1
|
Yang S, Wang Y, Wu Z, Wang D, Zhang X, Hu S, Zhang Q, Bu Y, Liu C, Huang C, Yang C. Increased levels of Escherichia-Shigella and Klebsiella in the gut contribute to the responsivity of placebo analgesia. Neuropharmacology 2024; 261:110168. [PMID: 39332670 DOI: 10.1016/j.neuropharm.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Placebo analgesia is observed in both humans and animals. Given the complexity of placebo analgesia involving a variety of neurobiological, psychological, and psychosocial processes, further investigation into its underlying mechanisms is essential. Gut microbiota has been implicated in the responsivity of placebo analgesia, but its precise role remains unknown and warrants further investigations. Here, we conducted a conditioning training model with chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in mice, associating parecoxib with different cues. Hierarchical clustering analysis of placebo analgesia behaviors was employed to classify mice into responders and non-responders phenotypes. Approximately 40% of CFA mice undergoing conditioning training exhibited placebo analgesia. Notably, placebo analgesia responders displayed reduced anxiety-like behaviors. 16S rRNA results revealed a distinct composition of gut microbiota composition among the control, placebo analgesia non-responders and responders groups. Notably, levels of Escherichia Shigella and Klebsiella in the gut were increased considerably in the placebo analgesia responders as compared to both control and non-responders groups. In conclusion, placebo analgesia responders demonstrated marked analgesia, reduced anxiety-like behaviors, and increased levels of Escherichia-Shigella and Klebsiella, implying a potential linkage between gut microbiota and placebo analgesia.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Merli D, Cutaia A, Hallulli I, Bonanni A, Alberti G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers (Basel) 2024; 16:2528. [PMID: 39274160 PMCID: PMC11397747 DOI: 10.3390/polym16172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
This paper introduces a quantitative method for dopamine determination. The method is based on a molecularly imprinted polypyrrole (e-MIP)-modified screen-printed electrode, with differential pulse voltammetry (DPV) as the chosen measurement technique. The dopamine molecules are efficiently entrapped in the polymeric film, creating recognition cavities. A comparison with bare and non-imprinted polypyrrole-modified electrodes clearly demonstrates the superior sensitivity, selectivity, and reproducibility of the e-MIP-based one; indeed, a sensitivity of 0.078 µA µM-1, a detection limit (LOD) of 0.8 µM, a linear range between 0.8 and 45 µM and a dynamic range of up to 350 µM are achieved. The method was successfully tested on fortified synthetic and human urine samples to underline its applicability as a screening method for biomedical tests.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Cutaia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ines Hallulli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Bonanni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Caumo W, Lopes Ramos R, Vicuña Serrano P, da Silveira Alves CF, Medeiros L, Ramalho L, Tomeddi R, Bruck S, Boher L, Sanches PRS, Silva DP, Ls Torres I, Fregni F. Efficacy of Home-Based Transcranial Direct Current Stimulation Over the Primary Motor Cortex and Dorsolateral Prefrontal Cortex in the Disability Due to Pain in Fibromyalgia: A Factorial Sham-Randomized Clinical Study. THE JOURNAL OF PAIN 2024; 25:376-392. [PMID: 37689323 DOI: 10.1016/j.jpain.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
This randomized, double-blind, controlled clinical trial compared the effectiveness of home-based-(HB) active transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex (l-DLPFC) or primary motor cortex (M1) with their respective sham-(s)-tDCS to determine whether a-tDCS would be more effective than s-tDCS in reducing pain and improving disability due to pain. The study included 102 patients with fibromyalgia aged 30 to 65 years old randomly assigned to 1 of 4 tDCS groups using a ratio of 2:1:2:1. The groups included l-DLPFC (a-tDCS, n = 34) and (s-tDCS, n = 17), or tDCS on the M1 (a-tDCS, n = 34) or (s-tDCS, n = 17). Patients self-administered 20 sessions of tDCS, with 2 mA for 20 minutes each day under remote supervision after in-person training. The Mixed Model for Repeated Measurements revealed that a-tDCS on DLPFC significantly reduced pain scores by 36.53% compared to 25.79% in s-tDCS. From baseline to the fourth week of treatment, a-tDCS on M1 reduced pain scores by 45.89% compared to 22.92% over s-tDCS. A generalized linear model showed a significant improvement in the disability scale in the groups that received a-tDCS compared to s-tDCS over M1 20.54% versus 2.49% (χ2 = 11.06, df = 1, P < .001]), while on DLPFC the improvement was 14.29% and 5.77%, with a borderline significance (χ2 = 3.19, df = 1, P = .06]), respectively. A higher reduction in serum brain-derived neurotrophic factor from baseline to treatment end was positively correlated with decreased pain scores regardless of the treatment group. The application of a-tDCS over M1 increased the heat pain threshold and the function of the descending pain inhibitory system. PERSPECTIVE: These findings provide important insights: (1) HB-tDCS has effectively reduced pain scores and improved disability due to fibromyalgia. (2) The study provides evidence that HB-a-tDCS is a viable and effective therapeutic approach. (3) HB-a-tDCS over M1 improved the function of the descending pain inhibitory system and increased the heat pain threshold. Finally, our findings also emphasize that brain-derived neurotrophic factor, as an index of neuroplasticity, may serve as a valuable marker associated with changes in clinical pain measures. TRIAL REGISTRATION: Number NCT03843203.
Collapse
Affiliation(s)
- Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rael Lopes Ramos
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Paul Vicuña Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liciane Medeiros
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Postgraduate Program in Health and Human Development, La Salle University, Canoas, Rio Grande do Sul, Brazil
| | - Leticia Ramalho
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafalea Tomeddi
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Samara Bruck
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Boher
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Pain and Palliative Care Service at HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Department of Surgery, School of Medicine, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo R S Sanches
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Danton P Silva
- Laboratory of Biomedical Engineer at HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Iraci Ls Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Pain Pharmacology and Neuromodulation Laboratory, Preclinical Investigations, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding Rehabilitation Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Corrone M, Nanev A, Amato I, Bicknell R, Piantella S, Maruff P, van den Buuse M, Wright BJ. The brain-derived neurotrophic factor Val66met polymorphism is associated with better attention and working memory performance and resilience to mild chronic stress. Eur J Neurosci 2023; 58:3903-3916. [PMID: 37740693 DOI: 10.1111/ejn.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene has been identified as a potential moderator for the relationship between chronic stress and executive functioning. However, whether the presence of the met allele increases cognitive vulnerability or resilience to stress has yet to be determined. Given the established effects of autonomic activity and psychological arousal on executive functioning, in the present study, 56 healthy university students completed self-report measures of chronic stress, positive arousal (vigour) and negative arousal (anxiety) and measured heart-rate variability to quantify autonomic activity. Participants then completed a cognitive test battery that measured attention, decision-making, visual learning and working memory. Regression analyses demonstrated that Val/met participants performed better on attention and working memory tasks than Val/val participants, but no differences were seen in decision-making and visual learning. Further, Val/met participants were protected from stress-related differences in attention seen in Val/val participants. Val66met was not associated with physiological or psychological arousal. This study demonstrates that val66met plays an important but selective role in cognitive performance.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Aleshia Nanev
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Isabella Amato
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Rowena Bicknell
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stefan Piantella
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Bradley J Wright
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Woodburn SC, Asrat HS, Flurer JK, Schwierling HC, Bollinger JL, Vollmer LL, Wohleb ES. Depletion of microglial BDNF increases susceptibility to the behavioral and synaptic effects of chronic unpredictable stress. Brain Behav Immun 2023; 109:127-138. [PMID: 36681359 PMCID: PMC10023455 DOI: 10.1016/j.bbi.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Helina S Asrat
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hana C Schwierling
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren L Vollmer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Lim SY, Cengiz P. Opioid tolerance and opioid-induced hyperalgesia: Is TrkB modulation a potential pharmacological solution? Neuropharmacology 2022; 220:109260. [PMID: 36165856 DOI: 10.1016/j.neuropharm.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Opioids are widely prescribed for moderate to severe pain in patients with acute illness, cancer pain, and chronic noncancer pain. However, long-term opioid use can cause opioid tolerance and opioid-induced hyperalgesia (OIH), contributing to the opioid misuse and addiction crisis. Strategies to mitigate opioid tolerance and OIH are needed to reduce opioid use and its sequelae. Currently, there are few effective pharmacological strategies that reduce opioid tolerance and OIH. The intrinsic tyrosine kinase receptor B (TrkB) ligand, brain-derived neurotrophic factor (BDNF), has been shown to modulate pain. The BDNF-TrkB signaling plays a role in initiating and sustaining elevated pain sensitivity; however, increasing evidence has shown that BDNF and 7,8-dihydroxyflavone (7,8-DHF), a potent blood-brain barrier-permeable ligand to TrkB, exert neuroprotective, anti-inflammatory, and antioxidant effects that may protect against opioid tolerance and OIH. As such, TrkB signaling may be an important therapeutic avenue in opioid tolerance and OIH. Here, we review 1) the mechanisms of pain, opioid analgesia, opioid tolerance, and OIH; 2) the role of BDNF-TrkB in pain modulation; and 3) the neuroprotective effects of 7,8-DHF and their implications for opioid tolerance and OIH.
