1
|
Rodriguez LA, Tran MN, Garcia-Flores R, Oh S, Phillips RA, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. Transl Psychiatry 2024; 14:52. [PMID: 38263132 PMCID: PMC10805920 DOI: 10.1038/s41398-024-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Robert A Phillips
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Rodriguez LA, Tran MN, Garcia-Flores R, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547069. [PMID: 37425939 PMCID: PMC10327212 DOI: 10.1101/2023.06.29.547069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A. Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A. Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E. Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Barloese MCJ, Bauer C, Petersen ET, Hansen CS, Madsbad S, Siebner HR. Neurovascular Coupling in Type 2 Diabetes With Cognitive Decline. A Narrative Review of Neuroimaging Findings and Their Pathophysiological Implications. Front Endocrinol (Lausanne) 2022; 13:874007. [PMID: 35860697 PMCID: PMC9289474 DOI: 10.3389/fendo.2022.874007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes causes substantial long-term damage in several organs including the brain. Cognitive decline is receiving increased attention as diabetes has been established as an independent risk factor along with the identification of several other pathophysiological mechanisms. Early detection of detrimental changes in cerebral blood flow regulation may represent a useful clinical marker for development of cognitive decline for at-risk persons. Technically, reliable evaluation of neurovascular coupling is possible with several caveats but needs further development before it is clinically convenient. Different modalities including ultrasound, positron emission tomography and magnetic resonance are used preclinically to shed light on the many influences on vascular supply to the brain. In this narrative review, we focus on the complex link between type 2 diabetes, cognition, and neurovascular coupling and discuss how the disease-related pathology changes neurovascular coupling in the brain from the organ to the cellular level. Different modalities and their respective pitfalls are covered, and future directions suggested.
Collapse
Affiliation(s)
- Mads C. J. Barloese
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Imaging, Center for Functional and Diagnostic Imaging, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| |
Collapse
|
4
|
Kakizawa S, Kishimoto Y, Yamamoto S, Onga K, Yasuda K, Miyamoto Y, Watanabe M, Sakai R, Mori N. Functional maintenance of calcium store by ShcB adaptor protein in cerebellar Purkinje cells. Sci Rep 2020; 10:14475. [PMID: 32879382 PMCID: PMC7468156 DOI: 10.1038/s41598-020-71414-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/14/2020] [Indexed: 11/15/2022] Open
Abstract
Intracellular Ca2+ levels are changed by influx from extracellular medium and release from intracellular stores. In the central nervous systems, Ca2+ release is involved in various physiological events, such as neuronal excitability and transmitter release. Although stable Ca2+ release in response to stimulus is critical for proper functions of the nervous systems, regulatory mechanisms relating to Ca2+ release are not fully understood in central neurons. Here, we demonstrate that ShcB, an adaptor protein expressed in central neurons, has an essential role in functional maintenance of Ca2+ store in cerebellar Purkinje cells (PCs). ShcB-knockout (KO) mice showed defects in cerebellar-dependent motor function and long-term depression (LTD) at cerebellar synapse. The reduced LTD was accompanied with an impairment of intracellular Ca2+ release. Although the expression of Ca2+ release channels and morphology of Ca2+ store looked intact, content of intracellular Ca2+ store and activity of sarco/endoplasmic reticular Ca2+-ATPase (SERCA) were largely decreased in the ShcB-deficient cerebellum. Furthermore, when ShcB was ectopically expressed in the ShcB-KO PCs, the Ca2+ release and its SERCA-dependent component were restored. These data indicate that ShcB plays a key role in the functional maintenance of ER Ca2+ store in central neurons through regulation of SERCA activity.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan. .,Department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yasushi Kishimoto
- Department of Biophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan
| | - Shinichiro Yamamoto
- Department of Biological Chemistry, Graduate School of Pharmaceutical Science, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo, 164-8530, Japan
| | - Kazuko Onga
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kunihiko Yasuda
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Occupational Therapy, Faculty of Fukuoka Medical Technology, Teikyo University, Omuta, 836-8505, Japan
| | - Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Ryuichi Sakai
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nozomu Mori
- Department of Anatomy and Neurobiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan. .,Faculty of Medicine, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan.
| |
Collapse
|
5
|
Lv Y, Sun Y, Wang GY, Yin J, Li CJ, Luo YY, Luan ZL. Positive Association of Human SHC3 Gene with Schizophrenia in a Northeast Chinese Han Population. Psychiatry Investig 2020; 17:934-940. [PMID: 32933237 PMCID: PMC7538253 DOI: 10.30773/pi.2020.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Schizophrenia is one of the most devastating neuropsychiatric disorders. Genetic epidemiological studies have confirmed that schizophrenia is a genetic disease. Genes promoting neurodevelopment may be potential candidates for schizophrenia. As an adaptor linking a number of tyrosine kinase receptors in multiple intracellular signaling cascades, Src homology 2 domain containing transforming protein 3 (SHC3) is a member of the Shc-like adaptor protein family, and expressed predominantly in the mature neurons of the central nervous system (CNS). In the present study, we aimed to investigate the association of SHC3 and schizophrenia. METHODS An independent case-control association study was performed in a sample including 710 schizophrenia patients and 1314 healthy controls from a Northeast Chinese Han population. RESULTS The allelic and genotypic association analyses showed that four SNPs in SHC3 significantly associated with schizophrenia (rs2316280, rs4877041, rs944485 and rs7021743). The haplotype composing of these four SNPs also showed significantly individual and global association with schizophrenia. CONCLUSION Our present results suggest SHC3 as a susceptibility gene for schizophrenia.
