1
|
Cui M, Pan X, Fan Z, Wu S, Ji R, Wang X, Kong X, Wu Z, Song L, Song W, Yang JX, Zhang H, Zhang H, Ding HL, Cao JL. Dysfunctional S1P/S1PR1 signaling in the dentate gyrus drives vulnerability of chronic pain-related memory impairment. eLife 2024; 13:RP99862. [PMID: 39699949 DOI: 10.7554/elife.99862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Memory impairment in chronic pain patients is substantial and common, and few therapeutic strategies are available. Chronic pain-related memory impairment has susceptible and unsusceptible features. Therefore, exploring the underlying mechanisms of its vulnerability is essential for developing effective treatments. Here, combining two spatial memory tests (Y-maze test and Morris water maze), we segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations in a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve. RNA-Seq analysis and gain/loss-of-function study revealed that S1P/S1PR1 signaling is a determinant for vulnerability to chronic pain-related memory impairment. Knockdown of the S1PR1 in the dentate gyrus (DG) promoted a susceptible phenotype and led to structural plasticity changes of reduced excitatory synapse formation and abnormal spine morphology as observed in susceptible mice, while overexpression of the S1PR1 and pharmacological administration of S1PR1 agonist in the DG promoted an unsusceptible phenotype and prevented the occurrence of memory impairment, and rescued the morphological abnormality. Finally, the Gene Ontology (GO) enrichment analysis and biochemical evidence indicated that downregulation of S1PR1 in susceptible mice may impair DG structural plasticity via interaction with actin cytoskeleton rearrangement-related signaling pathways including Itga2 and its downstream Rac1/Cdc42 signaling and Arp2/3 cascade. These results reveal a novel mechanism and provide a promising preventive and therapeutic molecular target for vulnerability to chronic pain-related memory impairment.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyuan Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhijie Fan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shulin Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xianlei Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Weiyi Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Skoug C, Erdogan H, Vanherle L, Vieira JPP, Matthes F, Eliasson L, Meissner A, Duarte JMN. Density of Sphingosine-1-Phosphate Receptors Is Altered in Cortical Nerve-Terminals of Insulin-Resistant Goto-Kakizaki Rats and Diet-Induced Obese Mice. Neurochem Res 2024; 49:338-347. [PMID: 37794263 PMCID: PMC10787890 DOI: 10.1007/s11064-023-04033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a phosphosphingolipid with pleiotropic biological functions. S1P acts as an intracellular second messenger, as well as extracellular ligand to five G-protein coupled receptors (S1PR1-5). In the brain, S1P regulates neuronal proliferation, apoptosis, synaptic activity and neuroglia activation. Moreover, S1P metabolism alterations have been reported in neurodegenerative disorders. We have previously reported that S1PRs are present in nerve terminals, exhibiting distinct sub-synaptic localization and neuromodulation actions. Since type 2 diabetes (T2D) causes synaptic dysfunction, we hypothesized that S1P signaling is modified in nerve terminals. In this study, we determined the density of S1PRs in cortical synaptosomes from insulin-resistant Goto-Kakizaki (GK) rats and Wistar controls, and from mice fed a high-fat diet (HFD) and low-fat-fed controls. Relative to their controls, GK rats showed similar cortical S1P concentration despite higher S1P levels in plasma, yet lower density of S1PR1, S1PR2 and S1PR4 in nerve-terminal-enriched membranes. HFD-fed mice exhibited increased plasma and cortical concentrations of S1P, and decreased density of S1PR1 and S1PR4. These findings point towards altered S1P signaling in synapses of insulin resistance and diet-induced obesity models, suggesting a role of S1P signaling in T2D-associated synaptic dysfunction.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Hüseyin Erdogan
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - João P P Vieira
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science (EMV), Faculty of Medicine, Lund University, Sölvegatan 19, BMC C11, 221 84, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Wies Mancini VSB, Mattera VS, Pasquini JM, Pasquini LA, Correale JD. Microglia-derived extracellular vesicles in homeostasis and demyelination/remyelination processes. J Neurochem 2024; 168:3-25. [PMID: 38055776 DOI: 10.1111/jnc.16011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1β, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.