Collapse
Affiliation(s)
- Sin Yin Lim
- Pharmacy Practice and Translational Research Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI, United States.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States; Waisman Center, University of Wisconsin-Madison, United States.
| |
Collapse
|
7
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|
8
|
Wang Y, Wu Z, Wang D, Huang C, Xu J, Liu C, Yang C. Muscle-brain communication in pain: The key role of myokines. Brain Res Bull 2021; 179:25-35. [PMID: 34871710 DOI: 10.1016/j.brainresbull.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
Pain is the most common reason for a physician visit, which accounts for a considerable proportion of the global burden of disease and greatly affects patients' quality of life. Therefore, there is an urgent need to identify new therapeutic targets involved in pain. Exercise-induced hypoalgesia (EIH) is a well known phenomenon observed worldwide. However, the available evidence demonstrates that the mechanisms of EIH remain unclear. One of the most accepted hypotheses has been the activation of several endogenous systems in the brain. Recently, the concept that the muscle acts as a secretory organ has attracted increasing attention. Proteins secreted by the muscle are called myokines, playing a critical role in communicating with other organs, such as the brain. This review will focus on several myokines and discuss their roles in EIH.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jiali Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
9
|
Sortwell CE, Hacker ML, Fischer DL, Konrad PE, Davis TL, Neimat JS, Wang L, Song Y, Mattingly ZR, Cole-Strauss A, Lipton JW, Charles PD. BDNF rs6265 Genotype Influences Outcomes of Pharmacotherapy and Subthalamic Nucleus Deep Brain Stimulation in Early-Stage Parkinson's Disease. Neuromodulation 2021; 25:846-853. [PMID: 34288271 PMCID: PMC8770717 DOI: 10.1111/ner.13504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/09/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The efficacy of pharmacotherapy and deep brain stimulation of the subthalamic nucleus in treating Parkinson's disease motor symptoms is highly variable and may be influenced by patient genotype. The relatively common (prevalence about one in three) and protein-altering rs6265 single nucleotide polymorphism (C > T) in the gene BDNF has been associated with different clinical outcomes with levodopa. OBJECTIVE We sought to replicate this reported association in early-stage Parkinson's disease subjects and to examine whether a difference in clinical outcomes was present with subthalamic nucleus deep brain stimulation. MATERIALS AND METHODS Fifteen deep brain stimulation and 13 medical therapy subjects were followed for 24 months as part of the Vanderbilt DBS in Early Stage PD clinical trial (NCT00282152, FDA IDE #G050016). Primary outcome measures were the Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Questionnaire-39. RESULTS Outcomes with drug therapy in subjects carrying the rs6265 T allele were significantly worse following 12 months of treatment compared to C/C subjects (UPDRS: +20 points, p = 0.019; PDQ-39: +16 points, p = 0.018). In contrast, rs6265 genotype had no effect on overall motor response to subthalamic nucleus deep brain stimulation at any time point; further, rs6265 C/C subjects treated with stimulation were associated with worse UPDRS part II scores at 24 months compared to medical therapy. CONCLUSIONS Genotyping for the rs6265 polymorphism may be useful for predicting long-term response to drug therapy and counseling Parkinson's disease patients regarding whether to consider earlier subthalamic nucleus deep brain stimulation. Validation in a larger cohort of early-stage Parkinson's disease subjects is warranted.
Collapse
Affiliation(s)
- Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Luke Fischer
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Peter E Konrad
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas L Davis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph S Neimat
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lily Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yanna Song
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zach R Mattingly
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Allyson Cole-Strauss
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Jack W Lipton
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - P David Charles
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Wallden M, Nijs J. Applying the understanding of central sensitization in practice. J Bodyw Mov Ther 2021; 27:723-730. [PMID: 34391313 DOI: 10.1016/j.jbmt.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium; Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, University of Gothenburg Center for Person-Centred Care (GPCC), Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
11
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
12
|
Heinz A, Mascarell Maricic L, Liu S, Walter H, Schumann G, Beck A. [The IMAGEN cohort: perspectives and problems of longitudinal research]. DER NERVENARZT 2020; 92:228-233. [PMID: 33245403 DOI: 10.1007/s00115-020-01034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Genetic risk factors for major mental disorders identified in psychiatric research show a substantial overlap. Therefore, it has been suggested that neurobiological research should focus on intermediate phenotypes that reflect shared aspects of different mental disorders due to overlapping genetic effects and environmental factors. Longitudinal studies are required to assess the interaction between genetic variability and modifying environmental factors and to investigate the effects on intermediate phenotypes and (mediated by them) on the expression of individual mental disorders. OBJECTIVE Discussion of the possibilities and limitations of longitudinal cohort studies using the IMAGEN study as an example. MATERIAL AND METHODS The results of the European IMAGEN study are presented with a focus on addiction. RESULTS The longitudinal assessments of the IMAGEN cohort revealed that neuroimaging data indicating a low activation of the dopaminergic reinforcement system detected at the age of 14 years are predictive for increased drug use. In addition to genetic factors, environmental influences such as maternal smoking during pregnancy were correlated with this low activation. CONCLUSION Longitudinal neurobiological basic research can validate the effects of candidate genes and reveal relevant environmental factors. Relevant modifiable factors indicated by the IMAGEN study and related datasets include drug use during pregnancy, trauma and other experiences of violence, social disadvantage and exclusion.
Collapse
Affiliation(s)
- A Heinz
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland. .,Psychiatrische Universitätsklinik der Charité im St. Hedwig Krankenhaus, Berlin, Deutschland.
| | - L Mascarell Maricic
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - S Liu
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - H Walter
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - G Schumann
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - A Beck
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
13
|
Mascarell Maričić L, Walter H, Rosenthal A, Ripke S, Quinlan EB, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Itterman B, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Whelan R, Kaminski J, Schumann G, Heinz A. The IMAGEN study: a decade of imaging genetics in adolescents. Mol Psychiatry 2020; 25:2648-2671. [PMID: 32601453 PMCID: PMC7577859 DOI: 10.1038/s41380-020-0822-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/10/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Imaging genetics offers the possibility of detecting associations between genotype and brain structure as well as function, with effect sizes potentially exceeding correlations between genotype and behavior. However, study results are often limited due to small sample sizes and methodological differences, thus reducing the reliability of findings. The IMAGEN cohort with 2000 young adolescents assessed from the age of 14 onwards tries to eliminate some of these limitations by offering a longitudinal approach and sufficient sample size for analyzing gene-environment interactions on brain structure and function. Here, we give a systematic review of IMAGEN publications since the start of the consortium. We then focus on the specific phenotype 'drug use' to illustrate the potential of the IMAGEN approach. We describe findings with respect to frontocortical, limbic and striatal brain volume, functional activation elicited by reward anticipation, behavioral inhibition, and affective faces, and their respective associations with drug intake. In addition to describing its strengths, we also discuss limitations of the IMAGEN study. Because of the longitudinal design and related attrition, analyses are underpowered for (epi-) genome-wide approaches due to the limited sample size. Estimating the generalizability of results requires replications in independent samples. However, such densely phenotyped longitudinal studies are still rare and alternative internal cross-validation methods (e.g., leave-one out, split-half) are also warranted. In conclusion, the IMAGEN cohort is a unique, very well characterized longitudinal sample, which helped to elucidate neurobiological mechanisms involved in complex behavior and offers the possibility to further disentangle genotype × phenotype interactions.