Collapse
Affiliation(s)
- Ye Lv
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Sun
- Department of Psychiatry, Dalian Seventh People's Hospital, Dalian, China
| | - Guan-Yu Wang
- Department of Neurosurgery, Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jian Yin
- Department of Neurosurgery, Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cheng-Jie Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi-Yang Luo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Deyama S, Li XY, Duman RS. Neuron-specific deletion of VEGF or its receptor Flk-1 impairs recognition memory. Eur Neuropsychopharmacol 2020; 31:145-151. [PMID: 31902568 DOI: 10.1016/j.euroneuro.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF, also known as VEGF-A) is a pleiotropic factor which is expressed by neurons, astrocytes and perivascular macrophages, as well as endothelial cells, in the brain. Recently, VEGF signaling has been implicated in learning and memory, and several clinical and preclinical studies demonstrate that VEGF inhibitors induce cognitive impairment. However, the role of endogenous neuronal VEGF signaling in recognition memory remains unclear. Recently, we have developed mice with forebrain excitatory neuron-specific deletion of VEGF or its receptor, fetal liver kinase 1 (Flk-1) by crossing Camk2a-Cre mice with Vegfaflox/flox and Flk-1flox/flox mice, respectively. Using these conditional knockout mice, the present study addressed the influence of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on recognition memory in the novel object recognition test. The results show that both short-term (2 h) and long-term (24 h) recognition memory are impaired by neuron-specific deletion of either Flk-1 or VEGF. These findings indicate the physiological importance of endogenous neuronal VEGF-Flk-1 signaling in recognition memory. In addition, the current results also suggest that the impairment of neuronal VEGF-Flk-1 signaling can be a cause of anti-VEGF chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- Satoshi Deyama
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA; Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA.
| |
Collapse
|
7
|
Robeson HN, Lau HR, New LA, Lalonde J, Armstrong JN, Jones N. Localization of phosphotyrosine adaptor protein ShcD/SHC4 in the adult rat central nervous system. BMC Neurosci 2019; 20:57. [PMID: 31823725 PMCID: PMC6902498 DOI: 10.1186/s12868-019-0541-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Mammalian Shc (Src homology and collagen) proteins comprise a family of four phosphotyrosine adaptor molecules which exhibit varied spatiotemporal expression and signaling functions. ShcD is the most recently discovered homologue and it is highly expressed in the developing central nervous system (CNS) and adult brain. Presently however, its localization within specific cell types of mature neural structures has yet to be characterized. Results In the current study, we examine the expression profile of ShcD in the adult rat CNS using immunohistochemistry, and compare with those of the neuronally enriched ShcB and ShcC proteins. ShcD shows relatively widespread distribution in the adult brain and spinal cord, with prominent levels of staining throughout the olfactory bulb, as well as in sub-structures of the cerebellum and hippocampus, including the subgranular zone. Co-localization studies confirm the expression of ShcD in mature neurons and progenitor cells. ShcD immunoreactivity is primarily localized to axons and somata, consistent with the function of ShcD as a cytoplasmic adaptor. Regional differences in expression are observed among neural Shc proteins, with ShcC predominating in the hippocampus, cerebellum, and some fiber tracts. Interestingly, ShcD is uniquely expressed in the olfactory nerve layer and in glomeruli of the main olfactory bulb. Conclusions Together our findings suggest that ShcD may provide a distinct signaling contribution within the olfactory system, and that overlapping expression of ShcD with other Shc proteins may allow compensatory functions in the brain.
Collapse
Affiliation(s)
- Hannah N Robeson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Hayley R Lau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - John N Armstrong
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
8
|
Silveira AC, Dias JP, Santos VM, Oliveira PF, Alves MG, Rato L, Silva BM. The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies. Curr Neuropharmacol 2019; 17:590-613. [PMID: 30081787 PMCID: PMC6712293 DOI: 10.2174/1570159x16666180803162059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) are two prevalent diseases in modern societies, which are caused mainly by current lifestyle, aging and genetic alterations. It has already been demonstrated that these two diseases are associated, since individuals suffering from DM are prone to develop AD. Conversely, it is also known that individuals with AD are more susceptible to DM, namely type 2 diabetes (T2DM). Therefore, these two pathologies, although completely different in terms of symptomatology, end up sharing several mechanisms at the molecular level, with the most obvious being the increase of oxidative stress and inflammation. Polyphenols are natural compounds widely spread in fruits and vegetables whose dietary intake has been considered inversely proportional to the incidence of DM and AD. So, it is believed that this group of phytochemicals may have preventive and therapeutic potential, not only by reducing the risk and delaying the development of these pathologies, but also by improving brain's metabolic profile and cognitive function. The aim of this review is to understand the extent to which DM and AD are related pathologies, the degree of similarity and the relationship between them, to detail the molecular mechanisms by which polyphenols may exert a protective effect, such as antioxidant and anti-inflammatory effects, and highlight possible advantages of their use as common preventive and therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Branca M. Silva
- Address correspondence to this author at the Faculty of Health Sciences, University of Beira Interior, Av. Infante D.Henrique, 6201-506 Covilhã, Portugal; Tel: +351 275319700; Fax: +351 275 329 183; E-mail:
| |
Collapse
|
9
|