Collapse
Affiliation(s)
- V S B Wies Mancini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - V S Mattera
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J D Correale
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| |
Collapse
|
5
|
Tonev D, Momchilova A. Therapeutic Plasma Exchange and Multiple Sclerosis Dysregulations: Focus on the Removal of Pathogenic Circulatory Factors and Altering Nerve Growth Factor and Sphingosine-1-Phosphate Plasma Levels. Curr Issues Mol Biol 2023; 45:7749-7774. [PMID: 37886933 PMCID: PMC10605592 DOI: 10.3390/cimb45100489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Multiple sclerosis (MS) is predominantly an immune-mediated disease of the central nervous system (CNS) of unknown etiology with a possible genetic predisposition and effect of certain environmental factors. It is generally accepted that the disease begins with an autoimmune inflammatory reaction targeting oligodendrocytes followed by a rapid depletion of their regenerative capacity with subsequent permanent neurodegenerative changes and disability. Recent research highlights the central role of B lymphocytes and the corresponding IgG and IgM autoantibodies in newly forming MS lesions. Thus, their removal along with the modulation of certain bioactive molecules to improve neuroprotection using therapeutic plasma exchange (TPE) becomes of utmost importance. Recently, it has been proposed to determine the levels and precise effects of both beneficial and harmful components in the serum of MS patients undergoing TPE to serve as markers for appropriate TPE protocols. In this review we discuss some relevant examples, focusing on the removal of pathogenic circulating factors and altering the plasma levels of nerve growth factor and sphingosine-1-phosphate by TPE. Altered plasma levels of the reviewed molecular compounds in response to TPE reflect a successful reduction of the pro-inflammatory burden at the expense of an increase in anti-inflammatory potential in the circulatory and CNS compartments.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
6
|
Roggeri A, Olivero G, Usai C, Vanmierlo T, Pittaluga A. Presynaptic Release-Regulating Sphingosine 1-Phosphate 1/3 Receptors in Cortical Glutamatergic Terminals: Adaptations in EAE Mice and Impact of Therapeutic FTY720. Cells 2023; 12:2343. [PMID: 37830557 PMCID: PMC10571862 DOI: 10.3390/cells12192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1-30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30-300 nM) and the S1P3R antagonist TY-52156 (100-1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.
Collapse
Affiliation(s)
- Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy;
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anna Pittaluga
- Department of Pharmacy (DiFar), Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16145 Genoa, Italy
| |
Collapse
|
7
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
8
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Jiang ZJ, Gong LW. The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis via TRPC5 Channels. J Neurosci 2023; 43:3807-3824. [PMID: 37185099 PMCID: PMC10217994 DOI: 10.1523/jneurosci.1494-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca2+ imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca2+ increases during prolonged stimulations by regulating the Ca2+ permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.SIGNIFICANCE STATEMENT Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca2+ influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| |
Collapse
|
10
|
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 2023; 318:121507. [PMID: 36801470 DOI: 10.1016/j.lfs.2023.121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
AIMS Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Kamilla A Mukhutdinova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia.
| |
Collapse
|
11
|
Liu Y, Shen X, Zhang Y, Zheng X, Cepeda C, Wang Y, Duan S, Tong X. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 2023; 71:1383-1401. [PMID: 36799296 DOI: 10.1002/glia.24343] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 02/18/2023]
Abstract
The mammalian brain is a complex organ comprising neurons, glia, and more than 1 × 1014 synapses. Neurons are a heterogeneous group of electrically active cells, which form the framework of the complex circuitry of the brain. However, glial cells, which are primarily divided into astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte precursor cells (OPCs), constitute approximately half of all neural cells in the mammalian central nervous system (CNS) and mainly provide nutrition and tropic support to neurons in the brain. In the last two decades, the concept of "tripartite synapses" has drawn great attention, which emphasizes that astrocytes are an integral part of the synapse and regulate neuronal activity in a feedback manner after receiving neuronal signals. Since then, synaptic modulation by glial cells has been extensively studied and substantially revised. In this review, we summarize the latest significant findings on how glial cells, in particular, microglia and OL lineage cells, impact and remodel the structure and function of synapses in the brain. Our review highlights the cellular and molecular aspects of neuron-glia crosstalk and provides additional information on how aberrant synaptic communication between neurons and glia may contribute to neural pathologies.
Collapse
Affiliation(s)
- Yao Liu
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Shen
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Zhang
- College of Basic Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yao Wang
- Department of Assisted Reproduction, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shumin Duan
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Xiaoping Tong
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| |
Collapse
|
12
|
Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle-Neuron Interaction. Cells 2022; 12:cells12010063. [PMID: 36611856 PMCID: PMC9818402 DOI: 10.3390/cells12010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field. In this review, we will summarize the current literature on the contribution of EVs derived from distinct brain cells to neuronal alterations and build a working model for EV-mediated propagation of synaptic dysfunction in early AD. A deeper understanding of EV-neuron interaction will provide useful targets for the development of novel therapeutic approaches aimed at hampering AD progression.
Collapse
|
13
|
Gabrielli M, Raffaele S, Fumagalli M, Verderio C. The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after? Front Cell Neurosci 2022; 16:984690. [PMID: 36176630 PMCID: PMC9514840 DOI: 10.3389/fncel.2022.984690] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
As resident component of the innate immunity in the central nervous system (CNS), microglia are key players in pathology. However, they also exert fundamental roles in brain development and homeostasis maintenance. They are extremely sensitive and plastic, as they assiduously monitor the environment, adapting their function in response to stimuli. On consequence, microglia may be defined a heterogeneous community of cells in a dynamic equilibrium. Extracellular vesicles (EVs) released by microglia mirror the dynamic nature of their donor cells, exerting important and versatile functions in the CNS as unbounded conveyors of bioactive signals. In this review, we summarize the current knowledge on EVs released by microglia, highlighting their heterogeneous properties and multifaceted effects.