Collapse
Affiliation(s)
- Lea Mascarell Maričić
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Erin Burke Quinlan
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Sylvane Desrivières
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Bernd Itterman
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging& Psychiatry", University Paris Sud, University Paris Descartes-Sorbonne Paris Cité, and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes, Sorbonne Université, and AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gunter Schumann
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
14
|
Sochacki KR, Mather RC, Nwachukwu BU, Dong D, Nho SJ, Cote MP, Harris JD. Sham Surgery Studies in Orthopaedic Surgery May Just Be a Sham: A Systematic Review of Randomized Placebo-Controlled Trials. Arthroscopy 2020; 36:2750-2762.e2. [PMID: 32417564 DOI: 10.1016/j.arthro.2020.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the limitations of randomized sham surgery-controlled trials in orthopaedic sports medicine and fidelity of the trials' conclusions. METHODS Randomized placebo surgery-controlled trials in orthopaedic sports medicine were included in this Preferred Reporting Items for Systematic Reviews and Meta-Analyses-guided systematic review. Several aspects of investigation design and conduct were analyzed: genetic analysis for propensity to placebo response, equipoise of informed consent process, geography of trial subjects, percentage of eligible subjects willing to be randomized, changes from protocol publication to results publication, and perioperative complications. RESULTS Seven sham surgery-controlled trials (845 subjects [370 knees, 449 shoulders, 26 elbows]; 5 from Europe, 1 from North America, and 1 from Australia; all superiority model, efficacy design) were analyzed. There were consistent methodologic deficiencies across studies. No studies reported genetic analysis of susceptibility to placebo response. Three studies (43%) were underpowered. Crossover rates ranged from 8% to 36%, which led to un-blinding in up to 100% of subjects. There were low enrollment rates of eligible subjects (up to 57% refused randomization). Follow-up was short term (2 years or less in all but one study). Complication rates ranged from 0% to 12.5%, with complications occurring in both groups (no significant difference between groups in any study). CONCLUSIONS Randomized sham-controlled studies in orthopaedic sports medicine have significant methodologic deficiencies that may invalidate their conclusions. Randomized trial design (with or without placebo control) may be optimized through the inclusion of per-protocol analysis, blinding index, equivalence or noninferiority trial design, and a nontreatment group. LEVEL OF EVIDENCE Level II Systematic Review of Level II studies.
Collapse
Affiliation(s)
- Kyle R Sochacki
- Houston Methodist Orthopedic and Sports Medicine, Houston, Texas, U.S.A
| | - Richard C Mather
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, U.S.A
| | | | - David Dong
- Houston Methodist Orthopedic and Sports Medicine, Houston, Texas, U.S.A
| | - Shane J Nho
- Section of Young Adult Hip Surgery, Division of Sports Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, U.S.A
| | - Mark P Cote
- UConn Musculoskeletal Institute at UConn Health, Farmington, Connecticut, U.S.A
| | - Joshua D Harris
- Houston Methodist Orthopedic and Sports Medicine, Houston, Texas, U.S.A..
| |
Collapse
|
15
|
Daprati E, Sirigu A, Desmurget M, Nico D. Superstitious beliefs and the associative mind. Conscious Cogn 2019; 75:102822. [DOI: 10.1016/j.concog.2019.102822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
16
|
Cai L, He L. Placebo effects and the molecular biological components involved. Gen Psychiatr 2019; 32:e100089. [PMID: 31552390 PMCID: PMC6738668 DOI: 10.1136/gpsych-2019-100089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Pharmacologically inactive substances have been used in medicine for more than 700 years and can trigger beneficial responses in the human body, which is referred to as the placebo effects or placebo responses. This effect is robust enough to influence psychosocial and physiological responses to the placebo and to active treatments in many settings, which has led to increased interest from researchers. In this article, we summarise the history of placebo, the characteristics of placebo effects and recent advancements reported from the studies on placebo effects and highlight placebome studies to identify various molecular biological components associated with placebo effects. Although placebos have a long history, the placebome concept is still in its infancy. Although behavioural, neurobiological and genetic studies have identified that molecules in the dopamine, opioid, serotonin and endocannabinoid systems might be targets of the placebo effect, placebome studies with a no-treatment control (NTC) are necessary to identify whole-genome genetic targets. Although bioinformatics analysis has identified the molecular placebome module, placebome studies with NTCs are also required to validate the related findings.
Collapse
Affiliation(s)
- Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center of Genetics and Development, Shanghai Jiaotong University, Shanghai 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center of Genetics and Development, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
17
|
Brain-derived neurotrophic factor-mediated projection-specific regulation of depressive-like and nociceptive behaviors in the mesolimbic reward circuitry. Pain 2019; 159:175. [PMID: 29076919 DOI: 10.1097/j.pain.0000000000001083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increasing evidence suggests that the mesolimbic reward system plays critical roles in the regulation of depression and nociception; however, its circuitry and cellular mechanisms remain unclear. In this study, we investigated the output-specific regulatory roles of dopaminergic (DA) neurons within the ventral tegmental area (VTA) in depressive-like and nociceptive behaviors in mice subjected to unpredictable chronic mild stress (CMS), using the projection-specific electrophysiological recording, pharmacological manipulation, behavioral test, and molecular biology technologies. We demonstrated that CMS decreased the firing activity in VTA projecting to medial prefrontal cortex (VTA → mPFC), but not in VTA to nucleus accumbens (VTA → NAc), DA neurons. However, both VTA → mPFC and VTA → NAc DA neurons showed increased firing activity in response to morphine perfusion in CMS mice. Behavioral results showed that intra-VTA microinjection of morphine (25.5 ng/0.15 μL) relieved depressive-like behaviors, intriguingly, accompanied by a thermal hyperalgesia. Furthermore, the relief of depressive-like behaviors induced by intra-VTA injection of morphine in CMS mice could be prevented by blocking brain-derived neurotrophic factor (BDNF) signaling and mimicked by the administration of exogenous BDNF in mPFC rather than in NAc shell. Nociceptive responses induced by the activation of VTA DA neurons with morphine in CMS mice could be prevented by blocking BDNF signaling or mimicked by administration of exogenous BDNF in NAc shell, but not in mPFC. These results reveal projection-specific regulatory mechanisms of depression and nociception in the mesolimbic reward circuitry and provide new insights into the neural circuits involved in the processing of depressive and nociceptive information.
Collapse
|
18
|
Interaction of Brain-Derived Neurotrophic Factor Val66Met genotype and history of stress in regulation of prepulse inhibition in mice. Schizophr Res 2018; 198:60-67. [PMID: 28864281 DOI: 10.1016/j.schres.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
The Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism results in reduced activity-dependent BDNF release and has been implicated in schizophrenia. However, effects of the polymorphism on functional dopaminergic and N-methyl-d-aspartate (NMDA) receptor-associated activity remain unclear. We used prepulse inhibition, a measure of sensorimotor gating which is disrupted in schizophrenia, and assessed the effects of acute treatment with the dopamine receptor agonist, apomorphine (APO), and the NMDA receptor antagonist, MK-801. We used adult humanized hBDNFVal66Met 'knockin' mice which express either the Val/Val, Val/Met or Met/Met genotype. An interaction of BDNF with stress was modelled by chronic young-adult treatment with corticosterone (CORT). At 1 or 3mg/kg, APO had no effect in Val/Val mice but significantly reduced PPI at the 100ms inter-stimulus interval (ISI) in Val/Met and Met/Met mice. However, after CORT pretreatment, APO significantly reduced PPI in all genotypes similarly. At 0.1 or 0.25mg/kg, MK-801 significantly disrupted PPI at the 100ms ISI independent of genotype or CORT pretreatment. There were differential effects of APO and MK-801 on PPI at the 30ms ISI and startle between the genotypes, irrespective of CORT pretreatment. These results show that the BDNF Val66Met Val/Met and Met/Met genotypes are more sensitive than the Val/Val genotype to the effect of APO on PPI. A history of stress, here modelled by chronic CORT administration, increases effects of APO in Val/Val mice.
Collapse
|
19
|
Martikainen IK, Hagelberg N, Jääskeläinen SK, Hietala J, Pertovaara A. Dopaminergic and serotonergic mechanisms in the modulation of pain: In vivo studies in human brain. Eur J Pharmacol 2018; 834:337-345. [PMID: 30036531 DOI: 10.1016/j.ejphar.2018.07.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
Here we review the literature assessing the roles of the brain dopaminergic and serotonergic systems in the modulation of pain as revealed by in vivo human studies using positron emission tomography. In healthy subjects, dopamine D2/D3 receptor availability particularly in the striatum and serotonin 5-HT1A and 5-HT2A receptor availabilities in the cortex predict the subject's response to tonic experimental pain. High availability of dopamine D2/D3 or serotonin 5-HT2A receptors is associated with high pain intensity, whereas high availability of 5-HT1A receptors associates with low pain intensity. Chronic neuropathic pain is associated with high striatal dopamine D2/D3 receptor availability, for which low endogenous dopamine tone is a plausible explanation, although a compensatory increase in striatal dopamine D2/D3 receptor density may also contribute. In contrast, chronic musculoskeletal pain is associated with low baseline availability of striatal dopamine D2/D3 receptors. In healthy subjects, brain serotonin 5-HT1A as well as dopamine D2/D3 receptor availabilities associate with the subject's response criterion rather than the capacity to discriminate painful thermal stimuli suggesting that these neurotransmitter systems act mainly on non-sensory rather than sensory factors of thermally induced pain experience. Additionally, 5-HT1A receptor availability predicts the subject's discriminative ability but not response criterion for non-painful tactile test stimuli, while no such correlation is observed with dopamine D2/D3 receptors. These findings suggest that dopamine acting on striatal dopamine D2/D3 receptors and serotonin acting on cortical 5-HT1A and 5-HT2A receptors contribute to top-down pain regulation in humans.