Kakizawa S. [Functional roles of phosphotyrosine adaptor Shc in the brain]. Nihon Yakurigaku Zasshi 2018; 152:84-89. [PMID: 30101865 DOI: 10.1254/fpj.152.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Adaptor molecules (adaptor proteins) have indispensable roles in cellular signaling, essential for cellular proliferation, development and metabolism. Shc (Src homology and collagen homology)-family molecule is a group of adaptor molecules, and indicated to be involved in intracellular phosphotyrosine signaling. Shc family has 4 subtypes, ShcA-ShcD, and there are long and short isoforms in ShcA and ShcC whereas ShcB and ShcD have short isoform only. There are three domains conserved in all Shc-family isoforms: phosphotyrosine-binding (PTB) domain, collagen-homology 1 (CH1) domain and Src-homology 2 (SH2) domain, from the N-terminal to C-terminal. PTB and SH2 domains recognize and bind to phosphotyrosine in other molecules, and CH1 domain is recognized and bind to SH2 domain in Grb2, an adaptor molecule, when the tyrosine residues in the domain are phosphorylated. Expression of ShcA is observed in all tissues except for brain in adult animals, although ShcA mRNA is detected in brain during embryonic days. On the other hand, in adult brain, expressions of ShcB, ShcC, and ShcD are observed. Analysis of single knockout mice (ShcA (neuron specific), ShcB, ShcC) and double knockout mice for ShcB and C indicated essential roles of Shc-family molecules in proliferation and survival of cells in various brain regions as well as synaptic plasticity and higher brain functions such as learning and memory. Studies on multiple-knockout mice of Shc-family molecules may further clarify possible involvements of Shc family in physiological and pathophysiological functions in brain.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
10
|
Baba S, Onga K, Kakizawa S, Ohyama K, Yasuda K, Otsubo H, Scott BW, Burnham WM, Matsuo T, Nagata I, Mori N. Involvement of the neuronal phosphotyrosine signal adaptor N-Shc in kainic acid-induced epileptiform activity. Sci Rep 2016; 6:27511. [PMID: 27273072 PMCID: PMC4897738 DOI: 10.1038/srep27511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 11/09/2022] Open
Abstract
BDNF-TrkB signaling is implicated in experimental seizures and epilepsy. However, the downstream signaling involved in the epileptiform activity caused by TrkB receptor activation is still unknown. The aim of the present study was to determine whether TrkB-mediated N-Shc signal transduction was involved in kainic acid (KA)-induced epileptiform activity. We investigated KA-induced behavioral seizures, epileptiform activities and neuronal cell loss in hippocampus between N-Shc deficient and control mice. There was a significant reduction in seizure severity and the frequency of epileptiform discharges in N-Shc deficient mice, as compared with wild-type and C57BL/6 mice. KA-induced neuronal cell loss in the CA3 of hippocampus was also inhibited in N-Shc deficient mice. This study demonstrates that the activation of N-Shc signaling pathway contributes to an acute KA-induced epileptiform activity and neuronal cell loss in the hippocampus. We propose that the N-Shc-mediated signaling pathway could provide a potential target for the novel therapeutic approaches of epilepsy.
Collapse
Affiliation(s)
- Shiro Baba
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kazuko Onga
- Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sho Kakizawa
- Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyoji Ohyama
- Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiko Yasuda
- Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Otsubo
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brian W Scott
- Department of Pharmacology and Toxicology and the University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - W McIntyre Burnham
- Department of Pharmacology and Toxicology and the University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Izumi Nagata
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nozomu Mori
- Department of Anatomy and Neurobiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
11
|
Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Cell Death Dis 2015; 6:e1939. [PMID: 26492372 PMCID: PMC4632323 DOI: 10.1038/cddis.2015.307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), has a central role in the coordination of receptor crosstalk and the integration of signaling pathways essential for neuronal differentiation, survival and function. This protein is a shared downstream effector for neurotrophin- and ephrin-receptors signaling that also interacts with the N-methyl-d-aspartate type of glutamate receptors (NMDARs). Failures in neurotrophic support and glutamate signaling are involved in pathologies related to excitotoxicity and/or neurodegeneration, where different components of these dynamic protein complexes result altered by a combination of mechanisms. In the case of Kidins220/ARMS, overactivation of NMDARs in excitotoxicity and cerebral ischemia triggers its downregulation, which contributes to neuronal death. This key role in neuronal life/death decisions encouraged us to investigate Kidins220/ARMS as a novel therapeutic target for neuroprotection. As the main mechanism of Kidins220/ARMS downregulation in excitotoxicity is proteolysis by calpain, we decided to develop cell-penetrating peptides (CPPs) that could result in neuroprotection by interference of this processing. To this aim, we first analyzed in detail Kidins220/ARMS cleavage produced in vitro and in vivo, identifying a major calpain processing site in its C-terminal region (between amino acids 1669 and 1670) within a sequence motif highly conserved in vertebrates. Then, we designed a 25-amino acids CPP (Tat-K) containing a short Kidins220/ARMS sequence enclosing the identified calpain site (amino acids 1668–1681) fused to the HIV-1 Tat protein basic domain, able to confer membrane permeability to attached cargoes. Transduction of cortical neurons with Tat-K reduced Kidins220/ARMS calpain processing in a dose- and time-dependent manner upon excitotoxic damage and allowed preservation of the activity of pERK1/2 and pCREB, signaling molecules central to neuronal survival and functioning. Importantly, these effects were associated to a significant increase in neuronal viability. This Kidins220/ARMS-derived peptide merits further research to develop novel neuroprotective therapies for excitotoxicity-associated pathologies.
Collapse
|
12
|
Raber J. Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans. Behav Brain Res 2015; 285:53-9. [DOI: 10.1016/j.bbr.2015.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/20/2023]
|
13
|
Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015; 19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 02/02/2023]
Abstract
To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.
