1
|
Reddy IA, Han L, Sanchez-Roige S, Niarchou M, Ruderfer DM, Davis LK. Identification of Transdiagnostic Childhood Externalizing Pathology Within an Electronic Medical Records Database and Application to the Analysis of Rare Copy Number Variation. Am J Med Genet B Neuropsychiatr Genet 2025:e33020. [PMID: 39744833 DOI: 10.1002/ajmg.b.33020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Externalizing traits and behaviors are broadly defined by impairments in self-regulation and impulse control that typically begin in childhood and adolescence. Externalizing behaviors, traits, and symptoms span a range of traditional psychiatric diagnostic categories. In this study, we sought to generate an algorithm that could reliably identify transdiagnostic childhood-onset externalizing cases and controls within a university hospital electronic health record (EHR) database. Within the Vanderbilt University Medical Center (VUMC) EHR, our algorithm identified cases with a clinician-validated positive predictive value of 90% and controls with a negative predictive value of 88%. In individuals of genetically defined European ancestry (CEU-clustered; Ncase = 487, Ncontrol = 5638), case status was significantly associated with psychiatric comorbidity and with elevated externalizing polygenic scores (OR: 1.20; 95% CI: 1.09-1.33; p = 1.14 × 10-3; based on published genome-wide association data). To test whether our cohort definitions could be applied to generate novel genetic insights, we examined rare (allele frequency < 0.5%) copy number variation. An association (OR: 9.70; CI: 3.24-29.0) was identified in the CEU-clustered cohort on chromosome 2 (chr2: 45,408,678-45,551,530; duplication), although the statistical strength of this association was modest (p = 0.052). We also examined the role of an externalizing burden score based on the number of externalizing diagnoses present in cases and found similar results to our case-control analysis. This analysis identified several other statistically significant CNV region associations. This study provides a framework for identifying childhood externalizing case-control cohorts within an EHR. Future work should validate this framework within other health systems. A broadly applicable algorithm, like this one, may allow for detection of rare outcomes or outcomes in populations historically excluded from genomic research through meta-analysis of data across health care systems.
Collapse
Affiliation(s)
- India A Reddy
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lide Han
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandra Sanchez-Roige
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Maria Niarchou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas M Ruderfer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lea K Davis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Gray JC, Murphy M, Leggio L. Leveraging genetic data to investigate molecular targets and drug repurposing candidates for treating alcohol use disorder and hepatotoxicity. Drug Alcohol Depend 2020; 214:108155. [PMID: 32652377 PMCID: PMC7423741 DOI: 10.1016/j.drugalcdep.2020.108155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Novel treatments for alcohol use disorder (AUD) and alcohol-related liver disease (ALD) are greatly needed. Genetic information can improve drug discovery rates by facilitating the identification of novel biological targets and potential drugs for repurposing. METHODS The present study utilized a recently developed Bayesian approach, Integrative Risk Gene Selector (iRIGS), to identify additional risk genes for alcohol consumption using SNPs from the largest alcohol consumption GWAS to date (N = 941,280). iRIGS incorporates several genomic features and closeness of these genes in network space to compute a posterior probability for protein coding genes near each SNP. We subsequently used the Target Central Resource Database to search for drug-protein interactions for these newly identified genes and previously identified risk genes for alcohol consumption. RESULTS We identified several genes that are novel contributions to the previously published alcohol consumption GWAS. Namely, ACVR2A, which is critical for liver function and linked to anxiety and cocaine self-administration, and PRKCE, which has been linked to alcohol self-administration. Notably, only a minority of the SNPs (18.4 %) were linked to genes with confidence (>0.75), underscoring the need to apply multiple methods to assign function to loci. Finally, some previously identified risk genes for alcohol consumption code for proteins that are implicated in liver function and are targeted by drugs, some of which are candidates for managing hepatotoxicity. CONCLUSIONS This study demonstrates the value of incorporating regulatory information and drug-protein interaction data to highlight additional molecular targets and drug repurposing candidates for treating AUD and ALD.
Collapse
Affiliation(s)
- Joshua C. Gray
- Department of Medical and Clinical Psychology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814,Correspondence to Joshua Charles Gray, PhD; (410) 707-1180, , 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Mikela Murphy
- Department of Medical and Clinical Psychology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
| |
Collapse
|
4
|
Zhou YQ, Zhang LY, Yu ZP, Zhang XQ, Shi J, Shen HW. Tropisetron Facilitates Footshock Suppression of Compulsive Cocaine Seeking. Int J Neuropsychopharmacol 2019; 22:574-584. [PMID: 31125405 PMCID: PMC6754734 DOI: 10.1093/ijnp/pyz023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The hallmark characteristics of the murine model of drug addiction include the escalation of cocaine consumption and compulsive punishment-resistant drug seeking. In this study, we evaluated the motivation for drug seeking in cocaine self-administering rats exposed to an escalated dosing regimen that endeavored to mimic the characteristic of escalating drug intake in human addicts. Tropisetron is a 5-HT3 receptor antagonist and α7-nicotinic receptor partial agonist. Utilizing rats trained on the escalated-dosing regimen, we examined the effects of tropisetron on control over compulsive drug-seeking behavior that was defined as footshock-resistant lever pressing. METHODS Rats were trained to self-administer cocaine with incremental-infusion doses (from 0.6 to 2.4 mg/kg/infusion) across training sessions (3 h/session) or with a long-access paradigm (i.e., 0.6 mg/kg/infusion, 6 h/d training session). The drug-seeking motivations of 2 groups were estimated by the patterns of drug intake and progressive-ratio schedule. The compulsivity for drug seeking of the group with an escalated dose was further evaluated using the footshock-associated seeking-taking chain task. RESULTS The rats trained on the dose-escalated protocol achieved the same levels of motivated drug seeking as those subjected to a long-access paradigm, as indicated by cocaine intake per training session and breakpoints on a progressive ratio schedule. Tropisetron attenuated compulsive behavior of rats when pressing of the seeking lever potentially led to footshock. Intriguingly, tropisetron did not change the motivation to seek cocaine when footshock was absent. Tropisetron had no effect on locomotor activities or saccharin self-administration. CONCLUSIONS These results demonstrate that tropisetron restored control over compulsive cocaine seeking, and they indicate that 5-HT3/α7-nicotinic receptors may be potential therapeutic targets for relieving compulsive drug seeking.
Collapse
Affiliation(s)
- Yue-Qing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lan-Yuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| |
Collapse
|
5
|
Lillehaug S, Yetman MJ, Puchades MA, Checinska MM, Kleven H, Jankowsky JL, Bjaalie JG, Leergaard TB. Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Sci Data 2019; 6:190028. [PMID: 30806643 PMCID: PMC6390708 DOI: 10.1038/sdata.2019.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
The spatial pattern of transgene expression in tetracycline-controlled mouse models is governed primarily by the driver line used to introduce the tetracycline-controlled transactivator (tTA). Detailed maps showing where each tTA driver activates expression are therefore essential for designing and using tet-regulated models, particularly in brain research where cell type and regional specificity determine the circuits affected by conditional gene expression. We have compiled a comprehensive online repository of serial microscopic images showing brain-wide reporter expression for five commonly used tTA driver lines. We have spatially registered all images to a common three-dimensional mouse brain anatomical reference atlas for direct comparison of spatial distribution across lines. The high-resolution images and associated metadata are shared via the web page of the EU Human Brain Project. Images can be inspected using an interactive viewing tool that includes an optional overlay feature providing anatomical delineations and reference atlas coordinates. Interactive viewing is supplemented by semi-quantitative analyses of expression levels within anatomical subregions for each tTA driver line.