Collapse
Affiliation(s)
- Martina Gabrielli
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- *Correspondence: Martina Gabrielli,
| | - Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Vedano al Lambro, Italy
- Claudia Verderio,
| |
Collapse
|
14
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
15
|
Skoug C, Martinsson I, Gouras GK, Meissner A, Duarte JMN. Sphingosine 1-Phoshpate Receptors are Located in Synapses and Control Spontaneous Activity of Mouse Neurons in Culture. Neurochem Res 2022; 47:3114-3125. [PMID: 35781853 PMCID: PMC9470655 DOI: 10.1007/s11064-022-03664-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is best known for its roles as vascular and immune regulator. Besides, it is also present in the central nervous system (CNS) where it can act as neuromodulator via five S1P receptors (S1PRs), and thus control neurotransmitter release. The distribution of S1PRs in the active zone and postsynaptic density of CNS synapses remains unknown. In the current study, we investigated the localization of S1PR1-5 in synapses of the mouse cortex. Cortical nerve terminals purified in a sucrose gradient were endowed with all five S1PRs. Further subcellular fractionation of cortical nerve terminals revealed S1PR2 and S1PR4 immunoreactivity in the active zone of presynaptic nerve terminals. Interestingly, only S1PR2 and S1PR3 immunoreactivity was found in the postsynaptic density. All receptors were present outside the active zone of nerve terminals. Neurons in the mouse cortex and primary neurons in culture showed immunoreactivity against all five S1PRs, and Ca2+ imaging revealed that S1P inhibits spontaneous neuronal activity in a dose-dependent fashion. When testing selective agonists for each of the receptors, we found that only S1PR1, S1PR2 and S1PR4 control spontaneous neuronal activity. We conclude that S1PR2 and S1PR4 are located in the active zone of nerve terminals and inhibit neuronal activity. Future studies need to test whether these receptors modulate stimulation-induced neurotransmitter release.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Isak Martinsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Physiology, University of Augsburg, Augsburg, Germany
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Villanueva J, Gimenez-Molina Y, Davletov B, Gutiérrez LM. Vesicle Fusion as a Target Process for the Action of Sphingosine and Its Derived Drugs. Int J Mol Sci 2022; 23:ijms23031086. [PMID: 35163009 PMCID: PMC8834808 DOI: 10.3390/ijms23031086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The fusion of membranes is a central part of the physiological processes involving the intracellular transport and maturation of vesicles and the final release of their contents, such as neurotransmitters and hormones, by exocytosis. Traditionally, in this process, proteins, such SNAREs have been considered the essential components of the fusion molecular machinery, while lipids have been seen as merely structural elements. Nevertheless, sphingosine, an intracellular signalling lipid, greatly increases the release of neurotransmitters in neuronal and neuroendocrine cells, affecting the exocytotic fusion mode through the direct interaction with SNAREs. Moreover, recent studies suggest that FTY-720 (Fingolimod), a sphingosine structural analogue used in the treatment of multiple sclerosis, simulates sphingosine in the promotion of exocytosis. Furthermore, this drug also induces the intracellular fusion of organelles such as dense vesicles and mitochondria causing cell death in neuroendocrine cells. Therefore, the effect of sphingosine and synthetic derivatives on the heterologous and homologous fusion of organelles can be considered as a new mechanism of action of sphingolipids influencing important physiological processes, which could underlie therapeutic uses of sphingosine derived lipids in the treatment of neurodegenerative disorders and cancers of neuronal origin such neuroblastoma.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Luis M. Gutiérrez
- Instituto de Neurociencias, CSIC-Universidad Miguel Hernández, Cra de Valencia S/N, Sant Joan d’Alacant, 03550 Alicante, Spain;
- Correspondence: (J.V.); (L.M.G.)
| |
Collapse
|
17
|
Schoedel KA, Kolly C, Gardin A, Neelakantham S, Shakeri-Nejad K. Abuse and dependence potential of sphingosine-1-phosphate (S1P) receptor modulators used in the treatment of multiple sclerosis: a review of literature and public data. Psychopharmacology (Berl) 2022; 239:1-13. [PMID: 34773483 PMCID: PMC8770388 DOI: 10.1007/s00213-021-06011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
Abuse and misuse of prescription drugs remains an ongoing concern in the USA and worldwide; thus, all centrally active new drugs must be assessed for abuse and dependence potential. Sphingosine-1-phosphate (S1P) receptor modulators are used primarily in the treatment of multiple sclerosis. Among the new S1P receptor modulators, siponimod, ozanimod, and ponesimod have recently been approved in the USA, European Union (EU), and other countries. This review of literature and other public data has been undertaken to assess the potential for abuse of S1P receptor modulators, including ozanimod, siponimod, ponesimod, and fingolimod, as well as several similar compounds in development. The S1P receptor modulators have not shown chemical or pharmacological similarity to known drugs of abuse; have not shown abuse or dependence potential in animal models for subjective effects, reinforcement, or physical dependence; and do not have adverse event profiles demonstrating effects of interest to individuals who abuse drugs (such as sedative, stimulant, mood-elevating, or hallucinogenic effects). In addition, no reports of actual abuse, misuse, or dependence were identified in the scientific literature for fingolimod, which has been on the market since 2010 (USA) and 2011 (EU). Overall, the data suggest that S1P receptor modulators are not associated with significant potential for abuse or dependence, consistent with their unscheduled status in the USA and internationally.
