1
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024:10.1038/s41590-024-01997-5. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
2
|
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids. Front Genet 2024; 15:1440583. [PMID: 39391063 PMCID: PMC11465425 DOI: 10.3389/fgene.2024.1440583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Neural organoids have emerged as valuable tools for studying the developing brain, sparking enthusiasm and driving their adoption in disease modeling, drug screening, and investigating fetal neural development. The increasing popularity of neural organoids as models has led to a wide range of methodologies aimed at continuous improvement and refinement. Consequently, research groups often improve and reconfigure protocols to create region-specific organoids, resulting in diverse phenotypes, including variations in morphology, gene expression, and cell populations. While these improvements are exciting, routine adoptions of such modifications and protocols in the research laboratories are often challenging due to the reiterative empirical testing necessary to validate the cell types generated. To address this challenge, we systematically compare the similarities and differences that exist across published protocols that generates subpallial-specific organoids to date. In this review, we focus specifically on exploring the production of major GABAergic neuronal subtypes, especially Medium Spiny Neurons (MSNs) and Interneurons (INs), from multiple subpallial organoid protocols. Importantly, we look to evaluate the cell type diversity and the molecular pathways manipulated to generate them, thus broadening our understanding of the existing subpallial organoids as well as assessing the in vitro applicability of specific patterning factors. Lastly, we discuss the current challenges and outlook on the improved patterning of region-specific neural organoids. Given the critical roles MSN and IN dysfunction play in neurological disorders, comprehending the GABAergic neurons generated by neural organoids will undoubtedly facilitate clinical translation.
Collapse
Affiliation(s)
- Narciso Pavon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Neuroscience and Behavior, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
3
|
Scordino M, Stepanova P, Srinivasan V, Pham DD, Eriksson O, Lalowski M, Mudò G, Di Liberto V, Korhonen L, Voutilainen MH, Lindholm D. CNPY2 protects against ER stress and is expressed by corticostriatal neurons together with CTIP2 in a mouse model of Huntington's disease. Front Mol Neurosci 2024; 17:1473058. [PMID: 39359687 PMCID: PMC11446244 DOI: 10.3389/fnmol.2024.1473058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Canopy Homolog 2 (CNPY2) is an endoplasmic reticulum (ER) localized protein belonging to the CNPY gene family. We show here that CNPY2 is protective against ER stress induced by tunicamycin in neuronal cells. Overexpression of CNPY2 enhanced, while downregulation of CNPY2 using shRNA expression, reduced the viability of neuroblastoma cells after tunicamycin. Likewise, recombinant CNPY2 increased survival of cortical neurons in culture after ER stress. CNPY2 reduced the activating transcription factor 6 (ATF6) branch of ER stress and decreased the expression of CCAT/Enhancer-Binding Protein Homologous Protein (CHOP) involved in cell death. Immunostaining using mouse brain sections revealed that CNPY2 is expressed by cortical and striatal neurons and is co-expressed with the transcription factor, COUPTF-interacting protein 2 (CTIP2). In transgenic N171-82Q mice, as a model for Huntington's disease (HD), the number of CNPY2-immunopositive neurons was increased in the cortex together with CTIP2. In the striatum, however, the number of CNPY2 decreased at 19 weeks of age, representing a late-stage of pathology. Striatal cells in culture were shown to be more susceptible to ER stress after downregulation of CNPY2. These results demonstrate that CNPY2 is expressed by corticostriatal neurons involved in the regulation of movement. CNPY2 enhances neuronal survival by reducing ER stress and is a promising factor to consider in HD and possibly in other brain diseases.
Collapse
Affiliation(s)
- Miriana Scordino
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | | | - Vignesh Srinivasan
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Dan Duc Pham
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ove Eriksson
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biochemistry, Adam Mickiewicz University, Poznań, Poland
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience, and Advanced Diagnostic (BiND), University of Palermo, Palermo, Italy
| | - Laura Korhonen
- Department of Child and Adolescent Psychiatry, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
- Biomedicum-2, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. Sci Rep 2024; 14:18258. [PMID: 39107568 PMCID: PMC11303397 DOI: 10.1038/s41598-024-69255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, San Diego, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Heath D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Room 2207, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
6
|
Chang Z, Xu Y, Dong X, Gao Y, Wang C. Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro. Bioinformatics 2024; 40:btae466. [PMID: 39024032 PMCID: PMC11288411 DOI: 10.1093/bioinformatics/btae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
MOTIVATION The burgeoning generation of single-cell or spatial multiomic data allows for the characterization of gene regulation networks (GRNs) at an unprecedented resolution. However, the accurate reconstruction of GRNs from sparse and noisy single-cell or spatial multiomic data remains challenging. RESULTS Here, we present SCRIPro, a comprehensive computational framework that robustly infers GRNs for both single-cell and spatial multi-omics data. SCRIPro first improves sample coverage through a density clustering approach based on multiomic and spatial similarities. Additionally, SCRIPro scans transcriptional regulator (TR) importance by performing chromatin reconstruction and in silico deletion analyses using a comprehensive reference covering 1,292 human and 994 mouse TRs. Finally, SCRIPro combines TR-target importance scores derived from multiomic data with TR-target expression levels to ensure precise GRN reconstruction. We benchmarked SCRIPro on various datasets, including single-cell multiomic data from human B-cell lymphoma, mouse hair follicle development, Stereo-seq of mouse embryos, and Spatial-ATAC-RNA from mouse brain. SCRIPro outperforms existing motif-based methods and accurately reconstructs cell type-specific, stage-specific, and region-specific GRNs. Overall, SCRIPro emerges as a streamlined and fast method capable of reconstructing TR activities and GRNs for both single-cell and spatial multi-omic data. AVAILABILITY SCRIPro is available at https://github.com/wanglabtongji/SCRIPro. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhanhe Chang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfan Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yawei Gao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai 200120, China
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200120, China
| |
Collapse
|
7
|
Wang N, Zhang S, Langfelder P, Ramanathan L, Plascencia M, Gao F, Vaca R, Gu X, Deng L, Dionisio LE, Prasad BC, Vogt T, Horvath S, Aaronson JS, Rosinski J, Yang XW. Msh3 and Pms1 Set Neuronal CAG-repeat Migration Rate to Drive Selective Striatal and Cortical Pathogenesis in HD Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602815. [PMID: 39026894 PMCID: PMC11257559 DOI: 10.1101/2024.07.09.602815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Modifiers of Huntington's disease (HD) include mismatch repair (MMR) genes; however, their underlying disease-altering mechanisms remain unresolved. Knockout (KO) alleles for 9 HD GWAS modifiers/MMR genes were crossed to the Q140 Huntingtin (mHtt) knock-in mice to probe such mechanisms. Four KO mice strongly ( Msh3 and Pms1 ) or moderately ( Msh2 and Mlh1 ) rescue a triad of adult-onset, striatal medium-spiny-neuron (MSN)-selective phenotypes: somatic Htt DNA CAG-repeat expansion, transcriptionopathy, and mHtt protein aggregation. Comparatively, Q140 cortex also exhibits an analogous, but later-onset, pathogenic triad that is Msh3 -dependent. Remarkably, Q140/homozygous Msh3-KO lacks visible mHtt aggregates in the brain, even at advanced ages (20-months). Moreover, Msh3 -deficiency prevents striatal synaptic marker loss, astrogliosis, and locomotor impairment in HD mice. Purified Q140 MSN nuclei exhibit highly linear age-dependent mHtt DNA repeat expansion (i.e. repeat migration), with modal-CAG increasing at +8.8 repeats/month (R 2 =0.98). This linear rate is reduced to 2.3 and 0.3 repeats/month in Q140 with Msh3 heterozygous and homozygous alleles, respectively. Our study defines somatic Htt CAG-repeat thresholds below which there are no detectable mHtt nuclear or neuropil aggregates. Mild transcriptionopathy can still occur in Q140 mice with stabilized Htt 140-CAG repeats, but the majority of transcriptomic changes are due to somatic repeat expansion. Our analysis reveals 479 genes with expression levels highly correlated with modal-CAG length in MSNs. Thus, our study mechanistically connects HD GWAS genes to selective neuronal vulnerability in HD, in which Msh3 and Pms1 set the linear rate of neuronal mHtt CAG-repeat migration to drive repeat-length dependent pathogenesis; and provides a preclinical platform for targeting these genes for HD suppression across brain regions. One Sentence Summary Msh3 and Pms1 are genetic drivers of sequential striatal and cortical pathogenesis in Q140 mice by mediating selective CAG-repeat migration in HD vulnerable neurons.