Collapse
Affiliation(s)
- Ilkka K Martikainen
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Medical Imaging Center, Department of Radiology, Tampere University Hospital, 33521 Tampere, Finland
| | - Nora Hagelberg
- Department of Anesthesiology and Intensive Care, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Turku University Central Hospital and University of Turku, 20520 Turku, Finland; Department of Psychiatry, Turku University Central Hospital and University of Turku, 20520 Turku, Finland
| | - Antti Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
20
|
Blecharz-Klin K, Wawer A, Jawna-Zboińska K, Pyrzanowska J, Piechal A, Mirowska-Guzel D, Widy-Tyszkiewicz E. Early paracetamol exposure decreases brain-derived neurotrophic factor (BDNF) in striatum and affects social behaviour and exploration in rats. Pharmacol Biochem Behav 2018; 168:25-32. [DOI: 10.1016/j.pbb.2018.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
|
21
|
Borsook D, Youssef AM, Barakat N, Sieberg CB, Elman I. Subliminal (latent) processing of pain and its evolution to conscious awareness. Neurosci Biobehav Rev 2018; 88:1-15. [PMID: 29476771 DOI: 10.1016/j.neubiorev.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
By unconscious or covert processing of pain we refer to nascent interactions that affect the eventual deliverance of pain awareness. Thus, internal processes (viz., repeated nociceptive events, inflammatory kindling, reorganization of brain networks, genetic) or external processes (viz., environment, socioeconomic levels, modulation of epigenetic status) contribute to enhancing or inhibiting the presentation of pain awareness. Here we put forward the notion that for many patients, ongoing sub-conscious changes in brain function are significant players in the eventual manifestation of chronic pain. In this review, we provide clinical examples of nascent or what we term pre-pain processes and the neurobiological mechanisms of how these changes may contribute to pain, but also potential opportunities to define the process for early therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States.
| | - Andrew M Youssef
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Nadia Barakat
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Christine B Sieberg
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Igor Elman
- Dayton Veterans Affairs Medical Center 4100 West Third Street Dayton, OH, 45428, United States
| |
Collapse
|
22
|
Maciukiewicz M, Marshe VS, Tiwari AK, Fonseka TM, Freeman N, Kennedy JL, Rotzinger S, Foster JA, Kennedy SH, Müller DJ. Genome-wide association studies of placebo and duloxetine response in major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2017; 18:406-412. [PMID: 28696415 DOI: 10.1038/tpj.2017.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
We investigated variants associated with treatment response in depressed patients treated with either the antidepressant duloxetine or placebo using a genome-wide approach. Our sample (N=391) included individuals aged 18-75 years, diagnosed with major depressive disorder and treated with either duloxetine or placebo for up to 8 weeks. We conducted genome-wide associations for treatment response as operationalized by percentage change in Montgomery-Åsberg Depression Rating Scale score from baseline, as well as mixed models analyses across five time points. In the placebo-treated subsample (N=205), we observed a genome-wide association with rs76767803 (β=0.69, P=1.25 × 10-8) upstream of STAC1. STAC1 rs76767803 was also associated with response using mixed model analysis (χ2=3.95; P=0.001). In the duloxetine-treated subsample (N=186), we observed suggestive associations with ZNF385D (rs4261893; β=-0.46, P=1.55 × 10-5), NCAM1 (rs2303377; β=0.45, P=1.76 × 10-5) and MLL5 (rs117986340; β=0.91, P=3.04 × 10-5). Our findings suggest that a variant upstream of STAC1 is associated with placebo response, which might have implications for treatment optimization, clinical trial design and drug development.
Collapse
Affiliation(s)
- M Maciukiewicz
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - V S Marshe
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - A K Tiwari
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - T M Fonseka
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, St. Michael's Hospital, Toronto, ON, Canada
| | - N Freeman
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - J L Kennedy
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - S Rotzinger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - J A Foster
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - S H Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, St. Michael's Hospital, Toronto, ON, Canada
| | - D J Müller
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Wang RS, Hall KT, Giulianini F, Passow D, Kaptchuk TJ, Loscalzo J. Network analysis of the genomic basis of the placebo effect. JCI Insight 2017; 2:93911. [PMID: 28570268 DOI: 10.1172/jci.insight.93911] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
The placebo effect is a phenomenon in which patients who are given an inactive treatment (e.g., inert pill) show a perceived or actual improvement in a medical condition. Placebo effects in clinical trials have been investigated for many years especially because placebo treatments often serve as the control arm of randomized clinical trial designs. Recent observations suggest that placebo effects may be modified by genetics. This observation has given rise to the term "placebome," which refers to a group of genome-related mediators that affect an individual's response to placebo treatments. In this study, we conduct a network analysis of the placebome and identify a placebome module in the comprehensive human interactome using a seed-connector algorithm. The placebome module is significantly enriched with neurotransmitter signaling pathways and brain-specific proteins. We validate the placebome module using a large cohort of the Women's Genome Health Study (WGHS) trial and demonstrate that the placebome module is significantly enriched with genes whose SNPs modify the outcome in the placebo arm of the trial. To gain insights into placebo effects in different diseases and drug treatments, we use a network proximity measure to examine the closeness of the placebome module to different disease modules and drug target modules. The results demonstrate that the network proximity of the placebome module to disease modules in the interactome significantly correlates with the strength of the placebo effect in the corresponding diseases. The proximity of the placebome module to molecular pathways affected by certain drug classes indicates the existence of placebo-drug interactions. This study is helpful for understanding the molecular mechanisms mediating the placebo response, and sets the stage for minimizing its effects in clinical trials and for developing therapeutic strategies that intentionally engage it.
Collapse
Affiliation(s)
| | - Kathryn T Hall
- Department of Medicine and.,Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franco Giulianini
- Department of Medicine and.,Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dani Passow
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ted J Kaptchuk
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
24
|
Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, Fernandes BS, Berk M, Marriott A. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neurosci Biobehav Rev 2017; 78:44-56. [PMID: 28438466 DOI: 10.1016/j.neubiorev.2017.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia
| | - Stephen Lane
- Deakin University, School of Medicine, Geelong, Australia; Biostatistics Unit, Barwon Health, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Brisa S Fernandes
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
25
|
Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry 2017; 81:9-20. [PMID: 27720198 PMCID: PMC5675052 DOI: 10.1016/j.biopsych.2016.07.014] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023]
Abstract
The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom.
| | - Robert McCutcheon
- Psychosis Studies, King's College London, London, United Kingdom; MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital, London, United Kingdom
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom
| | - Robin M Murray
- Psychosis Studies, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Sharma S, Graham R, Rohde R, Ceballos NA. Stress-induced change in serum BDNF is related to quantitative family history of alcohol use disorder and age at first alcohol use. Pharmacol Biochem Behav 2016; 153:12-17. [PMID: 27939343 DOI: 10.1016/j.pbb.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/16/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Previous research in animal models suggests that brain-derived neurotrophic factor (BDNF) is involved in stress-modulated alcohol consumption. However, relatively few studies have investigated this issue in humans, and results of existing studies have been heterogeneous. The primary aim of the current study was to examine the within-subjects effect of acute stress (timed math plus cold pressor) on serum BDNF levels (ΔBDNF: post- minus pre-stress) in healthy social drinkers (N=68, 20 male). A secondary aim was to explore which heritable and environmental factors in our limited sample might exert the greatest influences on ΔBDNF. Importantly, presence versus absence of the BDNF Val66Met polymorphism (rs6265), which has often been discounted in studies of human serum BDNF, was included as a between-subjects control variable in all statistical analyses. Our results indicated that acute stress decreased serum BDNF. Further, multiple regression analyses revealed that quantitative family history of alcohol use disorder (qFH) and age at first alcohol use together accounted for 15% of the variance in ΔBDNF. Thus, the influences of qFH and age at first alcohol use may explain some of the heterogeneity that exists in previous studies of human serum BDNF. These results parallel findings in animal models and suggest that stress-related changes in serum BDNF are influenced by both heritable (qFH) and environmental (early alcohol consumption) factors.
