1
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Sfera A, Andronescu L, Britt WG, Himsl K, Klein C, Rahman L, Kozlakidis Z. Receptor-Independent Therapies for Forensic Detainees with Schizophrenia-Dementia Comorbidity. Int J Mol Sci 2023; 24:15797. [PMID: 37958780 PMCID: PMC10647468 DOI: 10.3390/ijms242115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Forensic institutions throughout the world house patients with severe psychiatric illness and history of criminal violations. Improved medical care, hygiene, psychiatric treatment, and nutrition led to an unmatched longevity in this population, which previously lived, on average, 15 to 20 years shorter than the public at large. On the other hand, longevity has contributed to increased prevalence of age-related diseases, including neurodegenerative disorders, which complicate clinical management, increasing healthcare expenditures. Forensic institutions, originally intended for the treatment of younger individuals, are ill-equipped for the growing number of older offenders. Moreover, as antipsychotic drugs became available in 1950s and 1960s, we are observing the first generation of forensic detainees who have aged on dopamine-blocking agents. Although the consequences of long-term treatment with these agents are unclear, schizophrenia-associated gray matter loss may contribute to the development of early dementia. Taken together, increased lifespan and the subsequent cognitive deficit observed in long-term forensic institutions raise questions and dilemmas unencountered by the previous generations of clinicians. These include: does the presence of neurocognitive dysfunction justify antipsychotic dose reduction or discontinuation despite a lifelong history of schizophrenia and violent behavior? Should neurolipidomic interventions become the standard of care in elderly individuals with lifelong schizophrenia and dementia? Can patients with schizophrenia and dementia meet the Dusky standard to stand trial? Should neurocognitive disorders in the elderly with lifelong schizophrenia be treated differently than age-related neurodegeneration? In this article, we hypothesize that gray matter loss is the core symptom of schizophrenia which leads to dementia. We hypothesize further that strategies to delay or stop gray matter depletion would not only improve the schizophrenia sustained recovery, but also avert the development of major neurocognitive disorders in people living with schizophrenia. Based on this hypothesis, we suggest utilization of both receptor-dependent and independent therapeutics for chronic psychosis.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Luminita Andronescu
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - William G. Britt
- Department of Psychiatry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Kiera Himsl
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - Carolina Klein
- California Department of State Hospitals, Sacramento, CA 95814, USA;
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA;
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69366 Lyon Cedex, France;
| |
Collapse
|
3
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
4
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
5
|
Ridderinkhof KR, Krugers HJ. Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Front Hum Neurosci 2022; 16:815759. [PMID: 35845248 PMCID: PMC9277589 DOI: 10.3389/fnhum.2022.815759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
While aging is an important risk factor for neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, age-related cognitive decline can also manifest without apparent neurodegenerative changes. In this review, we discuss molecular, cellular, and network changes that occur during normal aging in the absence of neurodegenerative disease. Emerging findings reveal that these changes include metabolic alterations, oxidative stress, DNA damage, inflammation, calcium dyshomeostasis, and several other hallmarks of age-related neural changes that do not act on their own, but are often interconnected and together may underlie age-related alterations in brain plasticity and cognitive function. Importantly, age-related cognitive decline may not be reduced to a single neurobiological cause, but should instead be considered in terms of a densely connected system that underlies age-related cognitive alterations. We speculate that a decline in one hallmark of neural aging may trigger a decline in other, otherwise thus far stable subsystems, thereby triggering a cascade that may at some point also incur a decline of cognitive functions and mental well-being. Beyond studying the effects of these factors in isolation, considerable insight may be gained by studying the larger picture that entails a representative collection of such factors and their interactions, ranging from molecules to neural networks. Finally, we discuss some potential interventions that may help to prevent these alterations, thereby reducing cognitive decline and mental fragility, and enhancing mental well-being, and healthy aging.
Collapse
Affiliation(s)
- K. Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Harm J. Krugers
- Amsterdam Center for Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
- SILS-CNS, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Yeh SHH, Tsai CJ, Yu TH, Chiang YH, Lin SZ, Peng NJ, Huang WS. 99mTc-TRODAT-1 SPECT Revealed That Striatal Dopamine Transport Availability Significantly Decreases in Late Mid-Aged Healthy Taiwanese and Then Remains Stable. Clin Nucl Med 2022; 47:201-208. [PMID: 35081059 PMCID: PMC8820763 DOI: 10.1097/rlu.0000000000004063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Neuroimaging studies in the past 20 years have documented an age-related decline in striatal dopamine transporters (DATs), which is a marker of dopaminergic neurodegeneration; however, concerns about ethnic variations in the decline in DAT with age have not been addressed. The purpose of this study was to assess the rate of striatal DAT loss in healthy Taiwanese adults using kit-based 99mTc-TRODAT-1, a radioligand for DAT SPECT. PATIENTS AND METHODS Fifty healthy subjects (mean age ± SD, 63 ± 12 years; range, 30-80 years) were studied. 99mTc-TRODAT-1 was prepared from a lyophilized kit. Brain DAT SPECT imaging was acquired between 165 and 195 minutes postinjection (~740 MBq or 20 mCi) using a dual-head camera equipped with fan-beam collimators (Helix SPX; GE). Specific uptake in the striatum (ST), caudate nucleus (CA), and putamen (PU) were calculated from reconstructed transaxial slices at the level of maximal striatal activity. Occipital cortices were used as reference areas. Data were presented as specific binding ratios. RESULTS Age had a significant moderate to large negative effect on striatal DAT, which declined by -25.7% ± 6.10% between the ages of 30 and 80 years, equivalent to 6.4% loss per decade. The rates of decline in the CA and PU were 6.9% and 7.3% per decade, respectively. CONCLUSIONS This study suggests ethnic variations may not significantly affect the age-related decline in DAT. The data generated in this study could also be used as a reference to estimate DAT loss/occupancy in patients with DAT-related diseases.
Collapse
Affiliation(s)
- Skye Hsin-Hsien Yeh
- From the Brain Research Center, National Yang Ming Chaio Tung University
- School of Medicine, National Defense Medical Center
| | - Chi-Jung Tsai
- Department of Nuclear Medicine, Taipei Medical University Hospital
- Department of Nuclear Medicine, Tri-Service General Hospital
| | - Tsung-Hsun Yu
- From the Brain Research Center, National Yang Ming Chaio Tung University
| | | | | | - Nan-Jing Peng
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Medical University Hospital
- Department of Nuclear Medicine, Tri-Service General Hospital
| |
Collapse
|
7
|
Veríssimo J, Verhaeghen P, Goldman N, Weinstein M, Ullman MT. Evidence that ageing yields improvements as well as declines across attention and executive functions. Nat Hum Behav 2022; 6:97-110. [PMID: 34413509 DOI: 10.1038/s41562-021-01169-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Many but not all cognitive abilities decline during ageing. Some even improve due to lifelong experience. The critical capacities of attention and executive functions have been widely posited to decline. However, these capacities are composed of multiple components, so multifaceted ageing outcomes might be expected. Indeed, prior findings suggest that whereas certain attention/executive functions clearly decline, others do not, with hints that some might even improve. We tested ageing effects on the alerting, orienting and executive (inhibitory) networks posited by Posner and Petersen's influential theory of attention, in a cross-sectional study of a large sample (N = 702) of participants aged 58-98. Linear and nonlinear analyses revealed that whereas the efficiency of the alerting network decreased with age, orienting and executive inhibitory efficiency increased, at least until the mid-to-late 70s. Sensitivity analyses indicated that the patterns were robust. The results suggest variability in age-related changes across attention/executive functions, with some declining while others improve.
Collapse
Affiliation(s)
- João Veríssimo
- Center of Linguistics, School of Arts and Humanities, University of Lisbon, Lisbon, Portugal. .,Department of Linguistics, University of Potsdam, Potsdam, Germany.