Collapse
Affiliation(s)
- Sveinung Lillehaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael J. Yetman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maja A. Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martyna M. Checinska
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L. Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Neurology, and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jan G. Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Clark SL, Costin BN, Chan RF, Johnson AW, Xie L, Jurmain JL, Kumar G, Shabalin AA, Pandey AK, Aberg KA, Miles MF, van den Oord E. A Whole Methylome Study of Ethanol Exposure in Brain and Blood: An Exploration of the Utility of Peripheral Blood as Proxy Tissue for Brain in Alcohol Methylation Studies. Alcohol Clin Exp Res 2018; 42:2360-2368. [PMID: 30320886 DOI: 10.1111/acer.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent reviews have highlighted the potential use of blood-based methylation biomarkers as diagnostic and prognostic tools of current and future alcohol use and addiction. Due to the substantial overlap that often exists between methylation patterns across different tissues, including blood and brain, blood-based methylation may track methylation changes in brain; however, little work has explored the overlap in alcohol-related methylation in these tissues. METHODS To study the effects of alcohol on the brain methylome and identify possible biomarkers of these changes in blood, we performed a methylome-wide association study in brain and blood from 40 male DBA/2J mice that received either an acute ethanol (EtOH) or saline intraperitoneal injection. To investigate all 22 million CpGs in the mouse genome, we enriched for the methylated genomic fraction using methyl-CpG binding domain (MBD) protein capture followed by next-generation sequencing (MBD-seq). We performed association tests in blood and brain separately followed by enrichment testing to determine whether there was overlapping alcohol-related methylation in the 2 tissues. RESULTS The top result for brain was a CpG located in an intron of Ttc39b (p = 5.65 × 10-08 ), and for blood, the top result was located in Espnl (p = 5.11 × 10-08 ). Analyses implicated pathways involved in inflammation and neuronal differentiation, such as CXCR4, IL-7, and Wnt signaling. Enrichment tests indicated significant overlap among the top results in brain and blood. Pathway analyses of the overlapping genes converge on MAPKinase signaling (p = 5.6 × 10-05 ) which plays a central role in acute and chronic responses to alcohol and glutamate receptor pathways, which can regulate neuroplastic changes underlying addictive behavior. CONCLUSIONS Overall, we have shown some methylation changes in brain and blood after acute EtOH administration and that the changes in blood partly mirror the changes in brain suggesting the potential for DNA methylation in blood to be biomarkers of alcohol use.
Collapse
Affiliation(s)
- Shaunna L Clark
- Department of Psychology , Michigan State University, East Lansing, Michigan.,Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Blair N Costin
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Alexander W Johnson
- Department of Psychology , Michigan State University, East Lansing, Michigan
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Jessica L Jurmain
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Ashutosh K Pandey
- Department of Anatomy and Neurobiology , Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Michael F Miles
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Edwin van den Oord
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Lee KM, Coelho MA, McGregor HA, Solton NR, Cohen M, Szumlinski KK. Adolescent Mice Are Resilient to Alcohol Withdrawal-Induced Anxiety and Changes in Indices of Glutamate Function within the Nucleus Accumbens. Front Cell Neurosci 2016; 10:265. [PMID: 27917110 PMCID: PMC5114265 DOI: 10.3389/fncel.2016.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Binge-drinking is the most prevalent form of alcohol abuse and while an early life history of binge-drinking is a significant risk factor for subsequent alcoholism and co-morbid affective disorders, relatively little is known regarding the biobehavioral impact of binge-drinking during the sensitive neurodevelopmental period of adolescence. In adult mice, a month-long history of binge-drinking elicits a hyper-glutamatergic state within the nucleus accumbens (Acb), coinciding with hyper-anxiety. Herein, we employed a murine model of binge-drinking to determine whether or not: (1) withdrawal-induced changes in brain and behavior differ between adult and adolescent bingers; and (2) increased behavioral signs of negative affect and changes in Acb expression of glutamate-related proteins would be apparent in adult mice with less chronic binge-drinking experience (14 days, approximating the duration of mouse adolescence). Adult and adolescent male C57BL/6J mice were subjected to a 14-day binge-drinking protocol (5, 10, 20 and 40% alcohol (v/v) for 2 h/day), while age-matched controls received water. At 24 h withdrawal, half of the animals from each group were assayed for negative affect, while tissue was sampled from the shell (AcbSh) and core (AcbC) subregions of the remaining mice for immunoblotting analyses. Adult bingers exhibited hyper-anxiety when tested for defensive marble burying. Additionally, adult bingers showed increased mGlu1, mGlu5, and GluN2b expression in the AcbSh and PKCε and CAMKII in the AcbC. Compared to adults, adolescent mice exhibited higher alcohol intake and blood alcohol concentrations (BACs); however, adolescent bingers did not show increased anxiety in the marble-burying test. Furthermore, adolescent bingers also failed to exhibit the same alcohol-induced changes in mGlu and kinase protein expression seen in the adult bingers. Irrespective of age, bingers exhibited behavioral hyperactivity in the forced swim test (FST) compared to water drinkers, which was paralleled by an increase in AcbC levels of GluN2b. Thus, a 2-week period of binge-drinking is sufficient to produce a hyper-anxious state and related increases in protein indices of Acb glutamate function. In contrast, adolescents were resilient to many of the effects of early alcohol withdrawal and this attenuated sensitivity to the negative consequences of binge drinking may facilitate greater alcohol intake in adolescent drinkers.
Collapse
Affiliation(s)
- Kaziya M. Lee
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Michal A. Coelho
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Hadley A. McGregor
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Noah R. Solton
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa BarbaraSanta Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa BarbaraSanta Barbara, CA, USA
| |
Collapse
|
8
|
Abstract
The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways.
Collapse
Affiliation(s)
- Dorit Ron
- Corresponding author: Dorit Ron, 675 Nelson Rising Lane, BOX 0663, San Francisco, CA 94143-0663,
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Castilla-Ortega E, Pavón FJ, Sánchez-Marín L, Estivill-Torrús G, Pedraza C, Blanco E, Suárez J, Santín L, Rodríguez de Fonseca F, Serrano A. Both genetic deletion and pharmacological blockade of lysophosphatidic acid LPA1 receptor results in increased alcohol consumption. Neuropharmacology 2016; 103:92-103. [DOI: 10.1016/j.neuropharm.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
|
10
|
Cozzoli DK, Courson J, Rostock C, Campbell RR, Wroten MG, McGregor H, Caruana AL, Miller BW, Hu JH, Zhang PW, Xiao B, Worley PF, Crabbe JC, Finn DA, Szumlinski KK. Protein Kinase C Epsilon Activity in the Nucleus Accumbens and Central Nucleus of the Amygdala Mediates Binge Alcohol Consumption. Biol Psychiatry 2016; 79:443-51. [PMID: 25861702 PMCID: PMC4561036 DOI: 10.1016/j.biopsych.2015.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein kinase C epsilon (PKCε) is emerging as a potential target for the development of pharmacotherapies to treat alcohol use disorders, yet little is known regarding how a history of a highly prevalent form of drinking, binge alcohol intake, influences enzyme priming or the functional relevance of kinase activity for excessive alcohol intake. METHODS Immunoblotting was employed on tissue from subregions of the nucleus accumbens (NAc) and the amygdala to examine both idiopathic and binge drinking-induced changes in constitutive PKCε priming. The functional relevance of PKCε translocation for binge drinking and determination of potential upstream signaling pathways involved were investigated using neuropharmacologic approaches within the context of two distinct binge drinking procedures, drinking in the dark and scheduled high alcohol consumption. RESULTS Binge alcohol drinking elevated p(Ser729)-PKCε levels in both the NAc and the central nucleus of the amygdala (CeA). Moreover, immunoblotting studies of selectively bred and transgenic mouse lines revealed a positive correlation between the propensity to binge drink alcohol and constitutive p(Ser729)-PKCε levels in the NAc and CeA. Finally, neuropharmacologic inhibition of PKCε translocation within both regions reduced binge alcohol consumption in a manner requiring intact group 1 metabotropic glutamate receptors, Homer2, phospholipase C, and/or phosphotidylinositide-3 kinase function. CONCLUSIONS Taken together, these data indicate that PKCε signaling in both the NAc and CeA is a major contributor to binge alcohol drinking and to the genetic propensity to consume excessive amounts of alcohol.