Collapse
|
8
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
9
|
Ventura GC, Dyshliuk N, Dmytriyeva O, Nordsten MJB, Haugaard MM, Christiansen LI, Thymann T, Sangild PT, Pankratova S. Enteral plasma supports brain repair in newborn pigs after birth asphyxia. Brain Behav Immun 2024; 119:693-708. [PMID: 38677626 DOI: 10.1016/j.bbi.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Newborns exposed to birth asphyxia transiently experience deficient blood flow and a lack of oxygen, potentially inducing hypoxic-ischaemic encephalopathy and subsequent neurological damage. Immunomodulatory components in plasma may dampen these responses. Using caesarean-delivered pigs as a model, we hypothesized that dietary plasma supplementation improves brain outcomes in pigs exposed to birth asphyxia. Mild birth asphyxia was induced by temporary occlusion of the umbilical cord prior to caesarean delivery. Motor development was assessed in asphyxiated (ASP) and control (CON) piglets using neonatal arousal, physical activity and gait test parameters before euthanasia on Day 4. The ASP pigs exhibited increased plasma lactate at birth, deficient motor skills and increased glial fibrillary acidic protein levels in CSF and astrogliosis in the putamen. The expression of genes related to oxidative stress, inflammation and synaptic functions was transiently altered in the motor cortex and caudate nucleus. The number of apoptotic cells among CTIP2-positive neurons in the motor cortex and striatal medium spiny neurons was increased, and maturation of preoligodendrocytes in the internal capsule was delayed. Plasma supplementation improved gait performance in the beam test, attenuated neuronal apoptosis and affected gene expression related to neuroinflammation, neurotransmission and antioxidants (motor cortex, caudate). We present a new clinically relevant animal model of moderate birth asphyxia inducing structural and functional brain damage. The components in plasma that support brain repair remain to be identified but may represent a therapeutic potential for infants and animals after birth asphyxia.
Collapse
Affiliation(s)
- Gemma Chavarria Ventura
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadiya Dyshliuk
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Jacob Bagi Nordsten
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Mathilde Haugaard
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line Iadsatian Christiansen
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics, Odense University Hospital, Odense, Denmark
| | - Stanislava Pankratova
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 marks a spatially and transcriptionally unique population of Oprm1-expressing neurons in the nucleus accumbens. ADDICTION NEUROSCIENCE 2024; 11:100153. [PMID: 38957401 PMCID: PMC11218735 DOI: 10.1016/j.addicn.2024.100153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
Affiliation(s)
- Emma Andraka
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kasey L. Brida
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
11
|
Reiner BC, Chehimi SN, Merkel R, Toikumo S, Berrettini WH, Kranzler HR, Sanchez-Roige S, Kember RL, Schmidt HD, Crist RC. A single-nucleus transcriptomic atlas of medium spiny neurons in the rat nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595949. [PMID: 38826289 PMCID: PMC11142250 DOI: 10.1101/2024.05.26.595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.
Collapse
|
12
|
Khandelwal N, Kulkarni A, Ahmed NI, Harper M, Konopka G, Gibson JR. FOXP1 regulates the development of excitatory synaptic inputs onto striatal neurons and induces phenotypic reversal with reinstatement. SCIENCE ADVANCES 2024; 10:eadm7039. [PMID: 38701209 PMCID: PMC11068015 DOI: 10.1126/sciadv.adm7039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Long-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, FOXP1, in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum. We find a neuron subtype-specific role of FOXP1 in strengthening and maturing glutamatergic inputs onto dopamine receptor 2-expressing SPNs (D2 SPNs). We also find that FOXP1 promotes synaptically driven excitability in these neurons. Using single-nuclei RNA sequencing, we identify candidate genes that mediate these cell-autonomous processes through postnatal FOXP1 function at the post-synapse. Last, we demonstrate that postnatal FOXP1 reinstatement rescues electrophysiological deficits, cell type-specific gene expression changes, and behavioral phenotypes. Together, this study enhances our understanding of striatal circuit development and provides proof of concept for a therapeutic approach for FOXP1 syndrome and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Newaz I. Ahmed
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Harper
- Department of Neuroscience and Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | |
Collapse
|
13
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
14
|
Oh YM, Lee SW. Patient-derived neuron model: Capturing age-dependent adult-onset degenerative pathology in Huntington's disease. Mol Cells 2024; 47:100046. [PMID: 38492889 PMCID: PMC11021366 DOI: 10.1016/j.mocell.2024.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
MicroRNAs play a crucial role in directly reprogramming (converting) human fibroblasts into neurons. Specifically, miR-9/9* and miR-124 (miR-9/9*-124) display neurogenic and cell fate-switching activities when ectopically expressed in human fibroblasts by erasing fibroblast identity and inducing a pan-neuronal state. These converted neurons maintain the biological age of the starting fibroblasts and thus provide a human neuron-based platform to study cellular properties in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, the expression of striatal-enriched transcription factors in conjunction with miR-9/9*-124 guides the identity of medium spiny neurons (MSNs), the primary targets in Huntington's disease (HD). Converted MSNs from HD patient-derived fibroblasts (HD-MSNs) can replicate HD-related phenotypes including neurodegeneration associated with age-related declines in critical cellular functions such as autophagy. Here, we review the role of microRNAs in the direct conversion of patient-derived fibroblasts into MSNs and the practical application of converted HD-MSNs as a model for studying adult-onset neuropathology in HD. We provide valuable insights into age-related, cell-intrinsic changes contributing to neurodegeneration in HD-MSNs. Ultimately, we address a comprehensive understanding of the complex molecular landscape underlying HD pathology, offering potential avenues for therapeutic application.
Collapse
Affiliation(s)
- Young Mi Oh
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| | - Seong Won Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| |
Collapse
|
15
|
Puvogel S, Alsema A, North HF, Webster MJ, Weickert CS, Eggen BJL. Single-Nucleus RNA-Seq Characterizes the Cell Types Along the Neuronal Lineage in the Adult Human Subependymal Zone and Reveals Reduced Oligodendrocyte Progenitor Abundance with Age. eNeuro 2024; 11:ENEURO.0246-23.2024. [PMID: 38351133 PMCID: PMC10913050 DOI: 10.1523/eneuro.0246-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.
Collapse
Affiliation(s)
- Sofía Puvogel
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Astrid Alsema
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| | - Hayley F North
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville 20850, Maryland
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13201
| | - Bart J L Eggen
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| |
Collapse
|
16
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
17
|
Pavon N, Diep K, Yang F, Sebastian R, Martinez-Martin B, Ranjan R, Sun Y, Pak C. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. CELL REPORTS METHODS 2024; 4:100689. [PMID: 38228151 PMCID: PMC10831957 DOI: 10.1016/j.crmeth.2023.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
In early neurodevelopment, the central nervous system is established through the coordination of various neural organizers directing tissue patterning and cell differentiation. Better recapitulation of morphogen gradient production and signaling will be crucial for establishing improved developmental models of the brain in vitro. Here, we developed a method by assembling polydimethylsiloxane devices capable of generating a sustained chemical gradient to produce patterned brain organoids, which we termed morphogen-gradient-induced brain organoids (MIBOs). At 3.5 weeks, MIBOs replicated dorsal-ventral patterning observed in the ganglionic eminences (GE). Analysis of mature MIBOs through single-cell RNA sequencing revealed distinct dorsal GE-derived CALB2+ interneurons, medium spiny neurons, and medial GE-derived cell types. Finally, we demonstrate long-term culturing capabilities with MIBOs maintaining stable neural activity in cultures grown up to 5.5 months. MIBOs demonstrate a versatile approach for generating spatially patterned brain organoids for embryonic development and disease modeling.