Collapse
Affiliation(s)
- Orli Sagi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
14
|
Ueda Y. The Role of Phosphoinositides in Synapse Function. Mol Neurobiol 2014; 50:821-38. [DOI: 10.1007/s12035-014-8768-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
|
15
|
Mori N. Research perspectives of biomedical gerontology and brain aging research: longevity genes in the brain. Nihon Ronen Igakkai Zasshi 2014; 51:23-6. [PMID: 24747492 DOI: 10.3143/geriatrics.51.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Kamal MA, Priyamvada S, Anbazhagan AN, Jabir NR, Tabrez S, Greig NH. Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2014; 13:338-46. [PMID: 24074448 PMCID: PMC5947865 DOI: 10.2174/18715273113126660137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/16/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two progressive and devastating health disorders afflicting millions of people worldwide. The probability and incidence of both have increased considerably in recent years consequent to increased longevity and population growth. Progressively more links are being continuously found between inflammation and central nervous system disorders like AD, Parkinson's disease, Huntington's disease, motor neuron disease, multiple sclerosis, stroke, traumatic brain injury and even cancers of the nervous tissue. The depth of the relationship depends on the timing and extent of anti- or pro-inflammatory gene expression. Inflammation has also been implicated in T2DM. Misfolding and fibrillization (of tissue specific and/or non-specific proteins) are features common to both AD and T2DM and are induced by as well as contribute to inflammation and stress (oxidative/ glycation). This review appraises the roles of inflammation and abnormalities in the insulin signaling system as important shared features of T2DM and AD. The capacity of anti-cholinesterases in reducing the level of certain common inflammatory markers in particular if they may provide therapeutic potential to mitigate awry mechanisms leading to AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel H Greig
- Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
17
|
Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 2013; 4:2932. [PMID: 24336108 PMCID: PMC3945879 DOI: 10.1038/ncomms3932] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 12/19/2022] Open
Abstract
Pericytes are cells in the blood-brain barrier that degenerate in Alzheimer's disease (AD), a neurological disorder associated with neurovascular dysfunction, abnormal elevation of amyloid β-peptide (Aβ), tau pathology and neuronal loss. Whether pericyte degeneration can influence AD-like neurodegeneration and contribute to disease pathogenesis remains, however, unknown. Here we show that in mice overexpressing Aβ-precursor protein, pericyte loss elevates brain Aβ40 and Aβ42 levels and accelerates amyloid angiopathy and cerebral β-amyloidosis by diminishing clearance of soluble Aβ40 and Aβ42 from brain interstitial fluid prior to Aβ deposition. We further show that pericyte deficiency leads to the development of tau pathology and an early neuronal loss that is normally absent in Aβ-precursor protein transgenic mice, resulting in cognitive decline. Our data suggest that pericytes control multiple steps of AD-like neurodegeneration pathogenic cascade in Aβ-precursor protein-overexpressing mice. Therefore, pericytes may represent a novel therapeutic target to modify disease progression in AD.
Collapse
Affiliation(s)
- Abhay P. Sagare
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
- These authors contributed equally to this work
| | - Robert D. Bell
- Center of Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, Rochester, New York 14642, USA
- These authors contributed equally to this work
| | - Zhen Zhao
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
- These authors contributed equally to this work
| | - Qingyi Ma
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | - Ethan A. Winkler
- Center of Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Anita Ramanathan
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
18
|
Abstract
Shc (Src homology and collagen homology) proteins are considered prototypical signalling adaptors in mammalian cells. Consisting of four unique members, ShcA, B, C and D, and multiple splice isoforms, the family is represented in nearly every cell type in the body, where it engages in an array of fundamental processes to transduce environmental stimuli. Two decades of investigation have begun to illuminate the mechanisms of the flagship ShcA protein, whereas much remains to be learned about the newest discovery, ShcD. It is clear, however, that the distinctive modular architecture of Shc proteins, their promiscuous phosphotyrosine-based interactions with a multitude of membrane receptors, involvement in central cascades including MAPK (mitogen-activated protein kinase) and Akt, and unconventional contributions to oxidative stress and apoptosis all require intricate regulation, and underlie diverse physiological function. From early cardiovascular development and neuronal differentiation to lifespan determination and tumorigenesis, Shc adaptors have proven to be more ubiquitous, versatile and dynamic than their structures alone suggest.
Collapse
|
19
|
Lee PH, Perlis RH, Jung JY, Byrne EM, Rueckert E, Siburian R, Haddad S, Mayerfeld CE, Heath AC, Pergadia ML, Madden PAF, Boomsma DI, Penninx BW, Sklar P, Martin NG, Wray NR, Purcell SM, Smoller JW. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Transl Psychiatry 2012; 2:e184. [PMID: 23149448 PMCID: PMC3565768 DOI: 10.1038/tp.2012.95] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N=4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P=6.9 × 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD.
