1
|
Blomqvist A. Inflammation-induced fever depends on prostaglandin E2 production by brain endothelial cells and EP3 receptors in the median preoptic nucleus of the hypothalamus. Acta Physiol (Oxf) 2024; 240:e14238. [PMID: 39352065 DOI: 10.1111/apha.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 11/10/2024]
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Szentirmai É, Buckley K, Kapás L. Cyclooxygenase-2 (COX-2)-dependent mechanisms mediate sleep responses to microbial and thermal stimuli. Brain Behav Immun 2024; 122:325-338. [PMID: 39134184 PMCID: PMC11402559 DOI: 10.1016/j.bbi.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Prostaglandins (PGs) play a crucial role in sleep regulation, yet the broader physiological context that leads to the activation of the prostaglandin-mediated sleep-promoting system remains elusive. In this study, we explored sleep-inducing mechanisms potentially involving PGs, including microbial, immune and thermal stimuli as well as homeostatic sleep responses induced by short-term sleep deprivation using cyclooxygenase-2 knockout (COX-2 KO) mice and their wild-type littermates (WT). Systemic administration of 0.4 µg lipopolysaccharide (LPS) induced increased non-rapid-eye movement sleep (NREMS) and fever in WT animals, these effects were completely absent in COX-2 KO mice. This finding underscores the essential role of COX-2-dependent prostaglandins in mediating sleep and febrile responses to LPS. In contrast, the sleep and fever responses induced by tumor necrosis factor α, a proinflammatory cytokine which activates COX-2, were preserved in COX-2 KO animals, indicating that these effects are independent of COX-2-related signaling. Additionally, we examined the impact of ambient temperature on sleep. The sleep-promoting effects of moderate warm ambient temperature were suppressed in COX-2 KO animals, resulting in significantly reduced NREMS at ambient temperatures of 30 °C and 35 °C compared to WT mice. However, rapid-eye-movement sleep responses to moderately cold or warm temperatures did not differ between the two genotypes. Furthermore, 6 h of sleep deprivation induced rebound increases in sleep with no significant differences observed between COX-2 KO and WT mice. This suggests that while COX-2-derived prostaglandins are crucial for the somnogenic effects of increased ambient temperature, the homeostatic responses to sleep loss are COX-2-independent. Overall, the results highlight the critical role of COX-2-derived prostaglandins as mediators of the sleep-wake and thermoregulatory responses to various physiological challenges, including microbial, immune, and thermal stimuli. These findings emphasize the interconnected regulation of body temperature and sleep, with peripheral mechanisms emerging as key players in these integrative processes.
Collapse
Affiliation(s)
- Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States; Sleep and Performance Research Center, Washington State University, Spokane, WA United States.
| | - Katelin Buckley
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Washington State University, Spokane, WA United States; Sleep and Performance Research Center, Washington State University, Spokane, WA United States
| |
Collapse
|
3
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
4
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
5
|
Xiong L, Huang W, Liu Y, Zhao H, Wang Y, Jin Y, Zhang L, Zhang Y. Study on Antipyretic Properties of Phenolics in Lonicerae Japonicae Flos Based on Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Combined with Network Pharmacology. J Food Biochem 2023; 2023:1-17. [DOI: 10.1155/2023/8883860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objective. To identify and quantify the active phenolic components in Lonicerae japonicae flos (LJF) for fever treatment and their mechanism of action using network pharmacology and molecular docking. Methods. Based on qualitative analysis of LJF, 194 phenolics were obtained, including 81 phenolic acids and 113 flavonoids. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify potential targets for these components to interact with fever. Molecular docking with microsomal PGE2 synthase-1, EP1, EP2, EP3, and EP4 targets was used to determine antipyretic components. The antipyretic efficacy of the main components was verified by in vivo experiments. Finally, high-performance liquid chromatography-tandem mass spectrometry was used to quantify the main antipyretic components of LJF. Results. Phenolics in LJF may prevent and treat fever by participating in calcium signaling, regulating TRP channels, and cAMP signaling. Luteolin-7-O-glucoside, apigenin-7-O-glucoside, 3,5-O-dicaffeoylquinic acid, luteolin, and other components have a good docking effect with PGE2 synthase-1 and its four subtypes. 3,5-O-dicaffeoylquinic acid, luteolin-7-O-glucoside, and apigenin-7-O-glucoside have good antipyretic effects in a yeast-induced pyrexia model. The content of these antipyretic components varies with the developmental period of LJF. Phenolic acids are the main components that distinguish the different developmental periods of LJF. Conclusion. The potential antipyretic components and molecular mechanisms of phenolics provide a basis for the traditional medicinal effects and future development and utilization of LJF.
Collapse
Affiliation(s)
- Lewen Xiong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjing Huang
- Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Jin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
6
|
Dehdar K, Raoufy MR. Brain structural and functional alterations related to anxiety in allergic asthma. Brain Res Bull 2023; 202:110727. [PMID: 37562517 DOI: 10.1016/j.brainresbull.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Psychiatric disorders are common in patients with allergic asthma, and they can have a significant impact on their quality of life and disease control. Recent studies have suggested that there may be potential immune-brain communication mechanisms in asthma, which can activate inflammatory responses in different brain areas, leading to structural and functional alterations and behavioral changes. However, the precise mechanisms underlying these alterations remain unclear. In this paper, we comprehensively review the relevant research on asthma-induced brain structural and functional alterations that lead to the initiation and promotion of anxiety. We summarize the possible pathways for peripheral inflammation to affect the brain's structure and function. Our review highlights the importance of addressing neuropsychiatric disorders in the clinical guidelines of asthma, to improve the quality of life of these patients. We suggest that a better understanding of the mechanisms underlying psychiatric comorbidities in asthma could lead to the development of more effective treatments for these patients.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
8
|
Jagot F, Gaston-Breton R, Choi AJ, Pascal M, Bourhy L, Dorado-Doncel R, Conzelmann KK, Lledo PM, Lepousez G, Eberl G. The parabrachial nucleus elicits a vigorous corticosterone feedback response to the pro-inflammatory cytokine IL-1β. Neuron 2023:S0896-6273(23)00382-3. [PMID: 37279750 DOI: 10.1016/j.neuron.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
The central nervous system regulates systemic immune responses by integrating the physiological and behavioral constraints faced by an individual. Corticosterone (CS), the release of which is controlled in the hypothalamus by the paraventricular nucleus (PVN), is a potent negative regulator of immune responses. Using the mouse model, we report that the parabrachial nucleus (PB), an important hub linking interoceptive afferent information to autonomic and behavioral responses, also integrates the pro-inflammatory cytokine IL-1β signal to induce the CS response. A subpopulation of PB neurons, directly projecting to the PVN and receiving inputs from the vagal complex (VC), responds to IL-1β to drive the CS response. Pharmacogenetic reactivation of these IL-1β-activated PB neurons is sufficient to induce CS-mediated systemic immunosuppression. Our findings demonstrate an efficient brainstem-encoded modality for the central sensing of cytokines and the regulation of systemic immune responses.