Collapse
Affiliation(s)
- Narciso Pavon
- Graduate Program in Neuroscience and Behavior, UMass Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Karmen Diep
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Feiyu Yang
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA 01003, USA
| | - Rebecca Sebastian
- Graduate Program in Neuroscience and Behavior, UMass Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Beatriz Martinez-Martin
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA; Graduate Program in Molecular and Cellular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Core, Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA 01003, USA.
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
18
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
19
|
Zhang Y, Ben Nathan J, Moreno A, Merkel R, Kahng MW, Hayes MR, Reiner BC, Crist RC, Schmidt HD. Calcitonin receptor signaling in nucleus accumbens D1R- and D2R-expressing medium spiny neurons bidirectionally alters opioid taking in male rats. Neuropsychopharmacology 2023; 48:1878-1888. [PMID: 37355732 PMCID: PMC10584857 DOI: 10.1038/s41386-023-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The high rates of relapse associated with current medications used to treat opioid use disorder (OUD) necessitate research that expands our understanding of the neural mechanisms regulating opioid taking to identify molecular substrates that could be targeted by novel pharmacotherapies to treat OUD. Recent studies show that activation of calcitonin receptors (CTRs) is sufficient to reduce the rewarding effects of addictive drugs in rodents. However, the role of central CTR signaling in opioid-mediated behaviors has not been studied. Here, we used single nuclei RNA sequencing (snRNA-seq), fluorescent in situ hybridization (FISH), and immunohistochemistry (IHC) to characterize cell type-specific patterns of CTR expression in the nucleus accumbens (NAc), a brain region that plays a critical role in voluntary drug taking. Using these approaches, we identified CTRs expressed on D1R- and D2R-expressing medium spiny neurons (MSNs) in the medial shell subregion of the NAc. Interestingly, Calcr transcripts were expressed at higher levels in D2R- versus D1R-expressing MSNs. Cre-dependent viral-mediated miRNA knockdown of CTRs in transgenic male rats was then used to determine the functional significance of endogenous CTR signaling in opioid taking. We discovered that reduced CTR expression specifically in D1R-expressing MSNs potentiated/augmented opioid self-administration. In contrast, reduced CTR expression specifically in D2R-expressing MSNs attenuated opioid self-administration. These findings highlight a novel cell type-specific mechanism by which CTR signaling in the ventral striatum bidirectionally modulates voluntary opioid taking and support future studies aimed at targeting central CTR-expressing circuits to treat OUD.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ben Nathan
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda Moreno
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riley Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle W Kahng
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Khandelwal N, Kulkarni A, Ahmed NI, Harper M, Konopka G, Gibson J. FOXP1 regulates the development of excitatory synaptic inputs onto striatal neurons and induces phenotypic reversal with reinstatement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563675. [PMID: 37961477 PMCID: PMC10634768 DOI: 10.1101/2023.10.23.563675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long-range glutamatergic inputs from the cortex and thalamus are critical for motor and cognitive processing in the striatum. Transcription factors that orchestrate the development of these inputs are largely unknown. We investigated the role of a transcription factor and high-risk autism-associated gene, FOXP1, in the development of glutamatergic inputs onto spiny projection neurons (SPNs) in the striatum. We find that FOXP1 robustly drives the strengthening and maturation of glutamatergic input onto dopamine receptor 2-expressing SPNs (D2 SPNs) but has a comparatively milder effect on D1 SPNs. This process is cell-autonomous and is likely mediated through postnatal FOXP1 function at the postsynapse. We identified postsynaptic FOXP1-regulated transcripts as potential candidates for mediating these effects. Postnatal reinstatement of FOXP1 rescues electrophysiological deficits, reverses gene expression alterations resulting from embryonic deletion, and mitigates behavioral phenotypes. These results provide support for a possible therapeutic approach for individuals with FOXP1 syndrome.
Collapse
|
21
|
Irie T, Matsuda T, Hayashi Y, Matsuda-Ito K, Kamiya A, Masuda T, Prinz M, Isobe N, Kira JI, Nakashima K. Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke. Proc Natl Acad Sci U S A 2023; 120:e2307972120. [PMID: 37812721 PMCID: PMC10589698 DOI: 10.1073/pnas.2307972120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 101-8310Tokyo, Japan
| | - Kanae Matsuda-Ito
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 259-1193Isehara, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 108-8639Tokyo, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroinflammation, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 812-8582Fukuoka, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, D-79106Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79106Freiburg, Germany
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 831-8501Okawa, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 810-0022Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| |
Collapse
|
22
|
Andraka E, Phillips RA, Brida KL, Day JJ. Chst9 Marks a Spatially and Transcriptionally Unique Population of Oprm1 -Expressing Neurons in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562623. [PMID: 37904940 PMCID: PMC10614864 DOI: 10.1101/2023.10.16.562623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (μORs). The μOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies in rodent, primate, and human NAc have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from μOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9 , a gene encoding a carbohydrate sulfotransferase. To validate this observation and characterize spatial localization of this population in the rat NAc, we performed multiplexed RNAscope fluorescence in situ hybridization studies to detect expression of Oprm1 and Chst9 mRNA along with well-validated markers of MSNs. Notably, Chst9 + neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9 . The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.
Collapse
|
23
|
Zhang Y, Lu Z, Sun Y, Zhang X, Li Q, Li M, Liao Y, Kang Z, Feng X, Zhao G, Sun J, Yang Y, Yan H, Zhang D, Yue W. Predictive role of pulvinar in social functional outcome of schizophrenia. Psychiatry Res 2023; 327:115419. [PMID: 37598626 DOI: 10.1016/j.psychres.2023.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Identifying objective biological subtypes that predict long-term functional outcomes is crucial for understanding neurobiological mechanisms and identifying potential targets. Using resting-state functional magnetic resonance imaging data from 178 patients and 70 controls, we explored social function patterns using latent profile analysis. Long-term outcomes were compared among the biological subtypes using K-means clustering. Partial least squares regression (PLSR) was used to identify gene expression profiles associated with alterations in activity by leveraging transcriptional data from the Allen Human Brain Atlas. In patients with more functional impairment, left medial pulvinar (PM) exhibited significantly lower regional homogeneity of brain activity (ReHo, [95% CI (0.06-0.27), P = 0.002), a finding validated in the independent cohort. Functional connectivity between PM and secondary visual cortex displayed a suggestive decrease. Patients belonging to "higher pulvinar ReHo - better information processing" demonstrated better long-term outcomes and acute treatment response [95% CI (11.2-34.4), P < 0.001]. The PLSR component of imaging-transcriptomic associations partly explained the ReHo differences among patients with varying levels of functional impairment. It revealed enrichment of genes in the synaptic signaling pathway. Pathological changes in the pulvinar may affect social functioning. Higher pulvinar ReHo and better information processing, two objective biomarkers, have a predictive value for better long-term functional outcomes.