Collapse
Affiliation(s)
- P H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - R H Perlis
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Psychiatric Genetics Program in Mood and Anxiety Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - J-Y Jung
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - E M Byrne
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia,University of Queensland, Brisbane St Lucia, QLD, Australia
| | - E Rueckert
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - R Siburian
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - S Haddad
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - C E Mayerfeld
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A C Heath
- Department of Psychiatry, Washington University, St Louis, Missouri, MO, USA
| | - M L Pergadia
- Department of Psychiatry, Washington University, St Louis, Missouri, MO, USA
| | - P A F Madden
- Department of Psychiatry, Washington University, St Louis, Missouri, MO, USA
| | - D I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - B W Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - P Sklar
- Division of Psychiatric Genomics, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - N G Martin
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - N R Wray
- University of Queensland, Brisbane St Lucia, QLD, Australia
| | - S M Purcell
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Division of Psychiatric Genomics, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - J W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Psychiatric Genetics Program in Mood and Anxiety Disorders, Massachusetts General Hospital, Boston, MA, USA,Center for Human Genetic Research, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
20
|
López-Menéndez C, Gamir-Morralla A, Jurado-Arjona J, Higuero AM, Campanero MR, Ferrer I, Hernández F, Ávila J, Díaz-Guerra M, Iglesias T. Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3β/PP1 imbalance. Hum Mol Genet 2012; 22:466-82. [PMID: 23118350 DOI: 10.1093/hmg/dds446] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Failures in neurotrophic support and signalling play key roles in Alzheimer's disease (AD) pathogenesis. We previously demonstrated that downregulation of the neurotrophin effector Kinase D interacting substrate (Kidins220) by excitotoxicity and cerebral ischaemia contributed to neuronal death. This downregulation, triggered through overactivation of N-methyl-D-aspartate receptors (NMDARs), involved proteolysis of Kidins220 by calpain and transcriptional inhibition. As excitotoxicity is at the basis of AD aetiology, we hypothesized that Kidins220 might also be downregulated in this disease. Unexpectedly, Kidins220 is augmented in necropsies from AD patients where it accumulates with hyperphosphorylated tau. This increase correlates with enhanced Kidins220 resistance to calpain processing but no higher gene transcription. Using AD brain necropsies, glycogen synthase kinase 3-β (GSK3β)-transgenic mice and cell models of AD-related neurodegeneration, we show that GSK3β phosphorylation decreases Kidins220 susceptibility to calpain proteolysis, while protein phosphatase 1 (PP1) action has the opposite effect. As altered activities of GSK3β and phosphatases are involved in tau aggregation and constitute hallmarks in AD, a GSK3β/PP1 imbalance may also contribute to Kidins220 decreased clearance, accumulation and hampered neurotrophin signalling from early stages of the disease pathogenesis. These results encourage searches for mutations in Kidins220 gene and their possible associations to dementias. Finally, our data support a model where the effects of excitotoxicity drastically differ when occurring in cerebral ischaemia versus progressively sustained toxicity along AD progression. The striking differences in Kidins220 stability resulting from chronic versus acute brain damage may also have important implications for the therapeutic intervention of neurodegenerative disorders.
Collapse
|
21
|
Neuronal Shc: A gene of longevity in the brain? Med Hypotheses 2011; 77:996-9. [DOI: 10.1016/j.mehy.2011.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/15/2023]
|
22
|
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol 2011; 71:365-76. [PMID: 21284695 DOI: 10.1111/j.1365-2125.2010.03830.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological and basic science evidence suggest a possible shared pathophysiology between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). It has even been hypothesized that AD might be 'type 3 diabetes'. The present review summarizes some of the evidence for the possible link, putative biochemical pathways and ongoing clinical trials of antidiabetic drugs in AD patients. The primary and review literature were searched for articles published in peer-reviewed sources that were related to a putative connection between T2DM and AD. In addition, public sources of clinical trials were searched for the relevant information regarding the testing of antidiabetic drugs in AD patients. The evidence for a connection between T2DM and AD is based upon a variety of diverse studies, but definitive biochemical mechanisms remain unknown. Additional study is needed to prove the existence or the extent of a link between T2DM and AD, but sufficient evidence exists to warrant further study. Presently, AD patients might benefit from treatment with pharmacotherapy currently used to treat T2DM and clinical trials of such therapy are currently underway.
Collapse
Affiliation(s)
- Kawser Akter
- Temple University School of Pharmacy, Philadelphia, PA19140, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Hawley SP, Wills MK, Rabalski AJ, Bendall AJ, Jones N. Expression patterns of ShcD and Shc family adaptor proteins during mouse embryonic development. Dev Dyn 2010; 240:221-31. [DOI: 10.1002/dvdy.22506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Inoue H, Yamasue H, Tochigi M, Suga M, Iwayama Y, Abe O, Yamada H, Rogers MA, Aoki S, Kato T, Sasaki T, Yoshikawa T, Kasai K. Functional (GT)n polymorphisms in promoter region ofN-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene affect hippocampal and amygdala volumes. GENES BRAIN AND BEHAVIOR 2010; 9:269-75. [DOI: 10.1111/j.1601-183x.2009.00557.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Shu FJ, Ramineni S, Hepler JR. RGS14 is a multifunctional scaffold that integrates G protein and Ras/Raf MAPkinase signalling pathways. Cell Signal 2010; 22:366-76. [PMID: 19878719 DOI: 10.1016/j.cellsig.2009.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 01/25/2023]
Abstract
MAPkinase signalling is essential for cell growth, differentiation and cell physiology. G proteins and tyrosine kinase receptors each modulate MAPkinase signalling through distinct pathways. We report here that RGS14 is an integrator of G protein and MAPKinase signalling pathways. RGS14 contains a GPR/GoLoco (GL) domain that forms a stable complex with inactive Gialpha1/3-GDP, and a tandem (R1, R2) Ras binding domain (RBD). We find that RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells. Activated H-Ras binds RGS14 at the R1 RBD to form a stable complex at cell membranes. RGS14 also co-localizes with and forms a complex with Raf kinases in cells. The regulatory region of Raf-1 binds the RBD region of RGS14, and H-Ras and Raf each facilitate one another's binding to RGS14. RGS14 selectively inhibits PDGF-, but not EGF- or serum-stimulated Erk phosphorylation. This inhibition is dependent on H-Ras binding to RGS14 and is reversed by co-expression of Gialpha1, which binds and recruits RGS14 to the plasma membrane. Gialpha1 binding to RGS14 inhibits Raf binding, indicating that Gialpha1 and Raf binding to RGS14 are mutually exclusive. Taken together, these findings indicate that RGS14 is a newly appreciated integrator of G protein and Ras/Raf signalling pathways.