Collapse
Affiliation(s)
- Ferdinand Jagot
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France; Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Perception and Memory Unit, 75015 Paris, France; PhD Program, Ecole Doctorale Bio Sorbonne Paris Cité (BioSpc), Université de Paris Cité, 75005 Paris, France.
| | - Romane Gaston-Breton
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France
| | - Ana Jeemin Choi
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France; PhD Program, Ecole Doctorale Bio Sorbonne Paris Cité (BioSpc), Université de Paris Cité, 75005 Paris, France
| | - Maud Pascal
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France; Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Perception and Memory Unit, 75015 Paris, France
| | - Lena Bourhy
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Perception and Memory Unit, 75015 Paris, France
| | - Romane Dorado-Doncel
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute of Virology, Medical Faculty and Gene Center, LMU Munich, 81377 Munich, Germany
| | - Pierre-Marie Lledo
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Perception and Memory Unit, 75015 Paris, France
| | - Gabriel Lepousez
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3571, Perception and Memory Unit, 75015 Paris, France
| | - Gérard Eberl
- Institut Pasteur, Université de Paris Cité, Inserm U1224, Microenvironment and Immunity Unit, 75015 Paris, France.
| |
Collapse
|
9
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
10
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Blomqvist A. Prostaglandin E 2 Production by Brain Endothelial Cells and the Generation of Fever. DNA Cell Biol 2023; 42:107-112. [PMID: 36720071 PMCID: PMC10024267 DOI: 10.1089/dna.2022.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently demonstrated that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of fever during systemic immune challenge. I here discuss this finding in light of the previous literature and point to some unresolved issues.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Donegan JJ, Nemeroff CB. Suicide and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:379-404. [PMID: 36949319 DOI: 10.1007/978-981-19-7376-5_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Suicide is a leading cause of death worldwide. Although the neurobiological dysfunction underlying suicidal behavior remains unclear, recent work suggests that the immune system may play a role in the pathophysiology of suicide. In this chapter, we discuss a nascent body of literature suggesting that peripheral and central nervous systems (CNS) inflammation are associated with suicidal behavior. Because early-life stress is a major risk factor for suicidal behavior and is also associated with immune dysregulation, we hypothesize that such immune dysregulation may be the mechanism by which childhood maltreatment leads to an increased risk of suicidal behavior and suicide. Targeting inflammatory processes may be a novel treatment strategy, especially in populations that have experienced childhood trauma and exhibit elevated inflammation. Future work should directly test the hypothesis that reducing inflammation would result in a reduction in suicidal behavior.
Collapse
Affiliation(s)
- Jennifer J Donegan
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Dell Medical School, Austin, TX, USA
- Department of Neuroscience, University of Texas at Austin, Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Dell Medical School, Austin, TX, USA.
| |
Collapse
|
13
|
Calero M, Moleiro LH, Sayd A, Dorca Y, Miquel-Rio L, Paz V, Robledo-Montaña J, Enciso E, Acción F, Herráez-Aguilar D, Hellweg T, Sánchez L, Bortolozzi A, Leza JC, García-Bueno B, Monroy F. Lipid nanoparticles for antisense oligonucleotide gene interference into brain border-associated macrophages. Front Mol Biosci 2022; 9:887678. [PMID: 36406277 PMCID: PMC9671215 DOI: 10.3389/fmolb.2022.887678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
A colloidal synthesis’ proof-of-concept based on the Bligh–Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.
Collapse
Affiliation(s)
- Macarena Calero
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Lara H. Moleiro
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Aline Sayd
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Yeray Dorca
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Lluis Miquel-Rio
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Robledo-Montaña
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Eduardo Enciso
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Fernando Acción
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Diego Herráez-Aguilar
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - Thomas Hellweg
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Luis Sánchez
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Analía Bortolozzi
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan C. Leza
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Borja García-Bueno
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| | - Francisco Monroy
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| |
Collapse
|
14
|
Zheng L, Guo Y, Zhai X, Zhang Y, Chen W, Zhu Z, Xuan W, Li P. Perivascular macrophages in the CNS: From health to neurovascular diseases. CNS Neurosci Ther 2022; 28:1908-1920. [PMID: 36128654 PMCID: PMC9627394 DOI: 10.1111/cns.13954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Brain perivascular macrophages (PVMs) are attracting increasing attention as this emerging cell population in the brain has multifaced roles in supporting the central nervous system structure, brain development, and maintaining physiological functions. They also widely participate in neurological diseases such as neurodegeneration and ischemic stroke. Moreover, PVMs have been reported to have both beneficial and detrimental effects under different pathological contexts. Advanced research technologies allowed the further in-depth study of PVMs and revealed novel concepts in their origins, differentiation, and regulatory mechanisms. Deepened understanding of the roles of PVMs in different brain pathological conditions can reveal novel phenotypic changes and regulatory signaling, which might pave the way for the development of novel treatment strategies targeting PVMs.
Collapse
Affiliation(s)
- Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ziyu Zhu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xuan
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
16
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
Sun Q, Ho CT, Zhang X, Liu Y, Zhang R, Wu Z. Strategies for circadian rhythm disturbances and related psychiatric disorders: A new cue based on plant polysaccharides and intestinal microbiota. Food Funct 2022; 13:1048-1061. [DOI: 10.1039/d1fo02716f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host...