Collapse
Affiliation(s)
| | - Carine Kolly
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anne Gardin
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Srikanth Neelakantham
- grid.464975.d0000 0004 0405 8189Novartis Institutes for Biomedical Research, Novartis Healthcare Pvt Ltd, Hyderabad, India
| | - Kasra Shakeri-Nejad
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
18
|
Signorelli P, Conte C, Albi E. The Multiple Roles of Sphingomyelin in Parkinson's Disease. Biomolecules 2021; 11:biom11091311. [PMID: 34572524 PMCID: PMC8469734 DOI: 10.3390/biom11091311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson's disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization. The analysis of sphingomyelin-metabolizing enzymes, the development of specific inhibitors, and advanced mass spectrometry have all provided insight into the signaling mechanisms of sphingomyelin and its implications in Parkinson's disease. This review describes in vitro and in vivo studies with often conflicting results. We focus on the synthesis and degradation enzymes of sphingomyelin, highlighting the genetic risks and the molecular alterations associated with Parkinson's disease.
Collapse
Affiliation(s)
- Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, 20142 Milan, Italy;
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
- Correspondence:
| |
Collapse
|
19
|
Jęśko H, Wieczorek I, Wencel PL, Gąssowska-Dobrowolska M, Lukiw WJ, Strosznajder RP. Age-Related Transcriptional Deregulation of Genes Coding Synaptic Proteins in Alzheimer's Disease Murine Model: Potential Neuroprotective Effect of Fingolimod. Front Mol Neurosci 2021; 14:660104. [PMID: 34305524 PMCID: PMC8299068 DOI: 10.3389/fnmol.2021.660104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid β precursor protein (AβPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR. Expression of mutant (V717I) AβPP led to few changes at 3 months of age but reduced multiple mRNA coding for synaptic proteins in a 12-month-old mouse brain. Complexin 1 (Cplx1), SNAP25 (Snap25), syntaxin 1A (Stx1a), neurexin 1 (Nrxn1), neurofilament light (Nefl), and synaptotagmin 1 (Syt1) in the hippocampus, and VAMP1 (Vamp1) and neurexin 1 (Nrxn1) in the cortex were all significantly reduced in 12-month-old mice. Post mortem AD samples from the human hippocampus and cortex displayed lower expression of VAMP, synapsin, neurofilament light (NF-L) and synaptophysin. The potentially neuroprotective FTY720 reversed most AβPP-induced changes in gene expression (Cplx1, Stx1a, Snap25, and Nrxn1) in the 12-month-old hippocampus, which is thought to be most sensitive to early neurotoxic insults, but it only restored Vamp1 in the cortex and had no influence in 3-month-old brains. Further study may reveal the potential usefulness of FTY720 in the modulation of deregulated neuronal phenotype in AD brains.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Leonard Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Walter J. Lukiw
- LSU Neuroscience Center, Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Novelty of Sphingolipids in the Central Nervous System Physiology and Disease: Focusing on the Sphingolipid Hypothesis of Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147353. [PMID: 34298977 PMCID: PMC8303517 DOI: 10.3390/ijms22147353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
For decades, lipids were confined to the field of structural biology and energetics as they were considered only structural constituents of cellular membranes and efficient sources of energy production. However, with advances in our understanding in lipidomics and improvements in the technological approaches, astounding discoveries have been made in exploring the role of lipids as signaling molecules, termed bioactive lipids. Among these bioactive lipids, sphingolipids have emerged as distinctive mediators of various cellular processes, ranging from cell growth and proliferation to cellular apoptosis, executing immune responses to regulating inflammation. Recent studies have made it clear that sphingolipids, their metabolic intermediates (ceramide, sphingosine-1-phosphate, and N-acetyl sphingosine), and enzyme systems (cyclooxygenases, sphingosine kinases, and sphingomyelinase) harbor diverse yet interconnected signaling pathways in the central nervous system (CNS), orchestrate CNS physiological processes, and participate in a plethora of neuroinflammatory and neurodegenerative disorders. Considering the unequivocal importance of sphingolipids in CNS, we review the recent discoveries detailing the major enzymes involved in sphingolipid metabolism (particularly sphingosine kinase 1), novel metabolic intermediates (N-acetyl sphingosine), and their complex interactions in CNS physiology, disruption of their functionality in neurodegenerative disorders, and therapeutic strategies targeting sphingolipids for improved drug approaches.