Collapse
Affiliation(s)
- Shobhit Sharma
- Department of Biology, Texas State University, San Marcos 601 University Drive, San Marcos, TX 78666, USA
| | - Reiko Graham
- Department of Psychology, Texas State University, San Marcos 601 University Drive, San Marcos, TX 78666, USA
| | - Rodney Rohde
- Clinical Laboratory Science, Texas State University, San Marcos 601 University Drive, San Marcos, TX 78666, USA
| | - Natalie A Ceballos
- Department of Psychology, Texas State University, San Marcos 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
27
|
Chen W, Chen C, Xia M, Wu K, Chen C, He Q, Xue G, Wang W, He Y, Dong Q. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory. Front Hum Neurosci 2016; 10:540. [PMID: 27853425 PMCID: PMC5091010 DOI: 10.3389/fnhum.2016.00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo).
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Karen Wu
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of CaliforniaIrvine, CA, USA
| | - Qinghua He
- Faculty of Psychology, Southwest UniversityChongqing, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Wenjing Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal UniversityBeijing, China
| |
Collapse
|
28
|
Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use. Psychopharmacology (Berl) 2016; 233:3249-57. [PMID: 27370018 PMCID: PMC4982797 DOI: 10.1007/s00213-016-4367-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Upregulation of α4β2* nicotinic acetylcholine receptors (nAChRs) is one of the most well-established effects of chronic cigarette smoking on the brain. Prior research by our group gave a preliminary indication that cigarette smokers with concomitant use of caffeine or marijuana have altered nAChR availability. OBJECTIVE We sought to determine if smokers with heavy caffeine or marijuana use have different levels of α4β2* nAChRs than smokers without these drug usages. METHODS One hundred and one positron emission tomography (PET) scans, using the radiotracer 2-FA (a ligand for β2*-containing nAChRs), were obtained from four groups of males: non-smokers without heavy caffeine or marijuana use, smokers without heavy caffeine or marijuana use, smokers with heavy caffeine use (mean four coffee cups per day), and smokers with heavy marijuana use (mean 22 days of use per month). Total distribution volume (Vt/fp) was determined for the brainstem, prefrontal cortex, and thalamus, as a measure of nAChR availability. RESULTS A significant between-group effect was found, resulting from the heavy caffeine and marijuana groups having the highest Vt/fp values (especially for the brainstem and prefrontal cortex), followed by smokers without such use, followed by non-smokers. Direct between-group comparisons revealed significant differences for Vt/fp values between the smoker groups with and without heavy caffeine or marijuana use. CONCLUSIONS Smokers with heavy caffeine or marijuana use have higher α4β2* nAChR availability than smokers without these drug usages. These findings are likely due to increased nicotine exposure but could also be due to an interaction on a cellular/molecular level.
Collapse
|
29
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
van Roekel E, Masselink M, Vrijen C, Heininga VE, Bak T, Nederhof E, Oldehinkel AJ. Study protocol for a randomized controlled trial to explore the effects of personalized lifestyle advices and tandem skydives on pleasure in anhedonic young adults. BMC Psychiatry 2016; 16:182. [PMID: 27260011 PMCID: PMC4893264 DOI: 10.1186/s12888-016-0880-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anhedonia is generally defined as the inability to feel pleasure in response to experiences that are usually enjoyable. Anhedonia is one of the two core symptoms of depression and is a major public health concern. Anhedonia has proven particularly difficult to counteract and predicts poor treatment response generally. It has often been hypothesized that anhedonia can be deterred by a healthy lifestyle. However, it is quite unlikely that a one-size-fits-all approach will be effective for everyone. In this study the effects of personalized lifestyle advice based on observed individual patterns of lifestyle behaviors and experienced pleasure will be examined. Further, we will explore whether a tandem skydive following the personalized lifestyle advice positively influences anhedonic young adults' abilities to carry out the recommended lifestyle changes, and whether this ultimately improves their self-reported pleasure. METHODS Our study design is an exploratory intervention study, preceded by a cross-sectional survey as a screening instrument. For the survey, 2000 young adults (18-24 years old) will be selected from the general population. Based on survey outcomes, 72 individuals (36 males and 36 females) with persistent anhedonia (i.e., more than two months) and 60 individuals (30 males and 30 females) without anhedonia (non-anhedonic control group) will be selected for the intervention study. The non-anhedonic control group will fill out momentary assessments of pleasure and lifestyle behaviors three times a day, for one month. The anhedonic individuals will fill out momentary assessments for three consecutive months. After the first month, the anhedonic individuals will be randomly assigned to (1) no intervention, (2) lifestyle advice only, (3) lifestyle advice plus tandem skydive. The personalized lifestyle advice is based on patterns observed in the first month. DISCUSSION The present study is the first to examine the effects of a personalized lifestyle advice and tandem skydive on pleasure in anhedonic young adults. Results of the present study may improve treatment for anhedonia, if the interventions are found to be effective. TRIAL REGISTRATION Dutch Trial Register, NTR5498 , registered September 22, 2015 (retrospectively registered).
Collapse
Affiliation(s)
- Eeske van Roekel
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Maurits Masselink
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Charlotte Vrijen
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Vera E Heininga
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Tom Bak
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Esther Nederhof
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
- Van Hall Larenstein, University of Applied Science, Leeuwarden, The Netherlands
| | - Albertine J Oldehinkel
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation, CC 72, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
31
|
Clarke J, Ramoz N, Fladung AK, Gorwood P. Higher reward value of starvation imagery in anorexia nervosa and association with the Val66Met BDNF polymorphism. Transl Psychiatry 2016; 6:e829. [PMID: 27271855 PMCID: PMC4931615 DOI: 10.1038/tp.2016.98] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/19/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies support the idea that abnormalities of the reward system contribute to onset and maintenance of anorexia nervosa (AN). Next to cues coding for overweight, other research suggest cues triggering the proposed starvation dependence to be pivotally involved in the AN pathogenesis. We assessed the characteristics of the cognitive, emotional and physiologic response toward disease-specific pictures of female body shapes, in adult AN patients compared with healthy control (HC) women. Frequency and amplitude of skin conductance response (SCR) in 71 patients with AN and 20 HC were registered during processing of stimuli of three weight categories (over-, under- and normal weight). We then assessed the role of the Val66Met BDNF polymorphism as a potential intermediate factor. AN patients reported more positive feelings during processing of underweight stimuli and more negative feelings for normal- and overweight stimuli. The SCR showed a group effect (P=0.007), AN patients showing overall higher frequency of the response. SCR within patients was more frequent during processing of underweight stimuli compared with normal- and overweight stimuli. The Met allele of the BDNF gene was not more frequent in patients compared with controls, but was associated to an increased frequency of SCR (P=0.008) in response to cues for starvation. A higher positive value of starvation, rather than more negative one of overweight, might more accurately define females with AN. The Met allele of the BDNF gene could partly mediate the higher reward value of starvation observed in AN.
Collapse
Affiliation(s)
- J Clarke
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France
| | - N Ramoz
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France
| | - A-K Fladung
- Department of Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - P Gorwood
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hospital Sainte-Anne, Paris-Descartes University, Paris, France,Centre of Psychiatry and Neuroscience, INSERM UMR 894, Paris, France,CMME, Hospital Sainte-Anne, Paris-Descartes University, 100 rue de la Santé, Paris 75014, France. E-mail:
| |
Collapse
|
32
|
Dynamic Changes of Functional Pain Connectome in Women with Primary Dysmenorrhea. Sci Rep 2016; 6:24543. [PMID: 27089970 PMCID: PMC4835697 DOI: 10.1038/srep24543] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/31/2016] [Indexed: 11/09/2022] Open
Abstract
Primary dysmenorrhea (PDM) is the most prevalent gynecological problem. Many key brain systems are engaged in pain processing. In light of dynamic communication within and between systems (or networks) in shaping pain experience and behavior, the intra-regional functional connectivity (FC) in the hub regions of the systems may be altered and the functional interactions in terms of inter-regional FCs among the networks may be reorganized to cope with the repeated stress of menstrual pain in PDM. Forty-six otherwise healthy PDM subjects and 49 age-matched, healthy female control subjects were enrolled. Intra- and inter-regional FC were assessed using regional homogeneity (ReHo) and ReHo-seeded FC analyses, respectively. PDM women exhibited a trait-related ReHo reduction in the ventromedial prefrontal cortex, part of the default mode network (DMN), during the periovulatory phase. The trait-related hypoconnectivity of DMN-salience network and hyperconnectivity of DMN-executive control network across the menstrual cycle featured a dynamic transition from affective processing of pain salience to cognitive modulation. The altered DMN-sensorimotor network may be an ongoing representation of cumulative menstrual pain. The findings indicate that women with long-term PDM may develop adaptive neuroplasticity and functional reorganization with a network shift from affective processing of salience to the cognitive modulation of pain.