Collapse
|
18
|
Jellinger KA. Pathomechanisms of Vascular Depression in Older Adults. Int J Mol Sci 2021; 23:ijms23010308. [PMID: 35008732 PMCID: PMC8745290 DOI: 10.3390/ijms23010308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Depression in older individuals is a common complex mood disorder with high comorbidity of both psychiatric and physical diseases, associated with high disability, cognitive decline, and increased mortality The factors predicting the risk of late-life depression (LLD) are incompletely understood. The reciprocal relationship of depressive disorder and age- and disease-related processes has generated pathogenic hypotheses and provided various treatment options. The heterogeneity of depression complicates research into the underlying pathogenic cascade, and factors involved in LLD considerably differ from those involved in early life depression. Evidence suggests that a variety of vascular mechanisms, in particular cerebral small vessel disease, generalized microvascular, and endothelial dysfunction, as well as metabolic risk factors, including diabetes, and inflammation that may induce subcortical white and gray matter lesions by compromising fronto-limbic and other important neuronal networks, may contribute to the development of LLD. The "vascular depression" hypothesis postulates that cerebrovascular disease or vascular risk factors can predispose, precipitate, and perpetuate geriatric depression syndromes, based on their comorbidity with cerebrovascular lesions and the frequent development of depression after stroke. Vascular burden is associated with cognitive deficits and a specific form of LLD, vascular depression, which is marked by decreased white matter integrity, executive dysfunction, functional disability, and poorer response to antidepressive therapy than major depressive disorder without vascular risk factors. Other pathogenic factors of LLD, such as neurodegeneration or neuroimmune regulatory dysmechanisms, are briefly discussed. Treatment planning should consider a modest response of LLD to antidepressants, while vascular and metabolic factors may provide promising targets for its successful prevention and treatment. However, their effectiveness needs further investigation, and intervention studies are needed to assess which interventions are appropriate and effective in clinical practice.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150 Vienna, Austria
| |
Collapse
|
19
|
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021; 18:258. [PMID: 34742308 PMCID: PMC8571840 DOI: 10.1186/s12974-021-02309-6] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 2021; 18:2489-2501. [PMID: 34594000 PMCID: PMC8481764 DOI: 10.1038/s41423-021-00757-x] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The vascular blood-brain barrier is a highly regulated interface between the blood and brain. Its primary function is to protect central neurons while signaling the presence of systemic inflammation and infection to the brain to enable a protective sickness behavior response. With increasing degrees and duration of systemic inflammation, the vascular blood-brain barrier becomes more permeable to solutes, undergoes an increase in lymphocyte trafficking, and is infiltrated by innate immune cells; endothelial cell damage may occasionally occur. Perturbation of neuronal function results in the clinical features of encephalopathy. Here, the molecular and cellular anatomy of the vascular blood-brain barrier is reviewed, first in a healthy context and second in a systemic inflammatory context. Distinct from the molecular and cellular mediators of the blood-brain barrier's response to inflammation, several moderators influence the direction and magnitude at genetic, system, cellular and molecular levels. These include sex, genetic background, age, pre-existing brain pathology, systemic comorbidity, and gut dysbiosis. Further progress is required to define and measure mediators and moderators of the blood-brain barrier's response to systemic inflammation in order to explain the heterogeneity observed in animal and human studies.
Collapse
Affiliation(s)
- Ian Galea
- grid.5491.90000 0004 1936 9297Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
21
|
Brain Perivascular Macrophages Do Not Mediate Interleukin-1-Induced Sickness Behavior in Rats. Pharmaceuticals (Basel) 2021; 14:ph14101030. [PMID: 34681254 PMCID: PMC8541198 DOI: 10.3390/ph14101030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Sickness behavior, characterized by on overall reduction in behavioral activity, is commonly observed after bacterial infection. Sickness behavior can also be induced by the peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. In addition to the microglia, the brain contains perivascular macrophages, which express the IL-1 type 1 receptor (IL-1R1). In the present study, we assessed the role of brain perivascular macrophages in mediating IL-1β-induced sickness behavior in rats. To do so, we used intracerebroventricular (icv) administration of an IL-1β-saporin conjugate, known to eliminate IL-R1-expressing brain cells, prior to systemic or central IL-1β injection. Icv IL-1β-saporin administration resulted in a reduction in brain perivascular macrophages, without altering subsequent icv or ip IL-1β-induced reductions in food intake, locomotor activity, and social interactions. In conclusion, the present work shows that icv IL-1β-saporin administration is an efficient way to target brain perivascular macrophages, and to determine whether these cells are involved in IL-1β-induced sickness behavior.
Collapse
|
22
|
Hasegawa Y, Uchikawa H, Kajiwara S, Morioka M. Central sympathetic nerve activation in subarachnoid hemorrhage. J Neurochem 2021; 160:34-50. [PMID: 34525222 DOI: 10.1111/jnc.15511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening condition, and although its two main complications-cerebral vasospasm (CVS)/delayed cerebral ischemia (DCI) and early brain injury (EBI)-have been widely studied, prognosis has not improved over time. The sympathetic nerve (SN) system is important for the regulation of cardiovascular function and is closely associated with cerebral vessels and the regulation of cerebral blood flow and cerebrovascular function; thus, excessive SN activation leads to a rapid breakdown of homeostasis in the brain. In the hyperacute phase, patients with SAH can experience possibly lethal conditions that are thought to be associated with SN activation (catecholamine surge)-related arrhythmia, neurogenic pulmonary edema, and irreversible injury to the hypothalamus and brainstem. Although the role of the SN system in SAH has long been investigated and considerable evidence has been collected, the exact pathophysiology remains undetermined, mainly because the relationships between the SN system and SAH are complicated, and many SN-modulating factors are involved. Thus, research concerning these relationships needs to explore novel findings that correlate with the relevant concepts based on past reliable evidence. Here, we explore the role of the central SN (CSN) system in SAH pathophysiology and provide a comprehensive review of the functional CSN network; brain injury in hyperacute phase involving the CSN system; pathophysiological overlap between the CSN system and the two major SAH complications, CVS/DCI and EBI; CSN-modulating factors; and SAH-related extracerebral organ injury. Further studies are warranted to determine the specific roles of the CSN system in the brain injuries associated with SAH.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.,Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroki Uchikawa
- Department of Neurosurgery, Kumamoto University School of Medicine, Kumamoto, Kumamoto, Japan
| | - Sosho Kajiwara
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
23
|
Ghannoum MA, Ford M, Bonomo RA, Gamal A, McCormick TS. A Microbiome-Driven Approach to Combating Depression During the COVID-19 Pandemic. Front Nutr 2021; 8:672390. [PMID: 34504858 PMCID: PMC8421528 DOI: 10.3389/fnut.2021.672390] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The significant stressors brought about and exacerbated by COVID-19 are associated with startling surges in mental health illnesses, specifically those related to depressive disorders. Given the huge impact of depression on society, and an incomplete understanding of impactful therapeutics, we have examined the current literature surrounding the microbiome and gut-brain axis to advance a potential complementary approach to address depression and depressive disorders that have increased during the COVID-19 pandemic. While we understand that the impact of the human gut microbiome on emotional health is a newly emerging field and more research needs to be conducted, the current evidence is extremely promising and suggests at least part of the answer to understanding depression in more depth may lie within the microbiome. As a result of these findings, we propose that a microbiome-based holistic approach, which involves carefully annotating the microbiome and potential modification through diet, probiotics, and lifestyle changes, may address depression. This paper's primary purpose is to shed light on the link between the gut microbiome and depression, including the gut-brain axis and propose a holistic approach to microbiome modification, with the ultimate goal of assisting individuals to manage their battle with depression through diet, probiotics, and lifestyle changes, in addition to offering a semblance of hope during these challenging times.