| | - Paul Verhaeghen
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noreen Goldman
- Office of Population Research, Princeton University, Princeton, NJ, USA
| | - Maxine Weinstein
- Center for Population and Health, Georgetown University, Washington, DC, USA
| | - Michael T Ullman
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
8
|
Smith SM, Zequeira S, Ravi M, Johnson SA, Hampton AM, Ross AM, Pyon W, Maurer AP, Bizon JL, Burke SN. Age-related impairments on the touchscreen paired associates learning (PAL) task in male rats. Neurobiol Aging 2022; 109:176-191. [PMID: 34749169 PMCID: PMC9351724 DOI: 10.1016/j.neurobiolaging.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Discovery research in rodent models of cognitive aging is instrumental for identifying mechanisms of behavioral decline in old age that can be therapeutically targeted. Clinically relevant behavioral paradigms, however, have not been widely employed in aged rats. The current study aimed to bridge this translational gap by testing cognition in a cross-species touchscreen-based platform known as paired-associates learning (PAL) and then utilizing a trial-by-trial behavioral analysis approach. This study found age-related deficits in PAL task acquisition in male rats. Furthermore, trial-by-trial analyses and testing rats on a novel interference version of PAL suggested that age-related impairments were not due to differences in vulnerability to an irrelevant distractor, motivation, or to forgetting. Rather, impairment appeared to arise from vulnerability to accumulating, proactive interference, with aged animals performing worse than younger rats in later trial blocks within a single testing session. The detailed behavioral analysis employed in this study provides new insights into the etiology of age-associated cognitive deficits.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sabrina Zequeira
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Meena Ravi
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sarah A Johnson
- Department of Neuroscience and Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Andriena M Hampton
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aleyna M Ross
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wonn Pyon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Ciampa CJ, Parent JH, Lapoint MR, Swinnerton KN, Taylor MM, Tennant VR, Whitman AJ, Jagust WJ, Berry AS. Elevated Dopamine Synthesis as a Mechanism of Cognitive Resilience in Aging. Cereb Cortex 2021; 32:2762-2772. [PMID: 34718454 DOI: 10.1093/cercor/bhab379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aging is associated with declines in multiple components of the dopamine system including loss of dopamine-producing neurons, atrophy of the dopamine system's cortical targets, and reductions in the density of dopamine receptors. Countering these patterns, dopamine synthesis appears to be stable or elevated in older age. We tested the hypothesis that elevation in dopamine synthesis in aging reflects a compensatory response to neuronal loss rather than a nonspecific monotonic shift in older age. We measured individual differences in striatal dopamine synthesis capacity in cognitively normal older adults using [18F]Fluoro-l-m-tyrosine positron emission tomography cross-sectionally and tested relationships with longitudinal reductions in cortical thickness and working memory decline beginning up to 13 years earlier. Consistent with a compensation account, older adults with the highest dopamine synthesis capacity were those with greatest atrophy in posterior parietal cortex. Elevated dopamine synthesis capacity was not associated with successful maintenance of working memory performance overall, but had a moderating effect such that higher levels of dopamine synthesis capacity reduced the impact of atrophy on cognitive decline. Together, these findings support a model by which upregulation of dopamine synthesis represents a mechanism of cognitive resilience in aging.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Molly R Lapoint
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin N Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan M Taylor
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| | - Victoria R Tennant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - A J Whitman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
10
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Muth AK, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clin Nutr 2021; 40:3999-4010. [PMID: 34139473 DOI: 10.1016/j.clnu.2021.04.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Macronutrients - carbohydrates, fats, and proteins - supply the nutrients required for optimal functioning. Inadequate intake compromises both physical and brain health. We synthesized research on macronutrients from whole meals on cognitive function in healthy adults and identified underlying mechanisms. Intake of simple carbohydrates ('sugars') is consistently associated with decreased global cognition whereas consumption of complex carbohydrates correlates with successful brain aging and improved memory both in the short- and long-term. Saturated fatty acid intake correlates with decreased memory and learning scores whereas omega-3 intake correlates positively with memory scores. Protein intake boosts executive function and working memory when task-demands are high. Individual differences affecting the macronutrient-cognition relationship are age, physical activity, and glucose metabolism. Neural correlates reflect findings on cognitive functions: cortical thickness and cerebral amyloid burden correlate with sugar intake, inflammatory status and cerebral glucose metabolism correlate with fatty acid intake. Key mechanisms by which dietary macronutrients affect the brain and cognition include glucose and insulin metabolism, neurotransmitter actions, and cerebral oxidation and inflammation. In conclusion, macronutrient intake affects cognitive function both acutely and in the long-term, involving peripheral and central mechanisms. A healthy diet supports brain integrity and functionality, whereas inadequate nutrition compromises it. Studying diet can be key to nutritional recommendations, thereby improving the landscape of mental health and healthy brain aging.
Collapse
Affiliation(s)
- Anne-Katrin Muth
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany.
| | - Soyoung Q Park
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neuroscience Research Center, 10117, Berlin, Germany; Deutsches Zentrum für Diabetes, Neuherberg, Germany.
| |
Collapse
|
12
|
Bunai T, Hirosawa T, Kikuchi M, Fukai M, Yokokura M, Ito S, Takata Y, Terada T, Ouchi Y. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimul 2020; 14:154-160. [PMID: 33359603 DOI: 10.1016/j.brs.2020.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex (DLPFC) hypothetically modulates cognitive functions by facilitating or inhibiting neuronal activities chiefly in the cerebral cortex. The effect of tDCS in the deeper brain region, the basal ganglia-cortical circuit, remains unknown. OBJECTIVE To investigate the interaction between γ-aminobutyric acid (GABA) concentrations and dopamine release following tDCS. METHOD This study used a randomized, placebo-controlled, double-blind, crossover design. Seventeen healthy male subjects underwent active and sham tDCS (13 min twice at an interval of 20 min) with the anode placed at the left DLPFC and the cathode at the right DLPFC, followed by examinations with [11C]-raclopride positron emission topography (PET) and GABA-magnetic resonance spectroscopy (MRS). MRS voxels were set in the left DLPFC and bilateral striata. Paired t-tests and regression analyses were performed for PET and MRS parameters. RESULTS MRS data analyses showed elevations in GABA in the left striatum along with moderate reductions in the right striatum and the left DLPFC after active tDCS. PET data analyses showed that reductions in [11C]-raclopride binding potentials (increase in dopamine release) in the right striatum were inversely correlated with those in the left striatum after active tDCS. GABA reductions in the left DLPFC positively correlated with elevations in GABA in the left striatum and with increases in right striatal dopamine release and negatively correlated with increases in left striatal dopamine release. CONCLUSION The present results suggest that tDCS to the DLPFC modulates dopamine-GABA functions in the basal ganglia-cortical circuit.
Collapse
Affiliation(s)
- Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Mina Fukai
- Department of Psychiatry and Neurobiology, Kanazawa University, Kanazawa, Japan
| | - Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Ito
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; Global Strategic Challenge Center, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Yohei Takata
- Global Strategic Challenge Center, Hamamatsu Photonics KK, Hamamatsu, Japan
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan.
| |
Collapse
|
13
|
Age-related variability in decision-making: Insights from neurochemistry. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:415-434. [PMID: 30536205 DOI: 10.3758/s13415-018-00678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite dopamine's significant role in models of value-based decision-making and findings demonstrating loss of dopamine function in aging, evidence of systematic changes in decision-making over the life span remains elusive. Previous studies attempting to resolve the neural basis of age-related alteration in decision-making have typically focused on physical age, which can be a poor proxy for age-related effects on neural systems. There is growing appreciation that aging has heterogeneous effects on distinct components of the dopamine system within subject in addition to substantial variability between subjects. We propose that some of the conflicting findings in age-related effects on decision-making may be reconciled if we can observe the underlying dopamine components within individuals. This can be achieved by incorporating in vivo imaging techniques including positron emission tomography (PET) and neuromelanin-sensitive MR. Further, we discuss how affective factors may contribute to individual differences in decision-making performance among older adults. Specifically, we propose that age-related shifts in affective attention ("positivity effect") can, in some cases, counteract the impact of altered dopamine function on specific decision-making processes, contributing to variability in findings. In an effort to provide clarity to the field and advance productive hypothesis testing, we propose ways in which in vivo dopamine imaging can be leveraged to disambiguate dopaminergic influences on decision-making, and suggest strategies for assessing individual differences in the contribution of affective attentional focus.
Collapse
|
14
|
Howes OD, Bonoldi I, McCutcheon RA, Azis M, Antoniades M, Bossong M, Modinos G, Perez J, Stone JM, Santangelo B, Veronese M, Grace A, Allen P, McGuire PK. Glutamatergic and dopaminergic function and the relationship to outcome in people at clinical high risk of psychosis: a multi-modal PET-magnetic resonance brain imaging study. Neuropsychopharmacology 2020; 45:641-648. [PMID: 31618752 PMCID: PMC7021794 DOI: 10.1038/s41386-019-0541-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Preclinical models of psychosis propose that hippocampal glutamatergic neuron hyperactivity drives increased striatal dopaminergic activity, which underlies the development of psychotic symptoms. The aim of this study was to examine the relationship between hippocampal glutamate and subcortical dopaminergic function in people at clinical high risk for psychosis, and to assess the association with the development of psychotic symptoms. 1H-MRS was used to measure hippocampal glutamate concentrations, and 18F-DOPA PET was used to measure dopamine synthesis capacity in 70 subjects (51 people at clinical high risk for psychosis and 19 healthy controls). Clinical assessments were undertaken at baseline and follow-up (median 15 months). Striatal dopamine synthesis capacity predicted the worsening of psychotic symptoms at follow-up (r = 0.35; p < 0.05), but not transition to a psychotic disorder (p = 0.22), and was not significantly related to hippocampal glutamate concentration (p = 0.13). There were no differences in either glutamate (p = 0.5) or dopamine (p = 0.5) measures in the total patient group relative to controls. Striatal dopamine synthesis capacity at presentation predicts the subsequent worsening of sub-clinical total and psychotic symptoms, consistent with a role for dopamine in the development of psychotic symptoms, but is not strongly linked to hippocampal glutamate concentrations.
Collapse
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK.
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- TREAT Service, South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, SE5 8AZ, UK.
| | - Ilaria Bonoldi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
- TREAT Service, South London and Maudsley Foundation NHS Trust, Maudsley Hospital, London, SE5 8AZ, UK
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK.