Collapse
Affiliation(s)
- Yuyanan Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhe Lu
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yaoyao Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiao Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Qianqian Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Mingzhu Li
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yundan Liao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Zhewei Kang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Xiaoyang Feng
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Guorui Zhao
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Junyuan Sun
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Yang Yang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Hao Yan
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China
| | - Dai Zhang
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Weihua Yue
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing 100191, China.
| |
Collapse
|
24
|
Schellino R, Besusso D, Parolisi R, Gómez-González GB, Dallere S, Scaramuzza L, Ribodino M, Campus I, Conforti P, Parmar M, Boido M, Cattaneo E, Buffo A. hESC-derived striatal progenitors grafted into a Huntington's disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Res Ther 2023; 14:189. [PMID: 37507794 PMCID: PMC10386300 DOI: 10.1186/s13287-023-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| | - Dario Besusso
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Gabriela B Gómez-González
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Sveva Dallere
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Linda Scaramuzza
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Marta Ribodino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| |
Collapse
|
25
|
Fjodorova M, Noakes Z, De La Fuente DC, Errington AC, Li M. Dysfunction of cAMP-Protein Kinase A-Calcium Signaling Axis in Striatal Medium Spiny Neurons: A Role in Schizophrenia and Huntington's Disease Neuropathology. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:418-429. [PMID: 37519464 PMCID: PMC10382711 DOI: 10.1016/j.bpsgos.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Striatal medium spiny neurons (MSNs) are preferentially lost in Huntington's disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington's disease and identified as a candidate risk gene in schizophrenia. Methods Using human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published genome-wide association study datasets identified cell type-specific disease-related phenotypes. Results We uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and PKA (protein kinase A)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling. Conclusions Our study indicates that Huntington's disease and schizophrenia are likely to share neuronal pathophysiology where dysregulation of intracellular calcium homeostasis is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.
Collapse
Affiliation(s)
- Marija Fjodorova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Daniel C. De La Fuente
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Adam C. Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
26
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
27
|
Srakočić S, Gorup D, Kutlić D, Petrović A, Tarabykin V, Gajović S. Reactivation of corticogenesis-related transcriptional factors BCL11B and SATB2 after ischemic lesion of the adult mouse brain. Sci Rep 2023; 13:8539. [PMID: 37237015 DOI: 10.1038/s41598-023-35515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to characterize expression of corticogenesis-related transcription factors BCL11B and SATB2 after brain ischemic lesion in the adult mice, and to analyze their correlation to the subsequent brain recovery. Ischemic brain lesion was induced by transient middle cerebral artery occlusion followed by reperfusion, and the animals with ischemic lesion were compared to the sham controls. Progression of the brain damage and subsequent recovery was longitudinally monitored structurally, by magnetic resonance imaging, and functionally, by neurological deficit assessment. Seven days after the ischemic injury the brains were isolated and analyzed by immunohistochemistry. The results showed higher expression in the brain of both, BCL11B and SATB2 in the animals with ischemic lesion compared to the sham controls. The co-expression of both markers, BCL11B and SATB2, increased in the ischemic brains, as well as the co-expression of BCL11B with the beneficial transcriptional factor ATF3 but not its co-expression with detrimental HDAC2. BCL11B was mainly implicated in the ipsilateral and SATB2 in the contralateral brain hemisphere, and their level in these regions correlated with the functional recovery rate. The results indicate that the reactivation of corticogenesis-related transcription factors BCL11B and SATB2 is beneficial after brain ischemic lesion.
Collapse
Affiliation(s)
- Sanja Srakočić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Dunja Gorup
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
- Universität Zürich, Universitätspital Zürich, Zürich, Switzerland
| | - Dominik Kutlić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Ante Petrović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience, University of Nizhny Novgorod, Pr. Gagarina 24, Nizhny Novgorod, Russia
| | - Srećko Gajović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
28
|
Fernández-García P, Malet-Engra G, Torres M, Hanson D, Rosselló CA, Román R, Lladó V, Escribá PV. Evolving Diagnostic and Treatment Strategies for Pediatric CNS Tumors: The Impact of Lipid Metabolism. Biomedicines 2023; 11:biomedicines11051365. [PMID: 37239036 DOI: 10.3390/biomedicines11051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.
Collapse
Affiliation(s)
- Paula Fernández-García
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Gema Malet-Engra
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Manuel Torres
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Derek Hanson
- Hackensack Meridian Health, 343 Thornall Street, Edison, NJ 08837, USA
| | - Catalina A Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Ramón Román
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Laminar Pharmaceuticals, Isaac Newton, 07121 Palma de Mallorca, Spain
| |
Collapse
|
29
|
Murari K, Abushaibah A, Rho JM, Turner RW, Cheng N. A clinically relevant selective ERK-pathway inhibitor reverses core deficits in a mouse model of autism. EBioMedicine 2023; 91:104565. [PMID: 37088035 PMCID: PMC10149189 DOI: 10.1016/j.ebiom.2023.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK/MAPK) pathway in the brain is hypothesized to be a critical convergent node in the development of autism spectrum disorder. We reasoned that selectively targeting this pathway could reverse core autism-like phenotype in animal models. METHODS Here we tested a clinically relevant, selective inhibitor of ERK pathway, PD325901 (Mirdametinib), in a mouse model of idiopathic autism, the BTBR mice. FINDINGS We report that treating juvenile mice with PD325901 reduced ERK pathway activation, dose and duration-dependently reduced core disease-modeling deficits in sociability, vocalization and repetitive behavior, and reversed abnormal EEG signals. Further analysis revealed that subchronic treatment did not affect weight gain, locomotion, or neuronal density in the brain. Parallel treatment in the C57BL/6J mice did not alter their phenotype. INTERPRETATION Our data indicate that selectively inhibiting ERK pathway using PD325901 is beneficial in the BTBR model, thus further support the notion that ERK pathway is critically involved in the pathophysiology of autism. These results suggest that a similar approach could be applied to animal models of syndromic autism with dysregulated ERK signaling, to further test selectively targeting ERK pathway as a new approach for treating autism. FUNDING This has beenwork was supported by Alberta Children's Hospital Research Foundation (JMR & NC), University of Calgary Faculty of Veterinary Medicine (NC), Kids Brain Health Network (NC), and Natural Sciences and Engineering Research Council of Canada (NC).
Collapse
Affiliation(s)
- Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Abdulrahman Abushaibah
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
30
|
Chen J, Fuhler NA, Noguchi KK, Dougherty JD. MYT1L is required for suppressing earlier neuronal development programs in the adult mouse brain. Genome Res 2023; 33:541-556. [PMID: 37100461 PMCID: PMC10234307 DOI: 10.1101/gr.277413.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/09/2023] [Indexed: 04/28/2023]
Abstract
In vitro studies indicate the neurodevelopmental disorder gene myelin transcription factor 1-like (MYT1L) suppresses non-neuronal lineage genes during fibroblast-to-neuron direct differentiation. However, MYT1L's molecular and cellular functions in the adult mammalian brain have not been fully characterized. Here, we found that MYT1L loss leads to up-regulated deep layer (DL) gene expression, corresponding to an increased ratio of DL/UL neurons in the adult mouse cortex. To define potential mechanisms, we conducted Cleavage Under Targets & Release Using Nuclease (CUT&RUN) to map MYT1L binding targets and epigenetic changes following MYT1L loss in mouse developing cortex and adult prefrontal cortex (PFC). We found MYT1L mainly binds to open chromatin, but with different transcription factor co-occupancies between promoters and enhancers. Likewise, multiomic data set integration revealed that, at promoters, MYT1L loss does not change chromatin accessibility but increases H3K4me3 and H3K27ac, activating both a subset of earlier neuronal development genes as well as Bcl11b, a key regulator for DL neuron development. Meanwhile, we discovered that MYT1L normally represses the activity of neurogenic enhancers associated with neuronal migration and neuronal projection development by closing chromatin structures and promoting removal of active histone marks. Further, we showed that MYT1L interacts with HDAC2 and transcriptional repressor SIN3B in vivo, providing potential mechanisms underlying repressive effects on histone acetylation and gene expression. Overall, our findings provide a comprehensive map of MYT1L binding in vivo and mechanistic insights into how MYT1L loss leads to aberrant activation of earlier neuronal development programs in the adult mouse brain.