Collapse
|
21
|
Xiao C, Rossignol F, Vaz FM, Ferreira CR. Inherited disorders of complex lipid metabolism: A clinical review. J Inherit Metab Dis 2021; 44:809-825. [PMID: 33594685 DOI: 10.1002/jimd.12369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Rossignol
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Chua XY, Ho LTY, Xiang P, Chew WS, Lam BWS, Chen CP, Ong WY, Lai MKP, Herr DR. Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. Neuromolecular Med 2020; 23:47-67. [PMID: 33180310 DOI: 10.1007/s12017-020-08632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1-S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leona T Y Ho
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
- American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
23
|
Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020; 9:cells9102145. [PMID: 32977412 PMCID: PMC7598215 DOI: 10.3390/cells9102145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine powerfully influencing diverse processes of the central nervous system (CNS) under both physiological and pathological conditions. Here, we analyze current literature describing the molecular processes involved in TNF synthesis and release from microglia, the resident immune cells of the CNS and the main source of this cytokine both in brain development and neurodegenerative diseases. A special attention has been given to the unconventional vesicular pathway of TNF, based on the emerging role of microglia-derived extracellular vesicles (EVs) in the propagation of inflammatory signals and in mediating cell-to-cell communication. Moreover, we describe the contribution of microglial TNF in regulating important CNS functions, including the neuroinflammatory response following brain injury, the neuronal circuit formation and synaptic plasticity, and the processes of myelin damage and repair. Specifically, the available data on the functions mediated by microglial EVs carrying TNF have been scrutinized to gain insights on possible novel therapeutic strategies targeting TNF to foster CNS repair.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marta Lombardi
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Claudia Verderio
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-0250318307
| |
Collapse
|
24
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|
25
|
Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, Chao CC, Quintana FJ. Role of sphingolipid metabolism in neurodegeneration. J Neurochem 2020; 158:25-35. [PMID: 32402091 DOI: 10.1111/jnc.15044] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
Sphingolipids are a class of lipids highly enriched in the central nervous system (CNS), which shows great diversity and complexity, and has been implicated in CNS development and function. Alterations in sphingolipid metabolism have been described in multiple diseases, including those affecting the central nervous system (CNS). In this review, we discuss the role of sphingolipid metabolism in neurodegeneration, evaluating its direct roles in neuron development and health, and also in the induction of neurotoxic activities in CNS-resident astrocytes and microglia in the context of neurologic diseases such as multiple sclerosis and Alzheimer's disease. Finally, we focus on the metabolism of gangliosides and sphingosine-1-phosphate, its contribution to the pathogenesis of neurologic diseases, and its potential as a candidate target for the therapeutic modulation of neurodegeneration.
Collapse
Affiliation(s)
- Manal Alaamery
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nour Albesher
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nora Aljawini
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Moneera Alsuwailm
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
26
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
27
|
Ahamad A, Wang J, Ge S, Kirschen GW. Early Dendritic Morphogenesis of Adult-Born Dentate Granule Cells Is Regulated by FHL2. Front Neurosci 2020; 14:202. [PMID: 32256309 PMCID: PMC7090230 DOI: 10.3389/fnins.2020.00202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Dentate granule cells (DGCs), the progeny of neural stem cells (NSCs) in the sub-granular zone of the dentate gyrus (DG), must develop and functionally integrate with the mature cohort of neurons in order to maintain critical hippocampal functions throughout adulthood. Dysregulation in the continuum of DGC development can result in aberrant morphology and disrupted functional maturation, impairing neuroplasticity of the network. Yet, the molecular underpinnings of the signaling involved in adult-born DGC maturation including dendritic growth, which correlates with functional integration, remains incompletely understood. Given the high metabolic activity in the dentate gyrus (DG) required to achieve continuous neurogenesis, we investigated the potential regulatory role of a cellular metabolism-linked gene recently implicated in NSC cycling and neuroblast migration, called Four and a half LIM domain 2 (FHL2). The FHL2 protein modulates numerous pathways related to proliferation, migration, survival and cytoskeletal rearrangement in peripheral tissues, interacting with the machinery of the sphingosine-1-phosphate pathway, also known to be highly active especially in the hippocampus. Yet, the potential relevance of FHL2 to adult-born DGC development remains unknown. To elucidate the role of FHL2 in DGC development in the adult brain, we first confirmed the endogenous expression of FHL2 in NSCs and new granule cells within the DG, then engineered viral vectors for genetic manipulation experiments, investigating morphological changes in early stages of DGC development. Overexpression of FHL2 during early DGC development resulted in marked sprouting and branching of dendrites, while silencing of FHL2 increased dendritic length. Together, these findings suggest a novel role of FHL2 in adult-born DGC morphological maturation, which may open up a new line of investigation regarding the relevance of this gene in physiology and pathologies of the hippocampus such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Afrinash Ahamad
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,School of Health Technology and Management, Stony Brook University, Stony Brook, NY, United States
| | - Jia Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Gregory W Kirschen
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
28
|
Kumar R, Tang Q, Müller SA, Gao P, Mahlstedt D, Zampagni S, Tan Y, Klingl A, Bötzel K, Lichtenthaler SF, Höglinger GU, Koeglsperger T. Fibroblast Growth Factor 2-Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902372. [PMID: 32195080 PMCID: PMC7080514 DOI: 10.1002/advs.201902372] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Indexed: 05/06/2023]
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Qilin Tang
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stephan A. Müller
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Pan Gao
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Diana Mahlstedt
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Sofia Zampagni
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Yi Tan
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment of Biology IBiocenterLudwig Maximilian UniversityGroßhaderner Str. 282152Planegg‐MartinsriedGermany
| | - Kai Bötzel
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stefan F. Lichtenthaler
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- NeuroproteomicsKlinikum rechts der IsarInstitute for Advanced StudyTechnical University of MunichIsmaninger Straße 2281675MunichGermany
| | - Günter U. Höglinger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of Neurology (OE 7210)Hannover Medical SchoolCarl‐Neuberg‐Str. 130625HannoverGermany
- Department of NeurologyTechnical University of MunichIsmaninger Str. 2281675MunichGermany
| | - Thomas Koeglsperger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| |
Collapse
|
29
|
Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, Wang G. Overview of Crosstalk Between Multiple Factor of Transcytosis in Blood Brain Barrier. Front Neurosci 2020; 13:1436. [PMID: 32038141 PMCID: PMC6990130 DOI: 10.3389/fnins.2019.01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier tightness while allowing adequate transport between neurovascular units. This mechanism possess a challenge for drug delivery, while abnormality may result in pathogenesis. Communication between vascular and neural system is mediated through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed dependency with various components, focusing on caveolae-mediated. Among several factors, intense communication between endothelial cells, pericytes, and astrocytes is the key for a normal development. Regulatory signaling pathway such as VEGF, Notch, S1P, PDGFβ, Ang/Tie, and TGF-β showed interaction with the transcytosis steps. Recent discoveries showed exploration of various factors which has been proven to interact with one of the process of transcytosis, either endocytosis, endosomal rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway between each factors, specifically miRNA, mechanical stress, various cytokines, physicochemical, basement membrane and junctions remodeling, and crosstalk between developmental regulatory pathways. Finally, various hypotheses and probable crosstalk between each factors will be expressed, to point out relevant research application (Drug therapy design and BBB-on-a-chip) and unexplored terrain.