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Matilda Azis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Mathilde Antoniades
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Matthijs Bossong
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gemma Modinos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Jesus Perez
- Cambridge Early Onset service, Cambridgeshire and Peterborough Mental Health Partnership National Health Service Trust, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James M Stone
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Barbara Santangelo
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| | - Anthony Grace
- Department of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
| | - Philip K McGuire
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Camberwell, London, SE5 8AF, UK
| |
Collapse
|
15
|
Froböse MI, Westbrook A, Bloemendaal M, Aarts E, Cools R. Catecholaminergic modulation of the cost of cognitive control in healthy older adults. PLoS One 2020; 15:e0229294. [PMID: 32084218 PMCID: PMC7034873 DOI: 10.1371/journal.pone.0229294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 11/19/2022] Open
Abstract
Catecholamines have long been associated with cognitive control and value-based decision-making. More recently, we have shown that catecholamines also modulate value-based decision-making about whether or not to engage in cognitive control. Yet it is unclear whether catecholamines influence these decisions by altering the subjective value of control. Thus, we tested whether tyrosine, a catecholamine precursor altered the subjective value of performing a demanding working memory task among healthy older adults (60-75 years). Contrary to our prediction, tyrosine administration did not significantly increase the subjective value of conducting an N-back task for reward, as a main effect. Instead, in line with our previous study, exploratory analyses indicated that drug effects varied as a function of participants' trait impulsivity scores. Specifically, tyrosine increased the subjective value of conducting an N-back task in low impulsive participants, while reducing its value in more impulsive participants. One implication of these findings is that the over-the-counter tyrosine supplements may be accompanied by an undermining effect on the motivation to perform demanding cognitive tasks, at least in certain older adults. Taken together, these findings indicate that catecholamines can alter cognitive control by modulating motivation (rather than just the ability) to exert cognitive control.
Collapse
Affiliation(s)
- Monja I. Froböse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Andrew Westbrook
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States of America
| | - Mirjam Bloemendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Esther Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Dept Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Miyamoto M, Miyamoto T, Saitou J, Sato T. Longitudinal study of striatal aromatic l-amino acid decarboxylase activity in patients with idiopathic rapid eye movement sleep behavior disorder. Sleep Med 2020; 68:50-56. [PMID: 32028226 DOI: 10.1016/j.sleep.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
STUDY OBJECTIVES To determine if nigrostriatal dopaminergic system function, evaluated by aromatic l-amino acid decarboxylase (AADC) activity using 6-[18F]fluoro-meta-tyrosine brain positron emission tomography (FMT-PET) can accurately and efficiently identify idiopathic rapid-eye-movement behavior disorder (IRBD) individuals at risk for conversion to a clinical diagnosis of Parkinson's disease (PD) or dementia with Lewy bodies (DLB). METHODS We assessed prospectively striatal aromatic l-amino acid decarboxylase activity using FMT brain PET imaging in IRBD patients who were followed systematically every 1-3 months for 1-10 years. IRBD patients (n = 27) were enrolled in this prospective cohort study starting in 2009. Those who underwent follow-up scans between January 2011 and September 2014 (n = 24) were analyzed in the present study. RESULTS Of the 24 IRBD patients with baseline and follow-up FMT-PET scans, 11 (45.8%) developed PD (n = 6) or DLB (n = 5). Compared to IRBD patients who were still disease-free, those who developed PD (n = 5) or DLB with parkinsonism (n = 1) had significantly reduced bilateral putaminal FMT uptake during the follow-up. Furthermore, the rate of FMT decline between baseline and follow-up scans was higher in all converted patients, even for those with DLB without parkinsonism, than in IRBD patients who remained disease-free. CONCLUSIONS FMT-PET, which represents a dynamic change in AADC activity over time, may also be a useful predictor for the risk of conversion to PD or DLB over short-term clinical follow-up periods, or when testing neuroprotective and restorative strategies in the prodromal phases of PD or DLB.
Collapse
Affiliation(s)
- Masayuki Miyamoto
- Department of Neurology, Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan.
| | | | | |
Collapse
|
17
|
Lövdén M, Karalija N, Andersson M, Wåhlin A, Axelsson J, Köhncke Y, Jonasson LS, Rieckman A, Papenberg G, Garrett DD, Guitart-Masip M, Salami A, Riklund K, Bäckman L, Nyberg L, Lindenberger U. Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations. Cereb Cortex 2019; 28:3894-3907. [PMID: 29028935 DOI: 10.1093/cercor/bhx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ylva Köhncke
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars S Jonasson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Center for Aging and Demographic Research, CEDAR, Umeå University, Umeå, Sweden
| | - Anna Rieckman
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, San Domenico di Fiesole (FI), Italy
| |
Collapse
|
18
|
Juarez EJ, Castrellon JJ, Green MA, Crawford JL, Seaman KL, Smith CT, Dang LC, Matuskey D, Morris ED, Cowan RL, Zald DH, Samanez-Larkin GR. Reproducibility of the correlative triad among aging, dopamine receptor availability, and cognition. Psychol Aging 2019; 34:921-932. [PMID: 31589058 PMCID: PMC6829049 DOI: 10.1037/pag0000403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evidence that dopamine function mediates the association between aging and cognition is one of the most cited findings in the cognitive neuroscience of aging. However, few and relatively small studies have directly examined these associations. Here we examined correlations among adult age, dopamine D2-like receptor (D2R) availability, and cognition in two cross-sectional studies of healthy human adults. Participants completed a short cognitive test battery and, on a separate day, a PET scan with either the high-affinity D2R tracer [18F]Fallypride (Study 1) or [11C]FLB457 (Study 2). Digit span, a measure of short-term memory maintenance and working memory, was the only cognitive test for which dopamine D2R availability partially mediated the age effect on cognition. In Study 1, age was negatively correlated with digit span. Striatal D2R availability was positively correlated with digit span controlling for age. The age effect on digit span was smaller when controlling for striatal D2R availability. Although other cognitive measures used here have individually been associated with age and D2R availability in prior studies, we found no consistent evidence for significant associations between low D2R availability and low cognitive performance on these measures. These results at best only partially supported the correlative triad of age, dopamine D2R availability, and cognition. While a wealth of other research in human and nonhuman animals demonstrates that dopamine makes critical contributions to cognition, the present studies suggest caution in interpreting PET findings as evidence that dopamine D2R loss is a primary cause of broad age-related declines in fluid cognition. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linh C Dang
- Department of Psychology, Vanderbilt University
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University
| | - Evan D Morris
- Department of Radiology and Biomedical Imaging, Yale University
| | | | | | | |
Collapse
|
19
|
Li X, Bäckman L, Persson J. The relationship of age and DRD2 polymorphisms to frontostriatal brain activity and working memory performance. Neurobiol Aging 2019; 84:189-199. [PMID: 31629117 DOI: 10.1016/j.neurobiolaging.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) in both prefrontal cortex (PFC) and caudate nucleus is critical for working memory (WM) function. The C957T and Taq1A polymorphisms of the DRD2 gene are related to DA D2 receptor densities in PFC and striatum. Using functional MRI, we investigated the relationship of age and these 2 DRD2 gene polymorphisms to WM function and examined possible age by gene interactions. Results demonstrated less caudate activity for older adults (70-80 years; n = 112) compared with the younger age group (25-65 years; n = 191), suggesting age-related functional differences in this region. Importantly, there was a gene-related difference regarding WM performance and frontostriatal brain activity. Specifically, better WM performance and greater activity in PFC were found among C957T C allele carriers. Combined genetic markers for increased DA D2 receptor density were associated with greater caudate activity and higher WM updating performance. The genetic effects on blood oxygen level-dependent activity were only observed in older participants, suggesting magnified genetic effects in aging. Our findings emphasize the importance of DA-related genes in regulating WM functioning in aging and demonstrate a positive link between DA and brain activation in the frontostriatal circuitry.
Collapse
Affiliation(s)
- Xin Li
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Nour MM, Dahoun T, McCutcheon RA, Adams RA, Wall MB, Howes OD. Task-induced functional brain connectivity mediates the relationship between striatal D2/3 receptors and working memory. eLife 2019; 8:e45045. [PMID: 31290741 PMCID: PMC6620042 DOI: 10.7554/elife.45045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Working memory performance is thought to depend on both striatal dopamine 2/3 receptors (D2/3Rs) and task-induced functional organisation in key cortical brain networks. Here, we combine functional magnetic resonance imaging and D2/3R positron emission tomography in 51 healthy volunteers, to investigate the relationship between working memory performance, task-induced default mode network (DMN) functional connectivity changes, and striatal D2/3R availability. Increasing working memory load was associated with reduced DMN functional connectivity, which was itself associated with poorer task performance. Crucially, the magnitude of the DMN connectivity reduction correlated with striatal D2/3R availability, particularly in the caudate, and this relationship mediated the relationship between striatal D2/3R availability and task performance. These results inform our understanding of natural variation in working memory performance, and have implications for understanding age-related cognitive decline and cognitive impairments in neuropsychiatric disorders where dopamine signalling is altered.