Collapse
Affiliation(s)
- Jiayang Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Kevin K Noguchi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
31
|
Llach Pou M, Thiberge C, Van der Zwan M, Devi Govindan A, Pons S, Maskos U, Cloëz-Tayarani I. Developmental Changes of Human Neural Progenitor Cells Grafted into the Ventricular System and Prefrontal Cortex of Mouse Brain in Utero. Cells 2023; 12:1067. [PMID: 37048140 PMCID: PMC10093207 DOI: 10.3390/cells12071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The transplantation of neural progenitors into a host brain represents a useful tool to evaluate the involvement of cell-autonomous processes and host local cues in the regulation of neuronal differentiation during the development of the mammalian brain. Human brain development starts at the embryonic stages, in utero, with unique properties at its neotenic stages. We analyzed the engraftment and differentiation of human neuronal progenitor cells (hNPCs) transplanted in utero into the mouse brain. The influence of the environment was studied by transplanting human NPCs within the lateral ventricles (LV), compared with the prefrontal cortex (PFC) of immunocompetent mice. We developed a semi-automated method to accurately quantify the number of cell bodies and the distribution of neuronal projections among the different mouse brain structures, at 1 and 3 months post-transplantation (MPT). Our data show that human NPCs can differentiate between immature "juvenile" neurons and more mature pyramidal cells in a reproducible manner. Depending on the injection site, LV vs. PFC, specific fetal local environments could modify the synaptogenesis processes while maintaining human neoteny. The use of immunocompetent mice as host species allows us to investigate further neuropathological conditions making use of all of the engineered mouse models already available.
Collapse
Affiliation(s)
- Maria Llach Pou
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Camille Thiberge
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Michiel Van der Zwan
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Annousha Devi Govindan
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Stéphanie Pons
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Isabelle Cloëz-Tayarani
- Institut Pasteur, Université Paris Cité, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571 “Gènes, Synapses et Cognition”, 25 Rue du Docteur Roux, 75015 Paris, France
- Collège Doctoral, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
32
|
Hunt CPJ, Moriarty N, van Deursen CBJ, Gantner CW, Thompson LH, Parish CL. Understanding and modeling regional specification of the human ganglionic eminence. Stem Cell Reports 2023; 18:654-671. [PMID: 36801004 PMCID: PMC10031306 DOI: 10.1016/j.stemcr.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Inhibitory neurons originating from the ventral forebrain are associated with several neurological conditions. Distinct ventral forebrain subpopulations are generated from topographically defined zones; lateral-, medial- and caudal ganglionic eminences (LGE, MGE and CGE), yet key specification factors often span across developing zones contributing to difficulty in defining unique LGE, MGE or CGE profiles. Here we use human pluripotent stem cell (hPSC) reporter lines (NKX2.1-GFP and MEIS2-mCherry) and manipulation of morphogen gradients to gain greater insight into regional specification of these distinct zones. We identified Sonic hedgehog (SHH)-WNT crosstalk in regulating LGE and MGE fate and uncovered a role for retinoic acid signaling in CGE development. Unraveling the influence of these signaling pathways permitted development of fully defined protocols that favored generation of the three GE domains. These findings provide insight into the context-dependent role of morphogens in human GE specification and are of value for in vitro disease modeling and advancement of new therapies.
Collapse
Affiliation(s)
- Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Coen B J van Deursen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carlos W Gantner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
33
|
Rotaru DC, Wallaard I, de Vries M, van der Bie J, Elgersma Y. UBE3A expression during early postnatal brain development is required for proper dorsomedial striatal maturation. JCI Insight 2023; 8:e166073. [PMID: 36810252 PMCID: PMC9977510 DOI: 10.1172/jci.insight.166073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder (NDD) caused by loss of functional ubiquitin protein ligase E3A (UBE3A). Previous studies showed that UBE3A plays an important role in the first postnatal weeks of mouse brain development, but its precise role is unknown. Since impaired striatal maturation has been implicated in several mouse models for NDDs, we studied the importance of UBE3A in striatal maturation. We used inducible Ube3a mouse models to investigate the maturation of medium spiny neurons (MSNs) from dorsomedial striatum. MSNs of mutant mice matured properly till postnatal day 15 (P15) but remained hyperexcitable with fewer excitatory synaptic events at later ages, indicative of stalled striatal maturation in Ube3a mice. Reinstatement of UBE3A expression at P21 fully restored MSN excitability but only partially restored synaptic transmission and the operant conditioning behavioral phenotype. Gene reinstatement at P70 failed to rescue both electrophysiological and behavioral phenotypes. In contrast, deletion of Ube3a after normal brain development did not result in these electrophysiological and behavioral phenotypes. This study emphasizes the role of UBE3A in striatal maturation and the importance of early postnatal reinstatement of UBE3A expression to obtain a full rescue of behavioral phenotypes associated with striatal function in AS.
Collapse
Affiliation(s)
- Diana C. Rotaru
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ilse Wallaard
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Maud de Vries
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Julia van der Bie
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Clinical Genetics and
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
34
|
Metzger JM, Wang Y, Neuman SS, Snow KJ, Murray SA, Lutz CM, Bondarenko V, Felton J, Gimse K, Xie R, Li D, Zhao Y, Flowers MT, Simmons HA, Roy S, Saha K, Levine JE, Emborg ME, Gong S. Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins. Biomaterials 2023; 293:121959. [PMID: 36527789 PMCID: PMC9868115 DOI: 10.1016/j.biomaterials.2022.121959] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Genome editing of somatic cells via clustered regularly interspaced short palindromic repeats (CRISPR) offers promise for new therapeutics to treat a variety of genetic disorders, including neurological diseases. However, the dense and complex parenchyma of the brain and the post-mitotic state of neurons make efficient genome editing challenging. In vivo delivery systems for CRISPR-Cas proteins and single guide RNA (sgRNA) include both viral vectors and non-viral strategies, each presenting different advantages and disadvantages for clinical application. We developed non-viral and biodegradable PEGylated nanocapsules (NCs) that deliver preassembled Cas9-sgRNA ribonucleoproteins (RNPs). Here, we show that the RNP NCs led to robust genome editing in neurons following intracerebral injection into the healthy mouse striatum. Genome editing was predominantly observed in medium spiny neurons (>80%), with occasional editing in cholinergic, calretinin, and parvalbumin interneurons. Glial activation was minimal and was localized along the needle tract. Our results demonstrate that the RNP NCs are capable of safe and efficient neuronal genome editing in vivo.
Collapse
Affiliation(s)
- Jeanette M Metzger
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Samuel S Neuman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Kathy J Snow
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | | | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jesi Felton
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Kirstan Gimse
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Dongdong Li
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Matthew T Flowers
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Subhojit Roy
- Departments of Pathology and Neuroscience, University of California-San Diego, San Diego, CA, 92093, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
35
|
Kostović I, Džaja D, Raguž M, Kopić J, Blažević A, Krsnik Ž. Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum. Cereb Cortex 2022; 33:434-457. [PMID: 35244150 DOI: 10.1093/cercor/bhac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient "AChE-clumping," disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial "mature" pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Džaja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Raguž
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Neurosurgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andrea Blažević
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Forkel H, Grabarczyk P, Depke M, Troschke-Meurer S, Simm S, Hammer E, Michalik S, Hentschker C, Corleis B, Loyal L, Zumpe M, Siebert N, Dorhoi A, Thiel A, Lode H, Völker U, Schmidt CA. BCL11B depletion induces the development of highly cytotoxic innate T cells out of IL-15 stimulated peripheral blood αβ CD8+ T cells. Oncoimmunology 2022; 11:2148850. [PMID: 36507091 PMCID: PMC9728472 DOI: 10.1080/2162402x.2022.2148850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BCL11B, an essential transcription factor for thymopoiesis, regulates also vital processes in post-thymic lymphocytes. Increased expression of BCL11B was recently correlated with the maturation of NK cells, whereas reduced BCL11B levels were observed in native and induced T cell subsets displaying NK cell features. We show that BCL11B-depleted CD8+ T cells stimulated with IL-15 acquired remarkable innate characteristics. These induced innate CD8+ (iiT8) cells expressed multiple innate receptors like NKp30, CD161, and CD16 as well as factors regulating migration and tissue homing while maintaining their T cell phenotype. The iiT8 cells effectively killed leukemic cells spontaneously and neuroblastoma spheroids in the presence of a tumor-specific monoclonal antibody mediated by CD16 receptor activation. These iiT8 cells integrate the innate natural killer cell activity with adaptive T cell longevity, promising an interesting therapeutic potential. Our study demonstrates that innate T cells, albeit of limited clinical applicability given their low frequency, can be efficiently generated from peripheral blood and applied for adoptive transfer, CAR therapy, or combined with therapeutic antibodies.