Collapse
Affiliation(s)
- Debra K. Cozzoli
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A,Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Justin Courson
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Charlotte Rostock
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Rianne R. Campbell
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Hadley McGregor
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Amanda L. Caruana
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Bailey W. Miller
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| | - Jia-Hua Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Ping Wu Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Bo Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - John C. Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University and Portland Alcohol Research Center, VA Portland Healthcare System, Portland, OR 97239, U.S.A
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-9660, U.S.A
| |
Collapse
|
11
|
Maiya R, McMahon T, Wang D, Kanter B, Gandhi D, Chapman HL, Miller J, Messing RO. Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice. Neuropharmacology 2016; 107:40-48. [PMID: 26947945 DOI: 10.1016/j.neuropharm.2016.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 11/19/2022]
Abstract
Reducing expression or inhibiting translocation of protein kinase C epsilon (PKCε) prolongs ethanol intoxication and decreases ethanol consumption in mice. However, we do not know if this phenotype is due to reduced PKCε kinase activity or to impairment of kinase-independent functions. In this study, we used a chemical-genetic strategy to determine whether a potent and highly selective inhibitor of PKCε catalytic activity reduces ethanol consumption. We generated ATP analog-specific PKCε (AS-PKCε) knock-in mice harboring a point mutation in the ATP binding site of PKCε that renders the mutant kinase highly sensitive to inhibition by 1-tert-butyl-3-naphthalen-1-ylpyrazolo[3,4-d]pyrimidin-4-amine (1-NA-PP1). Systemically administered 1-NA-PP1 readily crossed the blood brain barrier and inhibited PKCε-mediated phosphorylation. 1-NA-PP1 reversibly reduced ethanol consumption by AS-PKCε mice but not by wild type mice lacking the AS-PKCε mutation. These results support the development of inhibitors of PKCε catalytic activity as a strategy to reduce ethanol consumption, and they demonstrate that the AS- PKCε mouse is a useful tool to study the role of PKCε in behavior.
Collapse
Affiliation(s)
- Rajani Maiya
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Thomas McMahon
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Dan Wang
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Benjamin Kanter
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Dev Gandhi
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Holly L Chapman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | - Jacklyn Miller
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA; The Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.
| |
Collapse
|
12
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Yarosh HL, Meda SA, de Wit H, Hart AB, Pearlson GD. Multivariate analysis of subjective responses to d-amphetamine in healthy volunteers finds novel genetic pathway associations. Psychopharmacology (Berl) 2015; 232:2781-94. [PMID: 25843748 PMCID: PMC4504822 DOI: 10.1007/s00213-015-3914-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/06/2015] [Indexed: 11/24/2022]
Abstract
RATIONALE Researchers studying behavioral and physiologic effects of d-amphetamine have explored individual response differences to the drug. Concurrently, genome-wide analyses have identified several single-nucleotide polymorphisms (SNPs) associated with these traits. Univariate methods can identify SNPs associated with behavioral and physiological traits, but multivariate analyses allow identification of clusters of related biologically relevant SNPs and behavioral components. OBJECTIVES The aim of the study was to identify clusters of related biologically relevant SNPs and behavioral components in the responses of healthy individuals to d-amphetamine using multivariate analysis. METHODS Individuals (N = 375) without substance abuse histories completed surveys and detailed cardiovascular monitoring during randomized, blinded sessions: d-amphetamine (10 and 20 mg) and placebo. We applied parallel independent component analysis (Para-ICA) to data previously analyzed with univariate approaches, revealing new associations between genes and behavioral responses to d-amphetamine. RESULTS Three significantly associated (p < .001) phenotype-genotype pairs emerged. The first component included physiologic measures of systolic and diastolic blood pressure (BP) and mean arterial pressure (MAP) along with SNPs in calcium and glutamatergic signaling pathways. The second associated components included the "Anger" items from the Profile of Mood States (POMS) questionnaire and the marijuana effects from the Addiction Research Center Inventory (Cuyas, Verdejo-Garcia et al.), with enriched genetic pathways involved in cardiomyopathy and MAPK signaling. The final pair included "Anxious," "Fatigue," and "Confusion" items from the POMS questionnaire, plus functional pathways related to cardiac muscle contraction and cardiomyopathy. CONCLUSIONS Multifactorial genetic networks related to calcium signaling, glutamatergic and dopaminergic synapse function, and amphetamine addiction appear to mediate common behavioral and cardiovascular responses to d-amphetamine.
Collapse
Affiliation(s)
- Haley L. Yarosh
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Shashwath A. Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Amy B. Hart
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, Connecticut,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Lee AM, Wu DF, Dadgar J, Wang D, McMahon T, Messing RO. PKCε phosphorylates α4β2 nicotinic ACh receptors and promotes recovery from desensitization. Br J Pharmacol 2015; 172:4430-41. [PMID: 26103136 DOI: 10.1111/bph.13228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 06/10/2015] [Accepted: 06/13/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic (ACh) receptor recovery from desensitization is modulated by PKC, but the PKC isozymes and the phosphorylation sites involved have not been identified. We investigated whether PKCε phosphorylation of α4β2 nAChRs regulates receptor recovery from desensitization. EXPERIMENTAL APPROACH Receptor recovery from desensitization was investigated by electrophysiological characterization of human α4β2 nAChRs. Phosphorylation of the α4 nAChR subunit was assessed by immunoblotting of mouse synaptosomes. Hypothermia induced by sazetidine-A and nicotine was measured in Prkce(-/-) and wild-type mice. KEY RESULTS Inhibiting PKCε impaired the magnitude of α4β2 nAChR recovery from desensitization. We identified five putative PKCε phosphorylation sites in the large intracellular loop of the α4 subunit, and mutating four sites to alanines also impaired recovery from desensitization. α4 nAChR subunit phosphorylation was reduced in synaptosomes from Prkce(-/-) mice. Sazetidine-A-induced hypothermia, which is mediated by α4β2 nAChR desensitization, was more severe and prolonged in Prkce(-/-) than in wild-type mice. CONCLUSIONS AND IMPLICATIONS PKCε phosphorylates the α4 nAChR subunit and regulates recovery from receptor desensitization. This study illustrates the importance of phosphorylation in regulating α4β2 receptor function, and suggests that reducing phosphorylation prolongs receptor desensitization and decreases the number of receptors available for activation.
Collapse
Affiliation(s)
- A M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - D-F Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - J Dadgar
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | - D Wang
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - T McMahon
- Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA
| | - R O Messing
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Abstract
BACKGROUND Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε (Das et al., Biochem. J., 421, 405-13, 2009). METHODS In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. RESULTS In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40Å apart from each other indicating that these residues form two different alcohol binding sites. CONCLUSIONS The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
16
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
17
|
Rechfeld F, Gruber P, Kirchmair J, Boehler M, Hauser N, Hechenberger G, Garczarczyk D, Lapa GB, Preobrazhenskaya MN, Goekjian P, Langer T, Hofmann J. Thienoquinolines as novel disruptors of the PKCε/RACK2 protein-protein interaction. J Med Chem 2014; 57:3235-46. [PMID: 24712764 PMCID: PMC4001449 DOI: 10.1021/jm401605c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Ten
protein kinase C (PKC) isozymes play divergent roles in signal transduction.
Because of sequence similarities, it is particularly difficult to
generate isozyme-selective small molecule inhibitors. In order to
identify such a selective binder, we derived a pharmacophore model
from the peptide EAVSLKPT, a fragment of PKCε that inhibits
the interaction of PKCε and receptor for activated C-kinase
2 (RACK2). A database of 330 000 molecules was screened in
silico, leading to the discovery of a series of thienoquinolines that
disrupt the interaction of PKCε with RACK2 in vitro. The most
active molecule, N-(3-acetylphenyl)-9-amino-2,3-dihydro-1,4-dioxino[2,3-g]thieno[2,3-b]quinoline-8-carboxamide
(8), inhibited this interaction with a measured IC50 of 5.9 μM and the phosphorylation of downstream target
Elk-1 in HeLa cells with an IC50 of 11.2 μM. Compound 8 interfered with MARCKS phosphorylation and TPA-induced translocation
of PKCε (but not that of PKCδ) from the cytosol to the
membrane. The compound reduced the migration of HeLa cells into a
gap, reduced invasion through a reconstituted basement membrane matrix,
and inhibited angiogenesis in a chicken egg assay.