Collapse
Affiliation(s)
- Mahmoud A. Ghannoum
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- BIOHM Health LLC, Cleveland, OH, United States
| | | | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Ahmed Gamal
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas S. McCormick
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Maba IK, Cruz JV, Zampronio AR. Change in prostaglandin signaling during sickness syndrome hyperalgesia after ovariectomy in female rats. Behav Brain Res 2021; 410:113368. [PMID: 34000337 DOI: 10.1016/j.bbr.2021.113368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
The present study investigated hyperalgesia during sickness syndrome in female rats. Hyperalgesia was induced by an intraperitoneal injection of lipopolysaccharide (LPS) or an intracerebroventricular injection of prostaglandin E2 (PGE2). No differences were found in basal mechanical and thermal thresholds or in LPS-induced hyperalgesia in sham-operated animals in the diestrus or proestrus phase or in ovariectomized (OVX) animals. However, higher levels of PGE2 where found in the cerebrospinal fluid of OVX animals compared to sham-operated females. Intracerebroventricular injection of PGE2 produced rapid mechanical hyperalgesia in sham-operated rats while these responses were observed at later times in OVX animals. The protein kinase A (PKA) inhibitor H-89 reduced mechanical PGE2-induced hyperalgesia in OVX female rats, whereas no effect was observed in sham-operated animals. In contrast, the exchange protein activated by cyclic adenosine monophosphate (cAMP; Epac) inhibitor ESI-09 reduced mechanical PGE2-induced hyperalgesia, whereas no effect was observed in OVX animals. PGE2 also induced thermal hyperalgesia in sham-operated and OVX female rats and a similar effect of ESI-09 was observed. These results suggest that PGE2-induced hyperalgesia that is observed during sickness syndrome has different signaling mechanisms in cycling and OVX female rats involving the activation of the cAMP-Epac or cAMP-PKA pathways, respectively.
Collapse
Affiliation(s)
- I K Maba
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil
| | - J V Cruz
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil
| | - A R Zampronio
- Department of Pharmacology, Biological Sciences Section, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
25
|
Shao Q, Wu Y, Ji J, Xu T, Yu Q, Ma C, Liao X, Cheng F, Wang X. Interaction Mechanisms Between Major Depressive Disorder and Non-alcoholic Fatty Liver Disease. Front Psychiatry 2021; 12:711835. [PMID: 34966296 PMCID: PMC8710489 DOI: 10.3389/fpsyt.2021.711835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD), which is highly associated with non-alcoholic fatty liver disease (NAFLD), has complex pathogenic mechanisms. However, a limited number of studies have evaluated the mutual pathomechanisms involved in MDD and NAFLD development. Chronic stress-mediated elevations in glucocorticoid (GC) levels play an important role in the development of MDD-related NAFLD. Elevated GC levels can induce the release of inflammatory factors and changes in gut permeability. Elevated levels of inflammatory factors activate the hypothalamic-pituitary-adrenal (HPA) axis, which further increases the release of GC. At the same time, changes in gut permeability promote the release of inflammatory factors, which results in a vicious circle among the three, causing disease outbreaks. Even though the specific role of the thyroid hormone (TH) in this pathogenesis has not been fully established, it is highly correlated with MDD and NAFLD. Therefore, changing lifestyles and reducing psychological stress levels are necessary measures for preventing MDD-related NAFLD. Among them, GC inhibitors and receptor antagonists may be key in the alleviation of early and mid-term disease progression. However, combination medications may be important in late-stage diseases, but they are associated with various side effects. Traditional Chinese medicines have been shown to be potential therapeutic alternatives for such complex diseases.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoyu Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejing Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Xue B, Zhang Y, Johnson AK. Interactions of the Brain Renin-Angiotensin-System (RAS) and Inflammation in the Sensitization of Hypertension. Front Neurosci 2020; 14:650. [PMID: 32760236 PMCID: PMC7373760 DOI: 10.3389/fnins.2020.00650] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mounting evidence indicates that the renin-angiotensin (RAS) and immune systems interact with one another in the central nervous system (CNS) and that they are importantly involved in the pathogenesis of hypertension. Components comprising the classic RAS were first identified in the periphery, and subsequently, similar factors were found to be generated de novo in many different organs including the brain. There is humoral-neural coupling between the systemic and brain RASs, which is important for controlling sympathetic tone and the release of endocrine factors that collectively determine blood pressure (BP). Similar to the interactions between the systemic and brain RASs is the communication between the peripheral and brain immune systems. Systemic inflammation activates the brain’s immune response. Importantly, the RAS and inflammatory factors act synergistically in brain regions involved in the regulation of BP. This review presents evidence of how such interactions between the brain RAS and central immune mechanisms contribute to the pathogenesis of hypertension. Emphasis focuses on the role of these interactions to induce neuroplastic changes in a central neural network resulting in hypertensive response sensitization (HTRS). Neuroplasticity and HTRS can be induced by challenges (stressors) presented earlier in life such as a low-dose of angiotensin II or high fat diet (HFD) feeding in adults. Similarly, the offspring of mothers with gestational hypertension or of mothers ingesting a HFD during pregnancy are reprogrammed and manifest HTRS when exposed to new stressors as adults. Consideration of the actions and interactions of the brain RAS and inflammatory mediators in the context of the induction and expression of HTRS will provide insights into the etiology of high BP that may lead to new strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States
| | - Yuping Zhang
- Department of Pathophysiology, Hebei North University, Zhangjiakou, China
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, United States.,Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, United States.,Health and Human Physiology, The University of Iowa, Iowa City, IA, United States.,The François M. Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
27
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
28
|
Chi H, Jin H, Wang Z, Feng T, Zeng T, Shi H, Wu X, Wan L, Teng J, Sun Y, Liu H, Cheng X, Ye J, Hu Q, Zhou Z, Gu J, Jia J, Liu T, Qiao X, Yang C, Su Y. Anxiety and depression in adult-onset Still's disease patients and associations with health-related quality of life. Clin Rheumatol 2020; 39:3723-3732. [PMID: 32447600 DOI: 10.1007/s10067-020-05094-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Adult-onset Still's disease (AOSD) is an autoinflammatory disorder leading to multiorgan involvements. We sought to investigate mood status and the health-related quality of life (HRQoL) in these patients. METHODS In this study, 82 AOSD patients and 82 age- and sex-matched healthy controls were included. Demographic and clinical data of recruited patients were collected. The Hospital Anxiety and Depression Scale (HADS) and Medical Outcomes Survey Short Form-36 (SF-36) were used to evaluate the mood status and quality of life, respectively. Spearman correlation and multivariable linear regression analyses were used to assess the disease-related risk factors associated with anxiety and depression. RESULTS Forty-four active and thirty-eight relieved patients were enrolled. We found that scores of both HADS anxiety (HADS-A) and depression (HADS-D) subscales in active AOSD were significantly higher than inactive patients, which were significantly higher than controls. Moreover, the HADS-A was positively correlated to the patient's global assessment (PGA), pain, and dosage of prednisone, and the HADS-D was positively correlated to systemic score, PGA, and pain. Female, high dosage of corticosteroids, and PGA more than 50 had a significant association with HADS-A score, while the sore throat and PGA more than 50 had a significant association with HADS-D score. Furthermore, AOSD patients' anxiety and depression had a negative impact on HRQoL. CONCLUSION Active AOSD patients tended to be anxious and depressed, suffering from poorer HRQoL compared to patients in remission. Therefore, the evaluation of mental health and HRQoL should be included in AOSD patients' long-term management. Key Points • Adult-onset Still's disease (AOSD) is a systemic inflammatory disorder leading to multiorgan involvement. This study was so far the first published research focuses on AOSD patients' mental involvement and health-related quality of life (HRQoL). • Active AOSD patients were more tended to be anxious and depressive and suffered from poorer HRQoL compared to inactive patients. • Patients' anxiety and depression were associated with impaired HRQoL.