Collapse
Affiliation(s)
- Matthew M Nour
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchUniversity College LondonLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging (WCHN)University College LondonLondonUnited Kingdom
| | - Tarik Dahoun
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
- Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
| | - Robert A McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
| | - Rick A Adams
- Institute of Cognitive Neuroscience (ICN)University College LondonLondonUnited Kingdom
- Division of PsychiatryUniversity College LondonLondonUnited Kingdom
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences (Invicro Ltd)Hammersmith HospitalLondonUnited Kingdom
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience (IOPPN)King’s College LondonLondonUnited Kingdom
- MRC London Institute of Medical Sciences (LMS)Hammersmith HospitalLondonUnited Kingdom
- Institute of Clinical SciencesImperial College LondonLondonUnited Kingdom
| |
Collapse
|
21
|
Influence of nutritional tyrosine on cognition and functional connectivity in healthy old humans. Neuroimage 2019; 193:139-145. [DOI: 10.1016/j.neuroimage.2019.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 01/16/2023] Open
|
22
|
Yee DM, Adams S, Beck A, Braver TS. Age-Related Differences in Motivational Integration and Cognitive Control. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:692-714. [PMID: 30980339 PMCID: PMC6599483 DOI: 10.3758/s13415-019-00713-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the motivational value of diverse incentives are integrated in the brain into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N = 44) and younger (N = 54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. These data suggest that older adults may have impairments in incentive integration and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive Control and Psychopathology Laboratory, Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1125, St. Louis, MO, 63130, USA.
| | - Sarah Adams
- Cognitive Control and Psychopathology Laboratory, Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1125, St. Louis, MO, 63130, USA
| | - Asad Beck
- Cognitive Control and Psychopathology Laboratory, Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1125, St. Louis, MO, 63130, USA
| | - Todd S Braver
- Cognitive Control and Psychopathology Laboratory, Psychological and Brain Sciences, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1125, St. Louis, MO, 63130, USA
| |
Collapse
|
23
|
McGlade E, Agoston AM, DiMuzio J, Kizaki M, Nakazaki E, Kamiya T, Yurgelun-Todd D. The Effect of Citicoline Supplementation on Motor Speed and Attention in Adolescent Males. J Atten Disord 2019; 23:121-134. [PMID: 26179181 DOI: 10.1177/1087054715593633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study assessed the effects of citicoline, a nutraceutical, on attention, psychomotor function, and impulsivity in healthy adolescent males. METHOD Seventy-five healthy adolescent males were randomly assigned to either the citicoline group ( n = 51 with 250 or 500 mg citicoline) or placebo ( n = 24). Participants completed the Ruff 2&7 Selective Attention Test, Finger Tap Test, and the Computerized Performance Test, Second Edition (CPT-II) at baseline and after 28 days of supplementation. RESULTS Individuals receiving citicoline exhibited improved attention ( p = 0.02) and increased psychomotor speed ( p = 0.03) compared with those receiving placebo. Higher weight-adjusted dose significantly predicted increased accuracy on an attention task ( p = 0.01), improved signal detectability on a computerized attention task ( p = 0.03), and decreased impulsivity ( p = 0.01). DISCUSSION Adolescent males receiving 28 days of Cognizin® citicoline showed improved attention and psychomotor speed and reduced impulsivity compared to adolescent males who received placebo.
Collapse
Affiliation(s)
| | | | | | - Miho Kizaki
- 2 KYOWA HAKKO BIO CO., LTD, Tsukuba, Ibaraki, Japan
| | - Eri Nakazaki
- 2 KYOWA HAKKO BIO CO., LTD, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
24
|
Abstract
Healthy aging is associated with numerous deficits in cognitive function, which have been attributed to changes within the prefrontal cortex (PFC). This chapter summarizes some of the most prominent cognitive changes associated with age-related alterations in the anatomy and physiology of the PFC. Specifically, aging of the PFC results in deficient aspects of cognitive control, including sustained attention, selective attention, inhibitory control, working memory, and multitasking abilities. Yet, not all cognitive functions associated with the PFC exhibit age-related declines, such as arithmetic, comprehension, emotion perception, and emotional control. Moreover, not all older adults exhibit declines in cognition. Multiple life-course and lifestyle factors, as well as genetics, play a role in the trajectory of cognitive performance across the life span. Thus many adults retain cognitive function well into advanced age. Moreover, the brain remains plastic throughout life and there is increasing evidence that most age-related declines in cognition can be remediated by various methods such as physical exercise, cognitive training, or noninvasive brain stimulation. Overall, because cognitive aging is associated with numerous life-course and lifestyle factors, successful aging likely begins in early life, while maintaining cognition or remediating declines is a life-long process.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Departments of Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
25
|
Jauhar S, McCutcheon R, Borgan F, Veronese M, Nour M, Pepper F, Rogdaki M, Stone J, Egerton A, Turkheimer F, McGuire P, Howes OD. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 2018; 5:816-823. [PMID: 30236864 PMCID: PMC6162342 DOI: 10.1016/s2215-0366(18)30268-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pathophysiology of psychosis is incompletely understood. Disruption in cortical glutamatergic signalling causing aberrant striatal dopamine synthesis capacity is a proposed model for psychosis, but has not been tested in vivo. We therefore aimed to test the relationship between cortical glutamate concentrations and striatal dopamine synthesis capacity, and psychotic symptoms. METHODS In this cross-sectional multimodal imaging study, 28 individuals with first-episode psychosis and 28 healthy controls underwent 18F-DOPA PET (measuring striatal dopamine synthesis capacity), and proton magnetic resonance spectroscopy (measuring anterior cingulate cortex glutamate concentrations). Participants were recruited from first-episode psychosis services in London, UK and were required to be in the first episode of a psychotic illness, with no previous illness or treatment episodes. Exclusion criteria for all participants were: history of substantial head trauma, dependence on illicit substances, medical comorbidity (other than minor illnesses), and contraindications to scanning (such as pregnancy). Symptoms were measured using the Positive and Negative Syndrome Scale. The primary endpoint was the relationship between anterior cingulate cortex glutamate concentrations and striatal dopamine synthesis capacity in individuals with their first episode of psychosis as shown by imaging, examined by linear regression. Linear regression was used to examine relationships between measures. FINDINGS Glutamate concentrations showed a significant inverse relationship with striatal dopamine synthesis capacity in patients with psychosis (R2=0·16, p=0·03, β -1·71 × 10-4, SE 0·76 × 10-4). This relationship remained significant after the addition of age, gender, ethnicity, and medication status to the model (p=0·015). In healthy controls, there was no significant relationship between dopamine and glutamate measures (R2=0·04, p=0·39). Positive and Negative Syndrome Scale positive psychotic symptoms were positively associated with striatal dopamine synthesis capacity (R2=0·14, p=0·046, β 2546, SE 1217) and showed an inverse relationship with anterior cingulate glutamate concentrations (R2=0·16, p=0·03, β -1·71 × 10-4, SE 7·63 × 10-5). No relationships were seen with negative symptoms (positive symptoms, mean [SD] -18·4 (6·6) negative symptoms, mean [SD] -15·4 [6·1]). INTERPRETATION These observations are consistent with the hypothesis that cortical glutamate dysfunction is related to subcortical dopamine synthesis capacity and psychosis. Although the precise mechanistic relationship between cortical glutamate and dopamine in vivo remains unclear, our findings support further studies to test the effect of modulating cortical glutamate in the treatment of psychosis. FUNDING Medical Research Council, Wellcome Trust, Biomedical Research Council, South London and Maudsley NHS Foundation Trust, JMAS Sim Fellowship, Royal College of Physicians (Edinburgh) (SJ).
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychological Medicine, King's College, London, UK; Early Intervention Psychosis Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | | | - Faith Borgan
- Department of Psychosis Studies, King's College, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Matthew Nour
- Department of Psychosis Studies, King's College, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, King's College, London, UK
| | - M Rogdaki
- Department of Psychosis Studies, King's College, London, UK
| | - James Stone
- Department of Psychological Medicine, King's College, London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, King's College, London, UK
| | - Frederico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, King's College, London, UK; Early Intervention Psychosis Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, King's College, London, UK; Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK.
| |
Collapse
|
26
|
Berry AS, Shah VD, Jagust WJ. The Influence of Dopamine on Cognitive Flexibility Is Mediated by Functional Connectivity in Young but Not Older Adults. J Cogn Neurosci 2018; 30:1330-1344. [PMID: 29791298 DOI: 10.1162/jocn_a_01286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dopaminergic signaling in striatum is strongly implicated in executive functions including cognitive flexibility. However, there is a paucity of multimodal research in humans defining the nature of relationships between endogenous dopamine, striatal network activity, and cognition. Here, we measured dopamine synthesis capacity in young and older adults using the PET tracer 6-[18F]fluoro-l- m-tyrosine and examined its relationship with cognitive performance and functional connectivity during an fMRI study of task switching. Aging is associated with alteration in dopamine function, including profound losses in dopamine receptors but an apparent elevation in dopamine synthesis. A compensatory benefit of upregulated dopamine synthesis in aging has not been established. Across young and older adults, we found that cognitive flexibility (low behavioral switch cost) was associated with stronger task-related functional connectivity within canonical fronto-striato-thalamic circuits connecting left inferior frontal gyrus, dorsal caudate nucleus (DCA) and ventral lateral/ventral anterior thalamic nuclei. In young adults, functional connectivity mediated the influence of DCA dopamine synthesis capacity on switch cost. For older adults, these relationships were modified such that DCA synthesis capacity and connectivity interacted to influence switch cost. Older adults with most elevated synthesis capacity maintained the pattern of connectivity-cognition relationships observed in youth, whereas these relationships were not evident for older adults with low synthesis capacity. Together, these findings suggest a role of dopamine in tuning striatal circuits to benefit executive function in young adults and clarify the functional impact of elevated dopamine synthesis capacity in aging.