Collapse
|
33
|
Li W, Liu B, Xu J, Jiang T, Yu C. Interaction of COMT rs4680 and BDNF rs6265 polymorphisms on functional connectivity density of the left frontal eye field in healthy young adults. Hum Brain Mapp 2016; 37:2468-78. [PMID: 27004987 DOI: 10.1002/hbm.23187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
As modulators of dopamine availability and release in the brain, COMT and BDNF polymorphisms have demonstrated interactions on human cognition; however, the underlying neural mechanisms remain largely unknown. In this study, we aimed to investigate the interactions of COMT rs4680 and BDNF rs6265 on global functional connectivity density (gFCD) of the brain in 265 healthy young subjects. We found a significant COMT × BDNF interaction on the gFCD in the left frontal eye field (FEF), showing an inverted U-shape modulation by the presumed dopamine signaling. This finding was consistently repeated in the gFCD analyses using other four connection thresholds. Our findings reveal a COMT × BDNF interaction on the FCD in the left FEF, which may be helpful for understanding the neural mechanisms of the COMT × BDNF interactions on the FEF-related cognitive functions. Hum Brain Mapp 37:2468-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
34
|
Holmes RD, Tiwari AK, Kennedy JL. Mechanisms of the placebo effect in pain and psychiatric disorders. THE PHARMACOGENOMICS JOURNAL 2016; 16:491-500. [PMID: 27001122 DOI: 10.1038/tpj.2016.15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
Placebo effect research over the past 15 years has improved our understanding of how placebo treatments reduce patient symptoms. The expectation of symptom improvement is the primary factor underlying the placebo effect. Such expectations are shaped by past experiences, contextual cues and biological traits, which ultimately modulate one's degree of response to a placebo. The body of evidence that describes the physiology of the placebo effect has been derived from mechanistic studies primarily restricted to the setting of pain. Imaging findings support the role of endogenous opioid and dopaminergic networks in placebo analgesia in both healthy patients as well as patients with painful medical conditions. In patients with psychiatric illnesses such as anxiety disorders or depression, a vast overlap in neurological changes is observed in drug responders and placebo responders supporting the role of serotonergic networks in placebo response. Molecular techniques have been relatively underutilized in understanding the placebo effect until recently. We present an overview of the placebo responder phenotypes and genetic markers that have been associated with the placebo effect in pain, schizophrenia, anxiety disorders and depression.
Collapse
Affiliation(s)
- R D Holmes
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - A K Tiwari
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J L Kennedy
- Neurogenetics Section, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Warnault V, Darcq E, Morisot N, Phamluong K, Wilbrecht L, Massa SM, Longo FM, Ron D. The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry 2016; 79:463-73. [PMID: 26204799 PMCID: PMC4676961 DOI: 10.1016/j.biopsych.2015.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND The valine 66 to methionine (Met) polymorphism within the brain-derived neurotrophic factor (BDNF) sequence reduces activity-dependent BDNF release and is associated with psychiatric disorders in humans. Alcoholism is one of the most prevalent psychiatric diseases. Here, we tested the hypothesis that this polymorphism increases the severity of alcohol abuse disorders. METHODS We generated transgenic mice carrying the mouse homolog of the human Met66BDNF allele (Met68BDNF) and used alcohol-drinking paradigms in combination with viral-mediated gene delivery and pharmacology. RESULTS We found that Met68BDNF mice consumed excessive amounts of alcohol and continued to drink despite negative consequences, a hallmark of addiction. Importantly, compulsive alcohol intake was reversed by overexpression of the wild-type valine68BDNF allele in the ventromedial prefrontal cortex of the Met68BDNF mice or by systemic administration of the tropomyosin receptor kinase B agonist, LM22A-4. CONCLUSIONS Our findings suggest that carrying this BDNF allele increases the risk of developing uncontrolled and excessive alcohol drinking that can be reversed by directly activating the BDNF receptor, tropomyosin receptor kinase B. Importantly, this work identifies a potential therapeutic strategy for the treatment of compulsive alcohol drinking in humans carrying the Met66BDNF allele.
Collapse
Affiliation(s)
- Vincent Warnault
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Emmanuel Darcq
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Nadege Morisot
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Khanhky Phamluong
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley
| | - Stephen M Massa
- Department of Neurology, University of California, San Francisco, San Francisco; Laboratory for Computational Neurochemistry and Drug Discovery and Department of Veterans Affairs Medical Center, University of California, San Francisco, San Francisco
| | - Frank M Longo
- Department of Neurology and Neurological Sciences (FML), Stanford University School of Medicine, Stanford, California
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, San Francisco.
| |
Collapse
|
36
|
Bogdan R, Pagliaccio D, Baranger DAA, Hariri AR. Genetic Moderation of Stress Effects on Corticolimbic Circuitry. Neuropsychopharmacology 2016; 41:275-96. [PMID: 26189450 PMCID: PMC4677127 DOI: 10.1038/npp.2015.216] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 02/06/2023]
Abstract
Stress exposure is associated with individual differences in corticolimbic structure and function that often mirror patterns observed in psychopathology. Gene x environment interaction research suggests that genetic variation moderates the impact of stress on risk for psychopathology. On the basis of these findings, imaging genetics, which attempts to link variability in DNA sequence and structure to neural phenotypes, has begun to incorporate measures of the environment. This research paradigm, known as imaging gene x environment interaction (iGxE), is beginning to contribute to our understanding of the neural mechanisms through which genetic variation and stress increase psychopathology risk. Although awaiting replication, evidence suggests that genetic variation within the canonical neuroendocrine stress hormone system, the hypothalamic-pituitary-adrenal axis, contributes to variability in stress-related corticolimbic structure and function, which, in turn, confers risk for psychopathology. For iGxE research to reach its full potential it will have to address many challenges, of which we discuss: (i) small effects, (ii) measuring the environment and neural phenotypes, (iii) the absence of detailed mechanisms, and (iv) incorporating development. By actively addressing these challenges, iGxE research is poised to help identify the neural mechanisms underlying genetic and environmental associations with psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- Department of Psychology, BRAIN Lab, Washington University in St Louis, St Louis, MO, USA
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - David Pagliaccio
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - David AA Baranger
- Department of Psychology, BRAIN Lab, Washington University in St Louis, St Louis, MO, USA
- Neurosciences Program, Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Laboratory of NeuroGenetics, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ. The influence of genes on "positive valence systems" constructs: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:92-110. [PMID: 26365619 DOI: 10.1002/ajmg.b.32382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
In 2009, the U.S. National Institute of Mental Health (NIMH) proposed an approach toward the deconstruction of psychiatric nosology under the research domain criteria (RDoC) framework. The overarching goal of RDoC is to identify robust, objective measures of behavior, emotion, cognition, and other domains that are more closely related to neurobiology than are diagnoses. A preliminary framework has been constructed, which has connected molecules, genes, brain circuits, behaviors, and other elements to dimensional psychiatric constructs. Although the RDoC framework has salience in emerging studies, foundational literature that pre-dated this framework requires synthesis and translation to the evolving objectives and nomenclature of RDoC. Toward this end, we review the candidate-gene association, linkage, and genome-wide studies that have implicated a variety of loci and genetic polymorphisms in selected Positive Valence Systems (PVS) constructs. Our goal is to review supporting evidence to currently listed genes implicated in this domain and novel candidates. We systematically searched and reviewed literature based on keywords listed under the June, 2011, edition of the PVS matrix on the RDoC website (http://www.nimh.nih.gov/research-priorities/rdoc/positive-valence-systems-workshop-proceedings.shtml), which were supplemented with de novo keywords pertinent to the scope of our review. Several candidate genes linked to the PVS framework were identified from candidate-gene association studies. We also identified novel candidates with loose association to PVS traits from genome-wide studies. There is strong evidence suggesting that PVS constructs, as currently conceptualized under the RDoC initiative, index genetically influenced traits; however, future research, including genetic epidemiological, and psychometric analyses, must be performed.