Collapse
Affiliation(s)
- Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haiyan Jin
- Department of Psychiatry, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Zeng
- Department of Rheumatology, Xinhua Hospital Chongming Branch Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 202150, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyao Wu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jieyu Gu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Qiao
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
29
|
Sayd A, Vargas-Caraveo A, Perea-Romero I, Robledo-Montaña J, Caso JR, Madrigal JLM, Leza JC, Orio L, Garcia-Bueno B. Depletion of brain perivascular macrophages regulates acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat frontal cortex. Eur Neuropsychopharmacol 2020; 34:50-64. [PMID: 32245674 DOI: 10.1016/j.euroneuro.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
The central nervous system can respond to peripheral immune stimuli through the activation of the neurovascular unit. One of the cellular types implicated are perivascular macrophages (PVMs), hematopoietic-derived brain-resident cells located in the perivascular space. PVMs have been implicated in the immune surveillance and in the regulation of the accumulation/trafficking of macromolecules in brain-blood interfaces. Recent studies suggested that the role of PVMs could vary depending on the nature and duration of the immune challenge applied. Here, we investigate the role of PVMs in stress-induced neuroinflammation and oxidative/nitrosative consequences. The basal phagocytic activity of PVMs was exploited to selectively deplete them by ICV injection of liposomes encapsulating the pro-apoptotic drug clodronate. Acute restraint stress-induced neuroinflammation and oxidative/nitrosative stress in rat brain frontal cortex samples were assessed by western blot and RT-PCR analyses. The depletion of PVMs: (1) decreased tumor necrosis-α levels (2) prevented the Janus kinase/signal transducers and activators of transcription pathway and increased interleukin-6 receptor protein-expression in stress conditions; (3) prevented the stress-induced Toll-like receptor 4/Myeloid differentiation primary response 88 protein signaling pathway; (4) down-regulated the pro-inflammatory nuclear factor κB/cyclooxygenase-2 pathway; (5) prevented stress-induced lipid peroxidation and the concomitant increase of the endogenous antioxidant mediators nuclear factor (erythroid-derived 2)-like 2, glutathione reductase 1 and Parkinsonism-associated deglycase mRNA expression. Our results point to PVMs as regulators of stress-induced neuroinflammation and oxidative/nitrosative stress. Much more scientific effort is still needed to evaluate whether their selective manipulation is promising as a therapeutic strategy for the treatment of stress-related neuropsychopathologies.
Collapse
Affiliation(s)
- Aline Sayd
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Alejandra Vargas-Caraveo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain; Campus Lerma, Biological and Health Sciences Division, Metropolitan Autonomous University (UAM), Lerma 52005, Mexico
| | - Irene Perea-Romero
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Javier Robledo-Montaña
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Javier R Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Jose L M Madrigal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain
| | - Laura Orio
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Red de Trastornos Adictivos (RTA) del Instituto de Salud Carlos III (ISCIII), Spain
| | - Borja Garcia-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Instituto Universitario de Investigación en Neuroquímica UCM, Avda. Complutense s/n, Madrid 28040, Spain.
| |
Collapse
|
30
|
Brain perivascular macrophages contribute to the development of hypertension in stroke-prone spontaneously hypertensive rats via sympathetic activation. Hypertens Res 2019; 43:99-110. [PMID: 31541222 DOI: 10.1038/s41440-019-0333-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022]
Abstract
Hypertension is associated with systemic inflammation. The activation of the sympathetic nervous system is critically involved in the pathogenesis of hypertension. Brain perivascular macrophages (PVMs) can be affected by circulating inflammatory cytokines, and the contribution of brain PVMs to sympathoexcitation has been demonstrated in a heart failure model. We thus investigated whether brain PVMs contribute to the development of hypertension through sympathoexcitation. Stroke-prone spontaneously hypertensive rats (SHRSP) developed hypertension over an 8-week period from 4 to 12 weeks of age. The number of brain PVMs and plasma interleukin-1β levels significantly increased at the ages of 8 and 12 weeks in SHRSP compared with normotensive Wistar-Kyoto rats (WKY). To determine the contribution of brain PVMs to blood pressure elevation, we intracerebroventricularly injected liposome-encapsulated clodronate, which eliminates macrophages by inducing apoptosis, into 8-week-old rats; we then assessed its effects in 10-week-old rats. Clodronate treatment attenuated the increase in mean blood pressure in SHRSP but not in WKY. Clodronate treatment reduced the depressor effect of hexamethonium, an index of sympathetic activity; it also reduced neuronal activity in sympathetic regulatory nuclei such as the hypothalamic paraventricular nucleus and rostral ventrolateral medulla and reduced the expression of cyclooxygenase-2 and prostaglandin E2, a downstream pathway in activated macrophages, in SHRSP but not in WKY. Furthermore, clodronate treatment attenuated the increase in blood pressure and renal sympathetic nerve activity in response to an acute intravenous injection of interleukin-1β in WKY. In conclusion, brain PVMs contribute to the development of hypertension via sympathetic activation. PVMs may be activated by increased levels of circulating interleukin-1β.