Collapse
Affiliation(s)
- Florian Rechfeld
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University , Innrain 80-82, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Protein kinase M-ζ (PKM-ζ) is a constitutively active form of atypical protein kinase C that is exclusively expressed in the brain and implicated in the maintenance of long-term memory. Most studies that support a role for PKM-ζ in memory maintenance have used pharmacological PKM-ζ inhibitors such as the myristoylated zeta inhibitory peptide (ZIP) or chelerythrine. Here we use a genetic approach and target exon 9 of the Prkcz gene to generate mice that lack both protein kinase C-ζ (PKC-ζ) and PKM-ζ (Prkcz(-/-) mice). Prkcz(-/-) mice showed normal behaviour in a cage environment and in baseline tests of motor function and sensory perception, but displayed reduced anxiety-like behaviour. Notably, Prkcz(-/-) mice did not show deficits in learning or memory in tests of cued fear conditioning, novel object recognition, object location recognition, conditioned place preference for cocaine, or motor learning, when compared with wild-type littermates. ZIP injection into the nucleus accumbens reduced expression of cocaine-conditioned place preference in Prkcz(-/-) mice. In vitro, ZIP and scrambled ZIP inhibited PKM-ζ, PKC-ι and PKC-ζ with similar inhibition constant (K(i)) values. Chelerythrine was a weak inhibitor of PKM-ζ (K(i) = 76 μM). Our findings show that absence of PKM-ζ does not impair learning and memory in mice, and that ZIP can erase reward memory even when PKM-ζ is not present.
Collapse
|
19
|
McIver SR, Muccigrosso MM, Haydon PG. The effect of doxycycline on alcohol consumption and sensitivity: consideration for inducible transgenic mouse models. Exp Biol Med (Maywood) 2012; 237:1129-33. [PMID: 23019604 DOI: 10.1258/ebm.2012.012029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation is known to elicit numerous changes in brain physiology and is associated with various pathologies, including neurodegenerative diseases, and behaviors, such as sleep and acute illness. In addition, there is accumulating evidence that the behavioral response to alcohol is affected by perturbations to the neuroimmune system. Recent studies have shown that administration of proinflammatory mediators increases alcohol consumption, while anti-inflammatory drugs, such as minocycline, decrease consumption. Doxycycline is an anti-inflammatory mediator and a tetracycline derivative, and is commonly used in the tetracycline regulatory system, a transgenic approach widely accredited for its inducible and reversible nature. Given the established link between anti-inflammatory agents and response to and consumption of alcohol, and because the tetracycline regulatory system is becoming increasingly employed for genetic manipulations and behavioral phenotyping, we investigated the effect of doxycycline administration on alcohol sensitivity and consumption. Two independent transgenic lines containing a tetracycline transactivator transgene or the tetracycline operator promoter insertion, along with wild-type littermate mice (C57Bl/6J), were used to measure changes in alcohol consumption, alcohol-induced motor impairment and sedation, and blood alcohol concentration with doxycycline administration (40 mg/kg in chow). Using repeated sessions of the drinking-in-the-dark paradigm, we found that doxycycline consistently reduced consumption of 20% alcohol during two- and four-hour access. Doxycycline also increased sensitivity to the motor-impairing effects of alcohol (2 g/kg), and the duration of loss of righting reflex after ethanol injection (3.5 g/kg), without causing a significant alteration in blood alcohol levels. Despite the many advantages of using a tetracycline-regulated transgenic approach, it is important to consider the effects of doxycycline administration in behaviors that may be influenced by neuroinflammation, including alcohol behaviors.
Collapse
Affiliation(s)
- Sally R McIver
- Department of Neuroscience, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
20
|
Assessing the genetic risk for alcohol use disorders. Alcohol Res 2012; 34:266-72. [PMID: 23134042 PMCID: PMC3860406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The past two decades have witnessed a revolution in the field of genetics which has led to a rapid evolution in the tools and techniques available for mapping genes that contribute to genetically complex disorders such as alcohol dependence. Research in humans and in animal models of human disease has provided important new information. Among the most commonly applied approaches used in human studies are family studies, case-control studies, and genome-wide association studies. Animal models have been aimed at identifying genetic regions or individual genes involved in different aspects of alcoholism, using such approaches as quantitative trait locus analysis, genome sequencing, knockout animals, and other sophisticated molecular genetic techniques. All of these approaches have led to the identification of several genes that seem to influence the risk for alcohol dependence, which are being further analyzed. Newer studies, however, also are attempting to look at the genetic basis of alcoholism at the level of the entire genome, moving beyond the study of individual genes toward analyses of gene interactions and gene networks in the development of this devastating disease.
Collapse
|
21
|
Protein kinase C epsilon modulates nicotine consumption and dopamine reward signals in the nucleus accumbens. Proc Natl Acad Sci U S A 2011; 108:16080-5. [PMID: 21911393 DOI: 10.1073/pnas.1106277108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotine addiction and alcohol use disorders are very widespread and often occur together. Currently, there is no single drug approved for the simultaneous treatment of both conditions. Although these conditions share common genetic factors, the molecular mechanisms underlying their comorbidity are unknown. We have previously shown that mice lacking protein kinase C epsilon (PKCε) show decreased ethanol self-administration and reward as well as increased aversion to ethanol. Here we find that Prkce(-/-) mice self-administer less nicotine and show decreased conditioned place preference for nicotine compared with wild-type mice. In Prkce(-/-) mice, these behaviors are associated with reduced levels of α(6) and β(3) nicotinic receptor subunit mRNA in the ventral midbrain and striatum as well as a functional deficit in cholinergic modulation of dopamine release in nucleus accumbens. Our results indicate that PKCε regulates reward signaling through α(6)-containing nicotinic receptors and suggest that PKCε could be a target for the treatment of comorbid nicotine and alcohol addictions.
Collapse
|
22
|
Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA. Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res 2011; 35:1561-73. [PMID: 21676006 DOI: 10.1111/j.1530-0277.2011.01502.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmitter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a "molecular lubricant" for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol.