Collapse
Affiliation(s)
- Jonathan L Hess
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M Kawaguchi
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kayla E Wagner
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stephen J Glatt
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
38
|
Peciña M, Bohnert ASB, Sikora M, Avery ET, Langenecker SA, Mickey BJ, Zubieta JK. Association Between Placebo-Activated Neural Systems and Antidepressant Responses: Neurochemistry of Placebo Effects in Major Depression. JAMA Psychiatry 2015; 72:1087-94. [PMID: 26421634 PMCID: PMC4758856 DOI: 10.1001/jamapsychiatry.2015.1335] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE High placebo responses have been observed across a wide range of pathologies, severely impacting drug development. OBJECTIVE To examine neurochemical mechanisms underlying the formation of placebo effects in patients with major depressive disorder (MDD). DESIGN, SETTING, AND PARTICIPANTS In this study involving 2 placebo lead-in phases followed by an open antidepressant administration, we performed a single-blinded 2-week crossover randomized clinical trial of 2 identical oral placebos (described as having either active or inactive fast-acting antidepressant-like effects) followed by a 10-week open-label treatment with a selective serotonin reuptake inhibitor or, in some cases, another agent as clinically indicated. The volunteers (35 medication-free patients with MDD at a university health system) were studied with positron emission tomography and the µ-opioid receptor-selective radiotracer [11C]carfentanil after each 1-week inactive and active oral placebo treatment. In addition, 1 mL of isotonic saline was administered intravenously within sight of the volunteer during positron emission tomographic scanning every 4 minutes over 20 minutes only after the 1-week active placebo treatment, with instructions that the compound may be associated with the activation of brain systems involved in mood improvement. This challenge stimulus was used to test the individual capacity to acutely activate endogenous opioid neurotransmision under expectations of antidepressant effect. MAIN OUTCOMES AND MEASURES Changes in depressive symptoms in response to active placebo and antidepressant. Baseline and activation measures of µ-opioid receptor binding. RESULTS Higher baseline µ-opioid receptor binding in the nucleus accumbens was associated with better response to antidepressant treatment (r = 0.48; P = .02). Reductions in depressive symptoms after 1 week of active placebo treatment, compared with the inactive, were associated with increased placebo-induced µ-opioid neurotransmission in a network of regions implicated in emotion, stress regulation, and the pathophysiology of MDD, namely, the subgenual anterior cingulate cortex, nucleus accumbens, midline thalamus, and amygdala (nucleus accumbens: r = 0.6; P < .001). Placebo-induced endogenous opioid release in these regions was associated with better antidepressant treatment response, predicting 43% of the variance in symptom improvement at the end of the antidepressant trial. CONCLUSIONS AND RELEVANCE These data demonstrate that placebo-induced activation of the µ-opioid system is implicated in the formation of placebo antidepressant effects in patients with MDD and also participate in antidepressant responses, conferring illness resiliency, during open administration. TRIAL REGISTRATION clinicaltrials.gov Identifier:NCT02178696.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Amy S. B. Bohnert
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Department of Veterans Affairs, Ann Arbor, MI, USA
| | - Magdalena Sikora
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Erich T. Avery
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Brian J. Mickey
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA,Department of Radiology, Medical School, University of Michigan, Ann Arbor, MI, USA,To whom correspondence should be addressed: Jon-Kar Zubieta, MD, PhD, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, Phone: 734-763-6843, Fax: 734-647-4130,
| |
Collapse
|
39
|
Colagiuri B, Schenk LA, Kessler MD, Dorsey SG, Colloca L. The placebo effect: From concepts to genes. Neuroscience 2015; 307:171-90. [PMID: 26272535 PMCID: PMC5367890 DOI: 10.1016/j.neuroscience.2015.08.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
Despite its initial treatment as a nuisance variable, the placebo effect is now recognized as a powerful determinant of health across many different diseases and encounters. This is in light of some remarkable findings ranging from demonstrations that the placebo effect significantly modulates the response to active treatments in conditions such as pain, anxiety, Parkinson's disease, and some surgical procedures. Here, we review pioneering studies and recent advances in behavioral, neurobiological, and genetic influences on the placebo effect. Consistent with recent conceptualizations, the placebo effect is presented as the product of a general expectancy learning mechanism in which verbal, conditioned, and social cues are centrally integrated to change behaviors and outcomes. Examples of the integration of verbal and conditioned cues, such as instructed reversal of placebo effects are also incorporated into this model. We discuss neuroimaging studies that have identified key brain regions and modulatory mechanisms underlying placebo effects using well-established behavioral paradigms. Finally, we present a synthesis of recent genetics studies on the placebo effect, highlighting a promising link between genetic variants in the dopamine, opioid, serotonin, and endocannabinoid pathways and placebo responsiveness. Greater understanding of the behavioral, neurobiological, and genetic influences on the placebo effect is critical for evaluating medical interventions and may allow health professionals to tailor and personalize interventions in order to maximize treatment outcomes in clinical settings.
Collapse
Affiliation(s)
- B Colagiuri
- University of Sydney, School of Psychology, Australia
| | - L A Schenk
- University Medical Center Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - M D Kessler
- University of Maryland School of Medicine, Institute For Genome Sciences, Baltimore, USA
| | - S G Dorsey
- University of Maryland School of Nursing, Department of Pain and Translational Symptom Science, Baltimore, USA; University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, USA; UM Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - L Colloca
- University of Maryland School of Nursing, Department of Pain and Translational Symptom Science, Baltimore, USA; University of Maryland School of Medicine, Department of Anesthesiology, Baltimore, USA; UM Center to Advance Chronic Pain Research, Baltimore, MD, USA.
| |
Collapse
|
40
|
Vaessen T, Hernaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psychopathology: A systematic review. Neurosci Biobehav Rev 2015. [PMID: 26196459 DOI: 10.1016/j.neubiorev.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous work in animals has shown that dopamine (DA) in cortex and striatum plays an essential role in stress processing. For the first time, we systematically reviewed the in vivo evidence for DAergic stress processing in health and psychopathology in humans. All studies included (n studies=25, n observations=324) utilized DA D2/3 positron emission tomography and measured DAergic activity during an acute stress challenge. The evidence in healthy volunteers (HV) suggests that physiological, but not psychological, stress consistently increases striatal DA release. Instead, increased medial prefrontal cortex (mPFC) DAergic activity in HV was observed during psychological stress. Across brain regions, stress-related DAergic activity was correlated with the physiological and psychological intensity of the stressor. The magnitude of stress-induced DA release was dependent on rearing conditions, personality traits and genetic variations in several SNPs. In psychopathology, preliminary evidence was found for stress-related dorsal striatal DAergic hyperactivity in psychosis spectrum and a blunted response in chronic cannabis use and pain-related disorders, but results were inconsistent. Physiological stress-induced DAergic activity in striatum in HV may reflect somatosensory properties of the stressor and readiness for active fight-or-flight behavior. DAergic activity in HV in the ventral striatum and mPFC may be more related to expectations about the stressor and threat evaluation, respectively. Future studies with increased sample size in HV and psychopathology assessing the functional relevance of stress-induced DAergic activity, the association between cortical and subcortical DAergic activity and the direct comparison of different stressors are necessary to conclusively elucidate the role of the DA system in the stress response.
Collapse
Affiliation(s)
- Thomas Vaessen
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands.
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and Neuroscience MHeNS, Maastricht University, The Netherlands
| |
Collapse
|
41
|
Wang C, Liu B, Long H, Fan L, Li J, Zhang X, Qiu C, Yu C, Jiang T. Epistatic interaction of BDNF and COMT on the frontostriatal system. Neuroscience 2015; 298:380-8. [DOI: 10.1016/j.neuroscience.2015.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
42
|
Agrawal A, Lynskey MT, Kapoor M, Bucholz KK, Edenberg HJ, Schuckit M, Brooks A, Hesselbrock V, Kramer J, Saccone N, Tischfield J, Bierut LJ. Are genetic variants for tobacco smoking associated with cannabis involvement? Drug Alcohol Depend 2015; 150:183-7. [PMID: 25770649 PMCID: PMC4443812 DOI: 10.1016/j.drugalcdep.2015.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cannabis users are highly likely to also be tobacco cigarette smokers and a proportion of this comorbidity is attributable to shared genetic influences. Three large meta-analyses of genomewide association studies (GWAS) of tobacco smoking have identified multiple genomewide significant (p<5×10(-8)) single nucleotide polymorphisms (SNPs). We examine whether these SNPs are associated with tobacco smoking and with cannabis involvement in an independent sample. METHOD Eleven SNPs associated with cigarettes per day (CPD), ever versus never smoking and current smoking/smoking cessation at p<5×10(-8) were selected from three published meta-analyses. Association analyses were conducted with similar tobacco smoking measures in 2716 European-American subjects from the Study of Addictions Genes and Environment (SAGE) and with lifetime and current cannabis use and DSM-IV cannabis abuse/dependence. RESULTS Cannabis use and tobacco smoking correlated at 0.54. Rs16969968 in CHRNA5 (and its proxy, rs1051730 in CHRNA3) and rs1451240, a proxy for rs13280604 in CHRNB3, were associated with CPD after Bonferroni correction (p<0.006). rs1451240 was also associated with DSM-IV cannabis abuse/dependence. Rs6265 in BDNF was associated with smoking initiation, as in the original meta-analysis and also with lifetime cannabis use. Associations with cannabis involvement were no longer significant upon adjustment for the tobacco smoking measures. CONCLUSIONS The modest associations between cannabis involvement and SNPs for tobacco smoking were not independent of the comorbidity between tobacco and cannabis involvement. Larger samples of individuals might be required to articulate the specific genetic architecture of cannabis involvement.