Collapse
Affiliation(s)
- Marco Tjakra
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Vicki Vania
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Yuan Q, Li XD, Zhang SM, Wang HW, Wang YL. Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes Dis 2019; 8:124-132. [PMID: 33997159 PMCID: PMC8099685 DOI: 10.1016/j.gendis.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like substances released by eukaryotic cells. Based on their origin and size, EVs are mainly divided into exosomes, microvesicles and apoptotic bodies, and they are secreted by eukaryotic cells under physiological and pathological conditions. EVs are enriched with nucleic acids, proteins and other factors. EVs can regulate the function of adjacent and distant cells, and they are even involved in the pathogenesis of diseases. They contain proteins associated with the pathogenesis of neurodegenerative diseases (NDs), such as the α-synuclein (α-syn) and tau proteins, which suggest potential roles for EVs as biomarkers and carriers of drugs and other therapeutic molecules that can cross the blood–brain barrier to treat NDs. In this review, we summarized the function of EVs in the pathogenesis of different NDs and related advances in EVs as diagnostic biomarkers and treatments for diseases.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Xiao-Dong Li
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou, Henan Province, 450014, PR China
| | - Si-Miao Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Hong-Wei Wang
- Department of Medicine, The University of Chicago, IL, 60637, USA
| | - Yun-Liang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China.,Department of Neurology, The 960th Hospital of Chinese PLA, Zibo, Shandong Province, 255300, PR China
| |
Collapse
|
31
|
Sphingosine Kinase 2 Potentiates Amyloid Deposition but Protects against Hippocampal Volume Loss and Demyelination in a Mouse Model of Alzheimer's Disease. J Neurosci 2019; 39:9645-9659. [PMID: 31641049 DOI: 10.1523/jneurosci.0524-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 01/20/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aβ concentration or plaque density.
Collapse
|
32
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
Don-Doncow N, Vanherle L, Zhang Y, Meissner A. T-Cell Accumulation in the Hypertensive Brain: A Role for Sphingosine-1-Phosphate-Mediated Chemotaxis. Int J Mol Sci 2019; 20:ijms20030537. [PMID: 30695999 PMCID: PMC6386943 DOI: 10.3390/ijms20030537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension is considered the major modifiable risk factor for the development of cognitive impairment. Because increased blood pressure is often accompanied by an activation of the immune system, the concept of neuro-inflammation gained increasing attention in the field of hypertension-associated neurodegeneration. Particularly, hypertension-associated elevated circulating T-lymphocyte populations and target organ damage spurred the interest to understanding mechanisms leading to inflammation-associated brain damage during hypertension. The present study describes sphingosine-1-phosphate (S1P) as major contributor to T-cell chemotaxis to the brain during hypertension-associated neuro-inflammation and cognitive impairment. Using Western blotting, flow cytometry and mass spectrometry approaches, we show that hypertension stimulates a sphingosine kinase 1 (SphK1)-dependent increase of cerebral S1P concentrations in a mouse model of angiotensin II (AngII)-induced hypertension. The development of a distinct S1P gradient between circulating blood and brain tissue associates to elevated CD3+ T-cell numbers in the brain. Inhibition of S1P1-guided T-cell chemotaxis with the S1P receptor modulator FTY720 protects from augmentation of brain CD3 expression and the development of memory deficits in hypertensive WT mice. In conclusion, our data highlight a new approach to the understanding of hypertension-associated inflammation in degenerative processes of the brain during disease progression.