Collapse
Affiliation(s)
- Rebecca J Howard
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Texas 77812, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Nam HW, Lee MR, Zhu Y, Wu J, Hinton DJ, Choi S, Kim T, Hammack N, Yin JC, Choi DS. Type 1 equilibrative nucleoside transporter regulates ethanol drinking through accumbal N-methyl-D-aspartate receptor signaling. Biol Psychiatry 2011; 69:1043-51. [PMID: 21489406 PMCID: PMC3090461 DOI: 10.1016/j.biopsych.2011.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/24/2010] [Accepted: 02/04/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mice lacking type 1 equilibrative nucleoside transporter (ENT1(-/-)) exhibit increased ethanol-preferring behavior compared with wild-type littermates. This phenotype of ENT1(-/-) mice appears to be correlated with increased glutamate levels in the nucleus accumbens (NAc). However, little is known about the downstream consequences of increased glutamate signaling in the NAc. METHODS To investigate the significance of the deletion of ENT1 and its effect on glutamate signaling in the NAc, we employed microdialysis and iTRAQ proteomics. We validated altered proteins using Western blot analysis. We then examined the pharmacological effects of the inhibition of the N-methyl-D-aspartate (NMDA) glutamate receptor and protein kinase Cγ (PKCγ) on alcohol drinking in wild-type mice. In addition, we investigated in vivo cyclic adenosine monophosphate response element binding activity using cyclic adenosine monophosphate response element-β-galactosidase mice in an ENT1(-/-) background. RESULTS We identified that NMDA glutamate receptor-mediated downregulation of intracellular PKCγ-neurogranin-calcium-calmodulin dependent protein kinase type II signaling is correlated with reduced cyclic adenosine monophosphate response element binding activity in ENT1(-/-) mice. Inhibition of PKCγ promotes ethanol drinking in wild-type mice to levels similar to those of ENT1(-/-) mice. In contrast, an NMDA glutamate receptor antagonist reduces ethanol drinking of ENT1(-/-) mice. CONCLUSIONS These findings demonstrate that the genetic deletion or pharmacological inhibition of ENT1 regulates NMDA glutamate receptor-mediated signaling in the NAc, which provides a molecular basis that underlies the ethanol-preferring behavior of ENT1(-/-) mice.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Yu Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jinhua Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - David J. Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sun Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Nora Hammack
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Jerry C.P. Yin
- Department of Genetics and Neurology, University of Wisconsin, Madison, Wisconsin 53706
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,Molecular Neuroscience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
24
|
Kim JH, Karpyak VM, Biernacka JM, Nam HW, Lee MR, Preuss UW, Zill P, Yoon G, Colby C, Mrazek DA, Choi DS. Functional role of the polymorphic 647 T/C variant of ENT1 (SLC29A1) and its association with alcohol withdrawal seizures. PLoS One 2011; 6:e16331. [PMID: 21283641 PMCID: PMC3026043 DOI: 10.1371/journal.pone.0016331] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/11/2010] [Indexed: 01/10/2023] Open
Abstract
Background Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Principal Findings Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Conclusions Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Victor M. Karpyak
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Joanna M. Biernacka
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moonnoh R. Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Ulrich W. Preuss
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University, Halle/Saale, Germany
| | - Peter Zill
- Section Psychiatric Genetics and Neurochemistry, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Gihyun Yoon
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colin Colby
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - David A. Mrazek
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Psychiatry, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
25
|
Protein kinase C isozymes as regulators of sensitivity to and self-administration of drugs of abuse-studies with genetically modified mice. Behav Pharmacol 2010; 21:493-9. [PMID: 20671547 DOI: 10.1097/fbp.0b013e32833d8bb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies using targeted gene deletion in mice have revealed distinct roles for individual isozymes of the protein kinase C (PKC) family of enzymes in regulating sensitivity to various drugs of abuse. These changes in drug sensitivity are associated with altered patterns of drug self-administration. The purpose of this review is to summarize behavioral studies conducted on mice carrying targeted deletions of genes encoding specific PKC isozymes (namely the beta, gamma, delta, and epsilon isozymes), and to critically evaluate the possibility of using pharmacological inhibitors of specific PKC isozymes as modulators of the sensitivity to various drugs of abuse, as well as potential aids in the treatment of substance use disorders.
Collapse
|
26
|
Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. Neuroimage 2010; 54:2603-11. [PMID: 21093594 DOI: 10.1016/j.neuroimage.2010.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/31/2010] [Accepted: 11/08/2010] [Indexed: 01/20/2023] Open
Abstract
Conditional transgenic mouse models are important tools for investigations of neurodegenerative diseases and evaluation of potential therapeutic interventions. A popular conditional transgenic system is the binary tetracycline-responsive gene (Tet-Off) system, in which the expression of the gene of interest depends on a tetracycline-regulatable transactivator (tTA) under the control of a specific promoter construct. The most frequently used Tet-Off promoter mouse lines are the Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and prion protein (PrP) promoter lines, respectively. To target the regulated gene of interest to relevant brain regions, a priori knowledge about the spatial distribution of the regulated gene expression in the brain is important. Such distribution patterns can be investigated using double transgenic mice in which the promoter construct regulates a LacZ reporter gene encoding the marker β-galactosidase which can be histologically detected using its substrate X-gal. We have previously published an atlas showing the brain-wide expression mediated by the Tet-Off PrP promoter mouse line, but the distribution of activity in the Tet-Off CamKII promoter mouse line is less well known. To compare promoter activity distributions in these two Tet-Off mouse lines, we have developed an online digital atlas tailored for side-by-side comparison of histological section images. The atlas provides a comprehensive list of brain regions containing X-gal labeling and an interactive dual image viewer tool for panning and zooming of corresponding section images. Comparison of spatial expression patterns between the two lines show considerable regional and cellular differences, relevant in context of generation and analysis of inducible models based on these two tetracycline responsive promoter mouse lines.
Collapse
|
27
|
Goulding SP, Obara I, Lominac KD, Gould AT, Miller BW, Klugmann M, Szumlinski KK. Accumbens Homer2-mediated signaling: a factor contributing to mouse strain differences in alcohol drinking? GENES BRAIN AND BEHAVIOR 2010; 10:111-26. [PMID: 20807241 DOI: 10.1111/j.1601-183x.2010.00647.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcohol-induced increases in nucleus accumbens glutamate actively regulate alcohol consumption, and the alcohol responsiveness of corticoaccumbens glutamate systems relates to genetic variance in alcohol reward. Here, we extend earlier data for inbred mouse strain differences in accumbens glutamate by examining for differences in basal and alcohol-induced changes in the striatal expression of glutamate-related signaling molecules between inbred C57BL/6J and DBA2/J mice. Repeated alcohol treatment (8 × 2 g/kg) increased the expression of Group1 metabotropic glutamate receptors, the NR2a/b subunits of the N-methyl-D-aspartate receptor, Homer2a/b, as well as the activated forms of protein kinase C (PKC) epsilon and phosphoinositol-3-kinase within ventral, but not dorsal, striatum. Regardless of prior alcohol experience, C57BL/6J mice exhibited higher accumbens levels of mGluR1/5, Homer2a/b, NR2a and activated kinases vs. DBA2/J mice, whereas an alcohol-induced rise in dorsal striatum mGluR1/5 expression was observed only in C57BL/6J mice. We next employed virus-mediated gene transfer approaches to ascertain the functional relevance of the observed strain difference in accumbens Homer2 expression for B6/D2 differences in alcohol-induced glutamate sensitization, as well as alcohol preference/intake. Manipulating nucleus accumbens shell Homer2b expression actively regulated these measures in C57BL/6J mice, whereas DBA2/J mice were relatively insensitive to the neurochemical and behavioral effects of virus-mediated changes in Homer2 expression. These data support the over-arching hypothesis that augmented accumbens Homer2-mediated glutamate signaling may be an endophenotype related to genetic variance in alcohol consumption. If relevant to humans, such data pose polymorphisms affecting glutamate receptor/Homer2 signaling in the etiology of alcoholism.
Collapse
Affiliation(s)
- S P Goulding
- Department of Psychology and Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee MR, Hinton DJ, Unal SS, Richelson E, Choi DS. Increased ethanol consumption and preference in mice lacking neurotensin receptor type 2. Alcohol Clin Exp Res 2010; 35:99-107. [PMID: 21039631 DOI: 10.1111/j.1530-0277.2010.01326.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neurotensin receptors (NTS) regulate a variety of the biological functions of neurotensin (NT) in the central nervous system. Although NT and neurotensin receptors type 1 (NTS1) are implicated in some of the behavioral effects of ethanol, the functional roles of neurotensin receptors type 2 (NTS2) in ethanol intoxication and consumption remain unknown. Here, we investigated behavioral effects mediated by NTS2 in response to ethanol, which are implicated in ethanol consumption and preference, using NTS2 null mice. METHOD First, we examined ethanol-induced locomotion, ataxia, hypnosis, and hypothermia in NTS2 null mice. Next, we measured ethanol consumption and preference in NTS2 null mice by giving them free choice between ethanol- and tap water-containing bottles. Then using a brain-permeable NT analog, NT69L, we examined the role of NTS2 in locomotor activity and ataxia. Finally, we examined the effect of NT69L on ethanol consumption and preference in NTS2 null mice. RESULTS We found that NTS2 null mice appear less sensitive to the acute hypnotic effects of ethanol and consumed more ethanol compared to wild-type littermates in a 2-bottle choice experiment, even though ethanol-induced locomotion, ataxia, and hypothermia were similar between genotypes. Interestingly, the administration of NT69L for 4 consecutive days significantly reduced alcohol consumption and preference in wild-type littermates as well as in NTS2 null mice. CONCLUSIONS Our findings suggest that NTS2 regulates ethanol-induced hypnosis and ethanol consumption.