Collapse
|
27
|
Vo A, Seergobin KN, MacDonald PA. Independent effects of age and levodopa on reversal learning in healthy volunteers. Neurobiol Aging 2018; 69:129-139. [PMID: 29894903 DOI: 10.1016/j.neurobiolaging.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022]
Abstract
The dopamine overdose hypothesis has provided an important theoretical framework for understanding cognition in Parkinson's disease. It posits that effects of dopaminergic therapy on cognition in Parkinson's disease depend on baseline dopamine levels in brain regions that support different functions. Although functions performed by more severely dopamine-depleted brain regions improve with medication, those associated with less dopamine deficient areas are actually worsened. It is presumed that medication-related worsening of cognition owes to dopamine overdose. We investigated whether age-related changes in baseline dopamine levels would modulate effects of dopaminergic therapy on reward learning in healthy volunteers. In a double-blind, crossover design, healthy younger and older adults completed a probabilistic reversal learning task after treatment with 100/25 mg of levodopa/carbidopa versus placebo. Older adults learned more poorly than younger adults at baseline, being more likely to shift responses after misleading punishment. Levodopa worsened stimulus-reward learning relative to placebo to the same extent in both groups, irrespective of differences in baseline performance and expected dopamine levels. When order effects were eliminated, levodopa induced response shifts after reward more often than placebo. Our results reveal independent deleterious effects of age group and exogenous dopamine on reward learning, suggesting a more complex scenario than predicted by the dopamine overdose hypothesis.
Collapse
Affiliation(s)
- Andrew Vo
- Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| | - Ken N Seergobin
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada.
| |
Collapse
|
28
|
Li X, Li Q, Wang X, Li D, Li S. Differential Age-Related Changes in Structural Covariance Networks of Human Anterior and Posterior Hippocampus. Front Physiol 2018; 9:518. [PMID: 29867561 PMCID: PMC5954440 DOI: 10.3389/fphys.2018.00518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC) and the posterior hippocampus (pHPC). In this study, 240 healthy subjects aged 18-89 years were selected and subdivided into young (18-23 years), middle-aged (30-58 years), and older (61-89 years) groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age (p < 0.05, family-wise error corrected). These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.
Collapse
Affiliation(s)
- Xinwei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiongling Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuyu Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
29
|
Dopamine Synthesis Capacity is Associated with D2/3 Receptor Binding but Not Dopamine Release. Neuropsychopharmacology 2018; 43:1201-1211. [PMID: 28816243 PMCID: PMC5916345 DOI: 10.1038/npp.2017.180] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023]
Abstract
Positron Emission Tomography (PET) imaging allows the estimation of multiple aspects of dopamine function including dopamine synthesis capacity, dopamine release, and D2/3 receptor binding. Though dopaminergic dysregulation characterizes a number of neuropsychiatric disorders including schizophrenia and addiction, there has been relatively little investigation into the nature of relationships across dopamine markers within healthy individuals. Here we used PET imaging in 40 healthy adults to compare, within individuals, the estimates of dopamine synthesis capacity (Ki) using 6-[18F]fluoro-l-m-tyrosine ([18F]FMT; a substrate for aromatic amino acid decarboxylase), baseline D2/3 receptor-binding potential using [11C]raclopride (a weak competitive D2/3 receptor antagonist), and dopamine release using [11C]raclopride paired with oral methylphenidate administration. Methylphenidate increases synaptic dopamine by blocking the dopamine transporter. We estimated dopamine release by contrasting baseline D2/3 receptor binding and D2/3 receptor binding following methylphenidate. Analysis of relationships among the three measurements within striatal regions of interest revealed a positive correlation between [18F]FMT Ki and the baseline (placebo) [11C]raclopride measure, such that participants with greater synthesis capacity showed higher D2/3 receptor-binding potential. In contrast, there was no relationship between [18F]FMT and methylphenidate-induced [11C]raclopride displacement. These findings shed light on the nature of regulation between pre- and postsynaptic dopamine function in healthy adults, which may serve as a template from which to identify and describe alteration with disease.
Collapse
|
30
|
Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. eNeuro 2018; 5:eN-NWR-0035-17. [PMID: 30094335 PMCID: PMC6084775 DOI: 10.1523/eneuro.0035-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 01/02/2023] Open
Abstract
The aging brain is characterized by altered dopamine signaling. The amino acid tyrosine, a catecholamine precursor, is known to improve cognitive performance in young adults, especially during high environmental demands. Tyrosine administration might also affect catecholamine transmission in the aging brain, thereby improving cognitive functioning. In healthy older adults, impairments have been demonstrated in two forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipatory response slowing) under high information load. However, no study has directly compared the effects of a catecholamine precursor on reactive and load-dependent proactive inhibition. In this study we explored the effects of tyrosine on reactive and proactive response inhibition and signal in dopaminergically innervated fronto-striatal regions. Depending on age, tyrosine might lead to beneficial or detrimental neurocognitive effects. We aimed to address these hypotheses in 24 healthy older human adults (aged 61-72 years) using fMRI in a double blind, counterbalanced, placebo-controlled, within-subject design. Across the group, tyrosine did not alter reactive or proactive inhibition behaviorally but did increase fronto-parietal proactive inhibition-related activation. When taking age into account, tyrosine affected proactive inhibition both behaviorally and neurally. Specifically, increasing age was associated with a greater detrimental effect of tyrosine compared with placebo on proactive slowing. Moreover, with increasing age, tyrosine decreased fronto-striatal and parietal proactive signal, which correlated positively with tyrosine's effects on proactive slowing. Concluding, tyrosine negatively affected proactive response slowing and associated fronto-striatal activation in an age-dependent manner, highlighting the importance of catecholamines, perhaps particularly dopamine, for proactive response inhibition in older adults.
Collapse
|
31
|
van de Rest O, Bloemendaal M, de Heus R, Aarts E. Dose-Dependent Effects of Oral Tyrosine Administration on Plasma Tyrosine Levels and Cognition in Aging. Nutrients 2017; 9:nu9121279. [PMID: 29168741 PMCID: PMC5748730 DOI: 10.3390/nu9121279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 01/06/2023] Open
Abstract
The effects of tyrosine on plasma response and cognition in aging are unknown. We assessed the dose-dependent response to tyrosine administration in older adults in both plasma tyrosine concentrations and working memory performance. In this double blind randomized cross-over trial 17 older adults (aged 60–75 years) received a single administration of 100, 150, or 200 mg/kg body weight of tyrosine. For comparison, 17 young adults (aged 18–35 years) received a dose of 150 mg/kg body weight of tyrosine. Tyrosine plasma concentrations were determined before and 90, 120, 150, 180, 210, and 240 min after tyrosine intake. Working memory was assessed using the N-back task at 90 min after tyrosine administration. Older adults showed a dose-dependent increase in plasma tyrosine concentrations (p < 0.001), and the plasma response was higher than for young adults with the same dose (p < 0.001). Load-dependent working memory performance decreased with higher doses of tyrosine (p = 0.048), especially in older adults with greater dose-dependent plasma tyrosine responses (p = 0.035). Our results show an age-related increase in plasma tyrosine response, which was associated with a dose-dependent decline in cognitive functioning in older adults.
Collapse
Affiliation(s)
- Ondine van de Rest
- Wageningen University, Division of Human Nutrition, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | - Mirjam Bloemendaal
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Rianne de Heus
- Wageningen University, Division of Human Nutrition, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Geriatric Medicine, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
- Radboud Alzheimer Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Esther Aarts
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Spontaneous Eye Blink Rate (EBR) Is Uncorrelated with Dopamine D2 Receptor Availability and Unmodulated by Dopamine Agonism in Healthy Adults. eNeuro 2017; 4:eN-NWR-0211-17. [PMID: 28929131 PMCID: PMC5602106 DOI: 10.1523/eneuro.0211-17.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/15/2023] Open
Abstract
Spontaneous eye blink rate (EBR) has been proposed as a noninvasive, inexpensive marker of dopamine functioning. Support for a relation between EBR and dopamine function comes from observations that EBR is altered in populations with dopamine dysfunction and EBR changes under a dopaminergic manipulation. However, the evidence across the literature is inconsistent and incomplete. A direct correlation between EBR and dopamine function has so far been observed only in nonhuman animals. Given significant interest in using EBR as a proxy for dopamine function, this study aimed to verify a direct association in healthy, human adults. Here we measured EBR in healthy human subjects whose dopamine D2 receptor (DRD2) availability was assessed with positron emission tomography (PET)-[18F]fallypride to examine the predictive power of EBR for DRD2 availability. Effects of the dopamine agonist bromocriptine on EBR also were examined to determine the responsiveness of EBR to dopaminergic stimulation and, in light of the hypothesized inverted-U profile of dopamine effects, the role of DRD2 availability in EBR responsivity to bromocriptine. Results from 20 subjects (age 33.6 ± 7.6 years, 9F) showed no relation between EBR and DRD2 availability. EBR also was not responsive to dopaminergic stimulation by bromocriptine, and individual differences in DRD2 availability did not modulate EBR responsivity to bromocriptine. Given that EBR is hypothesized to be particularly sensitive to DRD2 function, these findings suggest caution in using EBR as a proxy for dopamine function in healthy humans.