Collapse
Affiliation(s)
- Hannes Forkel
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Piotr Grabarczyk
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Björn Corleis
- Institute for Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Lucie Loyal
- Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maxi Zumpe
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Anca Dorhoi
- Institute for Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Andreas Thiel
- Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christian A. Schmidt
- Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany,CONTACT Christian A. Schmidt Internal Medicine Clinic C, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Chen X, Saiyin H, Liu Y, Wang Y, Li X, Ji R, Ma L. Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biol 2022; 20:e3001868. [PMID: 36395338 PMCID: PMC9714809 DOI: 10.1371/journal.pbio.3001868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/01/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
The striatum links neuronal circuits in the human brain, and its malfunction causes neuronal disorders such as Huntington's disease (HD). A human striatum model that recapitulates fetal striatal development is vital to decoding the pathogenesis of striatum-related neurological disorders and developing therapeutic strategies. Here, we developed a method to construct human striatal organoids (hStrOs) from human pluripotent stem cells (hPSCs), including hStrOs-derived assembloids. Our hStrOs partially replicated the fetal striatum and formed striosome and matrix-like compartments in vitro. Single-cell RNA sequencing revealed distinct striatal lineages in hStrOs, diverging from dorsal forebrain fate. Using hStrOs-derived assembloids, we replicated the striatal targeting projections from different brain parts. Furthermore, hStrOs can serve as hosts for striatal neuronal allografts to test allograft neuronal survival and functional integration. Our hStrOs are suitable for studying striatal development and related disorders, characterizing the neural circuitry between different brain regions, and testing therapeutic strategies.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
| | - Yuqi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Xuan Li
- The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, P.R. China
| | - Rong Ji
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, P.R. China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
38
|
Wang Y, Madhusudan S, Cotellessa L, Kvist J, Eskici N, Yellapragada V, Pulli K, Lund C, Vaaralahti K, Tuuri T, Giacobini P, Raivio T. Deciphering the Transcriptional Landscape of Human Pluripotent Stem Cell-Derived GnRH Neurons: The Role of Wnt Signaling in Patterning the Neural Fate. Stem Cells 2022; 40:1107-1121. [PMID: 36153707 PMCID: PMC9806769 DOI: 10.1093/stmcls/sxac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction; however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by using our established human pluripotent stem cell-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.
Collapse
Affiliation(s)
- Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Folkhälsan Research Center, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Taneli Raivio
- Corresponding author: Taneli Raivio, Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Song S, Creus Muncunill J, Galicia Aguirre C, Tshilenge KT, Hamilton BW, Gerencser AA, Benlhabib H, Cirnaru MD, Leid M, Mooney SD, Ellerby LM, Ehrlich ME. Postnatal Conditional Deletion of Bcl11b in Striatal Projection Neurons Mimics the Transcriptional Signature of Huntington's Disease. Biomedicines 2022; 10:2377. [PMID: 36289639 PMCID: PMC9598565 DOI: 10.3390/biomedicines10102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington's disease (HD), Parkinson's disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, Bcl11b (also known as Ctip2), is required for striatal development, but the function of Bcl11b in adult MSNs in vivo has not been investigated. We conditionally deleted Bcl11b specifically in postnatal MSNs and performed a transcriptomic and behavioral analysis on these mice. Multiple enrichment analyses showed that the D9-Cre-Bcl11btm1.1Leid transcriptional profile was similar to the HD gene expression in mouse and human data sets. A Gene Ontology enrichment analysis linked D9-Cre-Bcl11btm1.1Leid to calcium, synapse organization, specifically including the dopaminergic synapse, protein dephosphorylation, and HDAC-signaling, commonly dysregulated pathways in HD. D9-Cre-Bcl11btm1.1Leid mice had decreased DARPP-32/Ppp1r1b in MSNs and behavioral deficits, demonstrating the dysregulation of a subtype of the dopamine D2 receptor expressing MSNs. Finally, in human HD isogenic MSNs, the mislocalization of BCL11B into nuclear aggregates points to a mechanism for BCL11B loss of function in HD. Our results suggest that BCL11B is important for the function and maintenance of mature MSNs and Bcl11b loss of function drives, in part, the transcriptomic and functional changes in HD.
Collapse
Affiliation(s)
- Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jordi Creus Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Galicia Aguirre
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sean D. Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lisa M. Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
40
|
Alfei E, Cattaneo E, Spaccini L, Iascone M, Veggiotti P, Doneda C. Progressive Clinical and Neuroradiological Findings in a Child with BCL11B Missense Mutation: Expanding the Phenotypic Spectrum of Related Disorder. Neuropediatrics 2022; 53:283-286. [PMID: 34844266 DOI: 10.1055/s-0041-1736193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report a patient affected by BCL11B-related disorder, providing the first extensive demonstration of clinical and neuroradiological progressive course of the disease, with possible implications on the way it is studied and followed-up. Never described clinical aspects such as toes abnormalities and hypospadias widen the range of dysmorphisms associated with this condition. Our data suggest that BCL11B mutations may be implicated not only in impaired morphogenesis and hematopoiesis but also in progressive central nervous system damage, which remains to be further investigated and clarified.
Collapse
Affiliation(s)
- Enrico Alfei
- Pediatric Neurology Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Pediatrics, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Pierangelo Veggiotti
- Pediatric Neurology Unit, "Vittore Buzzi" Children's Hospital, Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, Italy
| | - Chiara Doneda
- Department of Pediatric Radiology and Neuroradiology, "Vittore Buzzi" Children's Hospital - ASST Fatebenefratelli-Sacco, Milan, Italy
| |
Collapse
|
41
|
Bae T, Fasching L, Wang Y, Shin JH, Suvakov M, Jang Y, Norton S, Dias C, Mariani J, Jourdon A, Wu F, Panda A, Pattni R, Chahine Y, Yeh R, Roberts RC, Huttner A, Kleinman JE, Hyde TM, Straub RE, Walsh CA, Urban AE, Leckman JF, Weinberger DR, Vaccarino FM, Abyzov A. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 2022; 377:511-517. [PMID: 35901164 PMCID: PMC9420557 DOI: 10.1126/science.abm6222] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.