Collapse
Affiliation(s)
- Moonnoh R Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
29
|
Neurotensin receptor type 1 regulates ethanol intoxication and consumption in mice. Pharmacol Biochem Behav 2010; 95:235-41. [PMID: 20122953 DOI: 10.1016/j.pbb.2010.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/27/2009] [Accepted: 01/25/2010] [Indexed: 11/22/2022]
Abstract
Neurotensin receptor type 1 (NTS1) is known to mediate a variety of biological functions of neurotensin (NT) in the central nervous system. In this study, we found that NTS1 null mice displayed decreased sensitivity to the ataxic effect of ethanol on the rotarod and increased ethanol consumption when given a free choice between ethanol and tap water containing bottles. Interestingly, the administration of NT69L, a brain-permeable NT analog, increased ethanol sensitivity in wild-type littermates but had no such effect in NTS1 null mice, suggesting that NTS1 contributes to NT-mediated ethanol intoxication. Furthermore, the daily treatment of NT69L, for 4 consecutive days, significantly reduced alcohol preference and consumption in wild-type littermates but had no such effects in NTS1 null mice in a two-bottle drinking experiment. Our study provides evidence for possible pharmacological roles of NT69L in which it increases sensitivity to the ataxic effect, and decreases voluntary consumption, of ethanol. Our study also demonstrates NTS1-mediated behavioral effects of NT69L. Therefore, our findings will be useful for understanding some aspects of alcoholism as well as to develop novel pharmacological therapeutic options for humans.
Collapse
|
30
|
Farris SP, Wolen AR, Miles MF. Using expression genetics to study the neurobiology of ethanol and alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:95-128. [PMID: 20813241 PMCID: PMC3427772 DOI: 10.1016/s0074-7742(10)91004-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
31
|
Milner LC, Buck KJ. Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:173-204. [PMID: 20813243 DOI: 10.1016/s0074-7742(10)91006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcoholism is a complex clinical disorder with genetic and environmental contributions. Although no animal model duplicates alcoholism, models for specific factors, such as the withdrawal syndrome, are useful to identify potential genetic determinants of liability in humans. Murine models have been invaluable to identify quantitative trait loci (QTLs) that influence a variety of alcohol responses. However, the QTL regions are typically large, at least initially, and contain numerous genes, making identification of the causal quantitative trait gene(s) (QTGs) challenging. Here, we present QTG identification strategies currently used in the field of alcohol genetics and discuss relevance to alcoholic human populations.
Collapse
Affiliation(s)
- Lauren C Milner
- Department of Behavioral Neuroscience, VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
32
|
Silberman Y, Bajo M, Chappell AM, Christian DT, Cruz M, Diaz MR, Kash T, Lack AK, Messing RO, Siggins GR, Winder D, Roberto M, McCool BA, Weiner JL. Neurobiological mechanisms contributing to alcohol-stress-anxiety interactions. Alcohol 2009; 43:509-19. [PMID: 19913194 DOI: 10.1016/j.alcohol.2009.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/22/2009] [Indexed: 12/28/2022]
Abstract
This article summarizes the proceedings of a symposium that was presented at a conference entitled "Alcoholism and Stress: A Framework for Future Treatment Strategies." The conference was held in Volterra, Italy on May 6-9, 2008 and this symposium was chaired by Jeff L. Weiner. The overall goal of this session was to review recent findings that may shed new light on the neurobiological mechanisms that underlie the complex relationships between stress, anxiety, and alcoholism. Dr. Danny Winder described a novel interaction between D1 receptor activation and the corticotrophin-releasing factor (CRF) system that leads to an increase in glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Dr. Marisa Roberto presented recent data describing how protein kinase C epsilon, ethanol, and CRF interact to alter GABAergic inhibition in the central nucleus of the amygdala. Dr. Jeff Weiner presented recent advances in our understanding of inhibitory circuitry within the basolateral amygdala (BLA) and how acute ethanol exposure enhances GABAergic inhibition in these pathways. Finally, Dr. Brian McCool discussed recent findings on complementary glutamatergic and GABAergic adaptations to chronic ethanol exposure and withdrawal in the BLA. Collectively, these investigators have identified novel mechanisms through which neurotransmitter and neuropeptide systems interact to modulate synaptic activity in stress and anxiety circuits. Their studies have also begun to describe how acute and chronic ethanol exposure influence excitatory and inhibitory synaptic communication in these pathways. These findings point toward a number of novel neurobiological targets that may prove useful for the development of more effective treatment strategies for alcohol use disorders.
Collapse
|
33
|
Role of protein kinase C epsilon (PKCvarepsilon) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology (Berl) 2009; 204:587-97. [PMID: 19225761 PMCID: PMC2766924 DOI: 10.1007/s00213-009-1490-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE The type 5 metabotropic glutamate receptor (mGluR5) and the epsilon isoform of protein kinase C (PKCepsilon) regulate ethanol intake, and we have previously demonstrated that mGluR5 receptor antagonism reduces ethanol consumption via a PKCepsilon-dependent mechanism. OBJECTIVES We explored the potential neuroanatomical substrates of regulation of ethanol reinforcement by this mGluR5-PKCepsilon signaling pathway by infusing selective inhibitors of these proteins into the shell or core region of the nucleus accumbens (NAc). METHODS Male Wistar rats were trained to self-administer ethanol intravenously and received intra-NAc infusions of vehicle or the selective mGluR5 antagonist 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) alone and in combination with a PKCepsilon translocation inhibitor (epsilonV1-2) or a scrambled control peptide (svarepsilonV1-2). The effects of intra-NAc MTEP on food-reinforced responding and open-field locomotor activity were also determined. RESULTS MTEP (1 microg/microl) had no effect on ethanol or food reinforcement or locomotor activity when infused into either region. MTEP (3 microg/microl) reduced ethanol reinforcement when infused into the NAc shell but not the core, and this effect was reversed by epsilonV1-2 (1 microg/microl) but not sepsilonV1-2 (1 microg/microl). In both regions, this concentration of MTEP did not alter food-reinforced responding or locomotor activity, and infusion of epsilonV1-2 alone did not alter ethanol reinforcement. MTEP (10 microg/microl) reduced locomotor activity when infused into the shell; therefore, this concentration was not further tested on responding for ethanol or food. CONCLUSIONS Blockade of mGluR5 receptors in the NAc shell reduces ethanol reinforcement via a PKCepsilon-dependent mechanism.
Collapse
|
34
|
Abstract
The cannabinoid CB1 receptor (CB1) is one of the most abundant G protein-coupled receptors in the brain, but little is known about the mechanisms that modulate CB1 receptor signaling. Here, we show that inhibition or null mutation of the epsilon isozyme of protein kinase C (PKCepsilon) selectively enhances behavioral responses to the CB1 agonist WIN55,212-2 in mice, but not to the structurally unrelated CB1 agonist CP55,940. Binding affinity for [(3)H] WIN55,212-2 was increased in brain membranes from PKCepsilon(-/-) mice compared with PKCepsilon(+/+) mice. There was no difference in binding of the inverse agonist [(3)H] SR141716A. In addition, repeated administration of WIN55,212-2 produced greater analgesic and thermal tolerance in PKCvarepsilon(-/-) mice compared with PKCepsilon(+/+)mice. These results indicate that PKCvarepsilon selectively regulates behavioral sensitivity, CB1 receptor binding and tolerance to WIN55,212-2.
Collapse
|
35
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 491] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
36
|
Lesscher HMB, Wallace MJ, Zeng L, Wang V, Deitchman JK, McMahon T, Messing RO, Newton PM. Amygdala protein kinase C epsilon controls alcohol consumption. GENES BRAIN AND BEHAVIOR 2009; 8:493-9. [PMID: 19243450 DOI: 10.1111/j.1601-183x.2009.00485.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcoholism is a progressive disorder that involves the amygdala. Mice lacking protein kinase C epsilon (PKCepsilon) show reduced ethanol consumption, sensitivity and reward. We therefore investigated whether PKCepsilon signaling in the amygdala is involved in ethanol consumption. Local knockdown of PKCepsilon in the amygdala reduced ethanol consumption and preference in a limited-access paradigm. Further, mice that are heterozygous for the PKCepsilon allele consume less ethanol compared with wild-type mice in this paradigm. These mice have a >50% reduction in the abundance of PKCepsilon in the amygdala compared with wild-type mice. We conclude that amygdala PKCepsilon is important for ethanol consumption in mice.