Collapse
Affiliation(s)
- Feng-jue Shu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
27
|
López-Menéndez C, Gascón S, Sobrado M, Vidaurre OG, Higuero AM, Rodríguez-Peña A, Iglesias T, Díaz-Guerra M. Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways. J Cell Sci 2009; 122:3554-65. [PMID: 19759287 DOI: 10.1242/jcs.056473] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Functional and protein interactions between the N-methyl-D-aspartate type of glutamate receptor (NMDAR) and neurotrophin or ephrin receptors play essential roles in neuronal survival and differentiation. A shared downstream effector for neurotrophin- and ephrin-receptor signaling is kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS). Because this molecule is obligatory for neurotrophin-induced differentiation, we investigated whether Kidins220/ARMS and NMDAR functions were related. Here, we identify an association between these proteins and discover that excitotoxicity, a specific form of neuronal death induced by NMDAR overstimulation, dramatically decreases Kidins220/ARMS levels in cortical neurons and in a model of cerebral ischemia. Kidins220/ARMS downregulation is triggered by overactivation of NMDARs containing NR2B subunits and subsequent Ca(2+) influx, and involves a dual mechanism: rapid cleavage by the Ca(2+)-dependent protease calpain and calpain-independent silencing of Kidins220/Arms gene transcription. Additionally, Kidins220/ARMS knockdown decreases ERK activation and basal neuronal viability, and enhances neuronal death under excitotoxic conditions. Our results demonstrate Kidins220/ARMS participation in neuronal life and death pathways, and constitute the first report of its regulation under pathological conditions.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Instituto de Investigaciones Biomédicas de Madrid, Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ibi D, Nitta A, Ishige K, Cen X, Ohtakara T, Nabeshima T, Ito Y. Piccolo knockdown-induced impairments of spatial learning and long-term potentiation in the hippocampal CA1 region. Neurochem Int 2009; 56:77-83. [PMID: 19766155 DOI: 10.1016/j.neuint.2009.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmitter release is regulated at a specific site in nerve terminals called the "active zone", which is composed of various cytomatrix proteins such as Piccolo (also known as Aczonin) and Bassoon. These proteins share regions of high sequence similarity and have very high molecular weights (>400 kDa). Since Piccolo knockout mice have not yet been established, the role of Piccolo in the neuronal system remains unclear. In this study, we investigated the effects of Piccolo antisense oligonucleotide injected into the ventricle on hippocampal long-term potentiation (LTP) and learning and memory assessed with the novel object recognition test and the Morris water maze test. There was no significant difference in cognitive memory between Piccolo antisense-treated and vehicle- or sense-treated mice; however, spatial learning in Piccolo antisense-treated mice was impaired but not in sense- or vehicle-treated mice. Next, we investigated LTP formation in these groups in area CA1 and dentate gyrus of the same hippocampal slices. The magnitude of LTP in Piccolo antisense-treated mice was significantly lower than in sense- or vehicle-treated mice, with no change in basal level. Moreover, the level of high K(+)-induced glutamate release in the antisense-treated mice was significantly lower than in sense-treated mice. Taken together, these results indicate that Piccolo plays a pivotal role in synaptic plasticity in area CA1 and in hippocampus-dependent learning in mice, and that the extracellular levels of glutamate in the hippocampus under stimulated conditions are controlled by Piccolo.
Collapse
Affiliation(s)
- Daisuke Ibi
- Research Unit of Pharmacology, College of Pharmacy, Nihon University, Funabashi-shi, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Magrassi L, Marziliano N, Inzani F, Cassini P, Chiaranda I, Skrap M, Pizzolito S, Arienta C, Arbustini E. EDG3 and SHC3 on chromosome 9q22 are co-amplified in human ependymomas. Cancer Lett 2009; 290:36-42. [PMID: 19748727 DOI: 10.1016/j.canlet.2009.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 11/16/2022]
Abstract
By qPCR we found that EDG3 and SHC3 were amplified in 60% of ependymomas but none in choroid plexus papillomas. In ependymomas EDG3 and SHC3 amplification increased Shc3 protein levels while EDG3 was less affected. Both proteins were co-immunoprecipitated from ependymoma and Shc3 was tyrosine phosphorylated thus presumably active. We showed by digestion with N-glycosidase-F that EDG3 was glycosylated indicating that EDG3 protein was not retained in the endoplasmic reticulum. The co-immunoprecipitation of Shc3 and EDG3 proteins from ependymomas with amplification of SHC3 and EDG3 genes suggests that the two proteins co-operate and are important for ependymomas in vivo.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurochirurgia Dipartimento di Scienze Chirurgiche Università di Pavia Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci 2009; 29:10131-43. [PMID: 19675247 DOI: 10.1523/jneurosci.1707-09.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the modulation of the neural circuitry of fear is clearly one of the most important aims in neurobiology. Protein phosphorylation in response to external stimuli is considered a major mechanism underlying dynamic changes in neural circuitry. TrkB (Ntrk2) neurotrophin receptor tyrosine kinase potently modulates synaptic plasticity and activates signal transduction pathways mainly through two phosphorylation sites [Y515/Shc site; Y816/PLCgamma (phospholipase Cgamma) site]. To identify the molecular pathways required for fear learning and amygdalar synaptic plasticity downstream of TrkB, we used highly defined genetic mouse models carrying single point mutations at one of these two sites (Y515F or Y816F) to examine the physiological relevance of pathways activated through these sites for pavlovian fear conditioning (FC), as well as for synaptic plasticity as measured by field recordings obtained from neurons of different amygdala nuclei. We show that a Y816F point mutation impairs acquisition of FC, amygdalar synaptic plasticity, and CaMKII signaling at synapses. In contrast, a Y515F point mutation affects consolidation but not acquisition of FC to tone, and also alters AKT signaling. Thus, TrkB receptors modulate specific phases of fear learning and amygdalar synaptic plasticity through two main phosphorylation docking sites.