Collapse
Affiliation(s)
- Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520
| | - Caroline Dias
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | | | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT 06520
| | - Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yasmine Chahine
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rebecca Yeh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham Al, 35294
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT 06520
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Richard E. Straub
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
42
|
Heinrich L, Zafar F, Morato Torres CA, Singh J, Khan A, Chen MY, Hempel C, Nikulina N, Mulholland J, Braubach O, Schüle B. Multiplex imaging of human induced pluripotent stem cell-derived neurons with CO-Detection by indEXing (CODEX) technology. J Neurosci Methods 2022; 378:109653. [PMID: 35724898 DOI: 10.1016/j.jneumeth.2022.109653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human induced pluripotent stem cell (iPSC) models have been hailed as a breakthrough for understanding disease and developing new therapeutics. The major advantage of iPSC-derived neurons is that they carry the genetic background of the donor, and as such could be more predictive for clinical translation. However, the development of these cell models is time-consuming and expensive and it is thus critical to maximize readout of markers for immunocytochemistry. One option is to use a highly multiplexed fluorescence imaging assay, like CO-Detection by indEXing (CODEX), which allows detection of 50+ targets in situ. NEW METHOD This paper describes the development of CODEX in neuronal cell cultures derived from human iPSCs. RESULTS We differentiated human iPSCs into mixed neuronal and glial cultures on glass coverslips. We then developed and optimized a panel of 21 antibodies to phenotype iPSC-derived neuronal subtypes of cortical, dopaminergic, and striatal neurons, as well as astrocytes, and pre-and postsynaptic proteins. COMPARISON WITH EXISTING METHODS Compared to standard immunocytochemistry, CODEX oligo-conjugated fluorophores circumvent antibody host interactions and allow for highly customized multiplexing. CONCLUSION We show that CODEX can be applied to iPSC neuronal cultures and developed fixation and staining protocols for the neurons to sustain the multiple wash-stain cycles of the technology. Furthermore, we demonstrate both cellular and subcellular resolution imaging of multiplexed markers in the same sample.
Collapse
Affiliation(s)
- Laurin Heinrich
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Faria Zafar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Anum Khan
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | - Max Yang Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Jonathan Mulholland
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Yu D, Zarate N, White A, Coates D, Tsai W, Nanclares C, Cuccu F, Yue JS, Brown TG, Mansky RH, Jiang K, Kim H, Nichols-Meade T, Larson SN, Gundry K, Zhang Y, Tomas-Zapico C, Lucas JJ, Benneyworth M, Öz G, Cvetanovic M, Araque A, Gomez-Pastor R. CK2 alpha prime and alpha-synuclein pathogenic functional interaction mediates synaptic dysregulation in huntington's disease. Acta Neuropathol Commun 2022; 10:83. [PMID: 35659303 PMCID: PMC9164558 DOI: 10.1186/s40478-022-01379-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset. Understanding the interplay between these processes is crucial to develop effective therapeutic strategies to treat HD. We investigated the role of protein kinase CK2α', a kinase upregulated in MSNs in HD and previously associated with Parkinson's disease (PD), in the regulation of neuroinflammation and synaptic function in HD. We used the heterozygous knock-in zQ175 HD mouse model and compared that to zQ175 mice lacking one allele of CK2α' (zQ175:CK2α'(±)). CK2α' haploinsufficiency in zQ175 mice resulted in decreased levels of pro-inflammatory cytokines, HTT aggregation, astrogliosis and transcriptional alterations of synaptic genes related to glutamatergic signaling. zQ175:CK2α'(±) mice also presented increased frequency of striatal miniature excitatory postsynaptic currents (mEPSCs), an indicator of synaptic activity, and improved motor coordination compared to zQ175 mice. Neuropathological and phenotypic changes mediated by CK2α' were connected to alpha-synuclein (α-syn) dysregulation and correlated with differences in α-syn serine 129 phosphorylation (pS129-α-syn), a post-translational modification involved in α-synucleinopathy and shown to be regulated by CK2 in PD. pS129-α-syn was increased in the nuclei of MSNs in zQ175 mice and in the striatum of patients with HD, and it decreased in zQ175:CK2α'(±) mice. Collectively, our data established a novel connection between CK2α', neuroinflammation and synaptic gene dysregulation with synucleinopathy in HD and suggested common molecular mechanisms of neurodegeneration between HD and PD. Our results also support CK2α' inhibition as a potential therapeutic strategy to modulate neuronal function and neuroprotection in HD.
Collapse
Affiliation(s)
- Dahyun Yu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Nicole Zarate
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - De’jah Coates
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Wei Tsai
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Carmen Nanclares
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Francesco Cuccu
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Johnny S. Yue
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Mounds View High School, Arden Hills, MN USA
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Kevin Jiang
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Tessa Nichols-Meade
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Sarah N. Larson
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Katherine Gundry
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN USA
| | - Cristina Tomas-Zapico
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Present Address: HK, MEPSGEN, Seoul, 05836 South Korea
- Present Address: CTZ Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain
- Present Address: Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain
| | - Jose J. Lucas
- Centro de Biología Molecular ‘Severo Ochoa’ (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Benneyworth
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research. Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN USA
| | - Marija Cvetanovic
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Alfonso Araque
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, 321 Church St. SE, Jackson Hall Room 6-145, Minneapolis, MN USA
| |
Collapse
|
44
|
A single factor elicits multilineage reprogramming of astrocytes in the adult mouse striatum. Proc Natl Acad Sci U S A 2022; 119:e2107339119. [PMID: 35254903 PMCID: PMC8931246 DOI: 10.1073/pnas.2107339119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Outside the neurogenic niches, the adult brain lacks multipotent progenitor cells. In this study, we performed a series of in vivo screens and reveal that a single factor can induce resident brain astrocytes to become induced neural progenitor cells (iNPCs), which then generate neurons, astrocytes, and oligodendrocytes. Such a conclusion is supported by single-cell RNA sequencing and multiple lineage-tracing experiments. Our discovery of iNPCs is fundamentally important for regenerative medicine since neural injuries or degeneration often lead to loss/dysfunction of all three neural lineages. Our findings also provide insights into cell plasticity in the adult mammalian brain, which has largely lost the regenerative capacity. Astrocytes in the adult brain show cellular plasticity; however, whether they have the potential to generate multiple lineages remains unclear. Here, we perform in vivo screens and identify DLX2 as a transcription factor that can unleash the multipotentiality of adult resident astrocytes. Genetic lineage tracing and time-course analyses reveal that DLX2 enables astrocytes to rapidly become ASCL1+ neural progenitor cells, which give rise to neurons, astrocytes, and oligodendrocytes in the adult mouse striatum. Single-cell transcriptomics and pseudotime trajectories further confirm a neural stem cell-like behavior of reprogrammed astrocytes, transitioning from quiescence to activation, proliferation, and neurogenesis. Gene regulatory networks and mouse genetics identify and confirm key nodes mediating DLX2-dependent fate reprogramming. These include activation of endogenous DLX family transcription factors and suppression of Notch signaling. Such reprogramming-induced multipotency of resident glial cells may be exploited for neural regeneration.
Collapse
|
45
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
46
|
He J, Kleyman M, Chen J, Alikaya A, Rothenhoefer KM, Ozturk BE, Wirthlin M, Bostan AC, Fish K, Byrne LC, Pfenning AR, Stauffer WR. Transcriptional and anatomical diversity of medium spiny neurons in the primate striatum. Curr Biol 2021; 31:5473-5486.e6. [PMID: 34727523 PMCID: PMC9359438 DOI: 10.1016/j.cub.2021.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Medium spiny neurons (MSNs) constitute the vast majority of striatal neurons and the principal interface between dopamine reward signals and functionally diverse cortico-basal ganglia circuits. Information processing in these circuits is dependent on distinct MSN types: cell types that are traditionally defined according to their projection targets or dopamine receptor expression. Single-cell transcriptional studies have revealed greater MSN heterogeneity than predicted by traditional circuit models, but the transcriptional landscape in the primate striatum remains unknown. Here, we set out to establish molecular definitions for MSN subtypes in Rhesus monkeys and to explore the relationships between transcriptionally defined subtypes and anatomical subdivisions of the striatum. Our results suggest at least nine MSN subtypes, including dorsal striatum subtypes associated with striosome and matrix compartments, ventral striatum subtypes associated with the nucleus accumbens shell and olfactory tubercle, and an MSN-like cell type restricted to μ-opioid receptor rich islands in the ventral striatum. Although each subtype was demarcated by discontinuities in gene expression, continuous variation within subtypes defined gradients corresponding to anatomical locations and, potentially, functional specializations. These results lay the foundation for achieving cell-type-specific transgenesis in the primate striatum and provide a blueprint for investigating circuit-specific information processing.