Collapse
Affiliation(s)
- H M B Lesscher
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharmacotherapies to treat drug addiction.
Collapse
Affiliation(s)
- Anna M Lee
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
38
|
Abstract
The metabotropic glutamate receptor 5 (mGlu5) has been implicated in ethanol- and drug-seeking behaviours in rodent studies. Here we examine a number of ethanol-related behavioural assays in mice lacking mGlu5 and wild-type littermates. In a two-bottle free-choice paradigm, mGlu5-deficient mice consumed less ethanol with a reduced preference compared to wild-type mice. Indeed, mGlu5-deficienct mice were ethanol-avoiding at both concentrations of ethanol proffered (5% and 10% v/v). However, there was no difference in the rate of hepatic ethanol and acetaldehyde metabolism between genotypes and consumption of saccharin was similar. In a conditioned place preference study, mGlu5-deficient mice displayed a place preference for ethanol when conditioned with a low dose (1g/kg) of ethanol. Thus, while mGlu5-deficient mice consume less ethanol (with a reduced preference) than wild-type mice, this is not apparently related to impaired hepatic metabolism or a lack of reward from ethanol. Rather, we provide evidence that deletion of the mGlu5 receptor increases sensitivity to centrally mediated effects of ethanol.
Collapse
|
39
|
|
40
|
Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc Natl Acad Sci U S A 2008; 105:8410-5. [PMID: 18541912 DOI: 10.1073/pnas.0802302105] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the central amygdala (CeA), ethanol acts via corticotrophin-releasing factor (CRF) type 1 receptors to enhance GABA release. Amygdala CRF mediates anxiety associated with stress and drug dependence, and it regulates ethanol intake. Because mutant mice that lack PKCepsilon exhibit reduced anxiety-like behavior and alcohol consumption, we investigated whether PKCepsilon lies downstream of CRF(1) receptors in the CeA. Compared with PKCepsilon(+/+) CeA neurons, PKCepsilon(-/-) neurons showed increased GABAergic tone due to enhanced GABA release. CRF and ethanol stimulated GABA release in the PKCepsilon(+/+) CeA, but not in the PKCepsilon(-/-) CeA. A PKCepsilon-specific inhibitor blocked both CRF- and ethanol-induced GABA release in the PKCepsilon(+/+) CeA, confirming findings in the PKCepsilon(-/-) CeA. These results identify a PKCepsilon signaling pathway in the CeA that is activated by CRF(1) receptor stimulation, mediates GABA release at nerve terminals, and regulates anxiety and alcohol consumption.
Collapse
|
41
|
Yao L, Fan P, Jiang Z, Gordon A, Mochly-Rosen D, Diamond I. Dopamine and ethanol cause translocation of epsilonPKC associated with epsilonRACK: cross-talk between cAMP-dependent protein kinase A and protein kinase C signaling pathways. Mol Pharmacol 2008; 73:1105-12. [PMID: 18202306 DOI: 10.1124/mol.107.042580] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found previously that neural responses to ethanol and the dopamine D2 receptor (D2) agonist 2,10,11-trihydroxy-N-propylnorapomorphine hydrobromide (NPA) involve both epsilon protein kinase C (epsilonPKC) and cAMP-dependent protein kinase A (PKA). However, little is known about the mechanism underlying ethanol- and D2-mediated activation of epsilonPKC and the relationship to PKA activation. In the present study, we used a new epsilonPKC antibody, 14E6, that selectively recognized active epsilonPKC when not bound to its anchoring protein epsilonRACK (receptor for activated C-kinase), and PKC isozyme-selective inhibitors and activators to measure PKC translocation and catalytic activity. We show here that ethanol and NPA activated epsilonPKC and induced translocation of both epsilonPKC and its anchoring protein, epsilonRACK to a new cytosolic site. The selective epsilonPKC agonist, pseudo-epsilonRACK, activated epsilonPKC but did not cause translocation of the epsilonPKC/epsilonRACK complex to the cytosol. These data suggest a step-wise activation and translocation of epsilonPKC after NPA or ethanol treatment, where epsilonPKC first translocates and binds to its RACK and subsequently the epsilonPKC/epsilonRACK complex translocates to a new subcellular site. Direct activation of PKA by adenosine-3',5'-cyclic monophosphorothioate, Sp-isomer (Sp-cAMPS), prostaglandin E1, or the adenosine A2A receptor is sufficient to cause epsilonPKC translocation to the cytosolic compartment in a process that is dependent on PLC activation and requires PKA activity. These data demonstrate a novel cross-talk mechanism between epsilonPKC and PKA signaling systems. PKA and PKC signaling have been implicated in alcohol rewarding properties in the mesolimbic dopamine system. Cross-talk between PKA and PKC may underlie some of the behaviors associated with alcoholism.
Collapse
Affiliation(s)
- Lina Yao
- CV Therapeutics, Inc., 3172 Porter Drive, Palo Alto, CA 94304, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
43
|
Lesscher HMB, McMahon T, Lasek AW, Chou WH, Connolly J, Kharazia V, Messing RO. Amygdala protein kinase C epsilon regulates corticotropin-releasing factor and anxiety-like behavior. GENES BRAIN AND BEHAVIOR 2007; 7:323-33. [PMID: 17908177 DOI: 10.1111/j.1601-183x.2007.00356.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Corticotropin-releasing factor (CRF), its receptors, and signaling pathways that regulate CRF expression and responses are areas of intense investigation for new drugs to treat affective disorders. Here, we report that protein kinase C epsilon (PKCepsilon) null mutant mice, which show reduced anxiety-like behavior, have reduced levels of CRF messenger RNA and peptide in the amygdala. In primary amygdala neurons, a selective PKCepsilon activator, psiepsilonRACK, increased levels of pro-CRF, whereas reducing PKCepsilon levels through RNA interference blocked phorbol ester-stimulated increases in CRF. Local knockdown of amygdala PKCepsilon by RNA interference reduced anxiety-like behavior in wild-type mice. Furthermore, local infusion of CRF into the amygdala of PKCepsilon(-/-) mice increased their anxiety-like behavior. These results are consistent with a novel mechanism of PKCepsilon control over anxiety-like behavior through regulation of CRF in the amygdala.
Collapse
Affiliation(s)
- H M B Lesscher
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO. Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 2007; 282:33052-63. [PMID: 17875639 DOI: 10.1074/jbc.m707233200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.
Collapse
Affiliation(s)
- Zhan-Heng Qi
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California-San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Newton PM, Kim JA, McGeehan AJ, Paredes JP, Chu K, Wallace MJ, Roberts AJ, Hodge CW, Messing RO. Increased response to morphine in mice lacking protein kinase C epsilon. GENES, BRAIN, AND BEHAVIOR 2007; 6:329-38. [PMID: 16899053 PMCID: PMC4264050 DOI: 10.1111/j.1601-183x.2006.00261.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protein kinase C (PKC) family of serine-threonine kinases has been implicated in behavioral responses to opiates, but little is known about the individual PKC isozymes involved. Here, we show that mice lacking PKCepsilon have increased sensitivity to the rewarding effects of morphine, revealed as the expression of place preference and intravenous self-administration at very low doses of morphine that do not evoke place preference or self-administration in wild-type mice. The PKCepsilon null mice also show prolonged maintenance of morphine place preference in response to repeated testing when compared with wild-type mice. The supraspinal analgesic effects of morphine are enhanced in PKCepsilon null mice, and the development of tolerance to the spinal analgesic effects of morphine is delayed. The density of mu-opioid receptors and their coupling to G-proteins are normal. These studies identify PKCepsilon as a key regulator of opiate sensitivity in mice.