Collapse
|
31
|
Islam MT. Antipyretic effect of phytol, possibly via 5KIR-dependent COX-2 inhibition pathway. Inflammopharmacology 2019; 27:857-862. [PMID: 30778877 DOI: 10.1007/s10787-019-00574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
AIMS This study is aimed at the evaluation of antipyretic effect of PHY in yeast-induced hyperthermia rats. Additionally, possible mechanism of antipyretic action of PHY has been also studied by molecular docking study. METHODS Adult male Wistar albino rats were treated with PHY at 100, 150 and 200 mg/kg in 0.05% Tween-80 dissolved in 0.9% NaCl solution. PHY was also given at 200 mg/kg with ibuprofen (IBU) 12.5 mg/kg (p.o.) or paracetamol (PARA) 100 mg/kg (p.o.) to see the combined effect of PHY in animals. In silico study of PHY was performed against cyclooxygenase (COX) enzymes (COX-1 and -2) proteins. RESULTS PHY exhibited the antipyretic effect in febrile rats in a dose and time dependent manner. PHY 200 mg/kg co-treated with IBU12.5 or PARA100 exhibited greater antipyretic effect than the PHY or NSAIDs individual groups. Data from the computational study reveal that 5KIR of COX-2 is the most efficient receptor protein to which PHY interacts. CONCLUSION PHY attributed an antipyretic effect, possibly via 5KIR-dependent COX-2 inhibition pathway.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
32
|
Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry 2019; 6:164-173. [PMID: 30366684 DOI: 10.1016/s2215-0366(18)30255-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
The coexistence of immune-mediated inflammatory diseases with depression has long been recognised. Data that illustrate the intimate associations between peripheral and brain immune responses raise the possibility of shared pathophysiological mechanisms. These associations include the negative effects of proinflammatory cytokines on monoaminergic neurotransmission, neurotrophic factors, and measures of synaptic plasticity. The evidence supporting this association is accumulating and includes findings from clinical trials of immunomodulatory therapy, indicating that these interventions can provide benefits to mental health independent of improvements in physical disease scores. In this Review, we assess this evidence in relation to rheumatoid arthritis and depression, with a focus on innate immune and molecular responses to inflammation, and discuss the challenges of assessing causation in this population, acknowledging the difficulty of assessing the confounding and contributory effects of pain and fatigue. We also discuss how future clinical and preclinical research might improve diagnosis of depression in people with rheumatoid arthritis and shed light on mechanisms that could be substrates for therapeutic interventions.
Collapse
|
33
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Wassouf Z, Hentrich T, Samer S, Rotermund C, Kahle PJ, Ehrlich I, Riess O, Casadei N, Schulze-Hentrich JM. Environmental Enrichment Prevents Transcriptional Disturbances Induced by Alpha-Synuclein Overexpression. Front Cell Neurosci 2018; 12:112. [PMID: 29755323 PMCID: PMC5932345 DOI: 10.3389/fncel.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Onset and progression of neurodegenerative disorders, including synucleinopathies such as Parkinson's disease, have been associated with various environmental factors. A highly compelling association from a therapeutic point of view has been found between a physically active lifestyle and a significantly reduced risk for Parkinson's disease. Mimicking such conditions in animal models by promoting physical activity, social interactions, and novel surroundings yields in a so-called enriched environment known to enhance adult neurogenesis, increase synaptic plasticity, and decelerate neuronal loss. Yet, the genes that connect beneficial environmental cues to the genome and delay disease-related symptoms have remained largely unclear. To identify such mediator genes, we used a 2 × 2 factorial design opposing genotype and environment. Specifically, we compared wildtype to transgenic mice overexpressing human SNCA, a key gene in synucleinopathies encoding alpha-synuclein, and housed them in a standard and enriched environment from weaning to 12 months of age before profiling their hippocampal transcriptome using RNA-sequencing. Under standard environmental conditions, differentially expressed genes were overrepresented for calcium ion binding, membrane, synapse, and other Gene Ontology terms previously linked to alpha-synuclein biology. Upregulated genes were significantly enriched for genes attributed to astrocytes, microglia, and oligodendrocytes. These disturbances in gene activity were accompanied by reduced levels of several presynaptic proteins and the immediate early genes EGR1 and NURR1. Intriguingly, housing transgenic animals in the enriched environment prevented most of these perturbations in gene activity. In addition, a sustained activation specifically in transgenic animals housed in enriched conditions was observed for several immediate early genes including Egr1, Nr4a2/Nurr1, Arc, and Homer1a. These findings suggest a compensatory mechanism through an enriched environment-activated immediate early gene network that prevented most disturbances induced by alpha-synuclein overexpression. This regulatory framework might harbor attractive targets for novel therapeutic approaches that mimic beneficial environmental stimuli.
Collapse
Affiliation(s)
- Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sebastian Samer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - Philipp J Kahle
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ingrid Ehrlich
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurobiology, IBBS, University of Stuttgart, Stuttgart, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
35
|
Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ. Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences. Front Behav Neurosci 2018; 12:58. [PMID: 29670513 PMCID: PMC5893896 DOI: 10.3389/fnbeh.2018.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are incurable lifelong inflammatory bowel diseases (IBD) with a rising worldwide incidence. IBD is characterized by diarrhea, rectal bleeding, severe cramping and weight loss. However, there is a growing evidence that IBD is also associated with anxiety- and depression-related disorders, which further increase the societal burden of these diseases. Given the limited knowledge of central nervous system (CNS) changes in IBD, we investigated CNS-related comorbidities in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS) administration in drinking water for 5 days. In male and female C57BL6J mice, DSS treatment caused increased brain excitability, revealed by a decrease in seizure onset times after intraperitoneal administration of kainic acid. Moreover, both sexes showed increased anxiety-related behavior in the elevated plus-maze (EPM) and open field (OF) paradigms. We assessed somatic pain levels, because they may influence behavioral responses. Only male mice were hyperalgesic when tested with calibrated von Frey hairs and on the hotplate for mechanical and thermal pain sensitivity respectively. Administration of diazepam (DZP; ip, 1 mg/kg) 30 min before EPM rescued the anxious phenotype and improved locomotion, even though it significantly increased thermal sensitivity in both sexes. This indicates that the altered behavioral response is unlikely attributable to an interference with movement due to somatic pain in females. We show that experimental colitis increases CNS excitability in response to administration of kainic acid, and increases anxiety-related behavior as revealed using the EPM and OF tests.
Collapse
Affiliation(s)
- Kewir D Nyuyki
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nina L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
37
|
Abstract
Fever depends on a complex physiologic response to infectious agents and other conditions. To alleviate fever, many medicinal agents have been developed over a century of trying to improve upon aspirin, which was determined to work by inhibiting prostaglandin synthesis. We present the process of fever induction through prostaglandin synthesis and discuss the development of pharmaceuticals that target enzymes and receptors involved in prostaglandin-mediated signal transduction, including prostaglandin H2 synthase (also known as cyclooxygenase), phospholipase A2, microsomal prostaglandin E2 synthase-1, EP receptors, and transient potential cation channel subfamily V member 1. Clinical use of established antipyretics will be discussed as well as medicinal agents under clinical trials and future research.