Collapse
|
31
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
32
|
Colley BS, Cavallin MA, Biju K, Marks DR, Fadool DA. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc. BMC Neurosci 2009; 10:8. [PMID: 19166614 PMCID: PMC2656512 DOI: 10.1186/1471-2202-10-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/23/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF) activation of neurotrophin receptor tyrosine kinase B (TrkB) suppresses the Shaker voltage-gated potassium channel (Kv1.3) via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. RESULTS We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc) and growth factor receptor-binding protein 10 (Grb10), with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB) neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293). nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2) domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111-113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein, channel co-expression reciprocally down-regulated expression and tyrosine phosphorylation of TrkB kinase and related insulin receptor kinase. Finally, through patch-clamp electrophysiology, we found that the BDNF-induced current suppression of the channel was prevented by both nShc and Grb10. CONCLUSION We report that adaptor protein alteration of kinase-induced Kv1.3 channel modulation is related to the degree of direct protein-protein association and that the channel itself can reciprocally modulate receptor-linked tyrosine kinase expression and activity.
Collapse
Affiliation(s)
- Beverly S Colley
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State University, Tallahassee, Florida, USA.
| | | | | | | | | |
Collapse
|
33
|
Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci 2008; 28:6239-49. [PMID: 18550766 PMCID: PMC6670537 DOI: 10.1523/jneurosci.4956-07.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/02/2008] [Accepted: 05/04/2008] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress may underlie age-dependent memory loss and cognitive decline. Toxic aldehydes, including 4-hydroxy-2-nonenal (HNE), an end product of lipid peroxides, are known to accumulate in the brain in neurodegenerative disease. We have previously shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) detoxifies HNE by oxidizing its aldehyde group. To investigate the role of such toxic aldehydes, we produced transgenic mice, which expressed a dominant-negative form of ALDH2 in the brain. The mice had decreased ability to detoxify HNE in their cortical neurons and accelerated accumulation of HNE in the brain. Consequently, their lifespan was shortened and age-dependent neurodegeneration and hyperphosphorylation of tau were observed. Object recognition and Morris water maze tests revealed that the onset of cognitive impairment correlated with the degeneration, which was further accelerated by APOE (apolipoprotein E) knock-out; therefore, the accumulation of toxic aldehydes is by itself critical in the progression of neurodegenerative disease, which could be suppressed by ALDH2.
Collapse
Affiliation(s)
- Ikuroh Ohsawa
- Department of Biochemistry and Cell Biology and
- The Center of Molecular Hydrogen Medicine, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 211-8533, Japan
| | | | | | - Yuko Suzuki
- Department of Biochemistry and Cell Biology and
| | | | - Shigeo Ohta
- Department of Biochemistry and Cell Biology and
| |
Collapse
|
34
|
Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem J 2008; 412:223-31. [DOI: 10.1042/bj20071195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of NO inhibition of CaMK [Ca2+/CaM (calmodulin)-dependent protein kinase] II activity were studied. In rat pituitary tumour GH3 cells, TRH [thyrotrophin (TSH)-releasing hormone]-stimulated phosphorylation of nNOS [neuronal NOS (NO synthase)] at Ser847 was sensitive to an inhibitor of CaMKs, KN-93, and was enhanced by inhibition of nNOS with 7NI (7-nitroindazole). Enzyme activity of CaMKII following in situ treatment with 7NI was also increased. The in vitro activity of CaMKII was inhibited by co-incubation either with nNOS and L-arginine or with NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) and DEA-NONOate [diethylamine-NONOate (diazeniumdiolate)]. Once inhibited by these treatments, CaMKII was observed to undergo full reactivation on the addition of a reducing reagent, DTT (dithiothreitol). In transfected cells expressing CaMKII and nNOS, treatment with the calcium ionophore A23187 further revealed nNOS phosphorylation at Ser847, which was enhanced by 7NI and CaMKII S-nitrosylation. Mutated CaMKII (C6A), in which Cys6 was substituted with an alanine residue, was refractory to 7NI-induced enhancement of nNOS phosphorylation or to CaMKII S-nitrosylation. Furthermore, we could identify Cys6 as a direct target for S-nitrosylation of CaMKII using MS. In addition, treatment with glutamate caused an increase in CaMKII S-nitrosylation in rat hippocampal slices. This glutamate-induced S-nitrosylation was blocked by 7NI. These results suggest that inactivation of CaMKII mediated by S-nitrosylation at Cys6 may contribute to NO-induced neurotoxicity in the brain.
Collapse
|
35
|
Henson MA, Roberts AC, Salimi K, Vadlamudi S, Hamer RM, Gilmore JH, Jarskog LF, Philpot BD. Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex. ACTA ACUST UNITED AC 2008; 18:2560-73. [PMID: 18296432 DOI: 10.1093/cercor/bhn017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subunit composition of N-methyl-D-aspartate-type glutamate receptors (NMDARs) dictates their function, yet the ontogenic profiles of human NMDAR subunits from gestation to adulthood have not been determined. We examined NMDAR mRNA and protein development in human dorsolateral prefrontal cortex (DLPFC), an area in which NMDARs are critical for higher cognitive processing and NMDAR hypofunction is hypothesized in schizophrenia. Using quantitative reverse transcriptase-polymerase chain reaction and western blotting, we found NR1 expression begins low prenatally, peaks in adolescence, yet remains high throughout life, suggesting lifelong importance of NMDAR function. In contrast, NR3A levels are low during gestation, surge soon after birth, and decline progressively through adolescence and into adulthood. Because NR3A subunits uniquely attenuate NMDAR-mediated currents, limit calcium influx, and suppress dendritic spine formation, high levels during early childhood may be important for regulating neuroprotection and activity-dependent sculpting of synapses. We also examined whether subunit changes underlie reduced NMDAR activity in schizophrenia. Our results reveal normal NR1 and NR3A protein levels in DLPFC from schizophrenic patients, indicating that NMDAR hypofunction is unlikely to be maintained by gross changes in NR3A-containing NMDARs or overall NMDAR numbers. These data provide insights into NMDAR functions in the developing CNS and will contribute to designing pharmacotherapies for neurological disorders.