Collapse
Affiliation(s)
| | - Lotte Vanherle
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
| | - Yun Zhang
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Science, Lund University, 22 184 Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, 22 184 Lund, Sweden.
| |
Collapse
|
35
|
Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S, Kamran SKS, Razzaq A, Aziz N, Ahmad W, Shabbir A, Iqbal J, Baig SM, Sun T. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 2019; 18:26. [PMID: 30683111 PMCID: PMC6347843 DOI: 10.1186/s12944-019-0965-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
Abstract
Brain is a vital organ of the human body which performs very important functions such as analysis, processing, coordination, and execution of electrical signals. For this purpose, it depends on a complex network of nerves which are ensheathed in lipids tailored myelin; an abundant source of lipids in the body. The nervous system is enriched with important classes of lipids; sphingolipids and cholesterol which compose the major portion of the brain particularly in the form of myelin. Both cholesterol and sphingolipids are embedded in the microdomains of membrane rafts and are functional units of the neuronal cell membrane. These molecules serve as the signaling molecules; hold important roles in the neuronal differentiation, synaptogenesis, and many others. Thus, their adequate provision and active metabolism are of crucial importance in the maintenance of physiological functions of brain and body of an individual. In the present review, we have highlighted the physiological roles of cholesterol and sphingolipids in the development of the nervous system as well as the association of their altered metabolism to neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan.
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian Province, China
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian Province, China.
| |
Collapse
|
36
|
Behrangi N, Fischbach F, Kipp M. Mechanism of Siponimod: Anti-Inflammatory and Neuroprotective Mode of Action. Cells 2019; 8:cells8010024. [PMID: 30621015 PMCID: PMC6356776 DOI: 10.3390/cells8010024] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder of the central nervous system (CNS), and represents one of the main causes of disability in young adults. On the histopathological level, the disease is characterized by inflammatory demyelination and diffuse neurodegeneration. Although on the surface the development of new inflammatory CNS lesions in MS may appear consistent with a primary recruitment of peripheral immune cells, questions have been raised as to whether lymphocyte and/or monocyte invasion into the brain are really at the root of inflammatory lesion development. In this review article, we discuss a less appreciated inflammation-neurodegeneration interplay, that is: Neurodegeneration can trigger the formation of new, focal inflammatory lesions. We summarize old and recent findings suggesting that new inflammatory lesions develop at sites of focal or diffuse degenerative processes within the CNS. Such a concept is discussed in the context of the EXPAND trial, showing that siponimod exerts anti-inflammatory and neuroprotective activities in secondary progressive MS patients. The verification or rejection of such a concept is vital for the development of new therapeutic strategies for progressive MS.
Collapse
Affiliation(s)
- Newshan Behrangi
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| | - Felix Fischbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
- Department of Anatomy, University Medical Center, 39071 Rostock, Germany.
| |
Collapse
|
37
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
38
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
39
|
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018; 135:529-550. [PMID: 29302779 PMCID: PMC5978931 DOI: 10.1007/s00401-017-1803-x] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.
Collapse
|
40
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Kirschen GW, Kéry R, Liu H, Ahamad A, Chen L, Akmentin W, Kumar R, Levine J, Xiong Q, Ge S. Genetic dissection of the neuro-glio-vascular machinery in the adult brain. Mol Brain 2018; 11:2. [PMID: 29335006 PMCID: PMC5769320 DOI: 10.1186/s13041-017-0345-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
The adult brain actively controls its metabolic homeostasis via the circulatory system at the blood brain barrier interface. The mechanisms underlying the functional coupling from neuron to vessel remain poorly understood. Here, we established a novel method to genetically isolate the individual components of this coupling machinery using a combination of viral vectors. We first discovered a surprising non-uniformity of the glio-vascular structure in different brain regions. We carried out a viral injection screen and found that intravenous Canine Adenovirus 2 (CAV2) preferentially targeted perivascular astrocytes throughout the adult brain, with sparing of the hippocampal hilus from infection. Using this new intravenous method to target astrocytes, we selectively ablated these cells and observed severe defects in hippocampus-dependent contextual memory and the metabolically regulated process of hippocampal neurogenesis. Combined with AAV9 targeting of neurons and endothelial cells, all components of the neuro-glio-vascular machinery can be simultaneously labeled for genetic manipulation. Together, we demonstrate a novel method, which we term CATNAP (CAV/AAV Targeting of Neurons and Astrocytes Perivascularly), to target and manipulate the neuro-glio-vascular machinery in the adult brain.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Medical Scientist Training Program, Stony Brook, New York, USA.,Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Rachel Kéry
- Medical Scientist Training Program, Stony Brook, New York, USA.,Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Hanxiao Liu
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Afrinash Ahamad
- School of Health Technology & Management, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Liang Chen
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Wendy Akmentin
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Ramya Kumar
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Joel Levine
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
42
|
Lei M, Shafique A, Shang K, Couttas TA, Zhao H, Don AS, Karl T. Contextual fear conditioning is enhanced in mice lacking functional sphingosine kinase 2. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Lewis KT, Maddipati KR, Naik AR, Jena BP. Unique Lipid Chemistry of Synaptic Vesicle and Synaptosome Membrane Revealed Using Mass Spectrometry. ACS Chem Neurosci 2017; 8:1163-1169. [PMID: 28244738 DOI: 10.1021/acschemneuro.7b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized. To test this hypothesis, the lipidome of isolated synaptosome, synaptosome membrane, and synaptic vesicle preparation were determined by using mass spectrometry in the current study. Results from the study demonstrate the enriched presence of triacyl glycerols and sphingomyelins in synaptic vesicles, as opposed to the enriched presence of phospholipids in the synaptosome membrane fraction, reflecting on the tight regulation of nerve cells in compartmentalization of membrane lipids at the nerve terminal.