Collapse
Affiliation(s)
- P. M. Newton
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| | - J. A. Kim
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| | - A. J. McGeehan
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| | - J. P. Paredes
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| | - K. Chu
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA
| | - M. J. Wallace
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| | - A. J. Roberts
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA
| | - C. W. Hodge
- Bowles Center for Alcohol Studies, Departments of Psychiatry and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. O. Messing
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA
| |
Collapse
|
46
|
Smith SS, Gong QH. Ethanol effects on GABA-gated current in a model of increased alpha4betadelta GABAA receptor expression depend on time course and preexposure to low concentrations of the drug. Alcohol 2007; 41:223-31. [PMID: 17591545 PMCID: PMC2658629 DOI: 10.1016/j.alcohol.2007.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 01/28/2023]
Abstract
Several recent studies have suggested that alphabetadelta subtypes of gamma-aminobutyric acid type A (GABAA) receptors (delta-GABAR) are a target for low dose ethanol (<30 mM). However, there are also conflicting reports suggesting that only high doses of the drug (100 mM) modulate these receptors. In addition, the studies which have demonstrated a clear effect of low dose ethanol on delta-GABAR find different effective concentrations for this effect. Here, we test the hypothesis that the apparent disparity in effective concentration is due to time-course effects when low (1-3 mM) dose ethanol is preapplied. To this end, we tested ethanol effects on native GABAR in CA1 hippocampus in a model of increased alpha4betadelta GABAR expression following 48h administration of the GABA-modulatory steroid THP (3alpha-OH-5beta-pregnan-20-one) to adult, female rats. GABA(EC20)-gated current was recorded with whole-cell patch clamp procedures from acutely isolated pyramidal cells. We assessed ethanol's effect on GABA-gated current using either (1) 2-5 min application of ethanol in increasing concentrations (0.1-30 mM) or (2) coadministration of ethanol with GABA. Two minute application of 1-3 mM ethanol produced optimal potentiation of GABA-gated current following steroid treatment, with higher concentrations less effective. In contrast, 30 mM ethanol produced optimal effects when ethanol was not preapplied. However, following preapplication of 1mM ethanol, 30 mM ethanol decreased the peak GABA-gated current. These findings suggest that ethanol may act at multiple interacting sites to affect GABAR efficacy and desensitization. These data also suggest that ethanol effects on GABA-gated current are affected by the time course of exposure and previous exposure to low concentrations of the drug.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, Box 31, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
47
|
Kimpel MW, Strother WN, McClintick JN, Carr LG, Liang T, Edenberg HJ, McBride WJ. Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions. Alcohol 2007; 41:95-132. [PMID: 17517326 PMCID: PMC1976291 DOI: 10.1016/j.alcohol.2007.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/01/2007] [Accepted: 03/08/2007] [Indexed: 01/23/2023]
Abstract
The objective of this study was to determine if there are innate differences in gene expression in selected CNS regions between inbred alcohol-preferring (iP) and -non-preferring (iNP) rats. Gene expression was determined in the nucleus accumbens (ACB), amygdala (AMYG), frontal cortex (FC), caudate-putamen (CPU), and hippocampus (HIPP) of alcohol-naïve adult male iP and iNP rats, using Affymetrix Rat Genome U34A microarrays (n = 6/strain). Using Linear Modeling for Microarray Analysis with a false discovery rate threshold of 0.1, there were 16 genes with differential expression in the ACB, 54 in the AMYG, 8 in the FC, 24 in the CPU, and 21 in the HIPP. When examining the main effect of strain across regions, 296 genes were differentially expressed. Although the relatively small number of genes found significant within individual regions precluded a powerful analysis for over-represented Gene Ontology categories, the much larger list resulting from the main effect of strain analysis produced 17 over-represented categories (P < .05), including axon guidance, gliogenesis, negative regulation of programmed cell death, regulation of programmed cell death, regulation of synapse structure function, and transmission of nerve impulse. Co-citation analysis and graphing of significant genes revealed a network involved in the neuropeptide Y (NPY) transmitter system. Correlation of all significant genes with those located within previously established rat alcohol QTLs revealed that of the total of 313 significant genes, 71 are located within such QTLs. The many regional and overall gene expression differences between the iP and iNP rat lines may contribute to the divergent alcohol drinking phenotypes of these rats.
Collapse
Affiliation(s)
- Mark W Kimpel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Wallace MJ, Newton PM, Oyasu M, McMahon T, Chou WH, Connolly J, Messing RO. Acute functional tolerance to ethanol mediated by protein kinase Cepsilon. Neuropsychopharmacology 2007; 32:127-36. [PMID: 16541084 DOI: 10.1038/sj.npp.1301059] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A low level of response to ethanol is associated with increased risk of alcoholism. A major determinant of the level of response is the capacity to develop acute functional tolerance (AFT) to ethanol during a single drinking session. Mice lacking protein kinase C epsilon (PKCepsilon) show increased signs of ethanol intoxication and reduced ethanol self-administration. Here, we report that AFT to the motor-impairing effects of ethanol is reduced in PKCepsilon (-/-) mice when compared with wild-type littermates. In wild-type mice, in vivo ethanol exposure produced AFT that was accompanied by increased phosphorylation of PKCepsilon and resistance of GABA(A) receptors to ethanol. In contrast, in PKCepsilon (-/-) mice, GABA(A) receptor sensitivity to ethanol was unaltered by acute in vivo ethanol exposure. Both PKCepsilon (-/-) and PKCepsilon (+/+) mice developed robust chronic tolerance to ethanol, but the presence of chronic tolerance did not change ethanol preference drinking. These findings suggest that ethanol activates a PKCepsilon signaling pathway that contributes to GABA(A) receptor resistance to ethanol and to AFT. AFT can be genetically dissociated from chronic tolerance, which is not regulated by PKCepsilon and does not alter PKCepsilon modulation of ethanol preference.
Collapse
Affiliation(s)
- Melisa J Wallace
- Ernest Gallo Clinic and Research Center, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Rodd ZA, Bertsch BA, Strother WN, Le-Niculescu H, Balaraman Y, Hayden E, Jerome RE, Lumeng L, Nurnberger JI, Edenberg HJ, McBride WJ, Niculescu AB. Candidate genes, pathways and mechanisms for alcoholism: an expanded convergent functional genomics approach. THE PHARMACOGENOMICS JOURNAL 2006; 7:222-56. [PMID: 17033615 DOI: 10.1038/sj.tpj.6500420] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe a comprehensive translational approach for identifying candidate genes for alcoholism. The approach relies on the cross-matching of animal model brain gene expression data with human genetic linkage data, as well as human tissue data and biological roles data, an approach termed convergent functional genomics. An analysis of three animal model paradigms, based on inbred alcohol-preferring (iP) and alcohol-non-preferring (iNP) rats, and their response to treatments with alcohol, was used. A comprehensive analysis of microarray gene expression data from five key brain regions (frontal cortex, amygdala, caudate-putamen, nucleus accumbens and hippocampus) was carried out. The Bayesian-like integration of multiple independent lines of evidence, each by itself lacking sufficient discriminatory power, led to the identification of high probability candidate genes, pathways and mechanisms for alcoholism. These data reveal that alcohol has pleiotropic effects on multiple systems, which may explain the diverse neuropsychiatric and medical pathology in alcoholism. Some of the pathways identified suggest avenues for pharmacotherapy of alcoholism with existing agents, such as angiotensin-converting enzyme (ACE) inhibitors. Experiments we carried out in alcohol-preferring rats with an ACE inhibitor show a marked modulation of alcohol intake. Other pathways are new potential targets for drug development. The emergent overall picture is that physical and physiological robustness may permit alcohol-preferring individuals to withstand the aversive effects of alcohol. In conjunction with a higher reactivity to its rewarding effects, they may able to ingest enough of this nonspecific drug for a strong hedonic and addictive effect to occur.
Collapse
Affiliation(s)
- Z A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 2006; 11:195-269. [PMID: 16961758 DOI: 10.1111/j.1369-1600.2006.00038.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, gamma-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and Department of Veterans Affairs Medical Center, USA
| | | | | | | | | |
Collapse
|