Collapse
Affiliation(s)
- Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA.
| | | | - Manav Kapoor
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Kathleen K Bucholz
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | | | | | - Andrew Brooks
- Rutgers University, Department of Genetics, Piscataway, NJ, USA
| | - Victor Hesselbrock
- University of Connecticut Health Center, Department of Psychiatry, Farmington, CT, USA
| | - John Kramer
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nancy Saccone
- Washington University School of Medicine, Department of Genetics, St. Louis, MO, USA
| | | | - Laura J Bierut
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| |
Collapse
|
43
|
Hall KT, Loscalzo J, Kaptchuk TJ. Genetics and the placebo effect: the placebome. Trends Mol Med 2015; 21:285-94. [PMID: 25883069 DOI: 10.1016/j.molmed.2015.02.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Placebos are indispensable controls in randomized clinical trials (RCTs), and placebo responses significantly contribute to routine clinical outcomes. Recent neurophysiological studies reveal neurotransmitter pathways that mediate placebo effects. Evidence that genetic variations in these pathways can modify placebo effects raises the possibility of using genetic screening to identify placebo responders and thereby increase RCT efficacy and improve therapeutic care. Furthermore, the possibility of interaction between placebo and drug molecular pathways warrants consideration in RCT design. The study of genomic effects on placebo response, 'the placebome', is in its infancy. Here, we review evidence from placebo studies and RCTs to identify putative genes in the placebome, examine evidence for placebo-drug interactions, and discuss implications for RCTs and clinical care.
Collapse
Affiliation(s)
- Kathryn T Hall
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ted J Kaptchuk
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
44
|
Molecular mechanisms of placebo responses in humans. Mol Psychiatry 2015; 20:416-23. [PMID: 25510510 PMCID: PMC4372496 DOI: 10.1038/mp.2014.164] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022]
Abstract
Endogenous opioid and non-opioid mechanisms (for example, dopamine (DA), endocannabinoids (eCB)) have been implicated in the formation of placebo analgesic effects, with initial reports dating back three decades. Besides the perspective that placebo effects confound randomized clinical trials, the information so far acquired points to neurobiological systems that when activated by positive expectations and maintained through conditioning and reward learning are capable of inducing physiological changes that lead to the experience of analgesia and improvements in emotional state. Molecular neuroimaging techniques with positron emission tomography and the selective μ-opioid and D2/3 radiotracers [(11)C]carfentanil and [(11)C]raclopride have significantly contributed to our understanding of the neurobiological systems involved in the formation of placebo effects. This line of research has described neural and neurotransmitter networks implicated in placebo responses and provided the technical tools to examine inter-individual differences in the function of placebo-responsive mechanisms, and potential surrogates (biomarkers). As a consequence, the formation of biological placebo effects is now being linked to the concept of resiliency mechanisms, partially determined by genetic factors, and uncovered by the cognitive emotional integration of the expectations created by the therapeutic environment and its maintenance through learning mechanisms. Further work needs to extend this research into clinical conditions where the rates of placebo responses are high and its neurobiological mechanisms have been largely unexplored (for example, mood and anxiety disorders, persistent pain syndromes or even Parkinson disease and multiple sclerosis). The delineation of these processes within and across diseases would point to biological targets that have not been contemplated in traditional drug development.
Collapse
|
45
|
Homan P, Grob S, Milos G, Schnyder U, Eckert A, Lang U, Hasler G. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa. Int J Neuropsychopharmacol 2015; 18:pyu092. [PMID: 25522424 PMCID: PMC4376547 DOI: 10.1093/ijnp/pyu092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. METHODS Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. RESULTS AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; P<.0001). The plasma leptin levels were higher under catecholamine depletion compared with placebo in the whole sample (treatment effect; P=.0004). CONCLUSIONS This study reports on preliminary findings that suggest a catecholamine-dependent association of plasma BDNF and reward learning in subjects with remitted bulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls.
Collapse
Affiliation(s)
- Philipp Homan
- Department of Molecular Psychiatry, University Hospital of Psychiatry, University of Bern, Switzerland (Drs Homan and Hasler); Department of Psychiatry and Psychotherapy, University Hospital, Zurich, Switzerland (Dr Grob, Drs Milos and Schnyder); Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric University Clinics Basel, Switzerland (Dr Eckert); Psychiatric University Clinics Basel, Switzerland (Dr Lang).
| | | | | | | | | | | | | |
Collapse
|
46
|
Nijs J, Meeus M, Versijpt J, Moens M, Bos I, Knaepen K, Meeusen R. Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets 2014; 19:565-76. [PMID: 25519921 DOI: 10.1517/14728222.2014.994506] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Central sensitization is a form of maladaptive neuroplasticity underlying many chronic pain disorders, including neuropathic pain, fibromyalgia, whiplash, headache, chronic pelvic pain syndrome and some forms of osteoarthritis, low back pain, epicondylitis, shoulder pain and cancer pain. Brain-derived neurotrophic factor (BDNF) is a driving force behind neuroplasticity, and it is therefore crucial for neural maintenance and repair. However, BDNF also contributes to sensitization of pain pathways, making it an interesting novel therapeutic target. AREAS COVERED An overview of BDNF's sensitizing capacity at every level of the pain pathways is presented, including the peripheral nociceptors, dorsal root ganglia, spinal dorsal horn neurons, and brain descending inhibitory and facilitatory pathways. This is followed by the presentation of several potential therapeutic options, ranging from indirect influencing of BDNF levels (using exercise therapy, anti-inflammatory drugs, melatonin, repetitive transcranial magnetic stimulation) to more specific targeting of BDNF's receptors and signaling pathways (blocking the proteinase-activated receptors 2-NK-κβ signaling pathway, administration of phencyclidine for antagonizing NMDA receptors, or blockade of the adenosine A2A receptor). EXPERT OPINION This section focuses on combining pharmacotherapy with multimodal rehabilitation for balancing the deleterious and therapeutic effects of BNDF treatment in chronic pain patients, as well as accounting for the complex and biopsychosocial nature of chronic pain.
Collapse
Affiliation(s)
- Jo Nijs
- Pain in Motion international research group
| | | | | | | | | | | | | |
Collapse
|
47
|
Chumbley J, Späti J, Dörig N, Brakowski J, Grosse Holtforth M, Seifritz E, Spinelli S. BDNF Val66Met polymorphism influence on striatal blood-level-dependent response to monetary feedback depends on valence and agency. Neuroscience 2014; 280:130-41. [PMID: 25234319 DOI: 10.1016/j.neuroscience.2014.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. In this study, we emphasize the importance of the feedback attribution because agency is central to computational accounts of the striatum and cognitive accounts of valence processing. We used functional magnetic resonance imaging and a task, in which financial gains/losses are either attributable to performance (self-attributed, SA) or chance (externally-attributed, EA) to ask whether BDNF Val66Met polymorphism predicts VS activity. We found that BDNF Val66Met polymorphism influenced how feedback valence and agency information were combined in the VS and in the right inferior frontal junction (IFJ). Specifically, Met carriers' VS response to valenced feedback depended on agency information, while Val/Val carriers' VS response did not. This context-specific modulation of valence effectively amplified VS responses to SA losses in Met carriers. The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.
Collapse
Affiliation(s)
- J Chumbley
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland
| | - J Späti
- Department of Psychophysiology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Dörig
- Department of Psychology, University of Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Switzerland
| | - J Brakowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland
| | - M Grosse Holtforth
- Department of Psychology, University of Zurich, Switzerland; Department of Psychology, University of Bern, Switzerland
| | - E Seifritz
- Neuroscience Center, University and ETH Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - S Spinelli
- Neuroscience Center, University and ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Switzerland.
| |
Collapse
|