Collapse
Affiliation(s)
- Maile A Henson
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27705, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H, Nagai T, Yoneda Y, Nabeshima T, Yamada K. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 2007; 105:921-32. [PMID: 18182044 DOI: 10.1111/j.1471-4159.2007.05207.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experiences during brain development may influence the pathogenesis of developmental disorders. Thus, social isolation (SI) rearing after weaning is a useful animal model for studying the pathological mechanisms of such psychiatric diseases. In this study, we examined the effect of SI on neurogenesis in the hippocampal dentate gyrus (DG) relating to memory and emotion-related behaviors. When newly divided cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) before SI, the number of BrdU-positive cells and the rate of differentiation into neurons were significantly decreased after 4-week SI compared with those in group-housed mice. Repeated treatment of fluoxetine prevented the SI-induced impairment of survival of newly divided cells and ameliorated spatial memory impairment and part of aggression in SI mice. Furthermore, we investigated the changes in gene expression in the DG of SI mice by using DNA microarray and real-time PCR. We finally found that SI reduced the expression of development-related genes Nurr1 and Npas4. These findings suggest that communication in juvenile is important in the survival and differentiation of newly divided cells, which may be associated with memory and aggression, and raise the possibility that the reduced expression of Nurr1 and/or Npas4 may contribute to the impairment of neurogenesis and memory and aggression induced by SI.
Collapse
Affiliation(s)
- Daisuke Ibi
- Laboratory of Neuropsychopharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li MD, Sun D, Lou XY, Beuten J, Payne TJ, Ma JZ. Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol Psychiatry 2007; 12:462-73. [PMID: 17179996 DOI: 10.1038/sj.mp.4001933] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous linkage study demonstrated that the 9q22-q23 chromosome region showed a 'suggestive' linkage to nicotine dependence (ND) in the Framingham Heart Study population. In this study, we provide further evidence for the linkage of this region to ND in an independent sample. Within this region, the gene encoding Src homology 2 domain-containing transforming protein C3 (SHC3) represents a plausible candidate for association with ND, assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI) and the Fagerström Test for ND (FTND). We utilized 11 single-nucleotide polymorphisms within SHC3 to examine the association with ND in 602 nuclear families of either African-American (AA) or European-American (EA) origin. Individual SNP-based analysis indicated three SNPs for AAs and one for EAs were significantly associated with at least one ND measure. Haplotype analysis revealed that the haplotypes A-C-T-A-T-A of rs12519-rs3750399-rs4877042-rs2297313-rs1547696-rs1331188, with a frequency of 27.8 and 17.6%, and C-T-A-G-T of rs3750399-rs4877042-rs2297313-rs3818668-rs1547696, at a frequency of 44.7 and 30.6% in the AA and Combined samples, respectively, were significantly inversely associated with the ND measures. In the EA sample, another haplotype with a frequency of 10.6%, A-G-T-G of rs1331188-rs1556384-rs4534195-rs1411836, showed a significant inverse association with ND measures. These associations remained significant after Bonferroni correction. We further demonstrated the SHC3 contributed 40.1-59.2% (depending on the ND measures) of the linkage signals detected on chromosome 9. As further support, we found that nicotine administered through infusion increased the Shc3 mRNA level by 60% in the rat striatum, and decreased it by 22% in the nucleus accumbens (NA). At the protein level, Shc3 was decreased by 38.0% in the NA and showed no change in the striatum. Together, these findings strongly implicate SHC3 in the etiology of ND, which represents an important biological candidate for further investigation.
Collapse
Affiliation(s)
- M D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 2007; 31:673-704. [PMID: 17368764 DOI: 10.1016/j.neubiorev.2007.01.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/08/2007] [Accepted: 01/18/2007] [Indexed: 01/31/2023]
Abstract
Rats and mice are attracted by novel objects. They readily approach novel objects and explore them with their vibrissae, nose and forepaws. It is assumed that such a single explorative episode leaves a lasting and complex memory trace, which includes information about the features of the object explored, as well as where and even when the object was encountered. Indeed, it has been shown that rodents are able to discriminate a novel from a familiar object (one-trial object recognition), can detect a mismatch between the past and present location of a familiar object (one-trial object-place recognition), and can discriminate different objects in terms of their relative recency (temporal order memory), i.e., which one of two objects has been encountered earlier. Since the novelty-preference paradigm is very versatile and has some advantages compared to several other memory tasks, such as the water maze, it has become a powerful tool in current neurophamacological, neuroanatomical and neurogenetical memory research using both rats and mice. This review is intended to provide a comprehensive summary on key findings delineating the brain structures, neurotransmitters, molecular mechanisms and genes involved in encoding, consolidation, storage and retrieval of different forms of one-trial object memory in rats and mice.
Collapse
Affiliation(s)
- Ekrem Dere
- Institute of Physiological Psychology, and Center for Biological and Medical Research, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|