Collapse
|
33
|
Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging 2017; 57:36-46. [PMID: 28599217 DOI: 10.1016/j.neurobiolaging.2017.05.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023]
Abstract
Many theories of cognitive aging are based on evidence that dopamine (DA) declines with age. Here, we performed a systematic meta-analysis of cross-sectional positron emission tomography and single-photon emission-computed tomography studies on the average effects of age on distinct DA targets (receptors, transporters, or relevant enzymes) in healthy adults (N = 95 studies including 2611 participants). Results revealed significant moderate to large, negative effects of age on DA transporters and receptors. Age had a significantly larger effect on D1- than D2-like receptors. In contrast, there was no significant effect of age on DA synthesis capacity. The average age reductions across the DA system were 3.7%-14.0% per decade. A meta-regression found only DA target as a significant moderator of the age effect. This study precisely quantifies prior claims of reduced DA functionality with age. It also identifies presynaptic mechanisms (spared synthesis capacity and reduced DA transporters) that may partially account for previously unexplained phenomena whereby older adults appear to use dopaminergic resources effectively. Recommendations for future studies including minimum required samples sizes are provided.
Collapse
Affiliation(s)
- Teresa M Karrer
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Anika K Josef
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Rui Mata
- Center for Cognitive and Decision Sciences, University of Basel, Basel, Switzerland
| | - Evan D Morris
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Gregory R Samanez-Larkin
- Department of Psychology, Yale University, New Haven, CT, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Andersen AD, Blaabjerg M, Binzer M, Kamal A, Thagesen H, Kjaer TW, Stenager E, Gramsbergen JBP. Cerebrospinal fluid levels of catecholamines and its metabolites in Parkinson's disease: effect of l-DOPA treatment and changes in levodopa-induced dyskinesia. J Neurochem 2017; 141:614-625. [PMID: 28244186 DOI: 10.1111/jnc.13997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/28/2022]
Abstract
Levodopa (l-DOPA, l-3,4-dihydroxyphenylalanine) is the most effective drug in the symptomatic treatment of Parkinson's disease (PD), but chronic use initiates a maladaptive process leading to l-DOPA-induced dyskinesia (LID). Risk factors for early onset LID include younger age, more severe disease at baseline and higher daily l-DOPA dose, but biomarkers to predict the risk of motor complications are not yet available. Here, we investigated whether CSF levels of catecholamines and its metabolites are altered in PD patients with LID [PD-LID, n = 8)] as compared to non-dyskinetic PD patients receiving l-DOPA (PD-L, n = 6), or not receiving l-DOPA (PD-N, n = 7) as well as non-PD controls (n = 16). PD patients were clinically assessed using the Unified Parkinson's Disease Rating Scale and Unified Dyskinesia Rating Scale and CSF was collected after overnight fasting and 1-2 h after oral intake of l-DOPA or other anti-Parkinson medication. CSF catecholamines and its metabolites were analyzed by HPLC with electrochemical detection. We observed (i) decreased levels of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid in PD patients not receiving l-DOPA (ii) higher dopamine (DA) levels in PD-LID as compared to controls (iii) higher DA/l-DOPA and lower DOPAC/DA ratio's in PD-LID as compared to PD-L and (iv) an age-dependent increase of DA and decrease of DOPAC/DA ratio in controls. These results suggest increased DA release from non-DA cells and deficient DA re-uptake in PD-LID. Monitoring DA and DOPAC in CSF of l-DOPA-treated PD patients may help identify patients at risk of developing LID.
Collapse
Affiliation(s)
- Andreas Dammann Andersen
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,Odense Patient data Exploratory Network, Odense University Hospital, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Binzer
- Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Akram Kamal
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Helle Thagesen
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | - Egon Stenager
- Department of Neurology, Hospital of Southern Jutland, Sønderborg, Denmark.,Institute of Regional Health Research, Center of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark.,Focused Research Group in Neurology, Hospital of Southern Jutland, Aabenraa, Denmark.,The Multiple Sclerosis Clinic of Southern Jutland, Vejle, Sonderborg, Esbjerg, Denmark
| | - Jan Bert Paul Gramsbergen
- Institute of Molecular Medicine, Neurobiological Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Influence of age and cognitive performance on resting-state brain networks of older adults in a population-based cohort. Cortex 2017; 89:28-44. [PMID: 28192723 DOI: 10.1016/j.cortex.2017.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/11/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022]
Abstract
Aging leads to global changes in brain structure and cognitive performance, with reorganization of functional brain networks. Importantly, these age-related changes show higher inter-individual variability in older subjects. To particularly address this variability is a challenge for studies on lifetime trajectories from early to late adulthood. The present study therefore had a dedicated focus on late adulthood to characterize the functional connectivity in resting-state networks (RSFC) in relation to age and cognitive performance in 711 older adults (55-85 years) from the 1000BRAINS project. The executive, left and right frontoparietal resting-state (RS) networks showed age-related increases in RSFC. However, older adults did not show changes in RSFC in the default mode network (DMN). Furthermore, lower performance in working memory (WM) was associated with higher RSFC in the left frontoparietal RS network. The results suggest age-related compensatory increases in RSFC which might help to maintain cognitive performance. Nevertheless, the negative correlation between RSFC and WM performance hints at limited cognitive reserve capacity in lower performing older adults. Consequently, the current results provide evidence for a functional reorganization of the brain until late adulthood that might additionally explain parts of the variability of cognitive abilities in older adults.
Collapse
|
36
|
Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility. J Neurosci 2016; 36:12559-12569. [PMID: 27807030 DOI: 10.1523/jneurosci.0626-16.2016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/27/2016] [Accepted: 10/22/2016] [Indexed: 01/08/2023] Open
Abstract
Aging is accompanied by profound changes in the brain's dopamine system that affect cognitive function. Evidence of powerful individual differences in cognitive aging has sharpened focus on identifying biological factors underlying relative preservation versus vulnerability to decline. Dopamine represents a key target in these efforts. Alterations of dopamine receptors and dopamine synthesis are seen in aging, with receptors generally showing reduction and synthesis demonstrating increases. Using the PET tracer 6-[18F]fluoro-l-m-tyrosine, we found strong support for upregulated striatal dopamine synthesis capacity in healthy older adult humans free of amyloid pathology, relative to young people. We next used fMRI to define the functional impact of elevated synthesis capacity on cognitive flexibility, a core component of executive function. We found clear evidence in young adults that low levels of synthesis capacity were suboptimal, associated with diminished cognitive flexibility and altered frontoparietal activation relative to young adults with highest synthesis values. Critically, these relationships between dopamine, performance, and activation were transformed in older adults with higher synthesis capacity. Variability in synthesis capacity was related to intrinsic frontoparietal functional connectivity across groups, suggesting that striatal dopamine synthesis influences the tuning of networks underlying cognitive flexibility. Together, these findings define striatal dopamine's association with cognitive flexibility and its neural underpinnings in young adults, and reveal the alteration in dopamine-related neural processes in aging. SIGNIFICANCE STATEMENT Few studies have combined measurement of brain dopamine with examination of the neural basis of cognition in youth and aging to delineate the underlying mechanisms of these associations. Combining in vivo PET imaging of dopamine synthesis capacity, fMRI, and a sensitive measure of cognitive flexibility, we reveal three core findings. First, we find evidence supporting older adults' capacity to upregulate dopamine synthesis. Second, we define relationships between dopamine, cognition, and frontoparietal activity in young adults indicating high levels of synthesis capacity are optimal. Third, we demonstrate alteration of these relationships in older adults, suggesting neurochemical modulation of cognitive flexibility changes with age.