Collapse
Affiliation(s)
- Jing He
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Michael Kleyman
- Department of Computational Biology, School of Computer Science, Neuroscience Institute, Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Jianjiao Chen
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Aydin Alikaya
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Kathryn M Rothenhoefer
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Bilge Esin Ozturk
- Department of Ophthalmology, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Morgan Wirthlin
- Department of Computational Biology, School of Computer Science, Neuroscience Institute, Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Andreea C Bostan
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Kenneth Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Leah C Byrne
- Department of Ophthalmology, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Neuroscience Institute, Center for the Neural Basis of Cognition, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
| | - William R Stauffer
- Department of Neurobiology, Systems Neuroscience Center, Brain Institute, Center for Neuroscience, Center for the Neural Basis of Cognition, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
47
|
Khan A, Molitor A, Mayeur S, Zhang G, Rinaldi B, Lannes B, Lhermitte B, Umair M, Arold ST, Friant S, Rastegar S, Anheim M, Bahram S, Carapito R. A Homozygous Missense Variant in PPP1R1B/DARPP-32 Is Associated With Generalized Complex Dystonia. Mov Disord 2021; 37:365-374. [PMID: 34820905 DOI: 10.1002/mds.28861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The dystonias are a heterogeneous group of hyperkinetic disorders characterized by sustained or intermittent muscle contractions that cause abnormal movements and/or postures. Although more than 200 causal genes are known, many cases of primary dystonia have no clear genetic cause. OBJECTIVES To identify the causal gene in a consanguineous family with three siblings affected by a complex persistent generalized dystonia, generalized epilepsy, and mild intellectual disability. METHODS We performed exome sequencing in the parents and two affected siblings and characterized the expression of the identified gene by immunohistochemistry in control human and zebrafish brains. RESULTS We identified a novel missense variant (c.142G>A (NM_032192); p.Glu48Lys) in the protein phosphatase 1 regulatory inhibitor subunit 1B gene (PPP1R1B) that was homozygous in all three siblings and heterozygous in the parents. This gene is also known as dopamine and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32) and has been involved in the pathophysiology of abnormal movements. The uncovered variant is absent in public databases and modifies the conserved glutamate 48 localized close to the serine 45 phosphorylation site. The PPP1R1B protein was shown to be expressed in cells and regions involved in movement control, including projection neurons of the caudate-putamen, substantia nigra neuropil, and cerebellar Purkinje cells. The latter cells were also confirmed to be positive for PPP1R1B expression in the zebrafish brain. CONCLUSIONS We report the association of a PPP1R1B/DARPP-32 variant with generalized dystonia in man. It might be relevant to include the sequencing of this new gene in the diagnosis of patients with otherwise unexplained movement disorders. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amjad Khan
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Faculty of Science, Department of Biological Sciences (Zoology), University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France
| | - Sylvain Mayeur
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Department of Pathology, Strasbourg University Hospitals, Strasbourg, France
| | - Gaoqun Zhang
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, GMGM UMR7156 CNRS/Université de Strasbourg, IPCB, Strasbourg, France
| | - Béatrice Lannes
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Department of Pathology, Strasbourg University Hospitals, Strasbourg, France
| | - Benoît Lhermitte
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Department of Pathology, Strasbourg University Hospitals, Strasbourg, France
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia.,Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Sylvie Friant
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, GMGM UMR7156 CNRS/Université de Strasbourg, IPCB, Strasbourg, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mathieu Anheim
- Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Department of Neurology, Strasbourg University Hospitals, Strasbourg, France.,INSERM UMR_S 964; CNRS UMR 7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France.,Strasbourg Federation of Translational Medicine (FMTS), Strasbourg University, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
48
|
Cirnaru MD, Song S, Tshilenge KT, Corwin C, Mleczko J, Galicia Aguirre C, Benlhabib H, Bendl J, Apontes P, Fullard J, Creus-Muncunill J, Reyahi A, Nik AM, Carlsson P, Roussos P, Mooney SD, Ellerby LM, Ehrlich ME. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 2021; 10:e65979. [PMID: 34609283 PMCID: PMC8492065 DOI: 10.7554/elife.65979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Many diseases are linked to dysregulation of the striatum. Striatal function depends on neuronal compartmentation into striosomes and matrix. Striatal projection neurons are GABAergic medium spiny neurons (MSNs), subtyped by selective expression of receptors, neuropeptides, and other gene families. Neurogenesis of the striosome and matrix occurs in separate waves, but the factors regulating compartmentation and neuronal differentiation are largely unidentified. We performed RNA- and ATAC-seq on sorted striosome and matrix cells at postnatal day 3, using the Nr4a1-EGFP striosome reporter mouse. Focusing on the striosome, we validated the localization and/or role of Irx1, Foxf2, Olig2, and Stat1/2 in the developing striosome and the in vivo enhancer function of a striosome-specific open chromatin region 4.4 Kb downstream of Olig2. These data provide novel tools to dissect and manipulate the networks regulating MSN compartmentation and differentiation, including in human iPSC-derived striatal neurons for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Justyna Mleczko
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Pasha Apontes
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mental Illness Research, Education, and Clinical Center (VISN 2 South)BronxUnited States
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
49
|
Medeiros de Araújo JA, Barão S, Mateos-White I, Espinosa A, Costa MR, Gil-Sanz C, Müller U. ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex. Development 2021; 148:271200. [PMID: 34351428 DOI: 10.1242/dev.196642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/17/2021] [Indexed: 12/25/2022]
Abstract
Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mutants with an increase in the number of a specific subset of astrocytes expressing GFAP. Astrogliogenesis is more severely disrupted by a ZBTB20 protein containing dominant mutations linked to Primrose syndrome, suggesting that ZBTB20 acts in concert with other ZBTB proteins that were also affected by the dominant-negative protein to instruct astrogliogenesis. Overall, our data suggest that ZBTB20 acts both in progenitors and in postmitotic cells to regulate cell fate specification in the mammalian neocortex.
Collapse
Affiliation(s)
- Jéssica Alves Medeiros de Araújo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Isabel Mateos-White
- BIOTECMED Institute, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Ana Espinosa
- AntalGenics, Quorum Building III, Scientific Park - UMH. Avda. de la Universidad, s/n. 03202 Elche (Alicante), Spain
| | - Marcos Romualdo Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil.,Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille Cedex 59019, France
| | - Cristina Gil-Sanz
- BIOTECMED Institute, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Takahashi M, Fukabori R, Kawasaki H, Kobayashi K, Kawakami K. The distribution of Cdh20 mRNA demarcates somatotopic subregions and subpopulations of spiny projection neurons in the rat dorsolateral striatum. J Comp Neurol 2021; 529:3655-3675. [PMID: 34240415 DOI: 10.1002/cne.25215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/07/2022]
Abstract
The dorsolateral striatum (DLS) of rodents is functionally subdivided into somatotopic subregions that represent each body part along both the dorsoventral and anteroposterior (A-P) axes and play crucial roles in sensorimotor functions via corticostriatal pathways. However, little is known about the spatial gene expression patterns and heterogeneity of spiny projection neurons (SPNs) within somatotopic subregions. Here, we show that the cell adhesion molecule gene Cdh20, which encodes a Type II cadherin, is expressed in discrete subregions covering the inner orofacial area and part of the forelimb area in the ventral domain of the DLS (v-DLS) in rats. Cdh20-expressing cells were localized in the v-DLS at the intermediate level of the striatum along the A-P axis and could be classified as direct-pathway SPNs or indirect-pathway SPNs. Unexpectedly, comprehensive analysis revealed that Cdh20 is expressed in SPNs in the rat DLS but not in the mouse DLS or the ferret putamen (Pu). Our observations reveal that Cdh20 expression demarcates somatotopic subregions and subpopulations of SPNs specifically in the rat DLS and suggest divergent regulation of genes differentially expressed in the v-DLS and Pu among mammals.
Collapse
Affiliation(s)
- Masanori Takahashi
- Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Fukushima, Japan
| | | |
Collapse
|