Collapse
Affiliation(s)
- Jonathan J Lee
- Biochemistry Department, Brigham Young University, Provo, UT, United States
| | - Daniel L Simmons
- Biochemistry Department, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
38
|
Dhaya I, Griton M, Raffard G, Amri M, Hiba B, Konsman JP. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown? J Neuroimmunol 2018; 314:67-80. [DOI: 10.1016/j.jneuroim.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
|
39
|
Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med (Berl) 2017; 95:1143-1152. [PMID: 28782084 DOI: 10.1007/s00109-017-1573-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Perivascular macrophages (PVM) are a distinct population of resident brain macrophages characterized by a close association with the cerebral vasculature. PVM migrate from the yolk sac into the brain early in development and, like microglia, are likely to be a self-renewing cell population that, in the normal state, is not replenished by circulating monocytes. Increasing evidence implicates PVM in several disease processes, ranging from brain infections and immune activation to regulation of the hypothalamic-adrenal axis and neurovascular-neurocognitive dysfunction in the setting of hypertension, Alzheimer disease pathology, or obesity. These effects involve crosstalk between PVM and cerebral endothelial cells, interaction with circulating immune cells, and/or production of reactive oxygen species. Overall, the available evidence supports the idea that PVM are a key component of the brain-resident immune system with broad implications for the pathogenesis of major brain diseases. A better understanding of the biology and pathobiology of PVM may lead to new insights and therapeutic strategies for a wide variety of brain diseases.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| |
Collapse
|
40
|
Blum A, Pastukh N, Zaroura I, Rotem J, Kamal F. Impaired ability to grow colonies of endothelial stem cells could be the mechanism explaining the high cardiovascular morbidity and mortality of patients with depression. QJM 2017; 110:501-506. [PMID: 28340040 DOI: 10.1093/qjmed/hcx059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Subjects with depression are more prone to develop cardiovascular complications. Severity of depression is associated with higher rates of cardiovascular mortality and morbidity. Several mechanisms were suggested including accelerated atherosclerosis, alteration of the cardiac autonomic response with a decrease in heart rate variability. There is evidence that circulating endothelial progenitor cells (EPCs) are decreased in patients with major depression. Our hypothesis was that patients with depression would have an impaired ability to build colonies of EPCs. METHODS A prospective study enrolled twenty women with a diagnosis of major. All were not treated before for depression. Thirteen healthy age-matched women served as controls. All signed a consent form before recruitment to the study. Peripheral blood was drawn to build colonies of EPCs within 5 days. ELISA methods were used to measure levels of vascular cell adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF). RESULTS Twenty female patients with depression were recruited. The mean age was 43 ± 14 years (vs. controls 41 ± 11 years, P = 0.682), patients' average CFU-EPCs was 7 ± 8 colonies per well (controls 31 ± 11, P = 0.0001), VCAM-1 level was 121.7 ± 3.0 ng/ml (controls 119.3 ± 3.1 pg/ml, P = 0.037), VEGF level was 6.4 ± 0.2 pg/ml (controls 5.2 ± 0.5 pg/ml, P = 0.0001). An inverse correlation was found between VEGF level and EPCs' colonies (r = -0.547, P < 0.001) and between age and CFU-EPCs (r = -0.576, P = 0.008). CONCLUSIONS We found that patients with major depression had high levels of VCAM-1 and VEGF. They also had a significant inhibition of EPCs' colonies. An inverse correlation was found between levels of VEGF and the ability to grow colonies of EPCs in culture.
Collapse
Affiliation(s)
- A Blum
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - N Pastukh
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - I Zaroura
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - J Rotem
- Department of Medicine, Vascular Biology/Stem Cells Research Unit, Baruch Padeh Poria Medical Center
| | - F Kamal
- Department of Psychiatry, EMMS Nazareth Hospital, Faculty of Medicine in the Galilee, Bar Ilan University, Tiberias, Israel
| |
Collapse
|
41
|
Krasnow SM, Knoll JG, Verghese SC, Levasseur PR, Marks DL. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J Neuroinflammation 2017; 14:133. [PMID: 28668091 PMCID: PMC5494131 DOI: 10.1186/s12974-017-0908-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. METHODS We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. RESULTS IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. CONCLUSIONS Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - J Gabriel Knoll
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Peter R Levasseur
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA. .,Oregon Health & Science University, Mail Code L481, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
42
|
Miranda A, Cordeiro T, dos Santos Lacerda Soares TM, Ferreira R, Simões e Silva A. Kidney–brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond) 2017; 131:1093-1105. [DOI: 10.1042/cs20160927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin–angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney–brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment.
Collapse
Affiliation(s)
- Aline Silva Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Thiago Macedo Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | | | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Acero G, Nava Catorce M, González-Mendoza R, Meraz-Rodríguez MA, Hernández-Zimbron LF, González-Salinas R, Gevorkian G. Sodium thiosulphate attenuates brain inflammation induced by systemic lipopolysaccharide administration in C57BL/6J mice. Inflammopharmacology 2017; 25:10.1007/s10787-017-0355-y. [PMID: 28526927 DOI: 10.1007/s10787-017-0355-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/26/2017] [Indexed: 02/03/2023]
Abstract
It has been demonstrated that peripheral infections accompanied by neuroinflammation may modify brain development or affect normal brain aging and represent major risk factors for the development of neurological disorders. A wide range of synthetic and natural compounds with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration as an adjuvant therapeutic strategy. In the present study we have demonstrated for the first time that sodium thiosulphate (STS), a known antidote approved for treatment of certain medical conditions, is capable of reducing brain inflammation caused by systemic LPS administration. STS reduced brain levels of pro-inflammatory cytokine interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), ionized calcium binding adaptor molecule 1 (Iba-1) and 18 kDa translocator protein (TSPO) in an animal model of systemic LPS-induced neuroinflammation. In addition, we demonstrated for the first time elevated TSPO expression in retinal ganglion cells layer after peripheral LPS challenge and inhibition of ocular TSPO expression after treatment with STS. We think that STS may be used as an adjuvant anti-inflammatory therapy for many pathological conditions associated with inflammation in the brain.