Collapse
|
37
|
Smith CT, Wallace DL, Dang LC, Aarts E, Jagust WJ, D'Esposito M, Boettiger CA. Modulation of impulsivity and reward sensitivity in intertemporal choice by striatal and midbrain dopamine synthesis in healthy adults. J Neurophysiol 2016; 115:1146-56. [PMID: 26683066 PMCID: PMC4808128 DOI: 10.1152/jn.00261.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023] Open
Abstract
Converging evidence links individual differences in mesolimbic and mesocortical dopamine (DA) to variation in the tendency to choose immediate rewards ("Now") over larger, delayed rewards ("Later"), or "Now bias." However, to date, no study of healthy young adults has evaluated the relationship between Now bias and DA with positron emission tomography (PET). Sixteen healthy adults (ages 24-34 yr; 50% women) completed a delay-discounting task that quantified aspects of intertemporal reward choice, including Now bias and reward magnitude sensitivity. Participants also underwent PET scanning with 6-[(18)F]fluoro-l-m-tyrosine (FMT), a radiotracer that measures DA synthesis capacity. Lower putamen FMT signal predicted elevated Now bias, a more rapidly declining discount rate with increasing delay time, and reduced willingness to accept low-interest-rate delayed rewards. In contrast, lower FMT signal in the midbrain predicted greater sensitivity to increasing magnitude of the Later reward. These data demonstrate that intertemporal reward choice in healthy humans varies with region-specific measures of DA processing, with regionally distinct associations with sensitivity to delay and to reward magnitude.
Collapse
Affiliation(s)
- Christopher T. Smith
- 1Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina;
| | - Deanna L. Wallace
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California;
| | - Linh C. Dang
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,3Lawrence Berkeley National Laboratory, Berkeley, California;
| | - Esther Aarts
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,4Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; and
| | - William J. Jagust
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California; ,3Lawrence Berkeley National Laboratory, Berkeley, California;
| | - Mark D'Esposito
- 2Helen Wills Neuroscience Institute, University of California, Berkeley, California;
| | - Charlotte A. Boettiger
- 1Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina; ,5Department of Psychology & Neuroscience, Bowles Center for Alcohol Studies, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
38
|
Lee A, Qiu A. Modulative effects of COMT haplotype on age-related associations with brain morphology. Hum Brain Mapp 2016; 37:2068-82. [PMID: 26920810 DOI: 10.1002/hbm.23161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022] Open
Abstract
Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, 117609, Singapore
| |
Collapse
|
39
|
Castillo Meleán J, Ermert J, Coenen HH. A three-step radiosynthesis of 6-[(18) F]fluoro-L-meta-tyrosine starting with [(18) F]fluoride. J Labelled Comp Radiopharm 2015; 58:133-40. [PMID: 25809710 DOI: 10.1002/jlcr.3273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/07/2022]
Abstract
The radiosynthesis of 6-[(18) F]fluoro-L-m-tyrosine has generally been performed by electrophilic radiofluorination, which exhibits several drawbacks. In the present work, a three-step radiochemical synthesis is described starting from [(18) F]fluoride. The synthetic sequence, including isotopic exchange, Baeyer-Villiger oxidation, and hydrolysis, were examined comparing four fluorobenzophenone derivatives as labeling precursors. Of those, (2S,5S)-tert-butyl 5-(5-acetyl-2-fluorobenzyl)-2-tert-butyl-3-methyl-4-oxoimidazolidine-1-carboxylate (1a) and (2S,5S)-tert-butyl 2-tert-butyl-5-(2-fluoro-5-(2,2,2-trifluoroacetyl)benzyl)-3-methyl-4-oxoimidazolidine-1-carboxylate (1d) proved to be the most suitable ones. 6-[(18) F]Fluoro-L-m-tyrosine was obtained with overall radiochemical yields of 8-13% and an enantiomeric excess of up to 98%.
Collapse
Affiliation(s)
- Johnny Castillo Meleán
- Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, 52425, Jülich, Germany
| | | | | |
Collapse
|
40
|
Lorenz RC, Gleich T, Buchert R, Schlagenhauf F, Kühn S, Gallinat J. Interactions between glutamate, dopamine, and the neuronal signature of response inhibition in the human striatum. Hum Brain Mapp 2015; 36:4031-40. [PMID: 26177932 DOI: 10.1002/hbm.22895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/11/2015] [Accepted: 06/27/2015] [Indexed: 01/28/2023] Open
Abstract
Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition.
Collapse
Affiliation(s)
- Robert C Lorenz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany.,Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Tobias Gleich
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,NeuroCure Excellence Cluster, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Buchert
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Max Planck Fellow Group 'Cognitive and Affective Control of Behavioral Adaptation', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Sambataro F, Podell JE, Murty VP, Das S, Kolachana B, Goldberg TE, Weinberger DR, Mattay VS. A variable number of tandem repeats in the 3′-untranslated region of the dopamine transporter modulates striatal function during working memory updating across the adult age span. Eur J Neurosci 2015; 42:1912-8. [DOI: 10.1111/ejn.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Sambataro
- pRED; NORD DTA; Hoffmann-La Roche; Basel Switzerland
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
| | - Jamie E. Podell
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
| | - Vishnu P. Murty
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
| | - Saumitra Das
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
| | - Bhaskar Kolachana
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
| | - Terry E. Goldberg
- Litwin Zucker Alzheimer's Disease Research Center; Feinstein Institute; Manhasset NY USA
| | - Daniel R. Weinberger
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, 855 North Wolfe Street Baltimore MD 21205 USA
- Department of Psychiatry; Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Neurology; Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Neuroscience; Johns Hopkins University School of Medicine; Baltimore MD USA. Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore MD USA. Lieber Institute for Brain Development; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Venkata S. Mattay
- Genes, Cognition and Psychosis Program; Clinical Brain Disorders Branch; National Institute of Mental Health Intramural Research Program; National Institutes of Health; Bethesda MD USA
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, 855 North Wolfe Street Baltimore MD 21205 USA
- Department of Neurology; Johns Hopkins University School of Medicine; Baltimore MD USA
- Lieber Institute for Brain Development; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
42
|
Eppinger B, Heekeren HR, Li SC. Age-related prefrontal impairments implicate deficient prediction of future reward in older adults. Neurobiol Aging 2015; 36:2380-90. [PMID: 26004018 DOI: 10.1016/j.neurobiolaging.2015.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/29/2022]
Abstract
Foresighted decision-making depends on the ability to learn the value of future outcomes and the sequential choices necessary to achieve them. Using a 3-stage Markov decision task and functional magnetic resonance imaging, we investigated age differences in the ability to extract state transition structures while learning to predict future reward. In younger adults learning was associated with enhanced activity in the prefrontal cortex (PFC). In older adults (OA) we found no evidence for PFC recruitment. However, high-performing OA showed enhanced striatal activity, suggesting that they may engage in a model-free (experience-based) learning strategy. Change point analyses revealed that in younger adults learning was characterized by distinct and abrupt shifts in PFC activity, which were predictive of behavioral change points. In OA PFC activity was less pronounced and not predictive of behavior. Our findings suggest that age-related impairments in learning future reward value can be attributed to a deficit in extracting sequential state transition structures. This deficit may lead to myopic decisions in OA if contextual information has to be temporally integrated.
Collapse
Affiliation(s)
- Ben Eppinger
- Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Shu-Chen Li
- Department of Psychology, Technische Universität Dresden, Dresden, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
43
|
Persson J, Rieckmann A, Kalpouzos G, Fischer H, Bäckman L. Influences of a DRD2 polymorphism on updating of long-term memory representations and caudate BOLD activity: magnification in aging. Hum Brain Mapp 2014; 36:1325-34. [PMID: 25486867 DOI: 10.1002/hbm.22704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022] Open
Abstract
A number of genetic polymorphisms are related to individual differences in cognitive performance. Striatal dopamine (DA) functions, associated with cognitive performance, are linked to the TaqIA polymorphism of the DRD2/ANKK1 gene. In humans, presence of an A1 allele of the DRD2/ANKK1-TaqIA polymorphism is related to reduced density of striatal DA D2 receptors. The resource-modulation hypothesis assumes that aging-related losses of neurochemical and structural brain resources modulate the extent to which genetic variations affect cognitive functioning. Here, we tested this hypothesis using functional MRI during long-term memory (LTM) updating in younger and older carriers and noncarriers of the A1-allele of the TaqIa polymorphism. We demonstrate that older A1-carriers have worse memory performance, specifically during LTM updating, compared to noncarriers. Moreover, A1-carriers exhibited less blood oxygen level-dependent (BOLD) activation in left caudate nucleus, a region critical to updating. This effect was only seen in older adults, suggesting magnification of genetic effects on functional brain activity in aging. Further, a positive relationship between caudate BOLD activation and updating performance among non-A1 carriers indicated that caudate activation was behaviorally relevant. These results demonstrate a link between the DRD2/ANKK1-TaqIA polymorphism and neurocognitive deficits related to LTM updating, and provide novel evidence that this effect is magnified in aging.