Collapse
Affiliation(s)
- Kenneth T Lewis
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Krishna R Maddipati
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Akshata R Naik
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Bhanu P Jena
- Department of Physiology and ‡Department of Pathology, Lipidomics Core Facility, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
44
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
45
|
Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate - A double edged sword in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1573-1582. [PMID: 28315304 DOI: 10.1016/j.bbamem.2017.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
The physiological functions of sphingosine 1-phosphate (S1P) and its pathological roles in various diseases are increasingly being elucidated. Particularly, a growing body of literature has implicated S1P in the pathogenesis of brain related disorders. With the deciphering of more intricate aspects of S1P signalling, there is also a need to reconsider the notion of S1P only as a determinant of cell survival and proliferation. Further the concept of 'S1P-ceramide' balance as the controlling switch of cellular fate and functions needs to be refined. In this review, we focus on the brain related functions of S1P with special focus on its role in synaptic transmission, neuronal autophagy and neuroinflammation. The review also attempts to bring out the multi-faceted nature of S1P signalling aspects that makes it a 'double edged sword'. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | | |
Collapse
|
46
|
Bonfiglio T, Olivero G, Merega E, Di Prisco S, Padolecchia C, Grilli M, Milanese M, Di Cesare Mannelli L, Ghelardini C, Bonanno G, Marchi M, Pittaluga A. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis. PLoS One 2017; 12:e0170825. [PMID: 28125677 PMCID: PMC5268435 DOI: 10.1371/journal.pone.0170825] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1-0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/immunology
- Cerebral Cortex/pathology
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Exocytosis/drug effects
- Female
- Fingolimod Hydrochloride/pharmacology
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Hippocampus/drug effects
- Hippocampus/immunology
- Hippocampus/pathology
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred C57BL
- Neuroglia/drug effects
- Neuroglia/immunology
- Neuroglia/pathology
- Organ Specificity
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- Synapses/drug effects
- Synapses/immunology
- Synapses/pathology
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Elisa Merega
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Silvia Di Prisco
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Cristina Padolecchia
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology section, University of Florence, Florence, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
47
|
Sphingosine 1-phosphate lyase ablation disrupts presynaptic architecture and function via an ubiquitin- proteasome mediated mechanism. Sci Rep 2016; 6:37064. [PMID: 27883090 PMCID: PMC5121647 DOI: 10.1038/srep37064] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023] Open
Abstract
The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPLfl/fl/Nes) but not postnatal neuronal forebrain-restricted SPL deletion (SPLfl/fl/CaMK) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPLfl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
Collapse
|
48
|
Weth-Malsch D, Langeslag M, Beroukas D, Zangrandi L, Kastenberger I, Quarta S, Malsch P, Kalpachidou T, Schwarzer C, Proia RL, Haberberger RV, Kress M. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo. Front Cell Neurosci 2016; 10:258. [PMID: 27872583 PMCID: PMC5097928 DOI: 10.3389/fncel.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.
Collapse
Affiliation(s)
- Daniela Weth-Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Dimitra Beroukas
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Iris Kastenberger
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Serena Quarta
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Philipp Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Rainer V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
49
|
Mirzaian M, Wisse P, Ferraz MJ, Marques ARA, Gabriel TL, van Roomen CPAA, Ottenhoff R, van Eijk M, Codée JDC, van der Marel GA, Overkleeft HS, Aerts JM. Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard. Clin Chim Acta 2016; 459:36-44. [PMID: 27221202 DOI: 10.1016/j.cca.2016.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
We developed a mass spectrometric procedure to quantify sphingosine-1-phosphate (S1P) in biological materials. The use of newly synthesized (13)C5 C18-S1P and commercial C17-S1P as internal standards rendered very similar results with respect to linearity, limit of detection and limit of quantitation. Caution is warranted with determination of plasma S1P levels. Earlier it was reported that S1P is elevated in plasma of Fabry disease patients. We investigated this with the improved quantification. No clear conclusion could be drawn for patient plasma samples given the lack of uniformity of blood collection and plasma preparation. To still obtain insight, plasma and tissues were identically collected from α-galactosidase A deficient Fabry mice and matched control animals. No significant difference was observed in plasma S1P levels. A significant 2.3 fold increase was observed in kidney of Fabry mice, but not in liver and heart. Comparative analysis of S1P in cultured fibroblasts from normal subjects and classically affected Fabry disease males revealed no significant difference. In conclusion, accurate quantification of S1P in biological materials is feasible by mass spectrometry using the internal standards (13)C5 C18-S1P or C17-S1P. Significant local increases of S1P in the kidney might occur in Fabry disease as suggested by the mouse model.
Collapse
Affiliation(s)
- Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Wisse
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Gijsbert A van der Marel
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Johannes M Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands.
| |
Collapse
|