Collapse
Affiliation(s)
- Gonzalo Acero
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Ricardo González-Mendoza
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | - Marco Antonio Meraz-Rodríguez
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico
| | | | | | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico.
| |
Collapse
|
44
|
Pro-inflammatory immune-to-brain signaling is involved in neuroendocrine responses to acute emotional stress. Brain Behav Immun 2017; 62:53-63. [PMID: 28179107 DOI: 10.1016/j.bbi.2017.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/23/2022] Open
Abstract
Activation of the hypothalamo-pituitary-adrenal (HPA) axis by inflammatory stressors (e.g., bacterial lipopolysaccharide) is thought to involve vascular transduction of circulating cytokines, with perivascular macrophages (PVMs) along with endothelia, effecting activation of HPA control circuitry via inducible (cyclooxygenase-2- or COX-2-dependent) prostaglandin synthesis. To test the stressor-specificity of this mechanism, we examined whether ablation of PVMs or pharmacologic blockade of COX activity affected HPA responses to a representative emotional stressor, restraint. Exposing rats to a single 30min acute restraint episode provoked increased plasma levels of at least one proinflammatory cytokine, IL-6, microglial activation and multiple indices of cerebrovascular activation, including COX-2 expression and increased brain prostaglandin E2 levels at 0-2h after stress. Pretreatment with the nonselective COX inhibitor, indomethacin, either icv (10μg in 5μl) or iv (1mg/kg) significantly reduced restraint-induced Fos expression in the paraventricular hypothalamic nucleus (PVH) by 45%, relative to vehicle-injected controls. A 75% reduction of the PVH activational response was seen in rats exposed to acute restraint 5-7days after ablation of brain PVMs by icv injection of liposomes encapsulating the bisphosphonate drug, clodronate. Basal plasma levels of ACTH and corticosterone were not altered in clodronate liposome-injected rats, but the peak magnitude of restraint-induced HPA secretory responses was substantially reduced, relative to animals pretreated with saline-filled liposomes. These findings support an unexpectedly prominent role for inducible prostaglandin synthesis by PVMs in HPA responses to acute restraint, a prototypic emotional stressor.
Collapse
|
45
|
Martín-Álvarez R, Paúl-Fernández N, Palomo V, Gil C, Martínez A, Mengod G. A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J Chem Neuroanat 2017; 80:27-36. [DOI: 10.1016/j.jchemneu.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
|
46
|
Nilsson A, Wilhelms DB, Mirrasekhian E, Jaarola M, Blomqvist A, Engblom D. Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent. Brain Behav Immun 2017; 61:236-243. [PMID: 27940259 PMCID: PMC5325121 DOI: 10.1016/j.bbi.2016.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Daniel Björk Wilhelms
- Department of Clinical and Experimental Medicine, Linköping University, Sweden,Department of Emergency Medicine, Linköping University, Linköping, Sweden
| | - Elahe Mirrasekhian
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Maarit Jaarola
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| |
Collapse
|
47
|
Turrin NP, Rivest S. Unraveling the Molecular Details Involved in the Intimate Link between the Immune and Neuroendocrine Systems. Exp Biol Med (Maywood) 2016; 229:996-1006. [PMID: 15522835 DOI: 10.1177/153537020422901003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During systemic infections, the immune system can signal the brain and act on different neuronal circuits via soluble molecules, such as proinflammatory cytokines, that act on the cells forming the blood-brain barrier and the circumventricular organs. These activated cells release prostaglandin of the E2 type (PGE2), which is the endogenous ligand that triggers the pathways involved in the control of autonomic functions necessary to restore homeostasis and provide inhibitory feedback to innate immunity. Among these neurophysiological functions, activation of the circuits that control the plasma release of glucocorticoids is probably the most critical to the survival of the host in the presence of pathogens. This review revisits this issue and describes in depth the molecular details (including the emerging role of Toll-like receptors during inflammation) underlying the influence of circulating inflammatory molecules on the cerebral tissue, focusing on their contribution in the synthesis and action PGE2 in the brain. We also provide an innovative view supporting the concept of “fast and delayed response” involving the same ligands but different groups of cells, signal transduction pathways, and target genes.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec G1V 4G2, Canada
| | | |
Collapse
|
48
|
Araki R, Hiraki Y, Nishida S, Inatomi Y, Yabe T. Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice. J Pharmacol Sci 2016; 132:138-144. [DOI: 10.1016/j.jphs.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022] Open
|
49
|
van Dooren FEP, Schram MT, Schalkwijk CG, Stehouwer CDA, Henry RMA, Dagnelie PC, Schaper NC, van der Kallen CJH, Koster A, Sep SJS, Denollet J, Verhey FRJ, Pouwer F. Associations of low grade inflammation and endothelial dysfunction with depression - The Maastricht Study. Brain Behav Immun 2016; 56:390-6. [PMID: 26970354 DOI: 10.1016/j.bbi.2016.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The pathogenesis of depression may involve low-grade inflammation and endothelial dysfunction. We aimed to evaluate the independent associations of inflammation and endothelial dysfunction with depressive symptoms and depressive disorder, and the role of lifestyle factors in this association. METHODS In The Maastricht Study, a population-based cohort study (n=852, 55% men, m=59.8±8.5years), depressive symptoms were assessed with the Patient Health Questionnaire-9 and (major and minor) depressive disorder with the Mini-International Neuropsychiatric Interview. Plasma biomarkers of inflammation (hsCRP, SAA, sICAM-1, IL-6, IL-8, TNF-α) and endothelial dysfunction (sVCAM-1, sICAM-1, sE-selectin, vWF) were measured with sandwich immunoassays and combined into two standardized sum scores. RESULTS Biomarkers of inflammation (hsCRP, TNF-α, SAA, sICAM-1) and endothelial dysfunction (sICAM-1, sE-Selectin) were univariately associated with depressive symptoms and depressive disorder. The sum scores of inflammation and endothelial dysfunction were associated with depressive disorder after adjustment for age, sex, type 2 diabetes, kidney function and prior cardiovascular disease (OR 1.54, p=0.001 and 1.40, p=0.006). Both sum scores remained significantly associated with depressive disorder after additional adjustment for lifestyle factors smoking, alcohol consumption and body mass index. The sum score of inflammation was also independently associated with depressive symptoms, while the sum score of endothelial dysfunction was not. CONCLUSIONS Inflammation and endothelial dysfunction are both associated with depressive disorder, independent of lifestyle factors. Our results might suggest that inflammation and endothelial dysfunction are involved in depression.
Collapse
Affiliation(s)
- Fleur E P van Dooren
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CoRPS - Center of Research on Psychological and Somatic disorders, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands; MHeNS - Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Ronald M A Henry
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Nicolaas C Schaper
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Annemarie Koster
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands; CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Simone J S Sep
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Johan Denollet
- CoRPS - Center of Research on Psychological and Somatic disorders, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| | - Frans R J Verhey
- MHeNS - Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans Pouwer
- CoRPS - Center of Research on Psychological and Somatic disorders, Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
50
|
Nava Catorce M, Acero G, Pedraza-Chaverri J, Fragoso G, Govezensky T, Gevorkian G. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol 2016; 297:20-7. [DOI: 10.1016/j.jneuroim.2016.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
|