Collapse
Affiliation(s)
- Jonas Persson
- Aging Research Center (ARC), Karolinska Institute and Stockholm University, Gävlegatan 16, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
44
|
Schabram I, Eggermann T, Siegel SJ, Gründer G, Zerres K, Vernaleken I. Neuropsychological correlates of transcription factor AP-2Beta, and its interaction with COMT and MAOA in healthy females. Neuropsychobiology 2014; 68:79-90. [PMID: 23881096 DOI: 10.1159/000350997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The transcription factor AP-2β has been shown to impact clinical and neuropsychological properties. Apparently, it regulates the transcription of genes that code for molecules which are part of the catecholaminergic transmission system. This investigation focuses on possible effects of the transcription factor AP-2β intron 2 polymorphism on cognitive performance parameters. METHODS This hypothesis-driven investigation examined the effects and interactions of the transcription factor AP-2β intron 2 polymorphism, the Val158Met catechol-O-methyltransferase (COMT) polymorphism, and the variable number of tandem repeat polymorphism of monoamine oxidase A (MAOA) on cognitive performance parameters within a group of 200 healthy women (age: mean ± SD, 23.93 ± 3.33 years). RESULTS The AP-2β polymorphism significantly influenced cognitive performance (in particular, the Trail Making Test part B), whereas the MAOA and COMT polymorphisms did not. However, there was an interaction effect of the AP-2β × MAOA × COMT genotypes on the decision bias β of the degraded-stimulus version of the continuous performance task. Only the Val158Met COMT polymorphism showed an influence on personality questionnaires (openness and self-transcendence; NEO Five-Factor Inventory, Temperament and Character Inventory). CONCLUSION The transcription factor AP-2β intron 2 polymorphism had more influence on cognition than the MAOA and COMT polymorphisms. Possibly, the AP-2β genotype might influence cognition through pathways other than those that regulate MAOA and COMT transcription. Interactions of transcription factor AP-2β, COMT, and MAOA polymorphisms suggest higher leverage effects of transcription factor AP-2β in subjects with high dopamine availability.
Collapse
Affiliation(s)
- Ina Schabram
- Department of Psychiatry and Psychotherapy, Medical Faculty, RWTH Aachen University, and JARA-Translational Brain Medicine, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Romain G, Opacka-Juffry J. Cerebral ageing-the role of insulin and insulin-like growth factor signalling: A review. World J Neurol 2014; 4:12-22. [DOI: 10.5316/wjn.v4.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Cerebral ageing is a complex biological process associated with progressing cerebrovascular disease and neuronal death. It does not always, however, associate with a functional decline, as the ageing mammalian brain retains considerable functional plasticity which supports successful cerebral ageing where age-related cognitive decline is modest. On the contrary, pathological cerebral ageing results in memory impairment and cognitive deterioration, with Alzheimer’s disease (AD) being a florid example. Trophic/growth factors promote brain plasticity; among them are peptides which belong to the insulin family. Preclinical research suggests that the evolutionarily conserved brain insulin/insulin-like growth factor-1 (IGF-1) signalling system controls lifespan and protects against some features of AD such as neurodegeneration-related accumulation of toxic proteins and cognitive deficiencies, as observed in animal models. Insulin and IGF-1 activate cell signalling mechanisms which play protective and regenerative roles; abnormalities in the insulin/IGF-1 system may trigger a cascade of neurodegeneration in AD. AD patients show cerebral resistance to insulin which associates with IGF-I resistance and dysregulation of insulin/IGF-1 receptors as well as cognitive deterioration. This review is focused on the roles of the insulin/IGF-1 signalling system in cerebral ageing and its potential involvement in neurodegeneration in the human brain as seen against the background of preclinical evidence.
Collapse
|
46
|
Abstract
Deficient information processing with increasing age has been assigned to reduced efficiency in frontal executive control functions. Dopamine has been assumed to play a central role for this decline. Dopamine, however, is also essential for the maintenance of motivation for a longer period of time and is therefore a core factor for mental fatigue. Combining these two findings, we tested to what degree older adults are more prone to performance loss due to increasing time on task than younger adults. Twelve younger and twelve older participants performed an inhibition of return task for 80 min. Performance declined in the older participants but not in the young. Event-related potentials (ERPs) of the EEG, however, showed distinct changes with time on task primarily for young participants. The dissociation between behavioral and ERP results indicates that changes in ERPs of the young participants could reflect adaptations to the task rather than fatigue. This is evident from very distinct changes of the posterior N1 component in this group. The failing (or rather unspecific) adaptation to the task in older adults might have been a consequence of lacking frontal executive control functions reflected in a massive reduction of the N2 component of the ERP, relative to the young participants.
Collapse
Affiliation(s)
- Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
47
|
Longevity manipulations differentially affect serotonin/dopamine level and behavioral deterioration in aging Caenorhabditis elegans. J Neurosci 2014; 34:3947-58. [PMID: 24623772 DOI: 10.1523/jneurosci.4013-13.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aging is accompanied with behavioral and cognitive decline. Changes in the neurotransmitter level are associated with the age-related behavioral deterioration, but whether well-known longevity manipulations affect the function of neurotransmitter system in aging animals is largely unclear. Here we report that serotonin (5-HT) and dopamine (DA) level decrease with age in C. elegans. The reduction results in downregulation of the activity of neurons controlled by 5-HT/DA signaling, and deterioration of some important behaviors, including pharyngeal pumping, food-induced slowing responses, and male mating. Longevity manipulations differentially affect the age-related decline in neuronal level of 5-HT/DA. The reduction and resultant behavioral deterioration occur in long-lived worms with defective insulin signaling [daf-2(e1370), age-1(hx546)] or mitochondria function [isp-1(qm150), tpk-1(qm162)], but not in long-lived worms with dietary restriction eat-2(ad1116). A reduced expression level of dopa decarboxylase BAS-1, the shared enzyme for 5-HT/DA synthesis, is responsible for the decline in 5-HT/DA levels. RNAi assay revealed that the sustained 5-HT/DA level in neurons of aged eat-2(ad1116) worms requires PHA-4 and its effectors superoxide dismutases and catalases, suggesting the involvement of reactive oxygen species in the 5-HT/DA decline. Furthermore, we found that elevating 5-HT/DA ameliorates age-related deterioration of pharyngeal pumping, food-induced slowing responses, and male mating in both wild-type and daf-2(e1370) worms. Together, dietary restriction preserves healthy behaviors in aged worms at least partially by sustaining a high 5-HT/DA level, and elevating the 5-HT/DA level in wild-type and daf-2(e1370) worms improves their behaviors during aging.
Collapse
|
48
|
Forbes EE, Rodriguez EE, Musselman S, Narendran R. Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults. PLoS One 2014; 9:e94640. [PMID: 24804780 PMCID: PMC4012954 DOI: 10.1371/journal.pone.0094640] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Although altered function in neural reward circuitry is widely proposed in models of addiction, more recent conceptual views have emphasized the role of disrupted response in prefrontal regions. Changes in regions such as the orbitofrontal cortex, medial prefrontal cortex, and dorsolateral prefrontal cortex are postulated to contribute to the compulsivity, impulsivity, and altered executive function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults. To address these issues, we examined neural response and functional connectivity during monetary reward in 24 adults with alcohol dependence and 24 psychiatrically healthy adults. Adults with alcohol dependence exhibited less response to the receipt of monetary reward in a set of prefrontal regions including the medial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex. Adults with alcohol dependence also exhibited greater negative correlation between function in each of these regions and that in the nucleus accumbens. Within the alcohol-dependent group, those with family history of alcohol dependence exhibited lower mPFC response, and those with more frequent drinking exhibited greater negative functional connectivity between the mPFC and the nucleus accumbens. These findings indicate that alcohol dependence is associated with less engagement of prefrontal cortical regions, suggesting weak or disrupted regulation of ventral striatal response. This pattern of prefrontal response and frontostriatal connectivity has consequences for the behavior patterns typical of addiction. Furthermore, brain-behavior findings indicate that the potential mechanisms of disruption in frontostriatal circuitry in alcohol dependence include family liability to alcohol use problems and more frequent use of alcohol. In all, these findings build on the extant literature on reward-circuit function in addiction and suggest mechanisms for disrupted function in alcohol dependence.
Collapse
Affiliation(s)
- Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Eric E. Rodriguez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Samuel Musselman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh Narendran
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
49
|
Lee SH, Kim H, Kim J, Yoon JH, Kim SR. Initial phase performance in a 30-s verbal fluency task as being reflective of aging effect. Geriatr Gerontol Int 2014; 15:496-500. [PMID: 24730516 DOI: 10.1111/ggi.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 11/29/2022]
Abstract
AIM The purpose of the present study was to investigate if performance in a 30-s verbal semantic fluency task (i.e. animal naming) across five elderly aged groups (60-64; 65-69; 70-74; 75-79; 80-84 years) would be reflective of aging effect. METHODS We analyzed differences in performance across 5-s phases and the moment of first word production in these five age groups. RESULTS The following results were obtained: (i) with increasing age, the total number of words produced gradually declined (P < 0.001); (ii) there were significant differences in performance among the age groups in three phases (0-5, 6-10, 16-20 s) (P < 0.05); and (iii) the first word production within the first 5-s phase was significantly delayed in the 75-79 years and 80-84 years age groups compared with the rest of the age groups. CONCLUSIONS Performance in the initial 5-s phase might be sensitive to cognitive degeneration in normal older adults.
Collapse
Affiliation(s)
- Seon Ha Lee
- Graduate Program in Speech and Language Pathology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
50
|
Tacrine improves reversal learning in older rats. Neuropharmacology 2013; 73:284-9. [DOI: 10.1016/j.neuropharm.2013.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/02/2013] [Accepted: 05/18/2013] [Indexed: 11/23/2022]
|