergic inputs may contribute to the activation of endogenous bursts.
Collapse
Affiliation(s)
- M Cathleen Kuehl-Kovarik
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, Colorado 80523-1670, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Herbison AE, Pape JR, Simonian SX, Skynner MJ, Sim JA. Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse. Mol Cell Endocrinol 2001; 185:185-94. [PMID: 11738808 DOI: 10.1016/s0303-7207(01)00618-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in the use of gonadotropin-releasing hormone (GnRH) promoter-driven transgenics in the mouse are beginning to open up the once elusive GnRH neuronal phenotype to detailed molecular and cellular investigation. This review highlights progress in the development of GnRH promoter transgenic constructs and the understanding of murine gene sequences required for the correct temporal and spatial targeting of transgenes to the GnRH phenotype in vivo. Strategies enabling the identification of single, living GnRH neurons in the acute brain slice preparation are allowing gene profiling and electrophysiological experiments to be undertaken. Results so far indicate that, like other neurons, GnRH cells express a variety of sodium, potassium and calcium channels as well as GABAergic and glutamatergic receptors which are responsible for determining the membrane properties and firing characteristics of the GnRH neuron. Many of these receptors and channels appear to be expressed heterogeneously within the GnRH phenotype. Furthermore, several display distinct postnatal developmental expression profiles which are likely to be of consequence to the development of synchronized, pulsatile GnRH secretion in the adult animal.
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, UK.
| | | | | | | | | |
Collapse
|
50
|
Gore AC. Gonadotropin-releasing hormone neurons, NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:235-48. [PMID: 11744089 DOI: 10.1016/s0165-0173(01)00121-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of ovarian steroid hormones on gonadotropin-releasing hormone (GnRH) neurons have been studied for many years. In addition to their regulation by sex steroids, GnRH neurons are affected by inputs from neurotransmitters such as glutamate, acting via the NMDA receptor (NMDAR). Moreover, the NMDAR itself is subject to estrogen regulation. Thus, effects of ovarian steroids on GnRH neurons and the NMDAR, and their interactions, are under intense investigation. Messenger RNA and protein levels of GnRH and NMDAR subunits were measured in neuroendocrine brain regions in response to estrogen treatment, or across the reproductive cycle. Stimulatory effects of ovarian steroids on GnRH gene expression occur during the preovulatory LH surge in young adult rats, and this is abolished in middle-aged rats that have an attenuated LH surge. Effects of estrogen on GnRH neurons have also been studied in the ovariectomized, estrogen-primed rat, and while results vary between laboratories, there appear to be age-related changes in the sensitivity of GnRH neurons to estrogen. Estrogen also has effects on NMDAR mRNA levels. In intact rats, mRNA levels of NMDAR decrease during reproductive aging in the preoptic area, the site of GnRH perikarya, while in the medial basal hypothalamus-median eminence, the site of GnRH neuroterminals, levels of NMDAR subunit mRNAs increase with aging. Thus, glutamatergic inputs to GnRH perikarya and neuroterminals and other neuroendocrine cells may change during reproductive aging in intact rats. In ovariectomized rats, NMDAR subunit mRNA levels also undergo age-related changes, and respond to estrogen replacement in a subunit- and age-specific manner. Notably, there are major differences in NMDAR gene expression during aging between intact and ovariectomized rats, suggesting that ovarian factors other than estrogen play a role in the regulation of this receptor.
Collapse
Affiliation(s)
- A C Gore
- Mount Sinai School of Medicine, Kastor Neurobiology of Aging Laboratories, Fishborg Center Neurobiology, Brookdate Dept. Geriatrics, Box 1639, New York, NY 10029, USA.
| |
Collapse
|